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“In economic science general equilibrium theory plays a role similar to that played in

university curricula by mathematics and language studies. It must certainly have its own

discipline (i.e. the demonstration of the consistency of its theoretical structure), but at

the same time it should also offer services to other branches of study. To tell the story of

general equilibrium theory, therefore, one must talk of its applications as well as of its pure

theory.”

Takashi Negishi (1972, p. vii)

1 Introduction

1.1 Background

In two papers and a book, Takashi Negishi (1974, 1976, 1979) has developed “micro-

foundations for Keynesian macroeconomics.” He writes (1979, p. 2): “The Keynesian eco-

nomic system is a fixprice system in the sense of Hicks (1974) that prices are independent

of demand and supply. One should not be satisfied, however, merely by this statement.

One has to explain why prices (and wages) are independent of demand and supply.”

Negishi’s own explanation rests on kinks in the demand functions perceived by the

agents. The concept of “perceived demand functions” had been introduced in Negishi

(1961)1 and developed further in Negishi (1972). It provides a simpler and more realistic

foundation for general equilibrium modeling of monopolistic or imperfect competition than

objective demand functions.2 It is applicable both to the situation of a firm concerned with

assessing the implications of alternative prices for output demand; and to the situation of

a union concerned with assessing the implications of alternative wages for labor demand.

In both cases, the perceived demand curves summarize the information available to the

agent. Typically, however, that information may be limited, implying uncertainty about

market reactions; and it may suggest different market reactions for price decreases versus

price increases. This last feature is conducive to a kink in the perceived demand curve

at the current output point. It was justified in Sweezy (1939) by asymmetrical reactions

of competitors, in Stiglitz (1984) by asymmetrical search behavior of consumers. Drèze

(1979) notes that uncertainty about demand elasticity leads risk-averse firms to behave as

if they faced a kinky demand curve.

It was Negishi’s original “perception” that kinky perceived demand curves could explain

the price-wage stickiness associated with Keynesian equilibria.3 That idea is treated most

1At that time, Negishi was still a graduate student!
2Cf. Negishi (1972, p. 107) or Dehez et al. (2003, p. 220).
3More recently, that theme has been revived by Woodford (1991). Note however that Woodford (2003)

ignores it altogether.
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fully in his 1979 book (hereafter “N79”), which includes a number of interesting side-

developments. The hurried reader will find the gist of the argument in Chapter 7, entitled

“Kinked demand curves and Keynesian equilibrium” (pp. 87–97).

That chapter analyzes a simplified economy with two “industries” supplying respec-

tively one consumer good and one investment good. Each industry is modeled through a

representative firm, with a short-run neo-classical production function relating output to

uni-dimensional labor input. A fixed share of profits is saved, and savings should match

an exogenous level of real investment demand. Labor is supplied by identical consumers-

workers. Both the representative firms and the representative worker are endowed with

asymmetrical perceived price elasticities; these are assumed equal to zero in the case of a

decrease in goods or labor supply, to a finite strictly negative constant in the case of an

increase. Assuming that the price elasticities relevant to supply increases are greater than

unity in absolute value, Negishi proves existence of a Keynesian equilibrium,4 and con-

cludes on the unexpected corollary that “real wages can be lower at an underemployment

equilibrium than at the full employment equilibrium” (N79, p. 97).

1.2 Outline and summary

The purpose of this paper is to prove (27 years later!) existence of a Keynes-Negishi equi-

librium for a model and under assumptions of the kind used in modern general equilibrium

theory. This purpose is clearly in the spirit of Negishi (1961, 1972). It calls for multi-

ple goods or types of labor, and for heterogeneous agents. Negishi’s program adds two

requirements: monetary exchange and organized labor.

The treatment of these two topics is not found in Chapter 7 of N79; instead, these

topics receive specific attention in separate chapters.5 We return in Section 7 below to the

methodological premises of these chapters. Suffice it to record here that: (i) we adhere

to the “rule of the game” (N79, p. 28) that “all exchanges are assumed to be monetary

in the sense of Clower (1967)”; that is, money is demanded for transaction purposes, as

exemplified by the “cash-in-advance” model; (ii) we concur that “a trade union is not

a monopolistic firm but an association of heterogeneous workers” (N79, p. 7). Our own

treatment of these two topics (in Sections 4 and 5) aims again at generality.

This paper rests on the concept of “pricing rules” introduced in the seminal paper by

Dierker et al. (1985). A pricing rule is a correspondence associating with every technolog-

ically efficient production plan for a firm the set of price vectors at which the firm would

supply that production. An application of that concept to “imperfect competition à la

4The equilibrium is such that exogenous shocks to aggregate demand (to investment, in Negishi’s model)
result in quantity adjustments at unchanged prices.

5Cf. Chapter 10, “Vulnerability to inflation”; and Chapter 17, “Employment, wages and trade unions”.
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Negishi” is developed in Dehez et al. (2003), starting from the pioneering formulation in

Negishi (1961, 1972). The pricing rule in Dehez et al., reviewed in Section 2 below, is

derived from the conditions for profit maximization under a perceived demand function

congruent with given market signals (an allocation and a price vector). Here, we derive

(in Section 3) the pricing rule from compatibility with profit maximization at a kink of

a perceived demand function, thus allowing demand elasticities to differ as between price

hikes and price cuts. We derive the set of inequalities which is necessary and sufficient for

neither price increases nor price cuts to entail higher profits, at a technologically efficient

production plan, given an allocation and market prices. From these we derive simpler in-

equalities that lead to sufficient conditions. Our pricing rule is the correspondence defined

by the latter inequalities. The formulation is quite general and applicable to perfectly as

well as imperfectly competitive firms, whose demand perceptions may or may not display

kinks. We introduce kinky perceived demand functions in Section 3, after introducing the

model in Section 2.

Section 4 brings in unions, i.e. “associations of heterogeneous workers.” The primitives

of the economy are enlarged with a set of unions, each defined by its membership and

by the set of labor markets on which it sets wages. Each union is endowed with labor

demand perceptions on the markets where it sets wages, and these perceptions typically

entail kinks.

The objective of the union has been the subject of a vast literature, surveyed in Negishi

(1979), Oswald (1985), or Farber (1986). Our formulation, aiming at generality with

consistency, assumes that unions act in the interest of their heterogeneous members. More

precisely, we assume that wages set by a union are Pareto efficient from the viewpoint of the

given set of members. Interestingly, this guiding principle is analogous to that advocated

in some literature on decision criteria for business firms operating in an incomplete markets

framework. Starting with Drèze (1974),6 it has been recognized that a firm aiming at Pareto

efficiency from the viewpoint of the shareholders should evaluate profits (not fully priced on

the incomplete markets) at shadow prices defined as weighted averages of the corresponding

shadow prices of shareholders, with weights given by shareholdings. A comparable property

holds for wage-setting unions, which should attach to their wage-unemployment trade-off

a shadow price (reservation wage) averaging those of the union’s members.

It is shown in Section 4 that unions are led by this criterion to adopt pricing rules

formally analogous to those of imperfectly competitive firms. The substantive difference

lies in the objectives (Pareto efficiency versus profit maximization).7

Section 5 brings in money. The simplest way to do so, which we borrow from Drèze and

6See, e.g., Magill and Quinzii (1996, Chapter 6).
7Under incomplete markets, the difference in objectives disappears if firms adopt the Drèze criterion.
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Polemarchakis (1999, 2001a, 2001b), is to introduce non-interest bearing “inside” money,8

produced at no cost by a (central) bank. The bank prints money as demanded by the

agents (households and firms), and lends it against promises to reimburse with interest.

“Inside” money means that the bank keeps balanced accounts: the quantity of money

outstanding is equal to the sum of claims on the agents held by the bank. The bank sets

nominal interest rates: this is the “pricing rule” of the bank, here treated as a primitive.

The interest collected by the bank corresponds to bank profits, which are distributed to

agents as dividends. “Cash-in-advance” means that the agents (households and firms)

face different net prices for purchases (paid for at the time of transaction) and for sales

(whose proceeds accrue at the end of period). There thus exist kinks in the budget or profit

equations, also making the presence of kinks ubiquitous in the present paper.

Sections 3-5 thus cover with much generality the existence part of Negishi’s program,

culminating in the general result of Section 6. Some applications and methodological issues

are briefly discussed in the concluding Section 7.

1.3 Technical guideline

This paper grew out of the realization (in July 2006!) that scattered results on general

equilibrium with imperfect competition à la Negishi, with firms implementing Pareto effi-

ciency for their shareholders, or with inside money could be: (i) extended to kinky demand

perceptions; and (ii) combined in an integrated framework.9 Both achievements are of in-

dependent interest in their own rights. Not surprisingly, a host of technical hurdles sprang

up in the course of implementing that program. In order to guide readers through these

hurdles, we start each of the innovative Sections 3, 4, and 5 with an elementary example (al-

ready introduced in Section 2.4), which illustrates the extensions to the pricing rules. The

technical developments themselves are then presented in lemmas, proved in the Appendix.

Because the paper by Dehez et al. (2003) provided our starting point, we were led to

rely on the technical tool of pricing rules - inescapable there to deal with non-convexities

in production. Each of the three innovative Sections 3, 4, and 5 is devoted essentially

to develop pricing rules (of firms and/or unions) for the extended frameworks. Readers

are reminded (repeatedly!) that pricing rules themselves are a tool of the theorist, not a

behavioral characterization of the agents.

8This specification is thus sharply different from the models of “outside” money, discussed for instance
in Negishi (1972, Chapter 16).

9The realization was triggered by our own involvement in the earlier work in the three areas at stake,
in particular Dehez et al. (2003) for Section 3, Drèze (1974) for Section 4, and Drèze and Polemarchakis
(2001b) for Section 5. This also resulted in an excessive inclination towards self-citations, for which we
sollicit the readers’ indulgence.
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2 An elementary real model

2.1 Primitives

We shall throughout deal with a standard abstract economy, whose real side consists of:10

(a) A commodity space RL, with coordinates (commodities) indexed by l ∈ L.11

(b) A set of J firms indexed by j ∈ J , each defined by a production set Y j ⊂ RL (closed,

convex) satisfying Y j +RL
− ⊂ Y j (free disposal) and Y j ∩RL

+ = {0} (absence of free

production, possibility of inaction).

(c) A set of H households indexed by h ∈ H; each household is defined by the tuple

(Xh,�h, e
h, θh). The tuple consists of a consumption set Xh ⊂ RL (closed, convex,

bounded from below), a preference preordening �h on Xh (complete, continuous,

convex, and weakly monotone), a vector of initial endowments eh for which there

exists xh ∈ Xh such that xh � eh, and a vector of ownership fractions θh = (θhj)j∈J

in the J firms, 0 ≤ θhj ≤ 1, where for each j,
∑

h θhj = 1.12

A consumption plan for household h is xh ∈ Xh. A production plan for firm j is yj ∈ Y j.

An allocation a is a tuple

(x, y) = ((xh)h∈H, (yj)j∈J ) ∈
∏
h∈H

Xh ×
∏
j∈J

Y j.

The allocation a is feasible if it satisfies∑
h∈H

xh ≤
∑
h∈H

eh +
∑
j∈J

yj.

The set A denotes the set of feasible allocations. The aggregate production set is Y =∑
j∈J Y j. We further assume the following.

(A.1) The production process is irreversible, Y ∩ −Y = {0}.

This assumption implies that the set of feasible allocations A is bounded.

(A.2) For each commodity l′ ∈ L, there exists a household h ∈ H whose preferences are

strictly monotonic with respect to xh
l′ , i.e., for every xh ∈ Xh, there exists x̂h ∈ Xh

such that x̂h
l′ > xh

l′ , x̂h
l = xh

l for all l ∈ L \ {l′}, and x̂h �h xh.

The foregoing is assumed throughout without reminder.

10Our real economy in this section is the same as in Dehez et al. (2003) - hereafter DDS. We refer the
reader to that paper for proofs of the results mentioned in this section.

11In Sections 5 and 6, treating time and uncertainty explicitly, the commodity space will be RLN , with
coordinates (commodities at date events) indexed by lst ∈ L ×N .

12A vector v is a column vector; its transpose v> is a row vector. Vector inequalities are ≥, >, � .
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2.2 Pricing rules

To define “pricing rules” we need some more notation. Write ∂Y j := {yj ∈ Y j |6∃ ŷj ∈
Y j, ŷj � yj} for the “weakly efficient boundary” of the production set Y j; ι> :=

(1, . . . , 1) ∈ RL for the unit vector in RL; ∆L = ∆ := {v ∈ RL
+ | ι>v = 1} for the

unit simplex in RL; SL = S := {v ∈ RL | ι>v = 1} for the hyperplane in RL containing ∆;

p ∈ RL for a price vector.

Definition 2.1 A pricing rule for firm j is a correspondence ϕj : ∂Y j × A × ∆ → S

that, given the market data (ā, p̄), assigns to each production plan yj ∈ ∂Y j a set of prices

ϕj(yj; ā, p̄) ∈ S.

A pricing rule is a correspondence associating with every technologically efficient produc-

tion plan for a firm the set of price vectors at which the firm would be willing to supply

that production bundle. To give content to that abstract definition, consider first a firm

endowed with a smooth convex technology and maximizing profits at given prices. Its equi-

librium condition (“prices equal marginal costs” in the simplest cases) requires that prices

correspond, for any point yj ∈ ∂Y j, to the vector normal to Y j at yj - say N j(yj); indeed,

by definition of the normal vector, pj ∈ N j(yj) implies pj>yj ≥ pj> ŷj for all ŷj ∈ Y j. If

the production set is convex, but not smooth, the normal cone to yj at Y j collects all the

vectors pj for which pj>yj ≥ pj> ŷj, ∀ŷj ∈ Y j; it may still be denoted N j(yj). In this simple

case, the pricing rule is independent of market data and given by13

ϕj(yj) = {pj ∈ S | pj ∈ N j(yj)}.

