
Dynamic Recontracting Processes

with Multiple Indivisible Goods∗

Olivier Bochet†, Bettina Klaus‡, and Markus Walzl§

CORE dp 2007/61

Abstract

We consider multiple-type housing markets. To capture the dynamic aspect of trade in
such markets, we study a dynamic recontracting process similar to the one introduced by
Serrano and Volij (2005). First, we analyze the set of recurrent classes of this process as
a (non-empty) solution concept. We show that each core allocation always constitutes a
singleton recurrent class and provide examples of non-singleton recurrent classes consisting
of blocking-cycles of individually rational allocations. For multiple-type housing markets
stochastic stability never serves as a selection device among recurrent classes.

Next, we propose a method to compute the limit invariant distribution of the dynamic
recontracting process. The limit invariant distribution exploits the interplay of coalitional
stability and accessibility that determines a probability distribution over final allocations.
We provide various examples to demonstrate how the limit invariant distribution discrim-
inates among stochastically stable allocations: surprisingly, some core allocations are less
likely to be final allocations of the dynamic process than cycles composed of non-core
allocations.
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1 Introduction

Dynamic recontracting processes Consider Shapley and Scarf’s (1974) well-known
model of exchange with indivisible goods, the so-called housing market model.1 One of
the most important solution concepts for such markets is the core. An allocation x is in the
core if there does not exist a coalition that can improve upon x using its own endowments: x
cannot be blocked.2 The core of a housing market satisfies some remarkable properties. Most
prominently, the core consists of a unique allocation that also turns out to be the unique
Walrasian allocation of the market (Roth and Postlewaite, 1977). Furthermore, the core is a
static solution concept “with a dynamic heart”: it is defined for a fixed economy, but if agents
block, they cause a transition from one state of the world (an allocation) to another state of
the world (an allocation where the members of the blocking coalition are better off), which
hints at a dynamic process that however is not explicitly modeled. So the core incorporates
robustness against potential transitions in a model that does not accommodate the possibility
of transition.

Our aim here is to better understand the dynamics of trade. In particular we are interested
in its resulting allocations – inside as well as outside the core. To this end, we study the
following dynamic recontracting process or d.r. process for short. The d.r. process starts with
the agents’ endowments as the initial allocation for trade. Throughout the d.r. process we
do not redefine endowments (property rights are not exchanged). At any stage agents can
recontract upon the allocation x that resulted from previous trades. A coalition is randomly
selected and is allowed to recontract over x if it can block x using its endowments. A new
allocation is obtained as follows: agents in the coalition reallocate their endowments according
to the blocking. If this reallocation is feasible because no agent outside the coalition was
consuming the endowment of an agent in the coalition, then agents outside the coalition stick
to their assignment at x. If the coalition’s recontracting is not feasible, then agents outside
the coalition receive their endowments. Thus, at each period, a coalition is randomly selected
and has the power to make the process transit from the prevailing allocation to another one.
This determines a Markov process on the set of allocations.3 In the long-run, such a Markov-
process always ends up in one of its recurrent classes: a set of allocations that once reached
will never be abandoned.

To select among recurrent classes, we allow that agents make mistakes when they recon-
tract; we “perturb” the d.r. process. This means that in every period, each agent with a
small probability ε agrees on a reallocation that makes him worse off. In such a perturbed
d.r. process, any allocation can be reached from any other allocation after a finite number
of periods (with sufficiently many mistakes by the agents involved). Hence, a perturbed d.r.
process has only one recurrent class – the entire set of allocations – and the probability distri-
bution over allocations induced by the perturbed d.r. process converges (in the long-run and
for small ε) to the so-called limit invariant distribution, which is unique. The support of this
distribution – the set of stochastically stable allocations – is the set of allocations to which
the perturbed d.r. process converges with strictly positive probability. Hence, stochastically

1In Shapley-Scarf housing markets, each agent is endowed with a house, has strict preferences over the set
of houses in the market, and wishes to consume exactly one house.

2Note that the core we introduce here is sometimes referred to as the strong (or strict) core. The notion of
blocking associated with the strong core is weak blocking. That is, when a coalition S blocks x, no member of
S is worse-off and at least one of its member is better-off.

3We discuss basic notions and terminology of Markov processes in Appendix B.
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stable allocations can be regarded as the (potentially) final allocations of the d.r. process,
and the limit invariant distribution is a probability distribution over these candidate final
allocations.

Note that similarly as the core, recurrent classes of the unperturbed d.r. process are static.
A set of allocations is a recurrent class if it exhibits the following stability : no allocation
outside the recurrent class blocks an allocation in the recurrent class. In contrast, the limit
invariant distribution is an inherently dynamic concept as it also captures the accessibility
of an allocation. The easier it is for the d.r. process to reach an allocation – and, the more
difficult to exit – the larger is the probability that the d.r. process converges to the respective
allocation in the long run. Hence, the limit invariant distribution is a probability distribution
over final allocations that combines a core-like stability concept (each stochastically stable
allocation is an element of a recurrent class) with a notion of accessibility incorporated by
the d.r. process.

One of our objectives is a computational method that elicits the set of stochastically
stable allocations and the limit invariant distribution. In particular, we are interested in the
relation between the set of final allocations of d.r. processes (and the respective probability
distributions) and the core. This is the main reason why we have modeled the d.r. process
using recontracting based on core blocking and without the transfer of property rights (once
property rights are transferred throughout the process, it is obvious that the core of the initial
market will not play any specific role). Given that we model the d.r. process as closely as
possible to the implicit dynamic elements incorporated into the core, we ask the following
questions: Are core allocations necessarily elements of recurrent classes and stochastically
stable? Does the process converge to every core allocation with the same probability? Can
the process converge to non-core allocations? And, what is the relation of all these solution
concepts to Walrasian allocation(s)?

Relation to the Literature Pioneering work on d.r. processes for exchange economies
has been conducted by Feldman (1974) and Green (1974). They provide conditions for which
a d.r. process converges to the core and thereby formalize Edgeworth’s intuition that the
final allocation of an exchange economy can be reached through dynamic recontracting. In
a recent contribution, Serrano and Volij (2005) use d.r. processes to analyze Shapley-Scarf
housing markets. Using a Markov process identical to the one described above, they show that
the unique core allocation is the unique recurrent class (and, hence, the unique stochastically
stable allocation) of the d.r. process. This “equivalence” result between the core and the set of
final allocations of the d.r. process is driven by the global dominance property of the core for
Shapley-Scarf housing markets.4 Next, Serrano and Volij (2005) extend the classical housing
market model by allowing for indifferences in the agents’ preferences. For this model, they
characterize the set of recurrent classes and stochastically stable allocations. In particular,
they show that every allocation in the core forms a singleton recurrent class of the d.r. process.
However, not every core allocation is stochastically stable. They provide examples where
(i) the set of stochastically stable allocations coincides with the set of core allocations, (ii)
requiring stochastic stability selects certain core allocations that are not necessarily Walrasian,
and (iii) the set of stochastically stable allocations overlaps with the set of core allocations but
also contains cycles of non-core allocations. These results suggest that the set of stochastically
stable allocations is a dynamic solution concept that relates to the core in a non-trivial way.

4Roth and Postlewaite (1977) demonstrate that in a Shapley-Scarf housing market each allocation outside
the core can be blocked by the unique core allocation.
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In particular, they demonstrate how stochastic stability serves as a selection device among
recurrent classes.

Our Contribution We consider a different extension of Shapley-Scarf housing markets
than Serrano and Volij (2005). We keep preferences strict, but extend the analysis to multiple-
type housing markets (Moulin, 1995). Hence, we endow each agent with one commodity of
each type (e.g., houses and cars or, more realistically, tutor groups for different courses as
described in Klaus, 2006) and analyze simultaneous trade in all these types. Konishi, Quint,
and Wako (2001) show that the core of such an economy may well be empty or multi-valued.5

For the case of only one type our model is identical to Serrano and Volij’s (2005) benchmark
model with strict preferences.

Similar to Serrano and Volij (2005), we show that each allocation in the core forms a
singleton recurrent classes of the d.r. process while there are possibly non-singleton recurrent
classes consisting of blocking cycles. In contrast to Serrano and Volij’s findings – and to many
applications of Markov processes (see for example the literature on equilibrium selection in
non-cooperative games as proposed by Kandori et al., 1993; Young, 1993) – we show that
stochastic stability never serves as a selection device among recurrent classes. There is no
recurrent class of the d.r. process that fails to be stochastically stable. However, this does not
imply that each stochastically stable allocation (each allocation in the support of the limit
invariant distribution) will be the final allocation of the process with the same probability.

Starting with a result by Freidlin and Wentzell (1998), we develop a method to compute
the limit invariant distribution of a d.r. process. As the limit invariant distribution is a
probability distribution over stochastically stable recurrent classes, its use is to discriminate
between the different stochastically stable allocations as contenders for the final allocations of
the economy. This discrimination hinges on one crucial conceptual difference between what
determines the stochastic stability of an allocation and what determines the probability that
this allocation will be the final allocation of the process. While stochastic stability solely
depends on the minimum number of mistakes needed to reach and leave a certain allocation,
the probability assigned by the limit invariant distribution is also determined by the transition
probabilities of the original d.r. process. This additional dependence on the underlying d.r.
process allows for a finer characterization of its final allocations.

We illustrate the computational techniques and their interpretation with several examples.
In particular we show that some core and Walrasian allocations may be the least likely of
all possible final allocations. On the other hand, blocking-cycles may emerge as powerful
contenders for final allocations even if the core is non-empty. Hence, following the long-run
predictions of a d.r. process leads us to a better understanding of the non-trivial relation
between core allocations, Walrasian allocations, and blocking-cycles.

Moreover, we regard our analysis of d.r. processes as an instructive illustration of a method
to compute limit invariant distributions. This method should be useful in many applications
of Markov processes (such as methods of equilibrium selection in non-cooperative games
(Kandori et al., 1993; Young, 1993) or models of network formation (Jackson and Watts,
2002).

Organization of the Paper The remainder of the paper is organized as follows. In Sec-
tion 2, we define multiple-type housing markets. In Section 3, we discuss some basic results
for multiple-type housing markets and introduce examples. In Section 4, we introduce the

5We show that the same holds for the set of Walrasian allocations.
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d.r. process and characterize its recurrent classes. In Section 5, we continue with the per-
turbed d.r. process and study stochastic stability and the limit invariant distribution. Finally,
Section 6 concludes with some remarks on the relation between the different solution concepts.

2 Multiple-Type Housing Markets: the Model

Let N = {1, . . . , n}, n ≥ 2, be the set of agents, which we sometimes call the grand coalition.
There exist ¯̀ ≥ 1 types of indivisible objects. The set of object types is denoted by L =
{1, . . . , ¯̀} and each agent i ∈ N is endowed with one object of each type ` ∈ L, denoted by i.
Thus, N also denotes the set of objects of each type.

Allocations An allocation is an assignment of objects such that each agent receives exactly
one object of each type, i.e., an allocation is a matrix x = (xi(`))i∈N,`∈L ∈ NN×L such that

(i) For each i ∈ N and each ` ∈ L, xi(`) ∈ N denotes the object of type ` that agent i
consumes, e.g., if xi(`) = j, then agent i receives agent j’s endowment of type `, and

(ii) no object of any type is assigned to more than one agent, i.e., for each ` ∈ L,
∪i∈N{xi(`)} = N.

