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Abstract 
 

This paper presents a new class of valid inequalities for the single-item capacitated lot 
sizing problem with step-wise production costs (LS-SW). We first provide a survey of 
different optimization methods proposed to solve LS-SW. Then, flow cover and flow cover 
inequalities derived from the single node flow set are described in order to generate the new 
class of valid inequalities. The single node flow set can be seen as a generalization of some 
valid relaxations of LS-SW. A new class of valid inequalities we call mixed flow cover, is 
derived from the integer flow cover inequalities by a lifting procedure. The lifting 
coefficients are sequence independent when the batch sizes (V) and the production 
capacities (P) are constant and if V divides P. When the restriction of the divisibility is 
removed, the lifting coefficients are shown to be sequence independent. We identify some 
cases where the mixed flow cover inequalities are facet defining. A cutting plane algorithm 
is proposed for these three classes of valid inequalities. The exact separation algorithm 
proposed for the constant capacitated case runs in polynomial time. Finally, some 
computational results are given to compare the performance of the different optimization 
methods including the new class of valid inequalities. 
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1 Introduction

In this paper, we focus on a single-item capacitated lot sizing problem (LSP) having a special cost
structure. The production cost is assumed to be step-wise (piece-wise linear with discontinuous
steps), where each step has a length of the batch size produced in each period. We denote the
problem by LS-SW. The methods proposed for some restrictive cases of the classical LSP can
no more be used to solve LS-SW because of its cost structure. The attractiveness of this simple
LS-SW case lies in the need to solve more complex production and inventory problems where
LS-SW arises as a submodel. To better understand and to solve efficiently the single-item LSP
can then be helpful to solve more complex production planning problems. In this paper, we give
a detailed survey on different optimization methods of LS-SW, followed by the description of a
new class of valid inequalities which constitutes the main contribution.

The reader can refer to Pochet and Wolsey [16] for a comprehensive literature survey, partic-
ularly for a detailed information on the mixed integer programming approach to solve production
planning problems. Another detailed review on the single-item LSP can be found in Brahimi et
al. [3]. One of the first studies on the integration of the fixed cost per batch (or fixed transporta-
tion costs) into the inventory control policy is from Lippman [13]. Transportation cost is assumed
to be concave and step-wise. Under some additional hypotheses on the holding and production
costs, the author gives the properties of an optimal solution. Swoveland [20] considers a single
product, multi-period production planning model where production and holding-backorder cost
functions are assumed to be piece-wise concave. Some optimal schedule properties and a dynamic
programming algorithm are given.

Lee et al. [11] study an integrated inventory replenishment and outbound dispatch scheduling
problem. They adopt a network approach to solve it and propose polynomial time algorithms
using some optimal solution properties. Li et al. [12] study two variants of the dynamic economic
lot sizing problem. In the first one, the production is restricted to be a multiple of a fixed
batch size in each period, and the costs are time varying, whereas in the second, a more general
form of product order cost structure is assumed. Polynomial time algorithms are proposed for
each case. Jin and Muriel [10] study a system composed of one warehouse receiving a single
product from a supplier and replenishing the inventory of n retailers with direct shipments.
The process of ordering from the supplier and shipping to the retailers generates full truckload
transportation costs with cargo capacity constraints. Giving some optimal solution properties,
they study decentralized and centralized systems.

There are some studies on the mixed integer linear programming (MILP) approach to solve the
piece-wise linear cost LSP. Diaby and Martel [7] study an arborescent, multi-echelon distribution
system to determine optimal purchasing and shipping quantities. They consider general piecewise
linear procurement cost and linear holding costs. They formulate the problem as a MILP and
propose a lagrangean relaxation. Chan et al. [5] study the less-than-truckload shipments problem
integrated with the production and inventory activities. The cost function is piece-wise linear and
concave. They model the problem as a concave cost multi-commodity network flow problem. They
formulate it as a MILP using a set-partitioning approach, and characterize structural properties.
Chan et al. [4] study a special class of piece-wise linear ordering cost LSP, which they refer to
as modified all-unit discount cost function. This function arises when the transportation is done
with less-than-truckload carriers. They prove this problem to be NP-hard and construct the best
zero inventory ordering policy and then compare it with the optimal policy.