By definition, N j(yj) is a cone with vertex {0}. It defines relative prices. The restriction

“pj ∈ S” is one convenient normalization among many. For a set Y j with free disposal,

the normal cone at yj ∈ ∂Y j is a collection of non-negative vectors.

2.3 Equilibrium under pricing rules

The more interesting application based upon imperfect competition is developed in Sec-

tion 2.4. Before turning to that, it is appropriate to complete the abstract theory of

equilibrium under pricing rules.

Definition 2.2 An equilibrium under pricing rules consists of an allocation ā ∈ R(H+J)L

and a price vector p̄ ∈ ∆ such that:

13This way of describing competitive behavior is one escape from the contradiction between price setting
and competition advanced in Arrow (1959).
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(E.1) For each h, x̄h is �h-maximal in the budget set Bh(ā, p̄) = {xh ∈ Xh | p̄>xh ≤
p̄>eh +

∑
j θhj p̄>ȳj}.

(E.2) For each j, p̄ ∈ ϕj(ȳj; ā, p̄).

(E.3)
∑

h∈H x̄h =
∑

h∈H eh +
∑

j∈J ȳj.

Thus, the standard definition is modified: profit maximization by firms is replaced by the

condition that market prices belong to the pricing rule of every firm. In the special case

where ϕj(yj; ā, p̄) ≡ N j(yj), Definition 2.2 corresponds to the definition of competitive

equilibrium.

Existence requires that pricing rules be “well-behaved.” Not surprisingly, the following

conditions emerge, j ∈ J :

(P.1) The correspondence ϕj is upper hemi-continuous and compact, convex, and non-

empty valued at (yj; ā, p̄).

(P.2) For all pj ∈ ϕj(yj; ā, p̄), pj>yj ≥ 0.

The first postulate is required to invoke Kakutani’s fixed-point theorem. The second is

crucial in proving that a fixed point is an equilibrium, and is also needed to guarantee

non-negative property incomes.14

Theorem 2.3 For the economy of Section 2.1, under P.1 and P.2, there exists an equilib-

rium with pricing rules.

2.4 Equilibrium under imperfect competition à la Negishi

A more interesting application deals with imperfect competition. The starting point comes

from Negishi (1961, 1972), who considers “perceived inverse demand functions” defined,

at market signals (ā, p̄), by

πj(yj; ā, p̄) = p̄ + Hj(ā, p̄)(yj − ȳj), (2.1)

with Hj(ā, p̄) a negative semi-definite (NSD) matrix. In words: the right-hand side of (2.1)

gives the prices at which the firm expects to be able to trade the quantities yj, when the

market data are (ā, p̄). We make the following assumptions.

(A.3) For each j ∈ J , the mapping (ā, p̄) → Hj(ā, p̄) is continuous, and the matrix Hj(ā, p̄)

is NSD for (ā, p̄) ∈ A×∆.

14Since {0} ∈ Y j , (P.2) is always satisfied when ϕj(yj ; ā, p̄) = N j(yj).
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(A.4) For each j ∈ J , the matrix Hj(ā, p̄)> owns at least one row with zero entries,

identically in (ā, p̄).15

The associated profits are

yj>(p̄−Hj(ā, p̄)ȳj) + yj>Hj(ā, p̄)yj.

In the real (i.e. non-monetary) economy, it is natural to take p̄ ∈ ∆, and to impose that

equations (2.1) be homogeneous of degree 1 in the overall price level ι>p̄; that is, for p̄ ∈ ∆

and for all k > 0:

πj(yj; ā, kp̄) = kp̄ + kHj(ā, p̄)(yj − ȳj).

We will make such an assumption in Section 6, when we study the indeterminacy and

neutrality of the overall price level in a monetary economy.

In equilibrium, the producer will choose a production bundle consistent with the market

data, yj = ȳj. First-order conditions (FOC) for maximal profits at ȳj require the existence

of a vector qj in the normal cone N j(ȳj) such that16 17

p̄ + Hj(ā, p̄)>ȳj − qj = 0. (2.2)

Example 2.4 In a typical illustration, the firm has competitive demand perceptions for

most commodities, inducing zeros in the corresponding rows and columns of the matrix H.

If the price of commodity l were unaffected by yj, then row l of the matrix Hj(ā, p̄) has

zero entries; if the level of yj
l does not affect prices, then column l of the matrix Hj(ā, p̄)

has zero entries.

In the simplest case of a single output l produced from a single input k, and competitive

demand perceptions for the input (as well as for commodities not used in the production

process), FOC (2.2) boil down to

p̄l + ȳj
l H

j
ll(ā, p̄) = qj

l ,

p̄k = qj
k,

15Assumption A.4 justifies the restriction of the pricing rule to production plans in ∂Y j . Indeed, under
strictly positive prices a production plan in the interior of Y j cannot be profit maximizing since increasing
yj

l , where l corresponds to a zero row of Hj(ā, p̄)>, increases the profits of firm j.
16Cf. Clarke (1983), Proposition 2.3.1 and corollary to Proposition 2.4.3. With Hj(ā, p̄) NSD and Y j

convex, the FOC are necessary and sufficient for a global maximum.
17In the special case where the production possibility set Y j is described by a differentiable transfor-

mation function F j : RL → R with the property that F j(yj) ≤ 0 if and only if yj ∈ Y j , the usual
Kuhn-Tucker conditions deliver FOC (2.2) with qj equal to a non-negative multiple of ∂F j(ȳj). The vector
qj is therefore related to the marginal rate of transformation of good l for good k at ȳj , which equals
∂yj

l
F j(ȳj)/∂yj

k
F j(ȳj).
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which in turn implies

p̄l

(
1 + Hj

ll(ā, p̄)
ȳj

l

p̄l

)
= p̄k

qj
l

qj
k

= p̄kMRTlk(ȳ
j), (2.3)

the well-known formula that output price times one plus the output elasticity of price equals

marginal cost. FOC (2.2) hold with any number of inputs and outputs, whose prices may

or may not react to the firm’s choice of yj. 2

The presence of (ā, p̄) as determinants of the matrix Hj(ā, p̄) reflects the obvious depen-

dence of demand perceptions at the firm level upon the market data. Thus, the perceived

elasticity of demand for output l of firm j is apt to depend upon, for instance, the market

prices of substitutes l′ not supplied by firm j; or the aggregate supply of commodity l by

competitors of j at a price p̄l.

Consider equation (2.2). Since qj ∈ N j(ȳj), it can be written as λq̄j with λ ≥ 0 and

q̄j ∈ ∆. Since πj(ȳj; ā, p̄) = p̄, λ is equal to 1+ ι>Hj(ā, p̄)>ȳj. Equation (2.2) may therefore

be rewritten as

p̄ = (1 + ι>Hj(ā, p̄)>ȳj)q̄j −Hj(ā, p̄)ȳj.

From this it would be tempting to define the pricing rule ϕ̄j at ȳj by

ϕ̄j(ȳj; ā, p̄) = {pj ∈ RL | ∃q̄j ∈ N j(ȳj)∩∆ : pj = (1 + ι>Hj(ā, p̄)>ȳj)q̄j −Hj(ā, p̄)ȳj}.

However, λ = 1 + ι>Hj(ā, p̄)>ȳj may be negative, in which case p̄ ∈ ϕ̄j(ȳj; ā, p̄) does not

imply that the firm maximizes profits at ȳj given market data (ā, p̄).

To avoid this problem, we define the pricing rule ϕj at ȳj by

ϕj(ȳj; ā, p̄) = {pj ∈ RL | ∃q̄j ∈ N j(ȳj) ∩∆ :

pj = max(0, 1 + ι>Hj(ā, p̄)>ȳj)q̄j − Hj(ā, p̄)>ȳj

max(1,−ι>Hj(ā, p̄)>ȳj)
}.

When 1+ι>Hj(ā, p̄)>ȳj ≥ 0, the first-order condition (2.2) holds whenever p̄ ∈ ϕj(ȳj; ā, p̄).

Otherwise, pj = Hj(ā, p̄)>ȳj/ι>Hj(ā, p̄)>ȳj for all pj ∈ ϕj(ȳj; ā, p̄). Since Hj(ā, p̄)> con-

tains at least one vanishing row, the corresponding element of pj is set equal to zero. Under

Assumption A.2, p̄l = 0 is impossible at equilibrium, implying that the adjustment to the

first-order-condition does not matter in equilibrium.

We must also define the pricing rule for yj 6= ȳj. Since this case is incompatible with

equilibrium, we may use any specification that satisfies P.1 and P.2. The simplest such

specification is the following:

ϕj(yj; ā, p̄) = {pj ∈ RL | ∃q̄j ∈ N j(yj) ∩∆ :

pj = max(0, 1 + ι>Hj(ā, p̄)>yj)q̄j − Hj(ā, p̄)>yj

max(1,−ι>Hj(ā, p̄)>yj)
}. (2.4)
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This amounts to using at yj 6= ȳj the matrix of partial derivatives Hj(ā, p̄) characterizing

demand perceptions at (ā, p̄).

Lemma 2.5 Under Assumption A.3, for (yj; ā, p̄) in a compact set, the pricing rule (2.4)

satisfies P.1 and P.2.

Lemma 2.5 allows DDS to invoke Theorem 2.3 and state an existence theorem, that we

extend to kinky perceived demands in Section 3.

3 Real equilibria under kinky demands perceived by

firms

3.1 Pricing rules

Extending the model of Section 2 to kinky perceived demands looks at first sight straight-

forward: just replace the demand function (2.1) by a function with a kink at ȳj; and draw

the implications for profit maximization!

Example 3.1 This natural intuition is readily illustrated by an extension of Example 2.4

to asymmetrical perceived demand elasticities. Assume that the firm perceives alterna-

tive demand slopes Hj+
ll (ā, p̄) and Hj−

ll (ā, p̄) applicable respectively to increases (dyj
l > 0)

and decreases (dyj
l < 0) of ȳj

l . That is, the firm holds a kinky demand perception at ȳj.

In order for the objective function of the firm to be concave, it must be the case that

Hj+
ll (ā, p̄)ȳj

l ≤ Hj−
ll (ā, p̄)ȳj

l . Under that condition, it is readily verified that the FOC are

given by the inequalities

p̄l(1 + Hj+
ll (ā, p̄)

ȳj
l

p̄l

) ≤ p̄k
qj
l

qj
k

≤ p̄l(1 + Hj−
ll (ā, p̄)

ȳj
l

p̄l

), (3.1)

which generalize naturally the equality (2.3). Under (3.1), marginal revenue of the last

unit of ȳj
l covers marginal cost, possibly with a profit margin; but marginal revenue of an

extra unit does not. 2

Beyond the simplicity of the intuition and of the example, a number of new technical issues

arise in extending (3.1) to the general case (many goods, abstract technology). These are

handled through Lemmas 3.3 and 3.4, proved in the Appendix. The resulting pricing rule

(3.7) relates to (2.4) in basically the same way that (3.1) relates to (2.3). Lemma 3.5

parallels Lemma 2.5.
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In order to study kinks in RL, note first that RL has 2L orthants (thus, 2 for the line

R, 4 for the plane R2, 8 for R3, etc.). Index these orthants by the L-vectors s ∈ S, where

S = {s ∈ RL | for every l ∈ L, either sl = +1 or sl = −1}.

An orthant with origin at 0 ∈ RL, denoted RL(0, s), is then defined by

RL(0, s) = {v ∈ RL| for every l ∈ L, sl(vl − 0) ≥ 0}.

A piecewise linear L-dimensional demand function with a kink at ȳj thus has (potentially)

2L different derivatives, one for each displaced orthant of RL with origin at ȳj. We define

RL(ȳj, s) = {y ∈ RL | for every l ∈ L, sl(yl − ȳl) ≥ 0}.

At an interior point yj of a displaced orthant defined by a sign vector s, the perceived

demands are linear, with partial derivatives

∂πj
k

∂yj
l

(yj; ā, p̄) = Hjs
kl (ā, p̄),

resulting in a matrix Hjs(ā, p̄). Using these definitions, we extend (2.1) to perceived demand

functions with a kink at ȳj, defined by

πj(yj; ā, p̄) = p̄ + Hjs(ā, p̄)(yj − ȳj), s ∈ S, yj ∈ RL(ȳj, s). (3.2)

In order for ȳj to be a profit-maximizing vector under the piecewise linear perceived de-

mands (3.2), 2L inequalities must be satisfied - extending the two inequalities in (3.1);

namely, the 2L directional derivatives of yj>πj(yj; ā, p̄) in the 2L displaced orthants RL(ȳj, s)

correspond to non-increasing profits. That is for all s ∈ S, for all dyj such that ȳj + dyj ∈
RL(ȳj, s),

dyj> p̄ + (ȳj + dyj)>Hjs(ā, p̄)dyj ≤ 0.

The next lemma shows that there is no need to specify 2L matrices Hjs(ā, p̄). Once the

matrix corresponding to the sign vector with every component +1, denoted Hj+(ā, p̄), and

the matrix corresponding to the sign vector with every component −1, denoted Hj−(ā, p̄),

are given, piecewise linearity of the perceived inverse demand function πj implies that

column l of Hjs(ā, p̄) equals column l of Hj−(ā, p̄) if sl = −1 and equals column l of

Hj+(ā, p̄) if sl = +1.

Lemma 3.2 If πj is a piecewise linear perceived inverse demand function with a kink at ȳj

given market data (ā, p̄), then

Hjs
·l (ā, p̄) =

{
Hj−
·l (ā, p̄) if sl = −1,

Hj+
·l (ā, p̄) if sl = +1.
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Proof: See Appendix.