Let X denote the set of allocations. Given x ∈ X and ` ∈ L, x(`) = (x1(`), . . . , xn(`))
denotes the allocation of type-` objects. Given x ∈ X and i ∈ N , xi = (xi(1), . . . , xi(¯̀))
denotes the list of objects that agent i receives at allocation x. We call xi agent i’s bundle.
Note that the set of bundles for each i ∈ N can be denoted by NL. We denote each agent i’s
endowment by ei = (i, . . . , i) ∈ NL. Similarly, for any coalition S ⊆ N , we denote coalition
S’s endowment by eS = (ei)i∈S .

Markets Each agent i ∈ N has complete, transitive, and strict preferences Ri over bundles,
i.e., Ri is a linear order over NL. We denote the strict part of Ri by Pi. Thus, for bundles
xi, yi ∈ NL, xi Ri yi implies [xi 6= yi and xi Pi yi] or [xi = yi]. By R we denote the set
of preferences over NL. By RN = ×i∈NR we denote the set of (preference) profiles. Since
the set of agents and their endowments remain fixed throughout, RN also denotes the set of
multiple-type housing markets. For ¯̀= 1, our model coincides with the classical Shapley and
Scarf (1974) housing market model.6

Individual Rationality An allocation x is individually rational for R ∈ RN if for each
i ∈ N , xi Ri ei. Let IR(R) be the set of individually rational allocations for R ∈ RN .

To introduce the standard (cooperative) solution concepts for multiple-type housing mar-
kets we need some additional notation. The set of all feasible reallocations of objects among
the members of coalition S ⊆ N is denoted by,

XS = {(xi(`))i∈S,`∈L ∈ NS×L | for each ` ∈ L, ∪i∈S{xi(`)} = S}.

Let y ∈ X and S ⊆ N . Then, by yS = (yi)i∈S we denote the restriction of allocation y to
coalition S. For notational convenience we will also use X−S ≡ XN\S and y−S ≡ yN\S .

6Note that instead of considering the whole domain of linear orders R as our reference domain, we could
restrict the domain to the domain of separable preferences Rs (see Klaus, 2006) or to the domain of additively
separable preferences Ras (see Konishi et al., 2001). However, separability plays no role in our analysis.
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If for R ∈ RN , x, y ∈ X, and S ⊆ N , (i) yS ∈ XS , (ii) for each i ∈ S, yi Ri xi, and (iii) for
some j ∈ S, yj Pj xj , then y S-blocks x.

The Core An allocation x ∈ X is a (strong) core allocation for R ∈ RN if there exists no
coalition S ⊆ N and no yS ∈ XS such that y S-blocks x. Let Core(R) be the set of core
allocations – the core – for R ∈ RN .

Walrasian Allocations Define a price system by p ≡ (p`)`∈L ∈ Rn¯̀
+ such that for all l ∈ L,

p` = (p`(1), . . . , p`(n)) ∈ Rn
+. An allocation x is a Walrasian allocation for R ∈ RN if there

exists a price system p ∈ Rn¯̀
+ \ {0} such that for each i ∈ N , x is a best affordable bundle,

i.e., (i)
∑

`∈L p`(i) ≥
∑

`∈L p`(xi(`)) and (ii) if yi Pi xi, then
∑

`∈L p`(yi(`)) >
∑

`∈L p`(i).7

Let W (R) be the set of Walrasian allocations – the Walrasian set – for R ∈ RN .

3 Multiple-Type Housing Markets: Basic Results & Examples

First, we summarize some results for the benchmark case of one object type housing markets.

Remark 1. The Benchmark Case: Housing Markets with Strict Preferences
For any housing market with one object type (and strict preferences) a core allocation always
exists (Shapley and Scarf, 1974). Furthermore, the core equals the Walrasian set and is a
singleton (Roth and Postlewaite, 1977). Using the so-called top-trading algorithm (due to
David Gale, see Shapley and Scarf, 1974) one can easily calculate the unique core allocation
for any housing market with one object type. Furthermore, the core is externally stable, i.e.,
for any non-core allocation x there exists a coalition S such that the core allocation S-blocks
x (Roth and Postlewaite, 1977). Serrano and Volij (2005) refer to this particular feature of
the core as “global dominance.” 4

As soon as we either relax the assumption of strict preferences or increase the number
of object types, existence, single-valuedness, and the global dominance property of the core
fail. For markets with ¯̀≥ 2, the core may be empty or multi-valued – even for additively
separable preferences (Konishi et al., 2001). Moreover, for each R ∈ RN , W (R) ⊆ Core(R)
(Konishi et al., 2001, Proposition 3.1).

We next introduce several examples that we will analyze in the sequel.8 All our examples
are multiple-type housing market with two object types and three agents.

Example 1. An Empty Core Let R be such that

R1 : (3, 1), (1, 2), (1, 1), anything,

R2 : (2, 1), (3, 2), (2, 2), anything,

R3 : (2, 3), (1, 3), (3, 3), anything.

The set IR(R) of individually rational allocations is {x1, x2, x3, x4}, with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(1, 1), (3, 2), (2, 3)}, x3 = {(1, 2), (2, 1), (3, 3)},
7Note that the budget inequality (i) can be replaced by a budget equality: this can be easily checked by

adding (i) up over all agents i ∈ N and applying
P

i∈N

�P
`∈L p`(i)

�
=
P

i∈N

�P
`∈L p`(xi(`))

�
.

8The exception is Example 5, which we comment on in Remark 2.

6



x4 = {(3, 1), (2, 2), (1, 3)}.

Clearly, x2 {2, 3}-blocks x1, x3 {1, 2}-blocks x2, x4 {1, 3}-blocks x3, and x2 {2, 3}-blocks x4.
Hence, Core(R) = W (R) = ∅. �

We relegate the computation of the core and the Walrasian set for all remaining examples to
Appendix A.

Example 2. The Unique Walrasian Allocation Equals the Core Allocation
Let R be such that

R1 : (3, 1), (2, 2), (1, 2), (1, 1), anything,

R2 : (2, 1), (3, 3), (3, 2), (2, 2), anything,

R3 : (2, 3), (1, 1), (1, 3), (3, 3), anything.

The set IR(R) of individually rational allocations is {x1, x2, x3, x4, x5}, with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(1, 1), (3, 2), (2, 3)}, x3 = {(1, 2), (2, 1), (3, 3)},

x4 = {(3, 1), (2, 2), (1, 3)}, x5 = {(2, 2), (3, 3), (1, 1)}.

Furthermore, Core(R) = W (R) = {x5}. �

The next example has multiple core allocations, of which only one is Walrasian.9

Example 3. Multiple Core Allocations and a Unique Walrasian Allocation
Let R be such that

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (1, 3), (1, 2), (3, 3), (2, 2), anything,

R3 : (3, 1), (2, 1), (3, 3), anything.

The set IR(R) of individually rational allocations is {x1, x2, x3, x4}, with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(2, 3), (1, 2), (3, 1)}, x3 = {(1, 2), (3, 3), (2, 1)},

x4 = {(3, 3), (1, 2), (2, 1)}.

Furthermore, W (R) = {x3}  {x2, x3, x4} = Core(R). �

Next we illustrate that the Walrasian set may contain multiple allocations.

Example 4. Multiple Walrasian Allocations Let R be such that

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (1, 3), (1, 2), (3, 3), (2, 2), anything

R3 : (2, 1), (3, 1), (3, 3), anything.
9Since in our context, separability does not play a role, we introduce alternative examples to the ones

analyzed in Konishi et al. (2001); for instance, Example 3 has four individually rational allocations while
Konishi et al.’s (2001) corresponding example has eleven individually rational allocations.
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The set IR(R) of individually rational allocations is {x1, x2, x3, x4}, with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(2, 3), (1, 2), (3, 1)}, x3 = {(3, 3), (1, 2), (2, 1)},

x4 = {(1, 2), (3, 3), (2, 1)}.

Furthermore, W (R) = Core(R) = {x3, x4}. �

In our last example the Walrasian set is empty while the core is nonempty.

Example 5. No Walrasian Allocation and a Multi-Valued Core Let R be such that

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (3, 2), (1, 2), (3, 3), (2, 2), anything,

R3 : (1, 3), (3, 1), (2, 3), (2, 1), (3, 3), anything.

The set IR(R) of individually rational allocations is {x1, x2, x3, x4, x5}, with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(1, 1), (3, 2), (2, 3)}, x3 = {(2, 3), (1, 2), (3, 1)},

x4 = {(3, 3), (1, 2), (2, 1)}, x5 = {(1, 2), (3, 3), (2, 1)}.

Furthermore, W (R) = ∅  {x2, x3} = Core(R). �

The last two examples illustrate two features of the relationship between the core and the
Walrasian set not yet recognized in the literature.

Remark 2. New Insights on Walrasian Allocations through Examples 4 and 5
Konishi et al. (2001) prove that the Walrasian set is a subset of the core and that it might
be empty if the core is also empty. Example 5 shows that the Walrasian set might even be
empty when the core is nonempty. Second, in Example 4 the Walrasian set contains more
than one allocation. 4

Moreover, the examples collected in this section demonstrate that the core, or the Wal-
rasian set, are not necessarily satisfactory solutions for multiple-type housing markets.

Remark 3. Core/Walrasian Allocations as Solutions? First, note that both standard
static solution sets, the core and the Walrasian set, may be empty. When they are, we do not
have any (static) prediction to offer as to what will happen. Will agents keep their endowments
or will they trade? Second, the core and the Walrasian set may be multi-valued. When they
are, again we cannot make (static) predictions which, if any, of the possible allocations in
the core will result from trade. As discussed in the Introduction, we will explicitly model the
dynamic aspect of the core through a dynamic recontracting process. Doing so will enable us
to say more about core and Walrasian allocations as solutions of dynamic trade. 4

Next, we model the dynamic recontracting process and characterize market outcomes via
the respective set of recurrent classes (Section 4), stochastic stability (Section 5.1), and – last
but not least – the limit invariant distribution (Section 5.2).
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4 Unperturbed Dynamic Recontracting Processes

For each R ∈ RN , dynamic recontracting is modeled by a Markov Process (X, M(R)).3 The
state space is the set of allocations X and M(R) is a transition matrix that describes the
following dynamics. In each period t, the process is at an allocation x(t) ∈ X and a coalition
S of agents is randomly selected. The process moves from x(t) to another allocation x(t + 1)
when the agents in S recontract among themselves, i.e., agree upon a redistribution of their
endowments. Agents recontract if they benefit from doing so by means of blocking – they
don’t make mistakes. As we will allow for mistakes or perturbations later on, we refer to the
dynamic recontracting process discussed in this section as unperturbed. The following three
assumptions are satisfied in each period.

Assumption 1. Opportunities to Recontract
Each coalition S ⊆ N is chosen with positive probability to recontract. A coalition that has
this opportunity is an active coalition.

This rather mild assumption covers most of the common models of coalition formation.
In particular, the probability with which a certain coalition has the opportunity to recontract
can depend on the size of the coalition, the allocation in period t, or the identities of the
agents involved as long as the corresponding probability distribution has full support in the
set of coalitions.

For each S ⊆ N and each x ∈ X, let BS(x) = {yS ∈ XS | for each i ∈ S, yi Ri

xi and for some j ∈ S, yj Pj xj} be the set of S-blockings of x.