The main contribution of this paper is a new class of valid inequalities for LS-SW. These
inequalities are derived for some relaxations of LS-SW from the integer flow cover inequality
(IFCI), which is a slight variation of the flow cover inequalities (FCI). Flow and integer flow cover
inequalities exist in the literature and are derived from the single node flow set which is more
general than the relaxed subparts of LS-SW. First studies on the flow cover inequalities are from
Padberg et al. [15]. The integer flow cover inequalities are first studied by Atamtürk [2]. For

2



more detailed information on the flow cover inequalities, see section 4.
The LS-SW problem description and a mathematical formulation are given in Section 2. Some

optimization methods proposed in the literature are described in Section 3. Two classes of valid
inequalities existing in the literature and a new one are shown to be valid (and in some cases facet
defining) for different relaxations of LS-SW in Section 4. In Section 5, a cutting plane algorithm
is proposed to use these three classes of VI’s in a Branch&Cut procedure. A polynomial time
separation algorithm is described in the same section. Finally, some computational results and
concluding remarks are presented in Sections 6 and 7.

2 Problem description

Some real applications of the LS-SW can be cited as follows. Different batch sizes (Vt) of a
single-item are produced in a given period t, in a capacitated plant where one period capacity is
limited to Pt. The finished products are stored at the end of each period in the plant. There is a
setup cost for producing a positive quantity and also a fixed cost per batch produced. The aim
is to satisfy the customer demand, which is known on a given finite horizon, while minimizing
the total production and inventory costs. Another application can be imagined as a capacitated
plant (Pt) producing a single-item and sending the finished products to a distribution center (DC)
with capacitated vehicles (Vt). In the plant there is no storage space and the final demand of the
customer is known in DC. A fixed transportation cost is associated with each vehicle shipped and
again a setup cost is generated for any positive quantity produced.

For the two cases described above, the cost structure for the production activity becomes
step-wise because of the fixed costs per batch (or per vehicle). The mathematical formulation by
MILP of LS-SW is given as follows. We denote by XLS−SW the set of points (x, y, z, s) satisfying
constraints (1) to (7).

Data Pt: production capacity in period t, Vt: batch size (or vehicle capacity) in period t, qt:
setup cost in period t, pt: unit production cost in period t, ft: fixed cost per batch (per vehicle)
in period t, ht: unit holding cost at the end of period t, dt: demand in period t, n: number of
periods on the planning horizon.

Decision variables xt: production quantity in period t, yt: binary setup variable in period t,
zt: number of batches (or vehicles) in period t, st: storage quantity at the end of period t.

min
n∑

t=1

(qtyt + ptxt + ftzt) +
n∑

t=0

htst

s.t.

st−1 + xt = st + dt,∀t ∈ {1, . . . , n} (1)
xt ≤ Ptyt,∀t ∈ {1, . . . , n} (2)
xt ≤ Vtzt,∀t ∈ {1, . . . , n} (3)
yt ≤ zt,∀t ∈ {1, . . . , n} (4)

zt ≤ d
Pt

Vt
eyt,∀t ∈ {1, . . . , n} (5)

s0 = sn = 0 (6)
x ∈ Rn

+, s ∈ Rn+1
+ , y ∈ {0, 1}n, z ∈ Zn

+ (7)

The most natural formulation of the problem is given above. In the literature this formulation
is denoted by AGG (aggregated formulation). The objective function minimizes the total cost of
production, storage and transportation. Constraint (1) represents the material balance in each
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period. The restriction on the production capacity and the generation of a setup variable are
expressed by constraint (2). In constraint (3), the number of batches (or vehicles) is computed
as a function of the quantity produced in each period. Constraint (4) forces the number of
batches (or vehicles) to be positive if a setup is done at this period. Constraint (5) expresses the
limitation on the number of batches (or vehicles) and forces it to be 0 if there is no production.
Constraint (6) is an assumption on the storage quantities at the beginning of the first and at the
end of the final period. In constraint (7), the feasibility domain of each decision variable is given.

Florian et al. [8] give an NP-hardness proof for the single-item capacitated LSP with equal
demands and zero storage costs. LS-SW is more general than this case, which implies its NP-
hardness. There exists an exact pseudo-polynomial time dynamic programming algorithm to
solve LS-SW in the general case (see Shaw and Wagelmans [19]). Therefore, this one is NP-hard
in the ordinary sense.