Motivated by Lemma 3.2, our primitives are Hj−(ā, p̄), Hj+(ā, p̄), the NSD matrices of

demand derivatives applicable respectively to negative and positive adjustments dyj. Ac-

cordingly, every matrix Hjs(ā, p̄) consists of columns borrowed from either Hj−(ā, p̄) or

Hj+(ā, p̄), depending upon the sign vector s. Moreover, for s ∈ S, we shall require the

matrices Hjs(ā, p̄) to be NSD.

Lemma 3.3 provides the necessary and sufficient conditions for ȳj to be a profit maxi-

mizing production plan given market data (ā, p̄).

Lemma 3.3 The production plan ȳj maximizes profits given market data (ā, p̄) if and only

if for every s ∈ S, there exists qjs ∈ N j(ȳj) and µjs ∈ RL(0, s) such that18

p̄ + Hjs(ā, p̄)>ȳj = qjs − µjs.

Proof: See Appendix.

Using the necessary and sufficient conditions of Lemma 3.3, we can derive the following

simpler conditions, which we will prove to be sufficient.

Lemma 3.4: The production plan ȳj maximizes profits given market data (ā, p̄) if there

exists qj ∈ N j(ȳj) such that the following pair of inequalities is satisfied:

p̄ ≥ qj −Hj−(ā, p̄)>ȳj, (3.3)

p̄ ≤ qj −Hj+(ā, p̄)>ȳj. (3.4)

Proof: See Appendix.

Notice that existence of solutions to (3.3)–(3.4) requires

Hj+(ā, p̄)>ȳj ≤ Hj−(ā, p̄)>ȳj. (3.5)

This condition is implied by concavity of the objective function of the firm.

Using (3.5) and building upon (2.4) it would be natural to define the pricing rule as

ϕ̄j(yj; ā, p̄) = {pj ∈ S | ∃ q̄j ∈ N j(yj) ∩∆ such that

max(0, 1 + ι>H̄j(ā, p̄)>yj)q̄j − Hj−(ā, p̄)>yj

max(1,−ι>H̄j(ā, p̄)>yj)
≤ pj ≤

max(0, 1 + ι>H̄j(ā, p̄)>yj)q̄j − Hj+(ā, p̄)>yj

max(1,−ι>H̄j(ā, p̄)>yj)
},

18Observe that µjs ∈ RL(0, s) if and only if µjs
l sl ≥ 0, for all l ∈ L.
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where H̄j = (Hj−+Hj+)/2.19 The problem of this specification is that ϕ̄j is empty valued if

it is not the case that Hj+(ā, p̄)>yj ≤ Hj−(ā, p̄)>yj, which may occur for some yj ∈ ∂Y j. To

solve this problem, we adapt the pricing rule for yj 6= ȳj by letting Hj+ and Hj− depend on

yj. We denote the resulting matrices by Hj+(yj; ā, p̄) and Hj−(yj; ā, p̄), imposing only that

Hjs(yj; ā, p̄) is NSD for all s ∈ S (Assumption A.3’ below), that Hj−(ȳj; ā, p̄) = Hj−(ā, p̄)

and Hj+(ȳj; ā, p̄) = Hj+(ā, p̄), and

Hj+(yj; ā, p̄)>yj ≤ Hj−(yj; ā, p̄)>yj. (3.6)

Since in equilibrium yj = ȳj, the specification of these matrices for yj 6= ȳj is immaterial.

We obtain the following definition of the pricing rule:

ϕj(yj; ā, p̄) = {pj ∈ S | ∃ q̄j ∈ N j(yj) ∩∆ such that

max(0, 1 + ι>H̄j(yj; ā, p̄)>yj)q̄j − Hj−(yj; ā, p̄)>yj

max(1,−ι>H̄j(yj; ā, p̄)>yj)
≤ pj ≤

max(0, 1 + ι>H̄j(yj; ā, p̄)>yj)q̄j − Hj+(yj; ā, p̄)>yj

max(1,−ι>H̄j(yj; ā, p̄)>yj)
}. (3.7)

It is readily verified that, given (3.6), and whether or not 1 + ι>H̄j(yj; ā, p̄)>yj ≥ 0, the

left-hand side vector is less than or equal to the right-hand side vector; and the elements

of these vectors sum up to no more than one on the left and no less than one on the right.

Thus, (3.7) admits solutions with ι>p = 1; but that property must be imposed through

the additional side condition pj ∈ S: otherwise not all solutions of (3.7) need satisfy it.

When Hj−(·) ≡ Hj+(·), (3.7) reduces to (2.4); when Hj−(·) ≡ Hj+(·) ≡ 0, the pric-

ing rule defines competitive behavior (prices in N j(yj), hence sustaining yj as a profit-

maximizing production plan at given prices). Thus, (3.7) encompasses a hierarchy of

market situations.

3.2 Existence of equilibrium

An equilibrium under pricing rules is still defined by Definition 2.2. To prove existence,

we must extend Assumptions A.3 and A.4 to allow for kinks.

(A.3’) For each j ∈ J , the mapping (Hj−, Hj+) : ∂Y j × A × ∆ → R2L2
which maps

(yj, ā, p̄) to (Hj−(yj; ā, p̄), Hj+(yj; ā, p̄)) is continuous and the matrices Hj−(yj; ā, p̄),

Hj+(yj; ā, p̄), as well as the derived matrices Hjs(yj; ā, p̄), s ∈ S, are NSD. It holds

that (Hj−(ȳj; ā, p̄), Hj+(ȳj; ā, p̄)) = (Hj−(ā, p̄), Hj+(ā, p̄)).20

19Any H̄j satisfying Hj+(·)>yj ≤ H̄j(·)>yj ≤ Hj−(·)>yj would do; there is no loss of generality in
using the mean of Hj+ and Hj−, but there is an economy of notation.

20We impose assumptions on (Hj−,Hj+) as functions defined on ∂Y j ×A×∆. We could instead have
taken (Hj−,Hj+) as defined on A × ∆ as a primitive, and then define them on Y j × A × ∆ by taking
appropriate extensions and projections.
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(A.4’) For each j ∈ J , there exists at least one commodity l̂(j) such that row l̂(j) of

both matrices Hj−(yj; ā, p̄)> and Hj+(yj; ā, p̄)> consists of zero entries, identically in

(yj, ā, p̄).

(A.5) For each j ∈ J , for each yj ∈ ∂Y j, the inequalities

Hj+(yj; ā, p̄)>yj ≤ Hj−(yj; ā, p̄)>yj

hold.

Lemma 3.5 Under Assumptions A.3’ and A.5, for (yj, ā, p̄) in a compact set, the pricing

rule (3.7) satisfies P.1 and P.2.

Proof: See Appendix.

Lemma 3.5 plays a central role in our analysis. It allows us to apply Theorem 2.3 and to

state:

Theorem 3.6 For the economy of Section 3.1, under Assumptions A.3’, A.4’, and A.5,

there exists an equilibrium with pricing rules as defined by (3.7); that is, with profit maxi-

mization under possibly kinky perceived demand functions.

4 Real equilibria under kinky demands perceived by

unions

4.1 Background

As mentioned cursorily in Section 1.2, the literature discusses several formulations of the

wage determination problem when labor is organized as unions. One important distinction

concerns the process itself, either bargaining between firms and unions, or wage-setting by

unions followed by hiring decisions of the firms. In either case, the objective functions of

the unions must be specified.

Bargaining models are typically asymmetrical Nash, with a parameter measuring the

relative bargaining powers of employers and unions; see, e.g. Arnsperger and de la Croix

(1993), Licandro (1995), or Bénassy (2002, Chapter 5). These authors eschew the “objec-

tive function” issue by assuming identical workers. We do not follow the bargaining path,

since our purpose is to explore kinky demand curves perceived by unions.
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There is a significant literature on wage-setting unions, dating as far back as Dunlop

(1944). Typically, that literature deals with objective demand curves obtained analytically

in simplified models. Dunlop, or more recently Hart (1982), equates the union’s objective

to the aggregate wage bill. Some authors endow unions outright with a utility function;

e.g., Oswald (1979) or Calmfors (1982). Others assume that union members have identical

preferences - e.g. Snower (1983); others still endow individual workers with market power

- e.g. Blanchard and Kiyotaki (1987) or Bénassy (2002, Chapter 4). Blair and Craw-

ford (1984) and Farber (1986) handle heterogeneous preferences through a “median voter”

model, and recognize its limitations. Negishi (1979, Chapter 17) also assumes identical

preferences across union members, but relies on perceived demand functions with kinks.21

The general equilibrium framework used here has both strengths and weaknesses for

modeling unions and non-clearing labor markets. In a framework encompassing time and

uncertainty, every agent (firm, household, or labor union) is concerned with several la-

bor markets. We are not appraised of simplified models with objective demand curves

applicable to a general multi-market framework. On the other hand, existence proofs in

general equilibrium theory rely on strong continuity properties. Accordingly, models with

fixed labor time (working week), where workers are either employed full-time or totally

inactive, are not covered by the standard theory; they are unwieldy, unless one introduces

a continuum of workers. We must accordingly proceed under the restrictive assumption

that aggregate employment on a specific unionized labor market is divided among union

members in a continuous way. This is the price of generality, in the present context.22

4.2 A simple example

Before proceeding to the formal analysis, it is helpful to review a simple example, with (i)

a single type of labor supplied by the members of a wage-setting union; and (ii) member

preferences represented by C1 utility functions.

Example 4.1 Consider a union with n members, setting the wage w for a single type of

labor. Aggregate employment is denoted `, and the perceived inverse demand function of

the union is w(`), with dw
d`

< 0. Each member h of the union will supply a quantity of

labor `h(`), with d`h

d`
≥ 0 and

∑
h `h(`) ≡ ` > 0. Union member h has a disposable income

yh = w`h, and preferences represented by the mixed direct-indirect C1 utility function

uh(`h, yh) = uh(`h, w`h).

21For a survey of the union-wage model, see Oswald (1985). Models with union utility or with identical
members are special cases of our model. Wage bill maximization is at variance with our approach; see
Remark (vi) in Subsection 4.2.

22See however Remark (iv) at the end of Subsection 4.2.

15



The total derivative of uh with respect to ` is:

duh

d`
=

∂uh

∂`h

d`h

d`
+

∂uh

∂yh
(w

d`h

d`
+

dw

d`
`h).

A level of employment ` is Pareto-efficient for the union members if it maximizes∑
h µhuh(`h, w`h) for some positive vector of weights µh. The FOC for that problem is∑

h

µh duh

d`
=
∑

h

µh ∂uh

∂yh
{wd`h

d`
+

∂uh/∂`h

∂uh/∂yh

d`h

d`
+

dw

d`
`h} = 0. (4.1)

Because ∂uh

∂yh has arbitrary scale, the terms µh ∂uh

∂yh are undetermined individual coefficients

assigned to member incomes in the optimization problems. (In contrast, all the terms

in the curly brackets are well-defined.) A union not pursuing interpersonal redistributive

policies23 behaves as if it assigned equal weights to the incomes of all its members, i.e. as if

µh ∂uh

∂yh were independent of h. In that case, using
∑

h
d`h

d`
= 1, (4.1) may be rewritten as:24

w = −
∑

h

∂uh/∂`h

∂uh/∂yh

d`h

d`
− dw

d`
`. (4.2)

The first term in (4.2) contains the marginal rates of substitution between work and in-

come of all union members, weighted by their stakes in marginal adjustments of aggregate

employment d`. Two remarks:

(i) This is exactly the formula defining shadow prices for future state-dependent outputs

supporting production plans that are Pareto-efficient for shareholders, under incomplete

markets (Drèze 1974).

(ii) Marginal rates of substitution between work and income define the reservation

wages of workers.

Formula (4.2) thus admits of a natural interpretation: union wages should correspond

to average reservation wages of members, augmented with a markup reflecting the demand

elasticity.

We show that formula (4.2) is analogous to formula (2.3). Let Hk be the set of members

of union k. Write yk
l for aggregate employment ` of members of union k, p̄l = πk

l (ȳk; ā, p̄) for

the wage (“price”) w and Hk
ll(ā, p̄) for dw/d`, assuming market signals (ā, p̄), where ȳk is

consistent with market data, so ȳk
l = −

∑
h∈Hk(x̄h

l −eh
l ). Define furthermore λh = − ∂uh/∂`h

∂uh/∂yh

and λk =
∑

h∈Hk λh d`h

d`
. Then (4.2) may be written as

p̄l

(
1 + Hk

ll(ā, p̄)
ȳk

l

p̄l

)
= λk, (4.3)

23Others might write: a democratic union, not bestowing preferential treatment upon individual mem-
bers . . .

24With `h ≥ 0, ∂uh

∂`h ≤ 0 so that the first term in (4.2) is non-negative.
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where the right-hand side term is equal to the average reservation wage of union k members,

i.e. to the marginal opportunity cost of ȳk
l at (ā, p̄).

Let now the union entertain kinky demand perceptions, with d+w
d`

for d` > 0 and d−w
d`

for d` < 0, d+w
d`

` ≤ d−w
d`

` ≤ 0. The FOC (4.2) should then be replaced by the pair of

inequalities

w +
d+w

d`
` ≤ −

∑
h∈Hk

∂uh/∂`h

∂uh/∂yh

d`h

d`
≤ w +

d−w

d`
`.

In the notation of (4.3), this becomes

p̄l

(
1 + Hk+

ll (ā, p̄)
ȳk

l

p̄l

)
≤ λk ≤ p̄l

(
1 + Hk−

ll (ā, p̄)
ȳk

l

p̄l

)
. (4.4)

This formula is analogous to formula (3.1) above - up to the replacement of marginal cost

p̄kq̄
j
l /q̄

j
k by an opportunity cost λk here. 2

Beyond the transparency of the example, a number of new technical issues arise in ex-

tending (4.4) to the general case (many goods, many unions). These are handled largely

through Theorem 4.3, proved in the Appendix.