Assumption 2. Recontracting Behavior
Given x(t), an active coalition S ⊆ N recontracts if BS(x(t)) 6= ∅. If |BS(x(t))| > 1, then
each yS ∈ BS(x(t)) is chosen with positive probability.

Agents are myopic in the sense that they agree upon a reallocation of their endowments
if it is weakly improving in the subsequent period, even though they might be worse off later.

The assumption according to which weakly improving reallocations are chosen is again
mild. It is only important that any such reallocation is chosen with positive probability. The
probability itself can depend on the identities or even the preferences of the agents in the
active coalition.

We now fix the allocation that results from recontracting.

Assumption 3. Allocations Resulting from Recontracting
Let S be the active coalition in period t. If BS(x(t)) = ∅, then x(t + 1) = x(t). Let
yS ∈ BS(x(t)) be the blocking chosen by S. If x−S(t) ∈ X−S , then x(t + 1) = (yS , x−S(t)),
and otherwise, x(t + 1) = (yS , eS).

A Markov process (X, M(R)) that satisfies Assumptions 1, 2, and 3 is an unperturbed
dynamic recontracting process, or u.d.r. process for short. Serrano and Volij (2005, Section 7)
consider this specification of the u.d.r. process for Shapley-Scarf economies (¯̀= 1).

An important solution for the u.d.r. process is the set of recurrent classes. A set A ⊆ X is
a recurrent class if it is a minimal set of allocations that once entered throughout the u.d.r.
process is never left.
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Let R ∈ RN . We denote the set of recurrent sets by RS(R) = {A ⊆ X | for each x ∈
A and each x′ /∈ A, M(R)(x, x′) = 0}. The set of recurrent classes RC(R) is the set of all
minimal recurrent sets. Notice that RC(R) is a set of sets of allocations. It is convenient
to also denote the set of recurrent allocations by RC(R) = {x ∈ X | there exists A ∈
RC(R) with x ∈ A}.

Theorem 1. Recurrent Classes
Let R ∈ RN and (X, M(R)) be an u.d.r. process. Then,

(i) RC(R) 6= ∅.
(ii) {x} ∈ RC(R) ⇔ x ∈ Core(R).

(iii) W (R) ⊆ Core(R) ⊆ RC(R) ⊆ IR(R).10

Proof. Statement (i) follows from the finiteness of the Markov process (the finiteness of X).
Statement (ii) is a direct implication of the definition of the u.d.r. process and the fact

that a core allocation cannot be blocked by any other allocation.
Statement (iii): W (R) ⊆ Core(R) follows from Konishi et al. (2001, Proposition 3.1).

Statement (ii) implies Core(R) ⊆ RC(R). Note that, by the definition of the u.d.r. process,
in each period t, x(t) ∈ IR(R). Hence, RC(R) ⊆ IR(R).

Theorem 1 shows that the set of recurrent allocations of an u.d.r. process deserves attention
as a solution for multiple-type housing markets: for any multiple-type housing market the
set of recurrent allocations is non-empty, consists only of individually rational allocations,
and contains all core allocations. To demonstrate (i) the non-emptiness of RC(R), (ii) the
coexistence of singleton recurrent classes (i.e., allocations in the core) and non-singleton
recurrent classes, and (iii) the absence of selection between core allocations, we continue with
three of the examples introduced in Section 3.11

In Example 1 we observe a multi-valued (non-core) recurrent class.

Example 1 (continued). Empty Core and Non-Singleton Recurrent Class
Recall that Core(R) = ∅. By Theorem 1(iii), only allocations in IR(R) = {x1, x2, x3, x4}
can be recurrent allocations. Since x1 can be blocked by any other allocation in IR(R),
it can never be an element of a recurrent class. Hence, we are left with x2, x3, and x4.
Recall that we have a blocking cycle where x3 {1, 2}-blocks x2, x4 {1, 3}-blocks x3, and
x2 {2, 3}-blocks x4. Thus, none of x2, x3, and x4 can form a singleton recurrent class.
Furthermore, each of these allocations can be reached from one another through (a sequence
of) blocking(s) while once one of these allocations is reached no outside allocation can block.
Therefore, {x2, x3, x4} constitutes the only recurrent class. Hence, RC(R) = {{x2, x3, x4}}
and RC(R) = {x2, x3, x4}. �

In Example 2 we have two recurrent classes (one of them equals the core and contains the
unique Walrasian allocation, the other contains three non-core allocations).

Example 2 (continued). The Set of Recurrent Classes Exceeds the Core
Recall that Core(R) = {x5}. By Theorem 1(iii), only allocations in IR(R) =
{x1, x2, x3, x4, x5} can be recurrent allocations. By Theorem 1(ii), Core(R) = {x5} is the

10Example 2 is a multiple-type housing market with Core(R) ( RC(R) ( IR(R) and Example 3 is a
multiple-type housing market with W (R) ( Core(R).

11The recurrent classes of the other examples are determined in Appendix A.
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only singleton recurrent class. Next, recall that the only difference between Examples 1 and
2 is that – loosely speaking – we added allocation x5 to the agents’ preferences such that x5

is now not only individually rational, but also the unique core allocation. However, none of
x2, x3, or x4 can be blocked by x5 (or x1) while there is again the blocking cycle where x3

{1, 2}-blocks x2, x4 {1, 3}-blocks x3, and x2 {2, 3}-blocks x4. Thus, {x2, x3, x4} forms (as in
Example 1) the only non-singleton recurrent class. Hence, RC(R) = {{x2, x3, x4}, {x5}} and
RC(R) = {x2, x3, x4, x5}. �

We conclude with a multiple-type housing market where the set of recurrent classes coin-
cides with the set of core allocations.

Example 3 (continued). The Core Equals the Set of Recurrent Classes
Recall that Core(R) = {x2, x3, x4}. By Theorem 1(iii), only allocations in IR(R) =
{x1, x2, x3, x4} can be recurrent allocations. Since x1 can be blocked by any other allo-
cation in IR(R), it can never be an element of a recurrent class. With Theorem 1(ii),
{x2}, {x3} and {x4} are the only recurrent classes. Hence, RC(R) = {{x2}, {x3}, {x4}}
and RC(R) = Core(R). �

To summarize, even in the case of an empty core, RC(R) offers a prediction for the
outcome of a multiple-type housing market (Example 1). This, however, is achieved at the
expense of a weakly larger set of final outcomes whenever the core is non-empty (Example 2).
Note that this closely resembles the situation in the literature on evolutionary selection of
Nash equilibria in, e.g., coordination games (Young, 1993): while every Nash equilibrium of
the coordination game is also a singleton recurrent class of the unperturbed learning process,
the set of recurrent classes typically exceeds the set of Nash equilibria.

5 Perturbed Dynamic Recontracting Processes

We will now perturb the dynamic recontracting process by allowing agents to make mistakes,
i.e., an agent might agree on a reallocation that makes him worse off. We follow the standard
approach by assuming that in any given period, any agent in an active coalition can make a
mistake with probability ε > 0. We restrict perturbations to mistakes where agents agree on
individually rational allocations that make them worse off.12 One could argue that any active
coalition knows that an individually irrational block is never sustainable because an agent
who receives a bundle that is worse than his endowment later (with positive probability) is
allowed to recontract with himself and then has the good sense to improve on his bundle by
enforcing his endowment.

From now on we assume that the state space for any R ∈ R equals the set of individually
rational allocations, i.e., X = IR(R).

Assumption 4. The probability with which a member of an active coalition i ∈ S agrees on
a reallocation yS with xi(t) Pi yi Ri ei equals ε > 0.

In particular, the probability of a mistake does not depend on the active coalition, the
given x(t), or agents’ preferences. A Markov process (X, M ε(R)) that satisfies Assumptions 1

12The consequences of also allowing “individually irrational mistakes” would be a more cumbersome analysis
of the examples in Subsection 5.2. Preferences would have to be specified over all bundles (also the individually
irrational ones) and taken into account in the construction of least resistance trees (see below). However, it is
easy to see that the general results described in Theorems 2 and 3 still hold.
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– 4 is a perturbed dynamic recontracting process, or p.d.r. process for short. The p.d.r. process
is ergodic: as mistakes induce (indirect) transitions between any two allocations its unique re-
current class is the entire state space X = IR(R) (i.e., the p.d.r. process is irreducible). Then,
the p.d.r. process exhibits a unique invariant distribution µε(R) – for notational convenience
from now on simply µε – with support IR(R) that displays the long-run probability distribu-
tion over allocations (i.e., for any x ∈ X, µε(x) is the probability that the process will be at
allocation x in the long-run). Moreover, the perturbation is regular on IR(R), i.e., transition
probabilities between any two individually rational allocations are non-zero and polynomials
in ε. As every transition from an allocation x′ to an allocation x′′ can involve a maximum of n
mistakes (by every agent in N) we can denote M ε(R)(x′, x′′) ≡

∑
k=0,...,n mk(x′, x′′)εk where

mk(x′, x′′) captures the probability that a coalition forms at allocation x′ and agrees upon al-
location x′′ with exactly k agents making a mistake. In particular, m0(x′, x′′) = M(R)(x′, x′′)
(the intercept of the polynomial) is the respective entry in the transition matrix of the u.d.r.
process.

The limit invariant distribution µ∗ of a Markov process (X, M(R)) is the (unique) invariant
distribution µε of a perturbed process (X, M ε(R)) in the limit of ε → 0 (i.e., µ∗ ≡ limε→0 µε).
Hence, µ∗(x) depicts the probability that the process will be at allocation x in the long-run and
in the limit of vanishing mistakes. Young (1993, Theorem 4(i)) shows that the limit invariant
distribution exists and that it is an invariant distribution of the u.d.r. process (X, M(R))
if the perturbation is regular (i.e., if Assumption 4 holds). The support of every invariant
distribution of the unperturbed process is a (non-empty) collection of its recurrent classes.
Allocations in the support of µ∗ are called stochastically stable. Hence, if an allocation x
is stochastically stable, the p.d.r. process will be at x in the long run and in the limit of
vanishing mistakes with strictly positive probability (i.e., µ∗(x) > 0). We denote the set of
stochastically stable allocations by SRC(R).

We first explore stochastic stability for our d.r. processes.

5.1 Stochastic Stability

Lemma 1. Young (1993, Theorem4(i)) Let R ∈ RN and (X, M(R)) be an u.d.r. process.
Then,

SRC(R) 6= ∅ and SRC(R) ⊆ RC(R).

Next, for each R ∈ R, we introduce a general methodology to determine the set of
stochastically stable allocations SRC(R) and apply it to our examples.

x -Trees Consider the set of directed graphs that have vertex set X = IR(R). Then, any
directed graph is defined by its set of directed edges. We denote a directed edge from x′ to
x′′ by [x′, x′′] and interpret it as x′′ is the outcome of recontracting that started from x′. Note
that the irreducibility of the p.d.r. process implies that for any directed edge [x′, x′′] we have
that M ε(R)(x′, x′′) > 0. An x-tree Tx (or a spanning tree) is a directed graph such that for
every y ∈ X with y 6= x there is exactly one (cycle-free) sequence of edges (a directed path)
from y to x. Denote by Tx the set of all x-trees.