3 Optimization methods

The approach mostly used for the single-item lot sizing problem is dynamic programming. More-
over, it is possible to find some polynomial cases using this approach. However, for the more
complex extensions (multi-item, backlogging, time window shipments, etc.), it becomes ineffi-
cient. In section 3.1, we give the main ideas of different recursive formulations for LS-SW.
Another approach is to find some subsets of XLS−SW defining valid relaxations for this set and
for which there exists a complete description of the convex hull. We classify them into two axes:
uncapacitated relaxations and capacitated relaxations. Formulations for these relaxations are
implemented in LS-LIB1.

3.1 Dynamic programming approach

For the general case when the parameters can take arbitrary values, the recursive formulation
by Florian et al. [8] can be used. The only change made for LS-SW compared to the classical
case is the total cost computation which does not change the complexity. This formulation has
a time complexity in O(T 2Pd) with P , the average production capacity over horizon and d, the
average demand. Another formulation for the general case is from Chen et al. [6], which has a
time complexity in O(T 3d

2).
Shaw and Wagelmans [19] provide a pseudo-polynomial time algorithm with a complexity in

O(T 2qd) for the constant capacitated LSP with piece-wise linear costs with q, the number of
pieces in the production cost function and d, the average demand. For the classical case where
the production cost has only one setup component, the complexity becomes O(T 2d) with q = 1.
This is a significant improvement compared to the pseudo-polynomial dynamic programming
algorithm proposed by Florian et al. [8]. Finally, one can cite the studies from Akbalık and
Rapine [1], where the authors give three polynomial cases for LS-SW under some restrictive
hypotheses on the capacities and costs of the production and of the vehicles.

3.2 Mixed integer linear programming reformulations

For two special cases of the single-item capacitated lot sizing problem, Pochet and Wolsey [17]
propose extended formulations where matrices are totally unimodular. For the first case, the
production capacity is assumed to be constant and a setup cost is paid for each positive amount
produced. For the second case, the production capacity in each period is assumed to be an
integer which is multiple of some batch size and a fixed cost is generated for each batch produced.
However, for the special case of LS-SW with the assumptions of constant capacity production

1http://www.core.ucl.ac.be/LS-LIB/PPbyMIP. A library of reformulations, cutting planes and heuristics. Both
Mosel and Xpress-MP are required in order to use LS-LIB.
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(Pt = P,∀t), constant sized batch production (Vt = V,∀t) and fixed costs per batch, we could not
manage to find an extended formulation whose linear relaxation gives an optimal solution.

3.2.1 Uncapacitated relaxations

There are 4 known compact formulations for the uncapacitated lot sizing problem (ULSP), see
Pochet and Wolsey [16]. To obtain the classical ULSP, one has to relax transportation and
production capacity constraints from the formulation of LS-SW (constraints (3), (4) and (5) are
relaxed, while in constraint (2) Pt is replaced by

∑n
i=t di). For the linear relaxation of ULSP,

these four formulations give integer optimal solutions.
The first one is based on the facility location problem formulation (FAL). Decision variables

xq are decomposed into xqt which is the quantity produced in period q to satisfy the demand in
period t. Decision variables of the second formulation and the idea of modeling is similar to FAL.
It is based on the multi-commodity formulation (MC) where each demand in a given period is
considered as a separate commodity. The third one is based on the shortest path formulation (SP)
which is deduced from the dynamic programming recursion solving uncapacitated LSP. These 3
formulations loose their property of integrality with the addition of production and transportation
capacity restrictions.

For the last uncapacitated relaxation that we denote by XWW , one has to make an additional
hypothesis on the costs, which is called Wagner-Whitin (WW) cost structure. For WW cost
structure, producing and storing one unit in period t costs more than producing it later (pt +ht ≥
pt+1,∀t). To obtain XWW , constraint (1) is summed up for the interval [t, k], 1 ≤ t ≤ k ≤ n and
sk is eliminated with the assumption of sk ≥ 0. Constraints (2) to (5) are relaxed.

XWW = {(s, y) ∈ Rn+1
+ × {0, 1}n : st−1 +

k∑
j=t

xj ≥
k∑

j=t

dj , 1 ≤ t ≤ k ≤ n}

Under WW cost structure, Pochet and Wolsey [18] give the convex hull for XWW using the stock
minimal solution (for which it is optimal to produce as late as possible). The complete description
of the convex hull is given by the set XWW−U . In total, one needs O(T 2) × O(T ) constraints
and variables for this description.