Before leaving this example, we add four further remarks.

(iii) The term ∂uh

∂`h is naturally interpreted as the “marginal disutility of work,” a negative

number. In the present context, it could also be interpreted as a “marginal opportunity

cost” of union employment rather than other employment, also negative - but perhaps

more significant.

(iv) In the case of fixed working time cum unemployment, the term d`h

d`
would cor-

respond: for an unemployed, to the probability of being hired under d` > 0, namely
1

n−`
d`; for an employed, to the probability of being fired under d` < 0, namely 1

`
d`. In

that case, the benefit of being hired (of not being fired) is given by the finite difference

uh(`h, w`h)− uh|`h=0. The second term in that difference requires explanation. If it called

for another job at lower wages but similar hours, the difference could be expressed as the

product of the wage differential by a marginal utility of income (mean value theorem),

leading back to a formula comparable to (4.1), hence (4.2).

(v) Formula (4.2) suggests that a union concerned with the well-being of its members

should elicit their reservation wages −∂uh

∂`h /∂uh

∂yh in order to set wages according to (4.2).

That may seem preposterous . . . yet it is perhaps a meaningful characterization of union

behavior in some countries. We could adopt a less precise formulation, still consistent with

(4.2); namely that unions set wages on the basis of shadow prices λk which are single valued

continuous monotone functions of the members’ reservation wages. This would allow for

λk depending on the reservation wages of a subset (possibly random) of union members.

17



(vi) It is readily seen in formula (4.2) that identical union members correspond to a

special case of our approach. On the other hand, maximizing (with respect to `) the wage

bill w` would lead to the FOC w + dw
d`

` = 0, at variance with (4.2).

4.3 General formulation

To formalize and generalize the foregoing, we must extend the primitives of Section 2.1 by

adding unions to the set of agents and by adjusting primitive (c) concerning households.

We define a union k by: (i) the set of labor markets on which it sets wages; (ii) its mem-

bership, consisting of households supplying such labor; (iii) the rules allocating aggregate

employment among union members; (iv) the set of employment levels which are feasible

for the membership; (v) the objective function of the union. We postpone item (v), which

is crucial to our formulation, to Section 4.4. Items (i) and (ii) are straightforward. For

item (iii), we adopt the simplest formulation, namely fixed proportions. It is then possible

to handle (iv) on the basis of upper bounds on the labor supply of individual households.

Thus, we add to the primitives of Section 2.1:

(d) A set K of K unions indexed by k; each union k is defined by: (i) the set Lk  L of

Lk labor markets on which it sets wages, with Lk ∩ Lk′ = ∅ for all k′ ∈ K \ {k}; (ii)

the set Hk  H of nk households which are members of k, with Hk ∩Hk′ = ∅ for all

k′ ∈ K\{k}; (iii) for h ∈ Hk and l ∈ Lk, labor allocation coefficients σhk
l ≤ 0,

∑
h∈Hk

σhk
l = −1;25 and (iv) the vector ŷk ∈ RL

+ with ŷk
l = 0 for l /∈ Lk defining maximally

feasible employment levels for union k.

We shall treat union k as if it were a firm supplying labor of types l ∈ Lk to the rest of the

economy, in quantities yk
l ≥ 0, with yk

l ≤ ŷk
l . As we will assume zero initial endowments of

commodities in Lk, feasibility then requires −
∑

h∈Hk xh
l = yk

l =
∑

h/∈Hk xh
l −

∑
j∈J yj

l . For

l /∈ Lk, we impose yk
l = 0. More concisely, we write yk = (kyk, ykk) ∈ {0} × RLk

+ ; and we

partition other vectors similarly, for instance xh = (kxh, xhk), p = (kp, pk), and so on. We

define the set Y k by Y k = {yk ∈ RL
+ | yk ≤ ŷk}.

Regarding households, we add the following assumption:

(A.6) 1. For each k ∈ K, for all h ∈ Hk, Xh = kXh ×Xhk, where kXh = {kxh}+ RL−Lk

+

and Xhk = {xh ∈ RLk | for l ∈ Lk, σhk
l ŷk

l ≤ xh
l ≤ 0}.

2. The preferences �h are represented by a continuously differentiable strictly

quasi-concave utility function uh : Xh → R with strictly positive partial deriva-

tives.

25We treat union employment levels yk
l as non-negative quantitities; household labor supplies xh

l are
non-positive quantitities; hence, xh

l = σhk
l yk

l requires σhk
l ≤ 0.
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3. For all h ∈ H, for each l ∈ ∪k∈KLk, eh
l = 0.

Assumption A.6.1 states that consumption sets have a product form. The product form

guarantees that the labor supply determined by the union is consistent with individual

consumption sets. Assumption A.6.3 normalizes the endowments of “union labor.”

The vectors yk need not be explicitly introduced into the market clearing conditions.

Equilibrium requires that, for each k ∈ K : (i) there exists ȳk ∈ Y k such that x̄h
l = σhk

l ȳk
l

for all h ∈ Hk and l ∈ Lk; and (ii) p̄ ∈ ϕk(ȳk; ā, p̄), where ϕk denotes the pricing rule of

union k, to be defined in (4.10). There is no need to explicitly introduce ȳk in the definition

of a feasible allocation ā, since feasibility requires, for l ∈ Lk,

ȳk
l = −

∑
h∈Hk

x̄h
l ,

so ȳk follows from ā. On the other hand, the presence of unions imposes an additional

condition on the allocation in equilibrium; if ā is an equilibrium allocation, then for each

k ∈ K, there is ȳk ∈ Y k with, for h ∈ Hk and l ∈ Lk, x̄h
l = σhk

l ȳk
l . To simplify notation, for

k ∈ K, we define the function σhk : Y k → RLk
by σhk

l (yk) = σhk
l yk

l , l ∈ Lk.

In line with Sections 2.4 and 3.1, we assume that union k perceives the inverse demand

functions

πk(yk; ā, p̄) = p̄ + Hks(ā, p̄)(yk − ȳk), s ∈ S, yk ∈ RL(ȳk, s).

As for firms, information on perceived demand functions can be summarized by NSD

matrices Hk+(ā, p̄) and Hk−(ā, p̄). Regarding these we make the following assumption.

(A.7) For each k ∈ K, the mapping (Hk−, Hk+) : Y k × A × ∆ → R2L2
which maps

(ā, p̄) to (Hk−(yk; ā, p̄), Hk+(yk; ā, p̄)) is continuous and the matrices Hk−(yk; ā, p̄),

Hk+(yk; ā, p̄), as well as the derived matrices Hks(yk; ā, p̄), s ∈ S, are NSD. It holds

that (Hk−(ȳk; ā, p̄), Hk+(ȳk; ā, p̄)) = (Hk−(ā, p̄), Hk+(ā, p̄)). For each k ∈ K, for each

yk ∈ Y k, the matrices Hk−(yk; ā, p̄) and Hk+(yk; ā, p̄) have rows and columns of zeros

for all commodities l ∈ L \ Lk, and the inequalities

Hk+(yk; ā, p̄)>yk ≤ Hk−(yk; ā, p̄)>yk

hold.

Write further Hkks(ā, p̄) for the Lk × Lk submatrix of Hks(ā, p̄) corresponding to the rows

and columns in Lk.
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4.4 Unions enhancing members’ welfare

Household h solves the problem

maxkxh uh(kxh, σhk(yk)) s.t. kp>kxh + pk>σhk(yk) ≤ p>eh +
∑

j θhjp>yj,

(kxh, σhk(yk)) ∈ Xh.
(4.5)

Associated with a solution x̄h = (kx̄h, σhk(yk)) of problem (4.5), we define the normalized

vector of marginal utilities λ̄h by λ̄h
l = pl, l ∈ L\Lk, and λ̄h

l = ∂xh
l
uh(x̄h)/λ̄h

0 , l ∈ Lk, where

λ̄h
0 denotes the Lagrange multiplier for h’s budget constraint. The specification of λ̄h

l for

l ∈ L \ Lk may not correspond to the actual normalized marginal utility of household h

since boundary solutions are allowed for. This does not affect our analysis, as it is only

the specification of λ̄h
k for l ∈ Lk that matters. Our assumptions on uh imply that λ̄h

0 > 0.

It holds that uh(x̄h + dxh) ≤ uh(x̄h) whenever x̄h + dxh ∈ Xh and dxh>λ̄h ≤ 0.

We may now characterize the vectors ((x̄h)h∈Hk , ȳk) that are Pareto efficient from the

viewpoint of union members.

Definition 4.2 Consumption bundles and employment levels ((x̄h)h∈Hk , ȳk) with associ-

ated prices (i.e. wages) πk(ȳk; ā, p̄) are Pareto efficient forHk at market signals (ā, p̄) if there

do not exist alternative employment levels ỹk ∈ Y k with associated prices p̃ = πk(ỹk; a, p),

and alternative consumption vectors x̃h ∈ Xh, h ∈ Hk, with∑
h∈Hk

(p̃>x̃h − p̄>x̄h) ≤ 0, (4.6)

x̃hk = σhk(ỹk), h ∈ Hk, (4.7)

uh(x̃h) > uh(x̄h), h ∈ Hk. (4.8)

This is the standard definition (non-existence of a superior feasible alternative), applied

here to the members of union k at unchanged prices for commodities not under the control

of union k (kp̃ = kp̄) and unchanged property incomes.

Because the perceived inverse demand functions πk are piecewise linear and the labor

allocation rules are linear, we may translate that definition into an alternative formulation

geared to our purpose.

Theorem 4.3 Under Assumptions A.6 and A.7, for given market data (ā, p̄), for h ∈ Hk,

let x̄h solve problem (4.5) with associated normalized vector of marginal utilities λ̄h. If∑
h∈Hk

−dσhk

dykk
λ̄hk −Hkk−(ā, p̄)>ȳkk ≤ p̄k ≤

∑
h∈Hk

−dσhk

dykk
λ̄hk −Hkk+(ā, p̄)>ȳkk, (4.9)

where the lower bound on p̄k
l is omitted for l ∈ Lk such that ȳk

l = 0 and the upper bound

on p̄k
l is omitted for l ∈ Lk such that ȳk

l = ŷk
l , then ((x̄h)h∈Hk , ȳk) is Pareto efficient for
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Hk at (ā, p̄).

Proof: See Appendix.

4.5 Pricing rules

At a solution kx̄h to (4.5), it holds that the Lagrange multiplier for h’s budget constraint,

λ̄h
0 , is equal to

max
l∈L\Lk

∂xh
l
uh(kx̄h, σhk(yk))

pl

.

The formulation with the maximum is needed, as boundary consumption is not excluded.

This motivates the definition of the function λh : Y k × A×∆ → RL by

λh
l (y

k; ā, p̄) =

 p̄l, l ∈ L \ Lk,(
minl′∈L\Lk

p̄l′
∂

xh
l′

uh(kx̄h,σhk(yk))

)
∂xh

l
uh(kx̄h, σhk(yk)), l ∈ Lk.

It is not difficult to show that the function λh is continuous. Next we define the continuous

function λk : Y k × A×∆ → RL
+ by

kλk(yk; ā, p̄) = kp̄,

λkk(yk; ā, p̄) = −
∑
h∈Hk

dσhk

dykk
λhk(yk; ā, p̄).

That is, λk(yk; ā, p̄) is a weighted average of normalized vectors of marginal utilities λh(yk; ā, p̄)

with weights adding to unity. For l /∈ Lk, the weights are immaterial (and omitted in the

above formula); for l ∈ Lk, the weights −dσhk
l

dykk are non-negative and add up to 1. Thus, for

l ∈ Lk, λk
l (y

k; ā, p̄) is an average reservation wage of members of k, weighted by marginal

employment shares.

We define the pricing rule of union k, ϕk : Y k × A×∆ → RL by

ϕk(yk; ā, p̄) = {pk ∈ RL |
λk(yk; ā, p̄)−Hk−(yk; ā, p̄)>yk ≤ pk ≤ λk(yk; ā, p̄)−Hk+(yk; ā, p̄)>yk}, (4.10)

where, as before, the lower bound on pk
l is omitted for l ∈ Lk such that yk

l = 0 and the

upper bound on pk
l is omitted for l ∈ Lk such that yk

l = ŷk
l .

Observe that the pricing rule of union k maps into RL and not into S. Since at equi-

librium p̄ ∈ ϕk(yk; ā, p̄) and p̄ ∈ S, this feature is inessential. For all pk ∈ ϕk(yk; ā, p̄) we

have that kpk = kp̄. For l ∈ Lk, if pk
l exceeds p̄l for all pk ∈ ϕk(ā, p̄), then the union should

lower yk
l at a gain of members’ welfare, and the union should increase yk

l if pk
l is less than
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p̄l for all pk ∈ ϕk(yk; ā, p̄). Using Theorem 4.3, it is immediate that if p̄ ∈ ϕk(ȳk; ā, p̄), then

((x̄h)h∈Hk , ȳk) is Pareto efficient for Hk.

Instead of stating here the properties of (4.10) that are conducive to existence of equi-

librium, we postpone that task to Lemma 5.5 below, so as to encompass at once monetary

exchange.

5 The monetary economy

Negishi (1979, p. 28) lists “monetary exchange with cash-in-advance (CIA)” as a “basic

rule of the game” for macroeconomics. We now extend the model of the previous sections

to introduce that rule. Yet, this (already too long) paper is not a paper on monetary

theory. So, our treatment will be streamlined. It is based on Drèze and Polemarchakis

(2001b), (hereafter DP), to which readers are referred for a systematic exposition and

generalization.