Stochastic Potential Let [x′, x′′] be an edge in an x-tree Tx ∈ Tx. The edge-resistance
r(x′, x′′) is the minimum number of mistakes needed to get directly from x′ to x′′, i.e., the min-
imal number of agents that are worse off through recontracting when actively participating in
a blocking of allocation x′ that results in allocation x′′. Formally, r(x′, x′′) = min{r ≥ 0 | ∞ >

12



limε→0 ε−rM ε(R)(x′, x′′) > 0}. Finally, the stochastic potential of x ∈ X, denoted by γ(x), is
the minimal sum of edge-resistances over all x-trees, i.e., γ(x) = minTx∈Tx

∑
[x′,x′′]∈Tx

r(x′, x′′).

An x-tree T̃x that minimizes
∑

[x′,x′′]∈Tx
r(x′, x′′) is a least resistance x-tree.

Stochastic Stability An allocation x is stochastically stable if and only if it minimizes
the stochastic potential γ(x). The set of stochastically stable allocations SRC(R) can be
characterized as follows.

Lemma 2. Young (1993, Theorem4(ii)) Let R ∈ RN and (X, M(R)) be an u.d.r. process.
Then, allocation x ∈ X is stochastically stable if and only if for all y ∈ X, γ(x) ≤ γ(y).

Interpretation and Basic Implications The set of recurrent classes of a dynamic recon-
tracting process are internally stable because no allocation in a recurrent class can be blocked
by an “outside allocation”. In the case of singleton recurrent classes this internal stability
requirement coincides with the (internal) stability of the core. Stochastic stability also re-
quires internal stability – SRC(R) ⊆ RC(R) – but in addition also considers the relative
accessibility of recurrent classes, i.e., the number of mistakes agents need to make in order
to reach a recurrent class from all other allocations. This notion of accessibility is captured
by the stochastic potential. By also imposing a measure of accessibility, stochastic stability
might serve as a selection device among recurrent classes and among core allocations.

Note that allocations in the same recurrent class have the same stochastic potential. To
see this consider two allocations x and y in the same recurrent class. Now take any least
resistance x-tree T̃x. Obviously, there exists a path from y to x consisting solely of edges
with zero resistance, and such a path has to be part of T̃x (otherwise T̃x would not be a
least resistance tree). Likewise, there also exists a path from x to y consisting solely of
edges with zero resistance. But then we can construct a y-tree T̃y with

∑
[x′,x′′]∈eTx

r(x′, x′′) =∑
[x′,x′′]∈eTy

r(x′, x′′) which implies that γ(x) ≥ γ(y). Graphically one can obtain the y-tree

T̃y by first drawing the zero resistance path from x to y and then attaching the missing
vertices by using only branches of T̃x – thus T̃y is obtained from T̃x by “tree surgery”. As
the argument to obtain γ(x) ≥ γ(y) is symmetric with respect to x and y, it follows that
γ(x) = γ(y). Because of the identity of stochastic potentials within a given recurrent class,
we simply refer to γ(x) as the stochastic potential of the recurrent class that includes x.

Observe, however, that the stochastic potential is only determined by the resistance of
a tree in the set of least resistance trees. Consider, for instance, R ∈ R with RC(R) =
{{x}, {y}}. To establish stochastic stability of {x}, we only have to find one x-tree with tree-
resistance γ(y). The number of least resistance trees for either {x} or {y} does not influence
the result. This already suggests that the stochastic potential does not capture all aspects of
accessibility and stability of allocations. We return to this observation in Subsection 5.2.

Computation Let R ∈ RN . Lemma 2 offers the following procedure to compute SRC(R).

1. Determine the set of recurrent classes RC(R).

2. Let A ∈ RC(R) and x ∈ A. Construct a least resistance x-tree and compute γ(x). For
every y ∈ A, set γ(y) = γ(x).

3. Determine SRC(R) = {x ∈ RC(R) | for all y ∈ RC(R), γ(x) ≤ γ(y)}.

To illustrate our methodology, we apply it to the examples discussed in Section 4.
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Example 1 (continued). Empty Core and Non-Singleton SRC(R)
Recall that RC(R) = {{x2, x3, x4}}. Hence by Lemmas 1 and 2, and the observation
that allocations in the same recurrent class have the same stochastic potential, SRC(R) ={
x2, x3, x4

}
= RC(R). �

The following examples illustrate how to compute the stochastic potential.

Example 2 (continued). SRC(R) = RC(R) ! Core(R)
Recall that RC(R) = {{x2, x3, x4}, {x5}}. All allocations in {x2, x3, x4} have the same
stochastic potential. Hence, it is sufficient to construct a least resistance x2-tree. Note
that x2 can be reached from x1, x3, and x4 without mistakes. Thus, we only have to
link up x5 with a minimal number of mistakes. Every allocation in {x2, x3, x4} can be
reached from x5 with one mistake, e.g., {2, 3} can recontract to obtain x2 with a mistake
by agent 2. Therefore T̃x2 = {[x1, x2], [x4, x2], [x3, x4], [x5, x2]} is a least resistance x2-tree
and γ(x2) = γ(x3) = γ(x4) = 1.

The grand coalition can recontract at any of the allocations x2, x3, or x4 to reach x5

with one mistake, e.g., starting from x2 the grand coalition can recontract to obtain x5 with
a mistake by agent 3. Note that x2 can be reached from x1, x3, and x4 without mistakes.
Therefore T̃x5 = {[x4, x2], [x3, x4], [x2, x5], [x1, x2]} is a least resistance x5-tree and γ(x5) = 1.
Thus, SRC(R) =

{
x5, x2, x3, x4

}
= RC(R). �

Example 3 (continued). SRC(R) = RC(R) = Core(R) and |Core(R)| > 1
Recall that RC(R) = {{x2}, {x3}, {x4}}. From any of the core allocations, each single agent
can recontract with himself to obtain x1 by making one mistake. Note that any core alloca-
tion can be reached from x1 without mistakes. Therefore, T̃x2 = {[x1, x2], [x3, x1], [x4, x1]},
T̃x3 = {[x1, x3], [x2, x1], [x4, x1]}, and T̃x4 = {[x1, x4], [x2, x1], [x3, x1]} are least resistance
trees, γ(x2) = γ(x3) = γ(x4) = 2, and SRC(R) =

{
x2, x3, x4

}
= RC(R). �

The last example nicely illustrates a weakness of stochastic stability as a selection device
for recurrent classes. Observe that a direct transition from x2 to x3 needs two mistakes while
all other direct transitions between core allocations only ask for one mistake. This indicates
that x2 is more difficult to exit for the p.d.r. process than other core allocations, and x3 is
more difficult to access. This suggests x2 as a more accessible and more stable allocation,
or simply a better prediction for the final allocation. But due to the indirect paths from
one recurrent class via x1 to another recurrent class, all core allocations have a stochastic
potential of 2 and the conjectured “superiority” of x2 can not be established.

Theorem 2. Stochastic Stability and Recurrent Classes
Let R ∈ RN and (X, M(R)) be an u.d.r. process. Then,

(i) for all x ∈ RC(R), γ(x) = |RC(R)| − 1 and

(ii) RC(R) = SRC(R).

We first prove the following auxiliary result.

Claim 1. For all x, x′ ∈ IR(R), x 6= x′, there is a path from x to x′ with at most one mistake.

Proof of Claim 1. We distinguish three cases. First, suppose that x = e. Since x′ is indi-
vidually rational, r(x, x′) = 0. Second, suppose that x′ = e. Then, x 6= e and for at least
one agent i ∈ N , xi 6= ei. When the singleton coalition {i} forms, agent i can claim back
his endowment, which requires at most one mistake (by agent i). Since xN\{i} is no longer
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feasible, all agents in N\{i} receive their endowments. Hence, r(x, x′) ≤ 1. Third, suppose
x 6= e and x′ 6= e. Then the previous findings imply that the sequence of edges [x, e], [e, x′]
constitutes a path with r(x, e) + r(e, x′) ≤ 1, which concludes the proof of the claim. �

Proof of Theorem 2. Using Claim 1, it is now easy to construct least-resistance trees.
Let R ∈ R and denote the respective (finite) set of recurrent classes by RC(R) =

{A1, ..., Am}. It follows from the definition of a recurrent class that for all x ∈ X, γ(x) ≥ m−1.
Next, we prove that for all x ∈ RC(R), γ(x) ≤ m− 1.

For any allocation x ∈ RC(R), we construct an x-tree as follows. Consider first the
recurrent class Ak with x ∈ Ak. By the definition of a recurrent class, for all x′ ∈ Ak,
r(x′, x) = 0, i.e., there exists a set of edges that constitute the restriction of an x-tree to
Ak without mistakes. Suppose that all x′ ∈ Ak are connected through that set of edges.
Then pick another recurrent class Al 6= Ak and consider an allocation y ∈ Al. Again, by the
definition of a recurrent class, for all y′ ∈ Al, r(y′, y) = 0 and there exists the restriction of
a y-tree to Al without mistakes. Suppose that all y′ ∈ Al are connected through that set of
edges. By Claim 1, r(y, x) ≤ 1. Hence, we can connect Ak and Al with at most one mistake.
So far we have constructed a “partial x-tree” that connects all allocations in Ak ∪ Al with
at most one mistake. Repeat this procedure for all remaining recurrent classes. In each step
a new recurrent class is connected to the existing partial x-tree with at most one mistake.
Hence, we can construct a complete x-tree with at most m−1 mistakes. Thus, γ(x) = m−1,
which proves Statement (i). Statement (i) and Lemma 2 imply SRC(R) = RC(R). �

This result offers two insights. First, the requirement of stochastic stability does not work
as a selection device for recurrent classes. In addition to coalitional stability as captured by
the concept of a recurrent class, stochastic stability also incorporates a notion of coalitional
accessibility (i.e., it compares the number of mistakes needed to reach an allocation in a
certain recurrent class from all other recurrent classes) as captured in the stochastic potential.
However, this notion of accessibility is rather limited as it only values the existence of least
resistance trees, but e.g., not their number (see the different stability and accessibility features
of allocations x2 and x3 in Example 3). In fact, Theorem 2 shows that this accessibility notion
is too weak to distinguish between different recurrent classes.

Second, Theorem 2(ii) indicates that the selective power of stochastic stability as estab-
lished by Serrano and Volij (2005) for housing markets with indifferences does not carry over
to multiple-type housing markets with strict preferences – unlike one could have conjectured.

The consequences of Theorem 2 clearly motivate the search for a solution concept that can
deliver sharper predictions on allocations that will be visited by the process in the long-run.
We take one further step in the analysis of stability and accessibility of allocations. In the
following subsection, we analyze the limit invariant distribution which captures not only the
number of mistakes needed to switch between recurrent classes but also accounts for details
of stability and accessibility of an allocation such as the number of coalitions that can agree
or decide to improve upon it.

5.2 The Limit Invariant Distribution

So far we have offered a method to identify the set of stochastically stable allocations SRC(R),
i.e., the support of the limit invariant distribution µ∗ = limε→0 µε. To assess the actual prob-
ability µ∗(x) that the p.d.r. process will be at allocation x in the long run and for vanishing
probability of mistakes, the next theorem presents a closed form representation of µ∗ that
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makes explicit use of the polynomial structure of M ε(x′, x′′) =
∑

k=0,...,n mk(x′, x′′)εk. For fur-
ther reference we define a least resistance transition m̃(x′, x′′) as the component mk(x′, x′′) > 0
that minimizes k (i.e., for any two allocations x′ and x′′, m̃(x′, x′′) depicts the respective tran-
sition probability with the smallest possible number of mistakes).