XWW−U = {(s, y) ∈ Rn+1
+ × {0, 1}n : st−1 +

k∑
j=t

(djk)yj ≥
k∑

j=t

dj , 1 ≤ t ≤ k ≤ n}

3.2.2 Constant capacitated relaxations

Two constant capacitated relaxations are given with their complete description.

Mixing Set Valid relaxations XWW−P and XWW−V , respectively for the cases where the
production and vehicle capacities are constant, are described by (8) and (9). In a similar way as
described above, we sum up constraint (1) for each interval [t, k] with 1 ≤ t ≤ k ≤ n and replace
xj by their upper bounds Pyj or V zj . Constraints (3), (4) and (5) are relaxed.

XWW−P = {(s, y) ∈ Rn+1
+ × {0, 1}n : st−1 +

k∑
j=t

Pyj ≥ dtk, 1 ≤ t ≤ k ≤ n} (8)

XWW−V = {(s, z) ∈ Rn+1
+ × Zn

+ : st−1 +
k∑

j=t

V zj ≥ dtk, 1 ≤ t ≤ k ≤ n} (9)
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Under WW cost structure, the polyhedral characterization, the extended formulation and the
separation algorithm for XWW−P and XWW−V can be found in Pochet and Wolsey [18].

Günlük and Pochet [9] studied the mixing set XMIX described as follows,

XMIXING = {(s, y) ∈ R1
+ × ZK : s + yk ≥ bk for 1 ≤ k ≤ K}

For a given and fixed period t, XWW−P and XWW−V are equivalent to XMIXING. A complete
description of the convex hull of XMIXING is known. The extended formulation for its convex
hull exists with O(T 2)× O(T 2) constraints and variables. It is obtained by taking the convex hull
of the extreme points and non-negative multiples of the extreme rays of the set XMIXING.

Another important result concerning the convex hulls of XWW−P and XWW−V can be found
in Pochet and Wolsey [16]. We mention the result only for XWW−P , which remains the same for
XWW−V . For a given t, one can define the following set,

XM−P
t = {(s, y) ∈ R+ × {0, 1}n : st−1 +

k∑
j=t

Pyj ≥ dtk, t ≤ k ≤ n}

Therefore, XWW−P =
⋂

t XM−P
t . The result is as follows,

conv(XWW−P ) = conv(
⋂
t

XM−P
t ) =

⋂
t

(conv(XM−P
t ))

Therefore, it suffices to take the intersection of the extended compact linear formulation for
XM−P

t to obtain a convex hull description of XWW−P .

Divisible Mixing Set The last valid relaxation we consider for the constant capacitated LS-
SW concerns the case in which the production quantity is a multiple of a constant batch size.
This subset is denoted by XDM . Constraint (1) is transformed as in previous sections but this
time two separate inequalities are obtained by replacing xj ← Pyj and xj ← V zj in the same set.
Then, both inequalities are normalized dividing by V . Constraints (4) and (5) are also relaxed.

XDM = {(s, y, z) ∈ Rn+1
+ × {0, 1}n × Zn

+ :
st−1

V
+

k∑
j=t

zj ≥
∑k

j=t dj

V
,

st−1

V
+

P

V

k∑
j=t

yj ≥
∑k

j=t dj

V
, 1 ≤ t ≤ k ≤ n}

Van Vyve [21] studied the divisible mixing set XDMIX below,

XDMIX = {(s, y, z) ∈ R1
+ × Zm

+ × Zm
+ : s + yk ≥ bk for k ∈ K1, s + Cyk ≥ bk, for k ∈ K2}

For a given and fixed period t, XDM is equivalent to XDMIX , in which, K1 = K2 = {t, . . . , n}
and

s← st−1

V
, yk ←

k∑
j=t

zj for k ∈ K1, yk ←
k∑

j=t

yj for k ∈ K2,

bk ←
∑k

j=t dj

V
for k ∈ K1 ∪K2, C ←

P

V

An integral extended formulation for XDMIX is proposed by Van Vyve [21] by taking the convex
hull of the extreme points and non-negative multiples of the extreme rays of the set XDMIX .
Conv(XDMIX) is also described in the original space of variables. The extended formulation is
described by O (T 3) × O (T 2) constraints and variables. Therefore, for a given and fixed period
t, the complete description of XDM is known.
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4 Valid inequalities

All results of the reformulation and relaxation explained in the previous sections exist in the
literature and they have been proposed for the single-item lot sizing problem with constant
capacity batch size (see Pochet and Wolsey [16]). We found some good relaxations of XLS−SW

which enabled us to use these reformulation results to solve LS-SW more efficiently. From now
on, our aim is to find new valid inequalities for cases with varying capacities. Several classes
of valid inequalities for the lot sizing problem with varying capacities are given in Pochet and
Wolsey [16].