The logic of the DP model, specialized here to CIA, is elementary. All exchanges are

monetary (no barter). Inside money is created at no cost by a central bank and lent by the

bank to other agents against promise of repayment with interest, at rates r set by the bank.

Time is divided in (short) periods during which trade occurs. Money spent on purchases

must be held at beginning of period; money collected from sales must be held idle until end

of period. If budget constraints and profits are defined in terms of “beginning of period”

values, the relevant price of commodity l is pl in case of a purchase, pl/(1 + r) in case of a

sale. The bank b is owned by households in given fractions θhb ≥ 0,
∑

h∈H θhb = 1; bank

profits (seignorage) are distributed to shareholders.

Example 5.1 Consider a single period example, where firm j produces yj. Define a family

of diagonal L× L matrices R(yj) by:

Rll(y
j) =

{
1 if yj

l < 0,

1/(1 + r) if yj
l ≥ 0.

The beginning-of-period value of profits is then equal to p>R(yj)yj, a piecewise linear

expression with a kink when there is l such that yj
l = 0.

In stating FOC conditions for profit maximization, one must take the kinks into account.

If yj
l = 0, the relevant price associated with dyj

l > 0 is pl/(1 + r), whereas with dyj
l < 0 it
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is pl. This calls for defining two families of diagonal matrices, R−(yj) and R+(yj), where

R+
ll (y

j) =

{
1 if yj

l < 0,

1/(1 + r) if yj
l ≥ 0,

R−
ll (y

j) =

{
1 if yj

l ≤ 0,

1/(1 + r) if yj
l > 0.

Using these definitions, FOC like (3.3)–(3.4) may be extended to CIA, by multiplying the

price-terms p and ∂p/∂y = H by the suitable matrices R+ or R−. This yields

R−(ȳj)pj ≥ qj −Hj−(ā, p̄)>R−(ȳj)ȳj, (5.1)

R+(ȳj)pj ≤ qj −Hj+(ā, p̄)>R+(ȳj)ȳj. (5.2)

The pricing rules (5.5) below relate to (5.1)–(5.2) in basically the same way that the rules

(3.7) relate to (3.3)–(3.4). 2

In a general model involving time and uncertainty, the commodity space is structured on

the basis of an event tree describing the primitive uncertainties and the information of the

agents. The tree has N nodes, or date events, labeled st ∈ N . The interest rates set by

the bank are event-specific, and a distinct CIA constraint applies at each date event st.

The DP paper explains how the corresponding detailed model can be consolidated into an

abstract representation in terms of present value prices for contingent commodities; that

construction extends Chapter 6 of Debreu (1959) to a streamlined monetary economy. The

consolidation is particularly straightforward under the (special) CIA transactions technol-

ogy. We refer readers to DP for details and introduce directly the consolidated version

of the model. Under CIA, it is not even necessary to bring out into the open holdings of

money or nominal assets; so long as the bank supplies cash as demanded by solvent agents,

the only relevant consideration is the discounting of sales receipts under date event st by

the discount factor 1/(1 + rst) applicable there; that discount factor applies unchanged to

present value prices, which are based on “beginning of period accounting” at each date

event. The only additional complication concerns the seignorage revenue of the bank. In

a streamlined consolidation where nominal assets remain implicit, and CIA applies, the

bank is assumed to collect interest for one period on all the cash used by the agents for

their purchases at a date event. In the aggregate, that amount is identical to terminal cash

holdings of the sellers. The bank revenues (seignorage) are distributed at end of period to

households as dividends.

Formally, the commodity space is now RLN and the vector p ∈ RLN
+ denotes present

values. We write p> = (p>st
)st∈N , where pst ∈ RL

+ is the vector of present values (at node, or

time 0) of commodities purchased contingently on date event st. For sales of commodity l at
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st, the relevant price is plst/(1+ rst), where rst ≥ 0 is part of the primitives (is exogenously

set by the bank).

In line with Example 5.1, we define pairs of diagonal matrices R+(yj), R−(yj) of di-

mension LN by

R+
lst,lst

(yj) =

{
1 if yj

lst
< 0,

1/(1 + rst) if yj
lst
≥ 0,

R−
lst,lst

(yj) =

{
1 if yj

lst
≤ 0,

1/(1 + rst) if yj
lst

> 0.

The present value of profits of firm j is then:26

v̂j = p>R+(yj)yj(= p>R−(yj)yj).

Similarly, denoting by zh := xh − eh the transactions of household h, we define diagonal

matrices R◦(zh) by:

R◦
lst,lst

(zh) =

{
1/(1 + rst) if zh

lst
≤ 0,

1 if zh
lst

> 0.

We denote by v̂h the dividend income of household h, v̂h =
∑

j∈J θhj v̂j + θhbv̂b, where v̂b

represents the present value of seignorage. It holds that

v̂b =
∑
st∈N

rst

1 + rst

(
∑
j∈J

p>st
yj
−st

+
∑
h∈H

p>st
zh
+st

),

where we use the notation, for v ∈ Rn, v+i := max(0, vi) and v−i := max(0,−vi), so that

v = v+ − v−.

The consolidated budget constraint of h is

p>R◦(zh)zh ≤ v̂h.

Pricing rules in the monetary economy are natural extensions of earlier sections.

In the monetary economy with linear perceived inverse demand functions, the firm’s

problem is:

max
yj∈Y j

yj>R+(yj)πj(yj; ā, p̄) = yj>R+(yj)(p̄−Hj(ā, p̄)ȳj) + yj>R+(yj)Hj(ā, p̄)yj.

In the more general specification of Section 3, with a kinky perceived inverse demand

function, we can replace the sufficient conditions (3.3) and (3.4) by the sufficient conditions

p̄ ≥ R−(yj)−1qj −R−(yj)−1Hj−(a, p)>R−(yj)yj, (5.3)

p̄ ≤ R+(yj)−1qj −R+(yj)−1Hj+(a, p)>R+(yj)yj. (5.4)

To prove existence, we must extend Assumptions A.3’ and A.5 to

26For profit calculations given yj , the distinction between R+(yj) and R−(yj) is unnecessary; for defining
pricing rules, the distinction is necessary, as illustrated in Example 5.1.
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(A.3”) For each j ∈ J , the mapping (Hj−, Hj+) : ∂Y j × A×∆LN → R2L2N2
which maps

(yj, ā, p̄) to (Hj−(yj; ā, p̄), Hj+(yj; ā, p̄)) is continuous and the matrices R−(yj)Hj−

(yj; a, p), R+(yj)Hj+(yj; a, p), as well as the derived matrices R+(yj)Hjs(yj; a, p),

s ∈ S, are NSD. It holds that (Hj−(ȳj; ā, p̄), Hj+(ȳj; ā, p̄)) = (Hj−(ā, p̄), Hj+(ā, p̄)).

(A.5’) For each j ∈ J , for each yj ∈ ∂Y j, the inequalities

R+(yj)−1Hj+(yj; a, p)>R+(yj)yj ≤ R−(yj)−1Hj−(yj; a, p)>R−(yj)yj

hold.

We define

M j(yj; a, p) =
1

2
R−(yj)−1Hj−(yj; a, p)>R−(yj) +

1

2
R+(yj)−1Hj+(yj; a, p)>R+(yj)

and

µj(yj; a, p) = −ι>M j(yj; a, p)yj.

We define pricing rules for firms in a monetary economy with kinky perceived inverse

demands as follows:

ϕj(yj; ā, p̄) = {pj ∈ SLN | ∃ q̄j ∈ N j(yj) with ι>R+(yj)−1q̄j = 1 such that

R−(yj)−1q̄j max(0, 1− µj(yj; ā, p̄))− R−(yj)−1Hj−(yj; ā, p̄)>R−(yj)yj

max(1, µj(yj; ā, p̄))
≤ pj ≤

R+(yj)−1q̄j max(0, 1− µj(yj; ā, p̄))− R+(yj)−1Hj+(yj; ā, p̄)>R+(yj)yj

max(1, µj(yj; ā, p̄))
}. (5.5)

We now state Lemma 5.2.

Lemma 5.2 Under Assumptions A.3” and A.5’, for (yj, ā, p̄) in a compact set, the pricing

rule (5.5) satisfies P.1 with ι>pj ≡ 1 for every pj ∈ ϕj(yj; ā, p̄). For all pj ∈ ϕj(yj; ā, p̄),

pj>R+(yj)yj ≥ 0.

Proof: See Appendix.

We now extend the definition of vectors ((x̄h)h∈Hk , ȳk) that are Pareto efficient from the

viewpoint of union members to the monetary case.

Definition 5.3 Consumption bundles and employment levels ((x̄h)h∈Hk , ȳk) with associ-

ated prices (i.e. wages) πk(ȳk; ā, p̄) are Pareto efficient forHk at market signals (ā, p̄) if there

25



do not exist alternative employment levels ỹk ∈ Y k with associated prices p̃ = πk(ỹk; a, p),

and alternative consumption vectors x̃h ∈ Xh, h ∈ Hk, with∑
h∈Hk

(p̃>R◦(x̃h − eh)x̃h − p̄>R◦(x̄h − eh)x̄h) ≤ 0, (5.6)

x̃hk = σhk(ỹk), h ∈ Hk, (5.7)

uh(x̃h) > uh(x̄h), h ∈ Hk. (5.8)

This is the standard definition (non-existence of a superior feasible alternative), applied

here to the members of union k at unchanged prices for commodities not under the control

of union k (kp̃ = kp̄) and unchanged property incomes.

We extend Assumption A.7 to

(A.7’) For each k ∈ K, the mapping (Hk−, Hk+) : Y k × A ×∆LN → R2L2N2
which maps

(yk; ā, p̄) to (Hk−(yk; ā, p̄), Hk+(yk; ā, p̄)) is continuous and the matrices

R+(yk)Hk−(yk; ā, p̄), R+(yk)Hk+(yk; ā, p̄),

as well as the derived matrices R+(yk)Hks(yk; ā, p̄), s ∈ S, are NSD. It holds that

(Hk−(ȳk; ā, p̄), Hk+(ȳk; ā, p̄)) = (Hk−(ā, p̄), Hk+(ā, p̄)). For each k ∈ K, for each yk ∈
Y k, the matrices Hk−(yk; ā, p̄) and Hk+(yk; ā, p̄) have rows and columns of zeros for

all commodities lst ∈ (L ×N ) \ (Lk ×N ), and the inequalities

Hk+(yk; ā, p̄)>R+(yk)yk ≤ Hk−(yk; ā, p̄)>R+(yk)yk

hold.

Household h solves the problem

maxkxh uh(kxh, σhk(yk)) s.t. p>R◦(kxh − keh, σhk(yk))(kxh − keh, σhk(yk)) ≤ v̂h,

(kxh, σhk(yk)) ∈ Xh.
(5.9)

Associated with a solution x̄h = (kx̄h, σhk(yk)) of problem (5.9), we define the normalized

vector of marginal utilities λ̄h by λ̄h
lst

= plst , lst ∈ (L × N ) \ (Lk × N ), and λ̄h
lst

=

∂xh
lst

uh(x̄h)/λ̄h
0 , lst ∈ Lk × N , where λ̄h

0 denotes the Lagrange multiplier for h’s budget

constraint. Assumption A.6.2 implies that λ̄h
0 > 0.

As before, we may now characterize the vectors ((x̄h)h∈Hk , ȳk) that are Pareto efficient

from the viewpoint of union members. The proof is an extension of the proof of Theorem 4.3

and is omitted here.

Theorem 5.4 Under Assumptions A.6 and A.7’, for given market data (ā, p̄), for h ∈ Hk,

let x̄h solve problem (5.9) with associated normalized vector of marginal utilities λ̄h. If∑
h∈Hk

−Rk+(ȳk)−1dσhk

dykk
λ̄hk−Hkk−(ā, p̄)>ȳkk ≤ p̄k ≤

∑
h∈Hk

−Rk+(ȳk)−1dσhk

dykk
λ̄hk−Hkk+(ā, p̄)>ȳkk,
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(5.10)

where the lower bound on p̄k
lst

is omitted for lst ∈ Lk ×N such that ȳk
lst

= 0 and the upper

bound on p̄k
lst

is omitted for lst ∈ Lk×N such that ȳk
lst

= ŷk
lst

, then ((x̄h)h∈Hk , ȳk) is Pareto

efficient for Hk at (ā, p̄).

In Theorem 5.4 we have written Rk+(ȳk) for the LkN × LkN submatrix of R+(ȳk) corre-

sponding to the rows and columns in Lk ×N .

At a solution kx̄h to (5.9) with v̂h ≥ 0, it holds that the Lagrange multiplier for h’s

budget constraint, λ̄h
0 , is equal to

max
lst∈(L×N )\(Lk×N )

∂xh
lst

uh(kx̄h, σhk(yk))

p̄lst

.

We can therefore define the functions λh and λk as in the case without money and we

define the pricing rule of union k, ϕk : Y k × A×∆LN → RLN by

ϕk(yk; ā, p̄) = {pk ∈ RLN | R+(yk)−1λk(yk; ā, p̄)−Hk−(yk; ā, p̄)>yk ≤ pk ≤
R+(yk)−1λk(yk; ā, p̄)−Hk+(yk; ā, p̄)>yk}, (5.11)

where, as before, the lower bound on pk
lst

is omitted for lst ∈ Lk × N such that yk
lst

= 0

and the upper bound on pk
lst

is omitted for lst ∈ Lk ×N such that yk
lst

= ŷk
lst

.