Theorem 3. Let R ∈ RN and (X, M ε(R)) be a p.d.r. process. Then, µ∗(x) = p(x)P
y∈X p(y) with

p(x) =
∑

{T∈Tx|
P

[x′,x′′]∈T r(x′,x′′)=γ(x)}[Π[x′,x′′]∈T m̃(x′, x′′)].

Proof. Freidlin and Wentzell (1998, Chapter 6, Lemma 3.1) show that the (unique) invariant
distribution of an irreducible Markov process (X, M) is given by µ(x) = q(x)P

y∈X q(y) with

q(x) =
∑

T∈Tx
Π[x′,x′′]∈T M(x′, x′′). If the Markov process is a p.d.r. process (X, M ε(R)) such

that M ε(x′, x′′) =
∑

k=0,...,n mk(x′, x′′)εk, q(x) is a polynomial of degree n (|X| − 1) in the
mistake probability ε (there can be only one mistake per agent per edge, and there are (|X|−1)
edges in any x-tree), i.e., we can rewrite q(x) ≡

∑
k=0,...,n (|X|−1) qk(x)εk.

By Theorem 2(ii), limε→0 q(x) > 0 if and only if x ∈ RC(R). Moreover, for all k < γ(x),
qk(x) = 0 and qγ(x)(x) > 0 (by the definition of the stochastic potential, there are no x-trees
with less than γ(x) mistakes).

Finally, observe that qγ(x) =
∑

{T∈Tx|
P

[x′,x′′]∈T r(x′,x′′)=γ(x)} Π[x′,x′′]∈T m̃(x′, x′′) – a contri-
bution to q(x) of lowest order in ε is given by the sum over least resistance trees.

Let |RC(R)| = 1. Then, for all x ∈ RC(R), limε→0 q(x) = q0(x) > 0 and µ∗(x) =
limε→0 µε(x) = q0(x)P

y∈RC(R) q0(y) with q0(x) =
∑

{T∈Tx|Π[x′,x′′]∈T r(x′,x′′)=0} Π[x′,x′′]∈T m0(x′, x′′).

Since γ(x) = 0, q0(x) = p(x).
Let |RC(R)| ≥ 2. Recall that for all x ∈ X and k < γ(x), qk(x) = 0, and for all

x ∈ RC(R), qγ(x)(x) > 0. Then, for all x ∈ X and j ∈ {0, . . . , (γ(x)− 1)}, limε→0
∂jq(x)

∂εj = 0.

Moreover, limε→0
∂γ(x)q(x)

∂εγ(x) = (γ(x)!)qγ(x)(x). Then, iterated application of l’Hospital’s rule
implies

µ∗(x) = limε→0 µε(x) = limε→0
q(x)P

y∈X q(y) = limε→0

∂γ(x)q(x)

∂εγ(x)

P
y∈X

∂γ(x)q(y)

∂εγ(x)

= qγ(x)(x)P
y∈RC(R) qγ(x)(y) .

Computation Theorem 3 offers the following procedure to compute µ∗(x) for an allocation
x ∈ RC(R).

1. Construct all least-resistance x-trees (i.e., determine {T ∈ Tx |
∑

[x′,x′′]∈T r(x′, x′′) =
γ(x)}). By Theorem 2(i), this amounts to a construction of all trees of resistance
|RC(R)| − 1. We proceed in three steps:

(a) List all recurrent classes A ∈ RC(R) and determine all edges from elements of A
to elements of X\A with one mistake.13

(b) List all edges with zero mistakes.

(c) Compose all x-trees with edges listed under (a) and (b).

2. Compute the product of transition probabilities of all edges in a given least-resistance
x-tree T , i.e., Π[x′,x′′]∈T m̃(x′, x′′).

3. Sum over all least resistance x-trees.
13By construction, any edge from an element of A to X\A needs at least one mistake. By Theorem 2(i),

any such edge in a least resistance tree must not have more than one mistake.
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We illustrate the method by revisiting some of our examples14 (for each example, we
recapitulate the complete set of preferences and individual rational allocations to help the
reader follow the reasoning in the construction of the limit invariant distribution). Apart
from the structural results described in our theorems, our analysis of the examples forms an
integral part of the paper.

We start with Example 4 to show that the limit invariant distribution serves as a selection
device among core (and Walrasian) allocations.

Example 4 (continued). Multiple Walrasian Allocations Recall

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (1, 3), (1, 2), (3, 3), (2, 2), anything,

R3 : (2, 1), (3, 1), (3, 3), anything,

IR(R) = {x1, x2, x3, x4} with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(2, 3), (1, 2), (3, 1)}, x3 = {(3, 3), (1, 2), (2, 1)},

x4 = {(1, 2), (3, 3), (2, 1)},

and RC(R) = SRC(R) = Core(R) = W (R) = {x3, x4}.
Construction of Least Resistance Trees: By Theorem 2, γ(x3) = γ(x4) = 1.

(a) RC(R) = {{x3}, {x4}}. There are two types of edges from x3 to X\{x3}. Either x4

{1, 2, 3}-blocks x3 (with a mistake by agent 2) or a singleton coalition blocks by mistake
via x1. Similarly, there are two types of edges from x4 to X\{x4}. Either x3 {1, 2, 3}-
blocks x4 (with a mistake by agent 1) or a singleton coalition blocks by mistake via x1.

(b) The only edges with zero mistakes are from x1 to any other individually rational allo-
cation and from x2 to x3 (all through an agreement of the grand coalition).

(c) Figure 1 depicts the three different types of x3-least resistance trees. Two more trees
can be constructed by connecting x1 with x2 or x4, respectively, instead of connecting
it with x3 in the left tree. Figure 2 depicts the two different types of x4-trees. Two
more trees can be constructed by connecting x1 with x2 or x3, respectively, instead of
connecting it with x4 in the left tree. Because x3 can {1, 2, 3}-block x2 with no mistake,
but x4 cannot, there is no x4-analogue to the middle x3-tree in Figure 1.

Computation of the Limit Invariant Distribution: By Theorem 3,
µ∗(x3)
em(x2,x3)

= m̃(x4, x3)(m̃(x1, x2)+m̃(x1, x3)+m̃(x1, x4))+m̃(x4, x1)(m̃(x1, x3)+m̃(x1, x2)),
and

µ∗(x4)
em(x2,x3)

= m̃(x3, x4)(m̃(x1, x2) + m̃(x1, x3) + m̃(x1, x4)) + m̃(x3, x1)m̃(x1, x4).

By Assumption 4, the probability to make a mistake does not depend on the identity of
the agent. Now suppose that the probability for a certain coalition to form does not depend
on the current allocation. Then, m̃(x3, x4) = m̃(x4, x3) and m̃(x3, x1) = m̃(x4, x1). Finally,
suppose that m̃(x1, x3) = m̃(x1, x4) (i.e., the grand coalition agrees upon x3 and x4 if the
p.d.r. process is in x1 with the same probability). Then, µ∗(x3) > µ∗(x4) and the process is
more likely to be found at allocation x3 then at x4 in the long-run.

14For each example, we recapitulate the complete set of preferences and individual rational allocations to
help the reader follow the reasoning in the construction of the limit invariant distribution.

17



@
@

@
@R

x2

x3?

x1

�
�

�
�	

x4

@
@

@
@R

x2

x3?

x1?

x4

x3?

x2

� x4

?

x1

Figure 1: Least Resistance x3-trees in Example 4
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Figure 2: Least Resistance x4-trees in Example 4

Observe that this result is driven by the fact that x3 can {1, 2, 3}-block x2 without mistake
while x4 cannot. This difference in mistake-free edges leads to a larger set of least resistance
x3-trees and thereby enhances the respective component in the limit invariant distribution. �

This example shows that the various core (Walrasian) allocations of a multiple-type hous-
ing market are not necessarily final allocations of the d.r. process with the same probability.
Accordingly, one may wonder wether Walrasian allocations are more likely final allocations
than non-Walrasian core allocations, and wether core allocations are more likely final allo-
cations than non-core recurrent allocations. To elaborate on the first issue, we reconsider
Example 3.

Example 3 (continued). SRC(R) = RC(R) = Core(R) ) W(R) Recall

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (1, 3), (1, 2), (3, 3), (2, 2), anything,

R3 : (3, 1), (2, 1), (3, 3), anything,

IR(R) = {x1, x2, x3, x4} with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(2, 3), (1, 2), (3, 1)}, x3 = {(1, 2), (3, 3), (2, 1)},

x4 = {(3, 3), (1, 2), (2, 1)},
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and {x2, x3, x4} = RC(R) = SRC(R) = Core(R) )W (R) = {x3}.
Observe that a direct edge from x2 to x3 takes two mistakes while all other transitions

from one core allocation to another need only one mistake. This suggests that x2 is less likely
to be left than x3 and x4 (i.e., it is more stable), while x3 is less likely to be reached by
the p.d.r. process than x2 and x4 (i.e., it is less accessible). In Appendix A we prove that
this intuition is true and indeed µ∗(x2) > µ∗(x4) > µ∗(x3) if the probability that a certain
coalition becomes active does not depend on the allocation and a given coalition agrees upon
each improvement with the same probability. Hence, x2 is the most accessible and stable
allocation while x3, the (unique) Walrasian allocation, is the worst prediction – among all
recurrent allocations – for the long-run behavior of the d.r. process. �

Finally, we demonstrate by the following example that cycles of individually rational (non-
core) allocations can be more likely final allocations of the d.r. process than core allocations.

Example 2 (continued). SRC(R) = RC(R) ! Core(R) Recall

R1 : (3, 1), (2, 2), (1, 2), (1, 1), anything,

R2 : (2, 1), (3, 3), (3, 2), (2, 2), anything,

R3 : (2, 3), (1, 1), (1, 3), (3, 3), anything,

IR(R) = {x1, x2, x3, x4, x5} with,

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(1, 1), (3, 2), (2, 3)}, x3 = {(1, 2), (2, 1), (3, 3)},

x4 = {(3, 1), (2, 2), (1, 3)}, x5 = {(2, 2), (3, 3), (1, 1)},

and Core(R) = W (R) = {x5} and RC(R) = SRC(R) = {x2, x3, x4, x5}.
Construction of Least Resistance Trees: By Theorem 2, γ(x2) = γ(x3) = γ(x4) = γ(x5) = 1.

(a) RC(R) = {{x2, x3, x4}, {x5}}. There are two types of edges from an element of
{x2, x3, x4} to X\{x2, x3, x4}. Either, x5 {1, 2, 3}-blocks an element of {x2, x3, x4}
with one agent making a mistake or x1 blocks an element of {x2, x3, x4} with a single-
ton coalition making a mistake. Similarly, there are two types of edges from x5 to an
element of X\{x5}. Either an element of {x2, x3, x4} blocks x5 via a coalition of two
agents with one agent making a mistake (e.g., x2 {2, 3}-blocks x5 if agent 2 makes a
mistake) or x1 blocks x5 with a singleton coalition making a mistake.

(b) The only edges with zero mistakes are from x1 to x5 (through an agreement of the
grand coalition) and from x1 to any element of {x2, x3, x4} (through an agreement of
the grand coalition or a particular coalition of two agents, e.g., x2 {2, 3}-blocks x1).

(c) Figure 3 depicts the two different types of x5-least resistance trees. In total, there are 12
trees of Type (a) and 3 trees of Type (b) (to see this consider the different permutations
of elements of {x2, x3, x4} and the different edges to connect x1). Figure 4 depicts the
two different types of x2-trees (x3 and x4-trees look identical and only differ in the
respective active coalitions). In total, there are 12 trees of Type (a) and 3 trees of Type
(b). A complete list of least resistance trees can be found in Appendix A).