Analyzing different facet defining inequalities for XLS−SW , we found two classes of valid
inequalities existing in the literature, namely flow cover inequalities (FCI) and integer flow cover
inequalities (IFCI). They are derived from the single-node flow set which is a generalization of
some valid relaxations of LS-SW. We propose a new class which is obtained by lifting the IFCI. For
more details on lifting, the reader can refer to Louveaux and Wolsey [14]. Flow cover inequalities
are described in this section after a motivating example which introduces the main idea of these
inequalities and of the lifting procedure.

4.1 A first illustration

The first step is to find a good valid relaxation for the initial set XLS−SW . A good valid relaxation
means a subset of XLS−SW for which valid or facet defining inequalities can be derived in order to
use them to cut infeasible points in the initial formulation of XLS−SW . One can construct a valid
relaxation of the set XLS−SW summing up constraint (1) for an interval [t, k] with 1 ≤ t ≤ k ≤ n
and considering st−1 ≥ 0. Other constraints are all kept. Example below is constructed for n = 3,
d = (0, 0, 26), P = 9, V = 3, t = 1, k = 3 and assuming s0 = s3 = 0. Let Xe,

Xe = {(x, y, z) ∈ R3
+ × {0, 1}3 × Z3

+ : x1 + x2 + x3 ≤ 26, xi ≤ 9yi, xi ≤ 3zi, yi ≤ zi ≤ 3yi}

The basic idea of the flow cover inequalities is to make constraint (10) stronger.

x1 + x2 + x3 ≤ 26 (10)

The maximal set of affinely independent feasible integer points in Xe which make constraint (10)
tight are as follows: Set1 = {(9, 9, 8, 1, 1, 1, 3, 3, 3), (9, 8, 9, 1, 1, 1, 3, 3, 3), (8, 9, 9, 1, 1, 1, 3, 3, 3)}.
One can observe that for these 3 points, the valid inequality yi ≤ 1 is also tight.

• The idea of the flow cover inequalities is to add the slack variables (1 − yi) with a certain
coefficient φi in the left hand side of constraint (10). Let us first add φ1(1− y1).

x1 + x2 + x3 + φ1(1− y1) ≤ 26

What is the maximum value of φ1 to have the strongest inequality, without violating the
initial constraints of the set Xe? The procedure of lifting answers this question.

φ1 = 26−max{x1 + x2 + x3 : y1 = 0, (x, y, z) ∈ Xe} = 26− {0 + 9 + 9} = 8

The same procedure can be applied to the other variables (φ2 = φ3 = 8) but this time with
the addition of

∑j−1
i=1 (φi(1− yi)). For instance,

φ3 = 26−max{x1 + x2 + x3 + 8(1− y1) + 8(1− y2) : y3 = 0, (x, y, z) ∈ Xe} = 8

φi are called the lifting coefficients since they lift the corresponding face to a higher di-
mension. In this example, the lifting sequence of the variables is not important. One
can easily observe that constraint (10) is not tight for the following three points: Set2 =
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{(9, 9, 0, 1, 1, 0, 3, 3, 0), (9, 0, 9, 1, 0, 1, 3, 0, 3), (0, 9, 9, 0, 1, 1, 0, 3, 3)}. A stronger inequality
(11) can thus be obtained which becomes tight for the previous 6 points (Set1 and Set2).
(11) is called a flow cover inequality.

x1 + x2 + x3 + 8(1− y1) + 8(1− y2) + 8(1− y3) ≤ 26 (11)

• The idea of the integer flow cover inequalities is to add the slack variables (dP
V e − zi) with

a certain coefficient ϕi in the left hand side of constraint (10). Constraint (10) is not tight
for the three following points:
Set3 = {(9, 9, 6, 1, 1, 1, 3, 3, 2), (9, 6, 9, 1, 1, 1, 3, 2, 3), (6, 9, 9, 1, 1, 1, 2, 3, 3)}. Let us first add
ϕ1(3− z1) to the left hand side of constraint (10) .

x1 + x2 + x3 + ϕ1(3− z1) ≤ 26

Again, what is the maximum value of ϕ1 to have the strongest inequality, without violating
the initial constraints of the formulation? We tried all different values of zi (zi = 0, 1, 2 or 3)
and chose the minimum value of ϕ1 found. We only give the computation for zi = 2.