Due to the omission of lower and upper bounds when yk
lst

= 0 and yk
lst

= ŷk
lst

, the

correspondence ϕk has unbounded sets as images. For k ∈ K, let ϕ̃k(yk; a, p) be defined

as the subset of ϕk(yk; a, p) as defined in (5.11) that satisfies the lower bound on pk
lst

for

lst ∈ (Lk ×N ) such that yk
lst

= 0 and the upper bound on pk
lst

for lst ∈ Lk ×N such that

yk
lst

= ŷk
lst

. We will make use of ϕ̃k in the equilibrium existence proof.

Lemma 5.5 Under Assumptions (A.3”), (A.5’), (A.6), and (A.7’), for (yk, ā, p̄) ∈ Y k ×
A×∆LN , the correspondence ϕ̃k satisfies P.1.

Proof: The proof follows easily using the continuity of the function λk. Q.E.D.

Lemmas 5.2 and 5.5 are crucial to our main result, the existence theorem in Section 6.

6 Existence of Keynes-Negishi equilibria

We may now bring together the contents of Sections 2-5. The primitives of the economy E
are given by (a)-(d). Beyond the properties of the commodity space in (a), Y j in (b), �h

in (c), and the union in (d), the assumptions are: A.1, A.2 in Section 2, A.4’ in Section 3,
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A.6 in Section 4, and A.3”, A.5’, and A.7’ in Section 5.

Definition 6.1 A Keynes-Negishi equilibrium for E is a tuple (p ∈ ∆LN , r ∈ RN
+ , (xh)h∈H,

(yj)j∈J , (yk)k∈K) such that

(i) for each h ∈ H, xh is �h-maximal over the set

{x̃h ∈ Xh | p>R◦(z̃h)z̃h ≤ v̂h;

if h ∈ Hk, x̃h
lst

= σhk
lst

yk
lst

for all lst ∈ Lk ×N},

where, for j ∈ J , v̂j = p>R+(yj)yj, v̂b =
∑

h∈H p>(I − R◦(zh))zh +
∑

j∈J p>(I −
R+(yj))yj, and v̂h =

∑
j∈J θhj v̂j + θhbv̂b;

(ii) for each j ∈ J , yj ∈ Y j; for all ỹj ∈ Y j, ỹj ∈ RLN(yj, s) for some sign vector s,

p>R+(yj)yj ≥ (p + Hjs(a, p)(ỹj − yj))>R+(ỹj)ỹj;

(iii) for each k ∈ K, yk ∈ Y k; and ((xh)h∈Hk , yk) is Pareto efficient for Hk at (a, p), so

there do not exist ỹk ∈ Y k, ỹk ∈ RLN(yk, s) for some sign vector s, and, for h ∈ Hk,

x̃h ∈ Xh, where p̃ = Hks(a, p)(ỹk − yk) + p such that∑
h∈Hk

(p̃>R◦(z̃h)x̃h − p>R◦(zh)xh) ≤ 0,

x̃hk = σhk(ỹk), h ∈ Hk,

x̃h �h xh, h ∈ Hk;

(iv)
∑

h∈H xh =
∑

h∈H eh +
∑

j∈J yj.

The unfamiliar conditions in (ii) and (iii) admit a natural interpretation. The conditions

in (ii) state that profits at yj computed at equilibrium prices (p, r) are at least as high as

profits at any feasible alternative ỹj, taking into account the price adjustments Hjs(·)(ỹj−
yj) associated with the move from yj to ỹj. These adjustments bring in the matrix of price

derivatives Hjs(·) geared to the signs slst of the quantity adjustments (ỹj
lst
−yj

lst
). Similarly,

the conditions in (iii) state that ((xh)h∈Hk , yk) cannot be Pareto improved by an admissible

tuple ((x̃h)h∈Hk , ỹk) taking into account the price adjustments Hks(·)(ỹk − yk) associated

with the move from yk to ỹk. These adjustments bring in the matrix of price derivatives

Hks(·) geared to the signs slst of the quantity adjustments (ỹk
lst
− yk

lst
). Conditions (ii) and

(iii) may be written alternatively as:

(ii’) for each j ∈ J , yj ∈ Y j and p ∈ ϕj(yj; a, p) as defined by (5.5);

(iii’) for each k ∈ K, yk ∈ Y k and p ∈ ϕk(yk; a, p) as defined by (5.11).
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It is readily verified that a tuple (p ∈ RLN
+ , r ∈ RN

+ , (xh)h∈H, (yj)j∈J , (yk)k∈K) satisfying

Conditions (i) and (iv) of Definition 6.1 and additionally the requirement that for j ∈ J ,

p ∈ ϕj(yj; a, p), and for k ∈ K, p ∈ ϕk(yk; a, p), is a Keynes-Negishi equilibrium.

Theorem 6.2 For the economy E defined by (a)-(d), under assumptions A.1, A.2, A.3”,

A.4’, A.5’, A.6, and A.7’, given any r ∈ RN
+ , there exists a Keynes-Negishi equilibrium.

Proof: See Appendix.

Until now, prices have been normalized to belong to ∆LN . In a monetary economy, it is

not natural to do so. It is straightforward to extend all the previous definitions and results

to the case where p ∈ RLN
+ \ {0}. We make the following homogeneity assumption.

(A.8) For j ∈ J , for k ∈ K, for (ā, p̄) ∈ A×∆LN , we assume that for all γ > 0,

πj(yj; ā, γp̄) = γp̄ + γHjs(ā, p̄)(yj − ȳj), s ∈ S, yj ∈ RLN(ȳj, s),

πk(yk; ā, γp̄) = γp̄ + γHks(ā, p̄)(yk − ȳk), s ∈ S, yk ∈ RLN(ȳk, s).

Now we have the following result.

Theorem 6.3 For the economy E defined by (a)-(d), under assumptions A.1, A.2, A.3”,

A.4’, A.5’, A.6, A.7’, and A.8, given any r ∈ RN
+ , there exists a Keynes-Negishi equilib-

rium. Moreover, if (p, r, (xh)h∈H, (yj)j∈J , (yk)k∈K) is a Keynes-Negishi equilibrium, then so

is (γp, r, (xh)h∈H, (yj)j∈J , (yk)k∈K) for any γ > 0.

Proof: See Appendix.

Remark Theorem 6.3 establishes existence of equilibria, indeterminacy of the overall price

level, and neutrality of the overall price level, since the real part of equilibria is unaffected

by the overall price level. We return to the interpretation of this dichotomy in Section 7.2.2.

But we must report here and now that DP (Proposition 2) prove a much stronger indeter-

minacy result: “Let St, the set of possible date events at time t, contain Nt elements; for

(c1, . . . , cNt) ∈ RNt
++, otherwise arbitrary, there exists a Keynes-Negishi equilibrium with∑

l p̃lst = cst , all st ∈ St.” The meaning of this result is that not only the overall price level

but also the variability of inflation rates are indeterminate; and today’s price level cannot

be inferred from yesterday’s price level and rate of interest. Subject to formal verification,

the same property should hold in the present model.
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7 Discussion

7.1 Assessment

Theorem 6.3 accomplishes precisely the purpose stated at the outset of Section 1.2. Good.

That carries two implications: (i) it shows that Negishi’s approach to Keynesian economics

is coherent, not only in aggregated yet simplified models amenable to explicit solutions,

but also in models and under assumptions of substantial generality; (ii) it shows how kinky

perceived demands can be fitted into general equilibrium theory (GET), thereby opening

the way to incorporation of that feature into more sophisticated and more realistic models

- like general equilibrium with incomplete markets (GEI) or temporary general equilibrium

(TGE).

Ad (ii), it should be noted that more sophisticated models are needed to account

endogenously for two features taken for granted in this paper, namely imperfect competition

on both product and labor markets. Examples of primitive sources of imperfect competition

include: for product markets, the presence of fixed costs or increasing returns to scale (see

Section 5 of DDS); for labor markets, the role of wage rigidities in improving risk sharing

under incomplete markets (see Drèze and Gollier (1993) and Herings and Polemarchakis

(2005)). GET with such features is possible, but demanding.

But how far does Theorem 6.3 take us along the program of Negishi’s book entitled

Microeconomic Foundations of Keynesian Macroeconomics? In particular, does this paper

conform to the methodological options advocated by Negishi? Does it lead to applications

(meaning macroeconomic applications), as advocated in the citation up front?

7.2 Methodology

Regarding methodology, three remarks are in order.

7.2.1

Negishi (1979) insists that the economics of Walras are unsuited to provide foundations

for a theory of prolonged unemployment, because: (i) Walras proceeds stepwise from a

real equilibrium, supposed attained through tâtonnement, to the same equilibrium with

monetary exchange - thus assigning to money an ancillary role relative to real equilibrium;

(ii) price setting agents are needed to make sense of the price rigidities causing prolonged

unemployment.27

The present paper also proceeds stepwise from a real equilibrium to a monetary equilib-

rium. It should however be clear from Theorem 6.3 that the order of presentation, guided

27See Chapter 2 of Negishi (1979).
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by pedagogical considerations, is immaterial: the theorem brings the real and monetary

aspects together (without “order”) into an integrated model, for which existence of equi-

librium is proved. But an existence theorem is silent about the process through which

equilibrium is reached. Existence theory alone does not preempt a particular adjustment

process. Such is the case for any equilibrium concept - whether, for instance, competitive

or Keynesian.

7.2.2

The fact that the overall price level is indeterminate and neutral under Theorem 6.3 does

not result from the order of presentation, but from the modeling assumptions for the

monetary economy, in particular the absence of initial nominal positions or constraints.28

And yet, there is no doubt that the main determinant of today’s price level is yesterday’s

price level!

In order to generate realistic substantive implications, monetary theory must encompass

the dynamics of nominal price formation. In particular, nominal stickiness is required to

allow nominal interest rates set by monetary authorities to affect real rates perceived by

the agents. The fact that a model of transaction demand for money (like CIA) leaves

both the overall price level and the variability (across successor date events) of inflation

rates undetermined is ultimately a saving grace: it leaves room for the specification, and

working, of short-run nominal dynamics! But these are not part of the existence theory

presented here.

One of the merits of introducing kinky demand perceptions is definitely to open the way

to interesting short-run nominal dynamics with price stickiness - interesting, because the

price stickiness is not imposed from outside but rooted in natural information asymmetries;

interesting also because the price dynamics under kinky demands could be varied: whether

or not the location of the kink adjusts to input prices, for instance, can make a lot of

difference!

7.2.3

Pricing rules may seem like a promising concept to model nominal price formation. For

instance, it was noted above that a competitive firm might be modeled as setting prices

equal to marginal costs, thus by-passing the difficulty raised in Arrow (1959). Yet, it should

be recognized that the pricing rules introduced above are first and foremost a tool of the

economist eager to verify the “consistency of a theoretical structure” through an existence

theorem. The actual price setting behavior of a firm holding asymmetrical perceptions

28We note in passing that the levels of nominal interest rates are not neutral; see Corollary 3 in DP.
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of its demand elasticities is apt to be more streamlined than suggested by formula (5.5);

this is especially the case for unions! But it is also apt to be more complex - for instance

reflecting costs of changing prices or adoption of a periodical pattern of staggered price

adjustments. Once again, there is a long way from existence theorems to the dynamics of

short-run adjustment.

7.3 Applications

The main application pursued in Negishi (1979) concerns the role of aggregate demand in

determining the levels of output and employment. Under a sufficiently widespread degree

of price rigidity due to kinky demand perceptions, the economy should react to shocks in

aggregate demand through quantity adjustments at unchanged prices. Attributing such

shocks to whimsical shifts in expectations affecting investment demand but not savings

delivers the Keynesian conclusions.

The framework of this paper is the abstract and essentially static “complete markets”

model of GET, incorporating Walras law and Say’s law. Thus, it does not assign a role to

“aggregate demand;” and it is ill-suited to study “whimsical shifts in expectations.” The

more realistic TGE model would be better suited for that purpose. As noted under (ii) in

Section 7.1, one potential by-product of this paper is to open the way towards analysis of

TGE models with kinky perceived demand.

Still, fitting shifts in expectations into the GET model is possible, if the event tree

is expanded to incorporate unobserved events affecting the expectations of (some) agents,

hence their market demands. (In an expected-utility formulation, the shifts in expectations

operate on subjective probabilities, at unchanged consumption preferences or production

possibilities given date events.)

The question then arises: can one establish, for our general model, that expectations-

induced changes in aggregate (investment) demand result in quantity adjustments at un-

changed prices - at least within a range? In comparison with the simple aggregated models

used in macroeconomics, and in N79, our model is more versatile, which is both a drawback

and a merit. In particular, we have allowed for an arbitrary mix of perfectly or imperfectly

competitive firms and labor markets; also for an arbitrary mix of kinky or smooth perceived

demands. We would thus expect mixed reactions in terms of prices and quantities.

A suggestive analogy comes from the study of economies where some prices are fixed

(group I) and others are flexible (group II); see, in particular, Herings (1996), Drèze (1997)

and Citanna et al. (2001), or Drèze (2001) for a non-technical summary. The main result

from that literature is this: given arbitrarily fixed group I prices, there exists a continuum

of supply-contrained equilibria (i.e. equilibria with quantity constraints on the supply of

group I commodities), which can be indexed either monotonically by the severity of supply
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rationing, or by the ratio of group II prices (say, their sum) to group I prices.

Borrowing that result, one could state the following about the model studied above.

Call “group I” the set of markets on which prices are set by firms or unions entertaining

kinky demand perceptions.

Conjecture 7.1 With almost every29 Keynes-Negishi equilibrium, one can associate a

continuum of other Keynes-Negishi equilibria with the same group I prices but different

group I quantities.

This conjecture, if correct, would come a long way towards delivering the very application

pursued in Negishi (1979), if one thinks about selection of an element from the continuum

as triggered by an aggregate demand shock. The same conjecture would also come a

long way toward establishing a dual proposition: exogenous shocks affecting the prices of

group II commodities (an oil shock?) could result in quantity adjustments at unchanged

prices for group I commodities.