Computation of the Limit Invariant Distribution: In contrast to Example 4 (see above),
the number of least resistance x2- and x5-trees is identical. However, the respective edges
resemble different transition probabilities. In the following, we present an informal discussion
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of the relevant effects – a complete treatment is relegated to Appendix A. To start out,
observe that x2- and x5-trees differ in three respects. First, any least resistance x5-tree of
Type (a) in Figure 3 contains a blocking of a cycle allocation by the grand coalition to reach
x5, while x2-trees of Type (a) in Figure 4 need a respective blocking of x5 by a coalition
of two agents. If the probability that the grand coalition is chosen equals the probability
that any coalition with two agents is chosen, this difference does not matter. Second, any
least resistance x5-tree of Type (b) in Figure 3 contains a blocking of a cycle allocation by
a singleton coalition to reach x1 (by mistake), while x2-trees of Type (b) in Figure 4 need a
respective blocking of x5. However, in every cycle allocation one of the agents is already at
his endowment such that the process cannot transit to x1 with this agent making a mistake.
Hence, m̃(x5, x1) > m̃(x2, x1) if the probability that a certain singleton coalition forms does
not depend on the allocation. This leads to a larger contribution from this type of trees to
µ∗(x2) than to µ∗(x5). Third, x5-trees of type (b) in Figure 3 contain a blocking of x1 by
x5, while x2-trees of type (b) in Figure 4 contain a blocking of x1 by x2. While the former
blocking can only be agreed upon by the grand coalition, the latter can also be achieved by
{2, 3}. Hence, m̃(x1, x2) > m̃(x1, x5) if a coalition agrees upon every blocking with the same
probability. In Appendix A we prove that indeed µ∗(x2) > µ∗(x5) if m̃(x, x1) < m̃(x5, x1)
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for every x ∈ {x2, x3, x4}, m̃(x1, x2) > m̃(x1, x5), and coalitions of size three form with the
same probability as coalitions of size two. Hence, the probability that the process is found in
one cycle allocation is higher than the respective probability to find it in the core.15 Note,
however, that this result is not driven by the lack of mistake-free edges that lead to the core
allocation x5 (as in the previous examples), but by details of the process that determine the
opportunities to reach and exit the different recurrent classes. �

The above-mentioned examples highlight the following features of the limit invariant dis-
tribution. First, the probability that a dynamic recontracting process is in a certain recurrent
class does not depend on its topology (singleton or cycle). Neither is it necessarily enhanced
by the fact that a certain allocation is in the core or Walrasian. The value of the limit in-
variant distribution rather depends on two issues: (i) The accessibility of a recurrent class
from individually rational allocations that are not member of a recurrent class. An example is
allocation x2 in Example 4. (ii) The number and relative transition probabilities of resistance
minimizing paths from one recurrent class to another. Consider as an example the importance
of the edges to and from the endowment in Example 2.

6 Concluding Remarks

Recurrent Classes We first model economic interaction in multiple-type housing markets
by an unperturbed dynamic recontracting process. Then, an obvious solution concept for
any given multiple-type housing market R is its set of recurrent classes RC(R) and the set of
recurrent allocations RC(R). The set of recurrent classes of the dynamic recontracting process
is non-empty and contains all sets of allocations that cannot be blocked by any allocation
outside the respective recurrent class. Every element of the core forms a singleton recurrent
class. Moreover, non-singleton recurrent classes exist (in settings with an empty core as well
as vis-a-vis a non-empty core).

Stochastically Stable Allocations Next, we allow agents to make mistakes and model
economic interaction in multiple-type housing markets by a perturbed dynamic recontracting
process. The second non-empty solution concepts for any given multiple-type housing market
R then is its set of stochastically stable allocations SRC(R). If the perturbation of the
dynamic recontracting process through mistakes becomes sufficiently small (by letting mistake
probabilities converge to zero), the process will – in the long-run – converge to a non-empty
subset of the set of recurrent allocations (the set of stochastically stable allocations). We
show that every recurrent class is stochastically stable.

Limit Invariant Distributions Finally, to better understand which allocations are likely
to be final allocations of our dynamic process of trade, we introduced a method to directly
access the limit invariant distribution. By construction, the limit invariant distribution µ∗

of a dynamic recontracting process is the unique probability distribution over allocations
that the dynamic recontracting process will converge to in the long-run. By considering the
complete set of least resistance trees in the computation of the limit invariant distribution,
the interplay between stability and accessibility that determines the final allocation is better
captured than by a stochastic stability analysis (as illustrated in several examples). However,
the extra information obtained clearly comes at the cost of having to compute all least

15In Appendix A we show that symmetry implies µ∗(x2) = µ∗(x3) = µ∗(x4) under these conditions.
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resistance trees (compared to the construction of one tree for a stochastic stability analysis).
Since any least resistance tree only consists of resistance-minimizing edges, this boils down
to a simple combinatorial exercise (as also demonstrated in several examples).

Calculating the Limit Invariant Distribution Apart from our analysis of dynamic
recontracting processes for multiple-type housing markets, our paper also aims at an illus-
tration of the method to compute the limit invariant distribution. The particular features
of multiple-type housing markets proved useful to demonstrate its applicability and intuitive
appeal. However, results similar to Theorem 3 are also feasible and desirable for other Markov
processes, for instance for non-cooperative games or social and economic network formation.

Conclusion Our analysis has shown that neither the core nor Walrasian allocations might
be good predictors for dynamic recontracting processes. We have seen some instances where
a cycle of allocations may be the best predictor for the final allocation of our dynamic trading
process. Clearly, this conclusion is in part driven by the myopia of agents. Recall that in each
period agents agree to trade if it is beneficial to do so. In accepting such trades, agents do
not envision the possible blockings along the trading path. Nevertheless, it is clear from our
analysis that there are aspects of stability and in particular of accessibility of allocations that
are not captured by the core. Some core allocations turn out to be harder to reach than others
while non-core allocations may emerge naturally through a sequence of trades. This indicates
that modeling the dynamics of recontracting only implicitly by a cooperative solution concept
as the core is inappropriate (even though we have modeled our dynamic recontracting process
with a core bias by never transferring property rights).

Appendix

A Examples

Example 1: An Empty Core Recall

R1 : (3, 1), (1, 2), (1, 1), anything,

R2 : (2, 1), (3, 2), (2, 2), anything,

R3 : (2, 3), (1, 3), (3, 3), anything,

and IR(R) = {x1, x2, x3, x4} with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(1, 1), (3, 2), (2, 3)}, x3 = {(1, 2), (2, 1), (3, 3)},

x4 = {(3, 1), (2, 2), (1, 3)}.

Hence, Core(R) = W (R) = ∅. Furthermore, RC(R) = SRC(R) = {x2, x3, x4}. �

Example 2: The Unique Walrasian Allocation Equals the Core Allocation Recall

R1 : (3, 1), (2, 2), (1, 2), (1, 1), anything,

R2 : (2, 1), (3, 3), (3, 2), (2, 2), anything,

R3 : (2, 3), (1, 1), (1, 3), (3, 3), anything,
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and IR(R) = {x1, x2, x3, x4, x5} with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(1, 1), (3, 2), (2, 3)}, x3 = {(1, 2), (2, 1), (3, 3)},

x4 = {(3, 1), (2, 2), (1, 3)}, x5 = {(2, 2), (3, 3), (1, 1)}.

Clearly, x2 {2, 3}-blocks x1, x3 {1, 2}-blocks x2, x4 {1, 3}-blocks x3, and x2 {2, 3}-blocks x4.
Since x5 cannot be blocked by any coalition, Core(R) = {x5}. Next, we prove that allocation
x5 is Walrasian. It is easy to check that the following (in)equalities hold, e.g., for price system
p ≡ (p1, p2) such that p1 = (0, 1, 1

2) and p2 = (1, 0, 1
2):

(1) p1(1) + p2(1) = p1(2) + p2(2), (2) p1(2) + p2(2) = p1(3) + p2(3),

(3) p1(3) + p2(3) = p1(1) + p2(1), (4) p1(3) + p2(1) > p1(1) + p2(1),

(5) p1(2) + p2(1) > p1(2) + p2(2), (6) p1(2) + p2(3) > p1(3) + p2(3).

Hence, W (R) = {x5}. Furthermore, RC(R) = SRC(R) =
{
x2, x3, x4, x5

}
.

To compute the limit invariant distribution, we proceed as indicated in Section 5.2.
Construction of Least Resistance Trees: By Theorem 2, γ(x5) = γ(x2) = γ(x3) = γ(x4) = 1.

(a) RC(R) = {{x2, x3, x4}, {x5}}. The following table lists the coalitions that facilitate a
transition from an initial state (row) to a final state (column) with one mistake16 (we
omit the diagonal elements as they are irrelevant for cycle-free graphs, moreover we do
not list edges with mistakes between allocations in {x2, x3, x4} as they can never be
part of a least resistance tree).

x1 x2 x3 x4 x5

x1 – ∅ ∅ ∅ ∅
x2 {1}, {2}, {3}, {1, 2}, {1, 3} – N – N

x3 {1}, {2}, {3}, {1, 3}, {2, 3} – – N N

x4 {1}, {2}, {3}, {1, 2}, {2, 3} N – – N

x5 {1}, {2}, {3} {2, 3} {1, 2} {1, 3} –

(b) The following table lists the coalitions that facilitate a transition from an initial state
(row) to a final state (column) with zero mistakes.

x1 x2 x3 x4 x5

x1 x N, {2, 3} N, {1, 2} N, {1, 3} N

x2 ∅ – {1, 2} ∅ ∅
x3 ∅ ∅ – {1, 3} ∅
x4 ∅ {2, 3} ∅ – ∅
x5 ∅ ∅ ∅ ∅ –

(c) With the transition opportunities as depicted in the previous tables, we can now list
all least resistance trees for the (unique) core allocation x5 and a cycle allocation, for
instance x2. We start with the set of x5-trees. If every least resistance tree includes
exactly one mistake (i.e., γ(x5) = 1), this mistake has to be made on a (cycle-free)

16The agent who makes a mistake is uniquely determined in this example.
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sequence of edges from an element of the cycle to x5. From any allocation in the cycle
there are exactly two such paths. First, the grand coalition forms and the agent who
is worse off at allocation x5 (note that this is exactly one agent for every allocation
in the cycle) agrees upon x5 by mistake. Second, a singleton coalition forms and the
respective agent ask for his endowment even though he is then worse off. Note that in
every cycle allocation there are two such singleton allocations (e.g., at x2 only agents 2
and 3 can recontract on their endowment and thereby induce a transition to x1. Agent
1, in contrast, is already at his endowment). These two types of paths induce the two
types of least resistance trees depicted in Figure 3. Next, observe that the allocations
of the cycle have to be connected via the respective (unique) mistake-free edges. As for
type (a) note that there are three different allocations from which the cycle can be left
to x5. Moreover, there can be a (mistake-free) edge from x1 to any other of the four
allocations. This leaves us with the following 12 trees of type (a).