ϕ1 = 26−max{x1 + x2 + x3 : z1 = 2, (x, y, z) ∈ Xe} = 26− {6 + 9 + 9} = 2

The same procedure can be applied to the other variables. All ϕi values are the same for
all i, which shows that this computation is also sequence independent (ϕ2 = ϕ3 = 2). A
stronger inequality (12) is thus obtained which becomes tight for the 6 points in Set1 and
Set3. (12) is called an integer flow cover inequality. Observe that inequality (12) is not
tight for the three points in Set2.

x1 + x2 + x3 + 2(3− z1) + 2(3− z2) + 2(3− z3) ≤ 26 (12)

• Finally, we show the idea of the new class of valid inequalities we propose in this paper.
The dimension of the set Xe is 9. In order to obtain a facet defining inequality for the set
Xe, one has to find 9 affinely independent points which satisfy the inequality as equality.
Let us take the integer flow cover inequality and try to lift in slack variables φ

′
i(1− yi).

x1 + x2 + x3 + 2(3− z1) + 2(3− z2) + 2(3− z3) + φ
′
1(1− y1) ≤ 26

φ
′
1 = 26−max{x1 + x2 + x3 + 2(3− z1) + 2(3− z2) + 2(3− z3) : y1 = 0, (x, y, z) ∈ Xe}

⇒ φ
′
1 = 26− {0 + 9 + 9 + 6} = 2

Using the same arguments, φ
′
2 and φ

′
3 are also found equal to 2 which shows that this

procedure is also sequence independent. The valid inequality for Xe is thus,

x1 + x2 + x3 − 2z1 − 2z2 − 2z3 − 2y1 − 2y2 − 2y3 ≤ 2 (13)

Inequality (13) is valid since the computation procedure of each coefficient satisfies all the
initial constraints of Xe. 9 points in Set1, Set2 and Set3 satisfy inequality (13) as equality
and are affinely independent, which makes this inequality facet defining for the set Xe.

4.2 Existing flow cover inequalities for LS-SW

Flow cover inequalities are derived from the polytope of the single node flow set. First studies in
this area are from Padberg et al. [15]. The 0-1 single node flow set can be seen as a generalization
of 0-1 knapsack sets or as a subproblem of a fixed charge network flow problem. For a given node
of the network, this set represents the flow conservation constraint in this node.

We give a first valid relaxation for XLS−SW and derive associated flow cover inequalities. The
second valid relaxation allows us to use the known integer flow cover inequalities firstly introduced
by Atamtürk [2]. The third class of valid inequalities constitutes a new class which is the main
contribution of this paper.
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4.2.1 Flow cover for a valid relaxation of XLS−SW

The first valid relaxation of XLS−SW considered corresponds to the single node flow set with only
entering flows in the node. We denote it by XR1. Each entering flow represents the quantity
produced at a given period. The leaving arcs are the total demand in the corresponding time
interval and the final stock. The first constraint represents the flow conservation in a node of
the network. There are also associated binary variables (setup variables) on each arc indicating
whether the arc is used or not. Each flow is bounded by a constant which corresponds to the
production capacity.

XR1 = {(x, y, s) ∈ Rn
+ × {0, 1}n × R1

+ :
∑
i∈N

xi ≤ b + s, xi ≤ Pyi, yi ≤ 1, 1 ≤ i ≤ n]}

The construction of one set XR1 from XLS−SW is done by summing up constraint (1) over
{t, . . . , k}, 1 ≤ t ≤ k ≤ n and considering st−1 ≥ 0. Therefore, there exist n2 relaxations of this
type. Constraints (3) and (5) are eliminated. Production and vehicle capacities are also assumed
to be constant. For each interval [t, l] where 1 ≤ t ≤ l ≤ n, one can construct a relaxation of type
XR1 from XLS−SW , which makes n2 relaxations in total.