This dual proposition assumes that the location of the kinks does not move with group II

prices; as remarked in Subsubsection 7.2.2, there are alternative possibilities.

Although aggregate demand shocks provide a privileged application of GET with de-

mand kinks, some others come to mind. Again the analogy with fixed prices is instruc-

tive, as models with price rigidities have proved instructive to study such issues as public

sector pricing (Drèze 1984) or the stability of tâtonnement (Drèze 1999) as well as non-

tâtonnement (Drèze 1991) processes. “To tell the story of Keynes-Negishi equilibrium,

therefore, one must talk of its applications as well as of its pure theory.”

Appendix

Proof of Lemma 3.2: Let s− denote the sign vector with all components −1, and s+

the sign vector with all components +1. Consider an arbitrary sign vector s ∈ S. When

yj belongs to

RL(ȳj, s) ∩ RL(ȳj, s−) = {y ∈ RL(ȳj, s−) | yl = ȳj
l when sl = +1},

then Hjs(ā, p̄)(yj − ȳj) and Hj−(ā, p̄)(yj − ȳj) should coincide. It then follows that

Hjs
·l (ā, p̄) = Hj−

·l (ā, p̄) if sl = −1.

From the fact that Hjs(ā, p̄)(yj − ȳj) and Hj+(ā, p̄)(yj − ȳj) should coincide for yj ∈
RL(ȳj, s) ∩ RL(ȳj, s+), we derive that Hjs

·l (ā, p̄) = Hj+
·l (ā, p̄) if sl = +1. Q.E.D.

29Almost every: more precisely, all equilibria with group I prices in the relative interior of the relevant
pricing rules.
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Proof of Lemma 3.3: The production plan ȳj maximizes profits given market data

(ā, p̄) if and only if for every s ∈ S, ȳj maximizes profits on Ȳ js := Y j ∩RL(ȳj, s). Similar

to (2.2), first-order conditions (FOC) for maximal profits at ȳj on Ȳ js require the existence

of a vector q̄js in N j

Ȳ js(ȳ
j), the normal cone to Ȳ js at ȳj, such that

p̄ + Hjs(ā, p̄)>ȳj = q̄js.

Since N j

Ȳ js(ȳ
j) = N j(ȳj)− RL(0, s), the result follows. Q.E.D.

Proof of Lemma 3.4: To show that (3.3)–(3.4) are sufficient, define, for s ∈ S, qjs = qj

and µjs by

µjs
l =

{
qj
l −Hj−

·l (ā, p̄)>ȳj − pj
l ≤ 0, if sl = −1,

qj
l −Hj+

·l (ā, p̄)>ȳj − pj
l ≥ 0, if sl = +1.

Then qjs, now independent of s, and µjs fulfill the necessary and sufficient conditions of

Lemma 3.2. Q.E.D.

Proof of Lemma 3.5: We start with a proof of P.2. Consider first the case where

1 + ι>H
j
(yj; a, p)>yj ≥ 0.

Then, q̄j max(0, 1 + ι>H̄j(yj; ā, p̄)>yj) equals a non-negative multiple of q̄j, so belongs to

N j(yj), and pj satisfies (3.3) and (3.4) with yj replaced by yj, so yj maximizes profits for

an inverse demand function given by

Hjs(yj; a, p)(ỹj − yj) + pj, s ∈ S, ỹj ∈ RL(yj, s).

In particular pj>yj ≥ 0, since the firm can achieve zero profits by remaining inactive.

The second case is where

1 + ι>H
j
(yj; a, p)>yj < 0.

Then (−ι>H
j
(yj; a, p)>yj)pj satisfies (3.3) and (3.4) with ȳj replaced by yj and qj equal

to the zero-vector, an element of N j(yj), so by the same reasoning as before,

(−ι>H
j
(yj; a, p)>yj)pj>yj ≥ 0.

Since −ι>H
j
(yj; a, p)>yj > 1, it follows that pj>yj ≥ 0, as desired.

Now we turn to the proof of P.1. Where unnecessary, we omit the superscript j and

the reference to (ā, p̄).
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The proof is a tedious sequence of elementary steps, mostly relying on properties of

upper hemi-continuous correspondences as collected in Hildenbrand (1974, pp. 21–26) -

hereafter “H74.” To structure the proof, we introduce the following definitions and notation:

N̄ j : ∂Y j → ∆, N̄ j(yj) := N j(yj) ∩∆;

ωj− : ∂Y j × A×∆×∆ → S,

ωj−(yj, ā, p̄, q̄j) := {pj ∈ S |

q̄j max(0, 1 + ι>H̄j(yj; ā, p̄)>yj)− Hj−(yj; ā, p̄)>yj

max(1,−ι>H̄j(yj; ā, p̄)>yj)
≤ pj};

ωj+ : ∂Y j × A×∆×∆ → S,

ωj+(yj, ā, p̄, q̄j) := {pj ∈ S |

pj ≤ q̄j max(0, 1 + ι>H̄j(yj; ā, p̄)>yj)− Hj+(yj; ā, p̄)>yj

max(1,−ι>H̄j(yj; ā, p̄)>yj)
};

ωj : ∂Y j × A×∆×∆ → S,

ωj(yj, ā, p̄, q̄j) = ωj−(yj, ā, p̄, q̄j) ∩ ωj+(yj, ā, p̄, q̄j);

ϕj : ∂Y j × A×∆ → S,

ϕj = ωj ◦ (I × N̄ j),

ϕj(yj; ā, p̄) = {pj ∈ RL | ∃q̄j ∈ N̄ j(yj) : pj ∈ ωj(yj, ā, p̄, q̄j)},

where the symbol ◦ stands for composition of correspondences and I : ∂Y j × A × ∆ →
∂Y j × A×∆ denotes the identity.

We must show that ϕj is non-empty, convex, and compact valued and upper hemi-

continuous with respect to (yj, ā, p̄) over compact sets in ∂Y j × A × ∆; namely, that ϕj

satisfies P.1.

The proof is constructed “bottom-up,” starting with properties of N̄(y), then turning

to ω− and ω+, next to ω; the final step, concerning ϕ, is then in sight.

Step 1

The set N(y) is a closed convex cone of RL
+ with vertex 0. Indeed, under free disposal

(Y j + RL
− ⊂ Y j) and 0 ∈ Y j, q ∈ N(y) implies q ∈ RL

+. Also, N is closed. So, N̄ is

non-empty, convex, and compact valued, and closed.

Step 2

Regarding ω−(y, ā, p̄, q̄), three cases must be distinguished, according as 1+ ι>H̄(y; ā, p̄)>y
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is positive (Step 2.1), negative (Step 2.2), or zero (Step 2.3). In all cases, for y and ā

in a closed cube of RL with finite length and for p̄ ∈ ∆, Assumption A.3’ implies that

H−(y; ā, p̄) and H+(y; ā, p̄) are continuous in (y, ā, p̄) and bounded.

Step 2.1

Let ω−(y, ā, p̄, q̄) = {p ∈ RL | q̄ max(0, 1 + ι>H̄(y; ā, p̄)y)> − H−(y; ā, p̄)>y ≤ p}, with

1 + ι>H̄(·)>y > 0 and with q̄ = q̄(y) ∈ N̄(y), a convex, compact set; then ω−(·) is non-

empty, convex, and closed valued. For y and ā in a closed cube of RL with finite length,

ω− is bounded from below.

Step 2.2

Let instead ω−(y, ā, p̄, q̄) = {p ∈ RL | −H−(y;ā,p̄)>y

−ι>H̄(y;ā,p̄)>y
≤ p}; then ω− is non-empty, convex,

and closed valued; for y and ā in a closed cube of RL with finite length, ω− is bounded

from below.

Step 2.3

At 1 + ι>H̄(y; ā, p̄)>y = 0, the sets of admissible values of p obtained in Step 2.1 and

Step 2.2 are identical, and ω− is closed.

Step 3

The reasoning in Step 2 applies unchanged to ω+(y, ā, p̄, q̄), except that this time ω+ is

bounded from above.

Using coordinate-wise the lower of the two bounds in Step 2.1 and Step 2.2, we may

write p ≥ p−, whenever p belongs to ω−(y, ā, p̄, q̄) for (y, ā) in a closed cube of RL with

finite length; similarly, p ≤ p̄+, whenever p belongs to ω+(y, ā, p̄, q̄) for (y, ā) in a closed

cube of RL with finite length. And we have noted in Section 3.1 that the intersection of

ω−(·) and ω+(·) (i.e., ω(·)) is non-empty. So, we may define:

ω̄−(y, ā, p̄, q̄) := {p ∈ RL | p ∈ ω−(y, ā, p̄, q̄), p ≤ p̄+},
ω̄+(y, ā, p̄, q̄) := {p ∈ RL | p ∈ ω+(y, ā, p̄, q̄), p ≥ p−}.

These correspondences are now compact valued. It follows that ω̄− and ω̄+ are upper

hemi-continuous, and so is their intersection ω(y, ā, p̄, q̄) - see Proposition 2, p. 23 of H74.

Furthermore, it is immediate that ω is non-empty, convex, and compact valued.

Step 4

We turn now to ϕ. As a composition of two upper hemi-continuous correspondences, ϕ is

itself upper hemi-continuous (H74 corollary on p. 22). Also, it is non-empty and compact

valued, because ω is non-empty and compact valued for all q̄ ∈ N̄(y) and N̄(y) is itself
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non-empty and compact valued. It is convex valued, because N̄(y) is convex valued and q̄

enters linearly in ω̄− and ω̄+, hence in ω. So ϕ is non-empty, convex, and compact valued,

and upper hemi-continuous It satisfies P.1 and P.2, for (ȳ, ā, p̄) in compact sets. Q.E.D.

Proof of Theorem 4.3: Suppose that there exist ỹk and associated p̃ = πk(ỹk; ā, p̄) and

(x̃h)h∈Hk satisfying (4.6)–(4.8). We define dyk = ỹk − ȳk, dp = p̃ − p̄, and dxh = x̃h − x̄h,

h ∈ Hk. Then (4.8) implies λ̄h>dxh > 0 for all h ∈ Hk, with

dxhk =
dσhk

dykk
dykk

as per (4.7); thus:

kp̄>dkxh + λ̄hk> dσhk

dykk
dykk > 0, ∀h ∈ Hk,

so ∑
h∈Hk

kp̄>dkxh + λ̄hk> dσhk

dykk
dykk > 0. (A.1)

It holds that∑
h∈Hk

kp̄>dkxh ≤
∑
h∈Hk

(kp̄>kx̃h − kp̃>kx̃h + p̄k>x̄hk − p̃k>x̃hk)

=
∑
h∈Hk

(−p̄k>dxhk − dpk>x̃hk)

= p̄k>dykk + ỹkk>dpk

= p̄k>dykk + ȳkk> dπkk

dykk
dykk + dykk dπkk

dykk
dykk

≤
[
p̄k> + ȳkk> dπkk

dykk

]
dykk, (A.2)

where the first inequality uses (4.6) and the last inequality the assumption that Hks, s ∈ S,

is NSD. Combining (A.1) and (A.2) results in[
p̄k> + ȳkk> dπkk

dykk
+
∑
h∈Hk

λ̄hk> dσhk

dykk

]
dykk > 0. (A.3)

There is l ∈ Lk such that (p̄k
l + ȳkk> dπk

·l
dykk +

∑
h∈Hk λ̄hk> dσh

l

dyk
l
)dyk

l > 0. For dyk
l > 0,

implying ȳk
l < ŷk

l , (A.3) implies

p̄k
l >

∑
h

−λ̄hk> dσh
l

dyk
l

−Hkk+
·l (ā, p̄)>ȳkk,
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contradicting the right-hand side inequality in (4.9). For dyk
l < 0, implying ȳk

l > 0, (A.3)

implies

p̄k
l <

∑
h

−λ̄hk> dσh
l

dyk
l

−Hkk−
·l (ā, p̄)>ȳkk,

contradicting the left-hand side inequality in (4.9). Q.E.D.

Proof of Lemma 5.2: The first statement of the lemma follows in the same way as in

Section 3.

We show next that every pj satisfying (5.5) yields pj>R+(yj)yj ≥ 0. Consider first the

case where

µj(yj; a, p) ≤ 1.

Then, max(0, 1− µj(yj; ā, p̄))q̄j equals a non-negative multiple of q̄j, so belongs to N j(yj),

and pj satisfies the sufficient conditions (5.3) and (5.4) with yj replaced by yj, so yj

maximizes profits for an inverse demand function given by

Hjs(yj; a, p)(ỹj − yj) + pj, s ∈ S, ỹj ∈ RLN(yj, s).

In particular pj>R+(yj)yj ≥ 0, since the firm can achieve zero profits by remaining inactive.

The second case is where

µj(yj; ā, p̄) > 1.

Then µj(yj; ā, p̄)pj satisfies the adjusted sufficient conditions (5.3) and (5.4) with ȳj re-

placed by yj and qj equal to the zero-vector, an element of N j(yj), so by the same reasoning

as before,

µj(yj; ā, p̄)pj>R+(yj)yj ≥ 0.

Since µj(yj; ā, p̄) > 1, it follows that pj>R+(yj)yj ≥ 0, as desired. Q.E.D.

Proof of Theorem 6.2:30 Given some r ∈ RN
+ , we want to show existence of a tuple

(p, r, (xh)h∈H, (yj)j∈J , (yk)k∈K) satisfying the properties stated in Definition 6.1.