{[x3, x4], [x4, x2], [x2, x5], [x1, x2]}; {[x3, x4], [x4, x2], [x2, x5], [x1, x3]};
{[x3, x4], [x4, x2], [x2, x5], [x1, x4]}; {[x3, x4], [x4, x2], [x2, x5], [x1, x5]};
{[x4, x2], [x2, x3], [x3, x5], [x1, x2]}; {[x4, x2], [x2, x3], [x3, x5], [x1, x3]};
{[x4, x2], [x2, x3], [x3, x5], [x1, x4]}; {[x4, x2], [x2, x3], [x3, x5], [x1, x5]};
{[x2, x3], [x3, x4], [x4, x5], [x1, x2]}; {[x2, x3], [x3, x4], [x4, x5], [x1, x3]};
{[x2, x3], [x3, x4], [x4, x5], [x1, x4]}; {[x2, x3], [x3, x4], [x4, x5], [x1, x5]}.

Likewise there are three different allocations in the cycle from which x1 can be reached
(and subsequently left towards x5). Hence, we have to add the following three trees.

{[x3, x4], [x4, x2], [x2, x1], [x1, x5]}; {[x2, x3], [x3, x4], [x4, x1], [x1, x5]};
{[x4, x2], [x2, x3], [x3, x1], [x1, x5]}.

In a similar way, we can construct the set of x2-trees. If every least resistance tree
includes exactly one mistake (i.e., γ(x2) = 1), this mistake has to be made on a (cycle-
free) sequence of edges from x5 to an element of the cycle. To any allocation in the cycle
there are two such paths. Either, a particular coalition of size two forms and the agent
who is worse off at the cycle-allocation agrees upon the cycle allocation by mistake.
Note that there is exactly one coalition of size two that can actually contract upon each
cycle allocation (the agent who is left at his endowment can not be a member of such a
coalition). Second, one of the three singleton coalition forms and the respective agent
asks for his endowment even though he is then worse off, afterwards the grand coalition
or {2, 3} agree upon x2. These two types of paths induce the two types of least resistance
trees depicted in Figure 4 (again the allocations of the cycle have to be connected via
the respective (unique) mistake-free edges). As for type (a) note that there are three
different allocations from which the cycle can be accessed from x5. Moreover, there can
be a (mistake-free) edge from x1 to any other of the four allocation. This leaves us with
the following 12 x2-trees of type (a).

{[x3, x4], [x4, x2], [x5, x2], [x1, x2]}; {[x3, x4], [x4, x2], [x5, x2], [x1, x3]};
{[x3, x4], [x4, x2], [x5, x2], [x1, x4]}; {[x3, x4], [x4, x2], [x5, x2], [x1, x5]};
{[x4, x2], [x2, x3], [x5, x3], [x1, x2]}; {[x4, x2], [x2, x3], [x5, x3], [x1, x3]};
{[x4, x2], [x2, x3], [x5, x3], [x1, x4]}; {[x4, x2], [x2, x3], [x5, x3], [x1, x5]};
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{[x2, x3], [x3, x4], [x5, x4], [x1, x2]}; {[x2, x3], [x3, x4], [x5, x4], [x1, x3]};
{[x2, x3], [x3, x4], [x5, x4], [x1, x4]}; {[x2, x3], [x3, x4], [x5, x4], [x1, x5]}.

Likewise there are three different allocations in the cycle that can be reached from x1

(after x5 has been left towards x1). Hence, we have to add the following three trees.

{[x3, x4], [x4, x2], [x1, x2], [x5, x1]}; {[x2, x3], [x3, x4], [x1, x4], [x5, x1]};
{[x4, x2], [x2, x3], [x1, x3], [x5, x1]}.

Computation of the Limit Invariant Distribution: This is sufficient information to apply the
formula for µ∗ in Theorem 3. For expositional ease let us make the following assumptions.
First, recall from Assumption 4 that the probability for an agent to commit a mistake does not
depend on his identity, the coalition, or the allocation. Moreover, suppose the probability that
a certain coalition forms does not depend on the identity of the agents and that a coalition
chooses each improving allocation with the same probability. Then,

m̃(x2, x3) = m̃(x3, x4) = m̃(x4, x2),

m̃(x1, x2) = m̃(x1, x3) = m̃(x1, x4),

m̃(x2, x1) = m̃(x3, x1) = m̃(x4, x1),

m̃(x2, x5) = m̃(x3, x5) = m̃(x4, x5),

m̃(x5, x2) = m̃(x5, x3) = m̃(x5, x4).

and

µ∗(x5)
µ∗(x2)

=
9m̃(x2, x5)m̃(x1, x2) + 3m̃(x1, x5)m̃(x2, x5) + 3m̃(x1, x5)m̃(x2, x1)
9m̃(x5, x2)m̃(x1, x2) + 3m̃(x1, x5)m̃(x5, x2) + 3m̃(x5, x1)m̃(x1, x2)

.

By checking the relations m̃(x2, x5)/m̃(x5, x2), m̃(x1, x5)/m̃(x1, x2), and m̃(x2, x1)/m̃(x5, x1)
we determine the ratio of µ∗(x5) and µ∗(x2).

m̃(x2, x5)/m̃(x5, x2): recall from the second table (see above) that a least resistance edge
from x2 to x5 needs the grand coalition to form and agent 3 making a mistake, while the
least resistance edge from x5 to x2 needs the coalition {2, 3} to form and agent 2 making a
mistake. Suppose coalitions of size two and size three form with the same probability, then
m̃(x2, x5) = m̃(x5, x2).

m̃(x1, x5)/m̃(x1, x2): recall from the first table (see above) that x2 can be recontracted
upon at x1 by the grand coalition and {2, 3}, while the grand coalition is needed to agree
upon x5. If all improving allocations are chosen from a coalition with the same probability,
we therefore get m̃(x1, x5) < m̃(x1, x2).

m̃(x2, x1)/m̃(x5, x1): the above conditions also ensure that m̃(x2, x1) < m̃(x5, x1).
Hence, µ∗(x2) > µ∗(x5). Finally the symmetry of the preferences with respect to a permuta-
tion of allocations x2, x3, and x4 implies that µ∗(x2) = µ∗(x3) = µ∗(x4) whenever coalition
formation does not depend on allocations and the identity of the agents. �

Example 3: Multiple Core Allocations and a Unique Walrasian Allocation Recall

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (1, 3), (1, 2), (3, 3), (2, 2), anything,
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R3 : (3, 1), (2, 1), (3, 3), anything,

and IR(R) = {x1, x2, x3, x4} with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(2, 3), (1, 2), (3, 1)}, x3 = {(1, 2), (3, 3), (2, 1)},

x4 = {(3, 3), (1, 2), (2, 1)}.

Clearly, x2 {1, 2, 3}-blocks x1. Since x2, x3, and x4 cannot be blocked by any coalition,
Core(R) = {x2, x3, x4}. Next, we check if any of the core allocations is Walrasian.

Allocation x2 is not Walrasian. If it was, then the following (in)equalities would hold:

(1) p1(1) + p2(1) = p1(2) + p2(3), (2) p1(2) + p2(2) = p1(1) + p2(2),

(3) p1(3) + p2(3) = p1(3) + p2(1), (4) p1(3) + p2(3) > p1(1) + p2(1),

(5) p1(1) + p2(2) > p1(1) + p2(1), (6) p1(1) + p2(3) > p1(2) + p2(2).

By (2) and (6), we obtain p1(1)+ p2(3) > p1(1)+ p2(2). Thus, p2(3) > p2(2). By (5), p2(2) >
p2(1) and by (3), p2(1) = p2(3). Hence, p2(3) > p2(2) > p2(1) = p2(3); a contradiction.

Allocation x3 is Walrasian. It is easy to check that the following (in)equalities hold, e.g.,
for price system p ≡ (p1, p2) such that p1 = (2, 1

2 , 1) and p2 = (1, 1, 1
2):

(1) p1(1) + p2(1) = p1(1) + p2(2), (2) p1(2) + p2(2) = p1(3) + p2(3),

(3) p1(3) + p2(3) = p1(2) + p2(1), (4) p1(1) + p2(2) > p1(2) + p2(2),

(5) p1(1) + p2(3) > p1(2) + p2(2), (6) p1(3) + p2(1) > p1(3) + p2(3).

Allocation x4 is not Walrasian. If it was, then the following (in)equalities would hold:

(1) p1(1) + p2(1) = p1(3) + p2(3), (2) p1(2) + p2(2) = p1(1) + p2(2),

(3) p1(3) + p2(3) = p1(2) + p2(1), (4) p1(1) + p2(2) > p1(1) + p2(1),

(5) p1(1) + p2(3) > p1(2) + p2(2), (6) p1(3) + p2(1) > p1(3) + p2(3).

By (2) and (5), we obtain p1(1)+ p2(3) > p1(1)+ p2(2). Thus, p2(3) > p2(2). By (4), p2(2) >
p2(1) and by (6), p2(1) > p2(3). Hence, p2(3) > p2(2) > p2(1) > p2(3); a contradiction.
Hence, W (R) = {x3}. Furthermore, RC(R) = SRC(R) = Core(R) =

{
x2, x3, x4

}
.

To compute the limit invariant distribution, we proceed as indicated in Section 5.2.
Construction of Least Resistance Trees: By Theorem 2, γ(x2) = γ(x3) = γ(x4) = 2.

(a) RC(R) = {{x2}, {x3}, {x4}}. The following table lists the coalitions that facilitate a
transition from an initial state (row) to a final state (column) with one mistake17 (we
omit the diagonal elements as they are irrelevant for cycle-free graphs).

17The agent who makes a mistake is uniquely determined in this example.
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x1 x2 x3 x4

x1 – ∅ ∅ ∅
x2 {1}, {2}, {3} – ∅ N

x3 {1}, {2}, {3} N – N

x4 {1}, {2}, {3} N N –

The asymmetry in this example is due to the fact that it takes two mistakes for a
transition from x2 to x3 while all other transitions between core allocations need only
one mistake (and x1 can be accessed from any core allocation by one mistake of any
singleton coalition).

(b) The following table lists the coalitions that facilitate a transition from an initial state
(row) to a final state (column) with zero mistakes.

x1 x2 x3 x4

x1 – N N N

x2 ∅ – ∅ ∅
x3 ∅ ∅ – ∅
x4 ∅ ∅ ∅ –

(c) There are 16 x2-trees.18

{[x3, x2], [x4, x3], [x1, x2]}; {[x3, x2], [x4, x3], [x1, x3]}; {[x3, x2], [x4, x3], [x1, x4]};
{[x4, x2], [x3, x4], [x1, x2]}; {[x4, x2], [x3, x4], [x1, x3]}; {[x4, x2], [x3, x4], [x1, x4]};
{[x3, x2], [x4, x2], [x1, x2]}; {[x3, x2], [x4, x2], [x1, x3]}; {[x3, x2], [x4, x2], [x1, x4]};
{[x1, x2], [x4, x3], [x3, x1]};
{[x1, x3], [x3, x2], [x4, x1]};
{[x1, x2], [x3, x4], [x4, x1]};
{[x1, x4], [x4, x2], [x3, x1]};
{[x3, x2], [x1, x2], [x4, x1]};
{[x4, x2], [x1, x2], [x3, x1]};
{[x1, x2], [x4, x1], [x3, x1]};

There are 8 x3-trees.

{[x4, x3], [x2, x4], [x1, x2]}; {[x4, x3], [x2, x4], [x1, x3]}; {[x4, x3], [x2, x4], [x1, x4]};
{[x4, x2], [x2, x1], [x1, x3]}
{[x2, x4], [x4, x1], [x1, x3]};
{[x2, x1], [x1, x4], [x4, x3]};
{[x4, x3], [x2, x1], [x1, x3]};
{[x2, x1], [x4, x1], [x1, x3]};

and 12 x4-trees.
18Trees listed in one row only differ through a different connection of x1. The first three rows depict the

trees with direct edges between core allocations and all possible connections of x1. The other trees are then
constructed through all feasible paths from one core allocation to another via x1.
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{[x3, x2], [x2, x4], [x1, x2]}; {[x3, x2], [x2, x4], [x1, x3]}; {[x3, x2], [x2, x4], [x1, x4]};
{[x2, x4], [x3, x4], [x1, x2]}; {[x2, x4], [x3, x4], [x1, x3]}; {[x2, x4], [x3, x4], [x1, x4]};
{[x2, x1], [x1, x3], [x3, x4]};
{[x1, x4], [x3, x2], [x2, x1]};
{[x1, x2], [x2, x4], [x3, x1]};
{[x3, x4], [x1, x4], [x2, x1]};
{[x2, x4], [x1, x4], [x3, x1]};
{[x1, x4], [x2, x1], [x3, x1]};

Computation of the Limit Invariant Distribution: By Assumption 4, the probability of a
mistake does not depend on the allocation or the identity of the agent. Now suppose that the
probability for a certain coalition to become active does also not depend on the allocation.
Then, m̃(x2, x1) = m̃(x3, x1) = m̃(x4, x1). Moreover, assume that the grand coalition agrees
upon recontracting on each core allocation with the same probability if the p.d.r. process is
at x1 (i.e., m̃(x1, x2) = m̃(x1, x3) = m̃(x1, x4)). Finally, suppose that all transitions between
core allocations that only need one mistake have the same probability (i.e., m̃(x2, x4) =
m̃(x3, x2) = m̃(x3, x4) = m̃(x4, x2) = m̃(x4, x3)). Then Theorem 3 yields

µ∗(x2) = 9m̃(x1, x2)(m̃(x2, x4))2 + 6m̃(x2, x1)m̃(x1, x2)m̃(x2, x4) + m̃(x1, x2)(m̃(x2, x1))2

µ∗(x3) = 3m̃(x1, x2)(m̃(x2, x4))2 + 4m̃(x2, x1)m̃(x1, x2)m̃(x2, x4) + m̃(x1, x2)(m̃(x2, x1))2

µ∗(x4) = 6m̃(x1, x2)(m̃(x2, x4))2 + 5m̃(x2, x1)m̃(x1, x2)m̃(x2, x4) + m̃(x1, x2)(M(x2, x1))2

which implies that µ∗(x2) > µ∗(x4) > µ∗(x3). Note in particular that the unique Walrasian
allocation x3 is the worst predictor for the long-run behavior of the process. �

Example 4: Multiple Walrasian Allocations Recall

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (1, 3), (1, 2), (3, 3), (2, 2), anything,

R3 : (2, 1), (3, 1), (3, 3), anything,

and IR(R) = {x1, x2, x3, x4} with,

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(2, 3), (1, 2), (3, 1)}, x3 = {(3, 3), (1, 2), (2, 1)},

x4 = {(1, 2), (3, 3), (2, 1)}.

Clearly, x2 {1, 2, 3}-blocks x1 and x3 {1, 2, 3}-blocks x2. Since x3 and x4 cannot be
blocked by any coalition, Core(R) = {x3, x4}. Next, we check if any of the core allocations
is Walrasian.

Allocation x3 is Walrasian. It is easy to check that the following (in)equalities hold, e.g.,
for price system p ≡ (p1, p2) such that p1 = (2, 2, 0) and p2 = (1, 2, 3):

(1) p1(1) + p2(1) = p1(3) + p2(3), (2) p1(2) + p2(2) = p1(1) + p2(2),

(3) p1(3) + p2(3) = p1(2) + p2(1), (4) p1(1) + p2(2) > p1(1) + p2(1),
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(5) p1(1) + p2(3) > p1(2) + p2(2).

Allocation x4 is Walrasian. It is easy to check that the following (in)equalities hold, e.g.,
for price system p ≡ (p1, p2) such that p1 = (2, 1, 2) and p2 = (1, 1, 1):

(1) p1(1) + p2(1) = p1(3) + p2(3), (2) p1(2) + p2(2) = p1(1) + p2(2),

(3) p1(3) + p2(3) = p1(2) + p2(1), (4) p1(1) + p2(2) > p1(2) + p2(2),

(5) p1(1) + p2(3) > p1(2) + p2(2).

Hence, W (R) = {x3, x4}.
By Theorem 1(iii) only individually rational allocations can be recurrent allocations.

By Theorem 1(ii), {x3} and {x4} are recurrent classes. Since x3 {1, 2, 3}-blocks x2 and
x4 {1, 2, 3}-blocks x1, {x3} and {x4} are the only recurrent classes. Therefore, RC(R) =
SRC(R) = Core(R) =

{
x3, x4

}
. �

Example 5: No Walrasian Allocation and a Multi-Valued Core Recall

R1 : (1, 2), (3, 3), (2, 3), (1, 1), anything,

R2 : (3, 2), (1, 2), (3, 3), (2, 2), anything,

R3 : (1, 3), (3, 1), (2, 3), (2, 1), (3, 3), anything,

and IR(R) = {x1, x2, x3, x4, x5} with

x1 = {(1, 1), (2, 2), (3, 3)}, x2 = {(1, 1), (3, 2), (2, 3)}, x3 = {(2, 3), (1, 2), (3, 1)},

x4 = {(3, 3), (1, 2), (2, 1)}, x5 = {(1, 2), (3, 3), (2, 1)}.

Clearly, x2 {2, 3}-blocks x1, x2 {2, 3}-blocks x4, and x2 {2, 3}-blocks x5. Since x2 and x3

cannot be blocked by any coalition, Core(R) = {x2, x3}. Next, we check if any of the core
allocations is Walrasian.

Allocation x2 is not Walrasian. If it was, then the following (in)equalities would hold:

(1) p1(2) + p2(2) = p1(3) + p2(2), (2) p1(3) + p2(3) = p1(2) + p2(3),

(3) p1(2) + p2(3) > p1(1) + p2(1), (4) p1(3) + p2(3) > p1(1) + p2(1),

(5) p1(1) + p2(2) > p1(1) + p2(1), (6) p1(3) + p2(1) > p1(3) + p2(3),

(7) p1(1) + p2(3) > p1(3) + p2(3).

By (5), p2(2) > p2(1) and by (6), p2(1) > p2(3). Hence, (8) p2(2) > p2(3).
Next, by (1), p1(2) = p1(3) and therefore, p1(3) + p2(3) = p1(2) + p2. By (7), p1(1) > p1(3)
and therefore, p1(1) + p2(1) > p1(3) + p2(1). Using the previous (in)equalities, (3) implies
p1(3) + p2(3) > p1(3) + p2(1). Hence, p2(3) > p2(1); a contradiction to (8).

Allocation x3 is not Walrasian. If it was, then the following (in)equalities would hold:

(1) p1(1) + p2(1) = p1(2) + p2(3), (2) p1(2) + p2(2) = p1(1) + p2(2),

(3) p1(3) + p2(3) = p1(3) + p2(1), (4) p1(3) + p2(3) > p1(1) + p2(1),
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(5) p1(1) + p2(2) > p1(1) + p2(1), (6) p1(3) + p2(2) > p1(2) + p2(2),

(7) p1(1) + p2(3) > p1(3) + p2(3).

By (7), p1(1) > p1(3) and by (6), p1(3) > p1(2). By (2), p1(2) = p1(1). Hence, p1(1) >
p1(3) > p1(2) = p1(1); a contradiction.
Hence, W (R) = ∅.

By Theorem 1(iii) only individually rational allocations can be recurrent allocations. Ac-
cording to Theorem 1(ii) {x2} and {x3} are (singleton) recurrent classes. Since x2 {1, 2, 3}-
block x1 and x2 {2, 3}-blocks x4 and x5, {x2} and {x3} are the only recurrent classes. There-
fore, RC(R) = SRC(R) = Core(R) = {x2, x3}. �

B A Short Markov Process Dictionary

• A Markov process (X, M) is determined by a discrete state space X and a mapping
M : X×X → [0, 1] where M(x, x′) describes the probability that the state equals x′ ∈ X
in period t+1 whenever it was in x ∈ X in period t. Clearly,

∑
x′∈X M(x, x′) = 1. Here

we restrict ourselves to finite, time-homogeneous Markov processes, i.e., X is a finite
set and transition probabilities induced (and captured in M) do not depend on time.

• A recurrent class A ⊆ X is a minimal set of allocations that once entered throughout
the dynamic process is never abandoned, i.e., for all x ∈ A and x′ /∈ A, M(x, x′) = 0.
Allocations that do not belong to any recurrent class are called transient.

• A recurrent class is aperiodic whenever it does not contain any deterministic and non-
trivial cycle, i.e., there is no sequence of at least two allocations {x1, x2, ..., xn} such that
for all i = 1, .., n− 1, M(xi, xi+1) = M(xn, x1) = 1. Note that a sufficient condition for
the aperiodicity of a recurrent class A is that there is an x ∈ A such that M(x, x) > 0,
i.e., that the Markov process exhibits sufficient inertia.

• Every Markov process induces (a set of) invariant distributions µ : X → [0, 1] with∑
x∈X µ(x) = 1 and µ · M = µ. Every recurrent class A ⊆ X corresponds to exactly

one invariant distribution with support A, i.e.,
∑

x∈A µ(x) = 1. The set of all invariant
distributions of a Markov process is the convex hull of the invariant distributions of all its
recurrent classes. The support of an invariant distribution µ is therefore a (non-empty)
set of recurrent classes.

• A Markov process is ergodic if it has a unique recurrent class. The invariant distribution
of an ergodic Markov process is unique.

• A Markov process is called irreducible if it is ergodic and the unique recurrent class
coincides with the state space X.

• By the fundamental theorem of Markov processes an invariant distribution which is
induced by an aperiodic recurrent class A ⊆ X describes the probability that the process
will be at allocation x if it reached an allocation in A and propagated forever, i.e., for
all x ∈ A and all probability distributions over allocations ν : X → [0, 1] whose support
is contained in A, µ(x) = limT→∞ ν · P T .

• A perturbed Markov process (X, M ε) is a Markov process such that all transition proba-
bilities M ε(x, x′) are continuous in ε, and for all x, x′ ∈ X, limε→0 M ε(x, x′) = M(x, x′).
More specifically, M ε(x, x′) > 0 for ε > 0 implies that there is an r ≥ 0 such that
∞ > limε→0 ε−rM ε(x, x′) > 0. Hence, we restrict ourselves to regular perturbations
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and M ε is polynomial in ε, i.e., we can write M ε(x, x′) =
∑

i=0,...,̂ı mi(x, x′)εi where ı̂
is a finite number and m(x, x′) > 0 for at least some i.

• The limit invariant distribution µ∗ of a Markov process (X, M) is the invariant distribu-
tion µε of a perturbed process (X, M ε) in the limit of ε → 0. Note that any perturbed
Markov process is irreducible, hence its invariant distribution is unique. Moreover,
limε→0 µε ≡ µ∗ exists and is an invariant distribution of (X, M).

• An allocation in the support of µ∗ is stochastically stable.
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