The boundedness of the set A allows us to replace consumption sets Xh by X̄h = Xh∩C,

where C is a closed cube in RLN with length c centered at the origin. The cube C is such

that a ∈ A implies, for every h ∈ H, xh in the interior of C, and for every j ∈ J , yj in

30The logical structure of this step is parallel to that of the proof of Theorem 2 in Dehez and Drèze
(1988).
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the interior of C. We define the relevant part of the production set by Ȳ j = {yj ∈ ∂Y j |
yj + cι ∈ RLN

+ }. For j ∈ J , we define the homeomorphism gj between ∆LN and Ȳ j as

follows. For yj ∈ Ȳ j,

gj−1

(yj) =
yj + cι∑

lst∈L×N (yj
lst

+ c)
:= αj.

Then gj−1
(yj) � 0 if and only if yj + cι � 0.

For j ∈ J , the set

{pj ∈ SLN | ∃yj ∈ Ȳ j, ∃a ∈ A, ∃p ∈ ∆LN such that pj ∈ ϕj(yj; a, p)}

is bounded, so it is contained in a compact, convex set Sj.

For k ∈ K, let ϕ̃k(yk; a, p) be defined as the subset of ϕk(yk; a, p) as defined in (5.11)

that satisfies the lower bound on pk
lst

for lst ∈ Lk × N such that yk
lst

= 0, and the upper

bound on pk
lst

for lst ∈ Lk ×N such that yk
lst

= ŷk
lst

. The set

{pk ∈ RLN | ∃yk ∈ Ȳ k, ∃a ∈ A, ∃p ∈ ∆LN such that pk ∈ ϕ̃k(yk; a, p)}

is bounded, so it is contained in a compact, convex set Sk.

We define the correspondence, whose fixed points are equilibria, Φ from ∆LN×
∏

j∈J Sj×∏
k∈K Sk ×∆JLN ×

∏
k Y k ×

∏
h X̄h into itself by:

Φ(p, pJ , pK, α, yK, x) = µ(x, α)×
∏

j ϕ̄j(p, α, x)×
∏

k ϕ̄k(p, α, yk, x)

×
∏

j βj(p, pj, αj)×
∏

k βk(p, pk, yk)×
∏

h ξh(p, α, yK, x).

Here, market prices are determined through the market price correspondence µ :
∏

h X̄h×
∆JLN → ∆LN defined by

µ(x, α) = arg max
p∈∆LN

p>(
∑
h∈H

xh −
∑
h∈H

eh −
∑
j∈J

gj(αj)).

The prices of firm j are determined through the correspondence ϕ̄j : ∆LN × ∆JLN ×∏
h X̄h → Sj defined by

ϕ̄j(p, α, x) = ϕj(gj(αj); ρ(x, (gj(αj))j∈J , p),

where ϕj is defined in (5.5) and ρ is the projection on A.

The prices of union k are determined through the correspondence ϕ̄k : ∆LN ×∆JLN ×
Y k ×

∏
h X̄h → Sk defined by

ϕ̄k(p, α, yk, x) = ϕ̃k(yk; ρ(x, (gj(αj))j∈J , p).
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The quantity adjustment correspondence of firm j is a function βj : ∆LN×Sj×∆LN → ∆LN

defined by

βj
l′s′

t′
(p, pj, αj) = max{0, αj

l′s′
t′
+pl′s′

t′
−pj

l′s′
t′
}/
∑
lst

max{0, αj
lst

+plst−pj
lst
}, l′s′t′ ∈ L×N .

The quantity adjustment correspondence of union k is a function βk : ∆LN×Sk×Y k → Y k

defined by

βk
lst

(p, pk, yk) = min{max{0, yk
lst

+ plst − pk
lst
}, ŷk

lst
}, lst ∈ Lk ×N ,

βk
lst

(p, pk, yk) = 0, lst ∈ (L ×N ) \ (Lk ×N ).

The demand correspondence of household h, ξh : ∆LN ×∆JLN ×
∏

k Y k×
∏

h X̄h → X̄h

is defined as follows using a technique introduced in Greenberg (1977). Given (p, α, yK, x),

define the modified budget set γh(p, α, yK, x) by

γh(p, α, yK, x) = {x̄h ∈ X̄h | p>R◦(z̄h)z̄h ≤ max{0,
∑

j∈J θhj v̂j + θhbv̂b},
x̄hk = σhk(yk) if h ∈ Hk},

where v̂j = p>R+(gj(αj))gj(αj), j ∈ J , and v̂b =
∑

h∈H p>(I − R◦(zh))zh +
∑

j∈J p>(I −
R+(gj(αj)))gj(αj). Since out of equilibrium the sum of the dividends can be negative, we

use the modified budget set, and replace a negative sum of dividends by zero. If (p, α, yK, x)

is such that there is x̄h ∈ γh(p, α, yK, x) with p>R◦(z̄h)z̄h < max{0,
∑

j∈J θhj v̂j + θhbv̂b},
then ξh(p, α, yK, x) is defined as the set of �h-maximizers on γh(p, α, yK, x). Otherwise,

we define ξh(p, α, yK, x) = γh(p, α, yK, x). These definitions lead to upper hemi-continuous

correspondences ξh.

The correspondence Φ satisfies the assumptions of Kakutani’s fixed point theorem, so

has a fixed point (p̄, p̄J , p̄K, ᾱ, ȳK, x̄) inducing production bundles gj(ᾱj) for a firm j ∈ J
and total excess demand

ζ̄ =
∑
h∈H

x̄h −
∑
h∈H

eh −
∑
j∈J

gj(ᾱj).

Clearly, gj(ᾱj) ∈ ∂Y j, j ∈ J , and the following conditions are satisfied:

p>ζ̄ ≤ p̄>ζ̄ , p ∈ ∆LN , (A.4)

p̄j ∈ ϕ̄j(p̄, ᾱ, x̄), j ∈ J , (A.5)

p̄k ∈ ϕ̄k(p̄, ᾱ, ȳk, x̄), k ∈ K, (A.6)

ᾱj = βj(p̄, p̄j, ᾱj), j ∈ J , (A.7)

ȳk = βk(p̄, p̄k, ȳk), k ∈ K, (A.8)

x̄h ∈ ξh(p̄, ᾱ, ȳK, x̄), h ∈ H.
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For j ∈ J , we define β̄j =
∑

lst∈L×N max{0, ᾱj
lst

+ p̄lst − p̄j
lst
}. Then, (A.7) implies

β̄jᾱj
lst
≥ ᾱj

lst
+ p̄lst − p̄j

lst
, j ∈ J , (A.9)

with equality whenever ᾱj
lst

> 0. Multiplying both sides of (A.9) by R+
lst,lst

(gj(ᾱj))ᾱj
lst

and

summing over all lst, we get

(β̄j − 1)ᾱj>R+(gj(ᾱj))ᾱj = (p̄− p̄j)>R+(gj(ᾱj))ᾱj,

where β̄j ≥ 1 and ᾱj>R+(gj(ᾱj))ᾱj ≥ 0. We therefore obtain that

(p̄− p̄j)>R+(gj(ᾱj))ᾱj ≥ 0 for all j ∈ J . (A.10)

By definition of gj, there exists µ > 0 and ν > 0 such that

gj(ᾱj) = µᾱj − νι.

We then have

(p̄− p̄j)>R+(gj(ᾱj))gj(ᾱj) = (p̄− p̄j)>R+(gj(ᾱj))µᾱj − (p̄− p̄j)>R+(gj(ᾱj))νι.

This expression is non-negative, since the first term is non-negative by (A.10) and the

term subtracted is non-positive, since gj
lst

(ᾱj) > 0 implies ᾱj
lst

> 0, so by (A.7), 0 ≤
(β̄j − 1)ᾱj

lst
= p̄lst − p̄j

lst
and

(p̄− p̄j)>R+(gj(ᾱj))ι =
∑

lst|gj
lst

(ᾱj)>0

R+
lst,lst

(gj(ᾱj))(p̄− p̄j
lst

) +
∑

lst|gj
lst

(ᾱj)≤0

R+
lst,lst

(gj(ᾱj))(p̄− p̄j
lst

)

=
∑

lst|gj
lst

(ᾱj)>0

R+
lst,lst

(gj(ᾱj))(p̄− p̄j
lst

) +
∑

lst|gj
lst

(ᾱj)≤0

(p̄− p̄j
lst

)

≤
∑

lst∈L×N

(p̄lst − p̄j
lst

) = 0.

We have shown that

p̄>R+(gj(ᾱj))gj(ᾱj) ≥ p̄j>R+(gj(ᾱj))gj(ᾱj), j ∈ J .

By (A.5), p̄j ∈ ϕj(gj(ᾱj); ρ(x̄, (gj(ᾱj))j∈J , p̄), so p̄j>R+(gj(ᾱj))gj(ᾱj) ≥ 0 and therefore

p̄>R+(gj(ᾱj))gj(ᾱj) ≥ 0 for j ∈ J . (A.11)

By (A.11), dividend income is non-negative for every household, so the usual budget con-

straints apply. Summing over all budget constraints we get

p̄>(
∑
h∈H

x̄h −
∑
h∈H

eh −
∑
j∈J

gj(ᾱj)) ≤ 0,
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which, combined with (A.4), yields∑
h∈H

x̄h −
∑
h∈H

eh −
∑
j∈J

gj(ᾱj) ≤ 0,

The fixed point therefore defines a feasible allocation. It now follows that ρ(x̄, (gj(ᾱj))j∈J ) =

(x̄, (gj(ᾱj))j∈J ), so by (A.5) and (A.6),

p̄j ∈ ϕj(gj(ᾱj); (x̄, (gj′(ᾱj′))j′∈J , p̄), j ∈ J ,

p̄k ∈ ϕ̃k(ȳk; (x̄, (gj(ᾱj))j∈J )), p̄), k ∈ K. (A.12)

It also follows that ᾱj � 0 for all j ∈ J , so by (A.7), p̄j = p̄ for all j ∈ J , so we have

shown that

p̄ ∈ ϕj(gj(ᾱj); (x̄, (gj′(ᾱj′))j′∈J , p̄), j ∈ J ,

Equation (A.8) implies, for lst ∈ Lk ×N ,

ȳk
lst
≤ ȳk

lst
+ p̄lst − p̄k

lst
if ȳk

lst
= ŷk

lst
,

ȳk
lst

= ȳk
lst

+ p̄lst − p̄k
lst

if 0 < ȳk
lst

< ŷk
lst

,

ȳk
lst
≥ ȳk

lst
+ p̄lst − p̄k

lst
if ȳk

lst
= 0,

whereas ȳk
lst

= 0 for lst ∈ (L ×N ) \ (Lk ×N ). It follows that

(p̄− p̄k)>ȳk ≥ 0, for all k ∈ K,

so, for lst ∈ Lk ×N , p̄k
lst
≤ p̄lst if ȳk

lst
= ŷk

lst
, p̄k

lst
= p̄lst if 0 < ȳk

lst
< ŷk

lst
, and p̄k

lst
≥ p̄lst if

ȳk
lst

= 0. These inequalities combined with (A.12) imply

p̄ ∈ ϕk(ȳk; (x̄, (gj(ᾱj))j∈J , p̄), k ∈ K.

Suppose there is lst such that p̄lst = 0. Let l′s′t′ be such that p̄l′s′
t′

> 0. Let h′ be a

household whose supply of l′s′t′ is not under the control of a union. Our assumptions

on primitives guarantee that there is x̂h′ ∈ γh′(p̄, ᾱ, ȳK, x̄) with p̄>R◦(ẑh′)ẑh′ < 0 ≤∑
j∈J θh′j v̂j + θhbv̂b, where v̂j = p̄>R+(gj(ᾱj))gj(ᾱj), j ∈ J , and v̂b =

∑
h∈H p̄>(I −

R◦(z̄h))z̄h +
∑

j∈J p̄>(I − R+(gj(ᾱj)))gj(ᾱj). It follows that ξh′(p̄, ᾱ, ȳK, x̄) is the set of

�h′-maximizers on γh′(p̄, ᾱ, ȳK, x̄). Since preferences of h′ are strictly monotonic with re-

spect to xh′

lst
, it holds that x̄h′

lst
= c, which contradicts that the fixed point defines a feasible

allocation. Prices p̄ are therefore strictly positive, all households can be shown to maximize

their preferences, and∑
h∈H

x̄h −
∑
h∈H

eh −
∑
j∈J

gj(ᾱj) = 0.
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Q.E.D.

Proof of Theorem 6.3: Going from the case of Theorem 6.2 with ι>p̄ = 1 to the case

of Theorem 6.3 with ι>p̄ = γ for arbitrary γ > 0 is a small step: just multiply all prices,

vectors q̄j, q̄k and matrices Hj−(·), Hj+(·), H̄j(·), Hk−(·), Hk+(·), H̄k(·) by γ and note

that all the conditions in the definition of a Keynes-Negishi equilibrium remain satisfied.

Indeed:

Ad (i): The budget sets are invariant with respect to γ; hence, xh is �h-maximal on the

redefined feasible set.

Ad (ii): The profits are homogeneous of degree 1 in γ because of Assumptions A.8; hence,

yj maximizes profits on Y j independent of the choice of γ.

Ad (iii): Assumption A.8 implies that the set of consumption bundles attainable for union

members after redistribution is unaffected by γ; hence, yk is Pareto efficient for Hk inde-

pendent of the choice of γ.

Ad (iv): Obvious. Q.E.D.
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Drèze, J.H. (1991), “Stability of a Keynesian Adjustment Process,” W. Barnett, B. Cor-

net, C. d’Aspremont, J. Jaskold Gabszevicz, and A. Mas-Colell, eds., Equilibrium

Theory and Applications, 197–231, Cambridge: Cambridge University Press.
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Drèze, J.H. (1999), “On the Dynamics of Supply-Constrained Equilibria,” P.J.J. Her-

ings, G. van der Laan, and A.J.J. Talman, eds., The Theory of Markets, 7–26, Ams-

terdam: North-Holland.
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