Proposition 1 Cp is a minimal flow cover for XR1 if
∑

i∈Cp
P − b = λp with λp > 0. The lifted

flow cover inequality∑
i∈Cp

xi +
∑
i∈Cp

(P − λp)+(1− yi) +
∑
i∈L

xi −
∑
i∈L

(P − λp)+yi ≤ b + s

where L ⊆ N \ Cp is valid for XR1.

Proof. Derived from MIR flow cover inequality in Louveaux and Wolsey [14] where N2 = ∅. �

In the case in which s = 0, Padberg et al. [15] have shown that an exponential number of
flow cover facets suffice to characterize XR1.

4.2.2 Integer flow cover for a valid relaxation of XLS−SW

Mixed integer rounding approach can be used to derive MIR integer flow cover inequalities from
the single node flow set. The first studies are from Atamtürk [2]. The author studies the mixed
integer knapsack polyhedron which is defined by an arbitrary linear inequality and upper bounds
on the integer and continuous variables. He describes facet defining inequalities obtained by a
sequential lifting of inequalities with only one integer variable.

Here we give the second valid relaxation of XLS−SW denoted by XR2. The only difference
between XR1 and XR2 is on the flow variables upper bound. In XR2, flows are bounded by integer
multiples of a constant and each integer variable is bounded by dP

V e. As an initial condition, we
consider dP

V e > 1. Observe that for P = V , XR2 transforms into XR1.

XR2 = {(x, z, s) ∈ Rn
+ × Zn

+ × R+ :
∑
i∈N

xi ≤ b + s, xi ≤ V zi, zi ≤ d
P

V
e, 1 ≤ i ≤ n}

The construction of the set XR2 from the set XLS−SW is done using the same transformation
of constraint (1) (shown in the previous section), by the elimination of constraints (2), (4) and
by the relaxation of constraint (5) (the binary variable is deleted to have the largest RHS). The
production and the vehicle capacities are also assumed to be constant. The set XR2 is constructed
from XLS−SW for each interval [t, . . . , l] where 1 ≤ t ≤ l ≤ n. Therefore, there are n2 sets of type
XR2 for LS-SW.

9



Proposition 2 Cv is an integer flow cover for XR2 if
i) Cv ⊂ N
ii) ∃k ∈ Cv such that

∑
j∈Cv\k V dP

V e < b and ∃ unique values λv and η such that V η +∑
i∈Cv\k V dP

V e = b + λv with 0 < λv < V , η ∈ Z1 and 1 ≤ η ≤ dP
V e. Integer flow cover

inequality∑
i∈Cv

xi + (V − λv)(η − dP
V
e) +

∑
i∈Cv

(V − λv)(dP
V
e − zi) +

∑
i∈L

xi −
∑
i∈L

(V − λv)zi ≤ b + s (14)

where L ⊆ N \ Cv is valid for XR2.

Proof. Derived from the IFCI in Louveaux and Wolsey [14] assuming N2 = ∅. �

Remark 1 For b values with b mod V = 0, one can not find unique values λv and η respecting
0 < λv < V , η ∈ Z1 and 1 ≤ η ≤ dP

V e. An integer flow cover does not exist for this case.

Assuming s = 0, in a symmetric way as Padberg et al. [15], we show that XR2 plus integer flow
cover inequalities give a complete linear inequality description of conv(XR2).

Proposition 3 Let PR2 be the linear relaxation of XR2 plus the following set of integer flow
cover inequalities for all subsets = with |=| ≥ |Cv|,

IFCI(=) :
∑
i∈=

xi + (V − λv)(dP
V
e|Cv| −

∑
i∈=

zi) ≤ b + (V − λv)(dP
V
e − η)

where = ⊆ N . PR2 completely describes conv(XR2).

Proof. Let M(α, β) be the set of all optimal solutions for the problem OPT(XR2, (α, β)) where
the objective function

∑
i∈N (αixi−βizi) is maximized over the set XR2. Our aim is to prove that

PR2 = conv(XR2). First we show that dim(conv(XR2)) = dim(PR2). Then, we demonstrate that
for all values of αi and βi for which M(α, β) 6= XR2, the optimal value is finite and M(α, β) ⊆
{(x, z) : ax − bz = c} for some inequality ax − bz ≤ c defining PR2 such that PR2 ∩ {(x, z) :
ax− bz = c} is a proper face of PR2. The condition M(α, β) 6= XR2 implies that the cost vectors
α and β can not both have all their components null, since it is trivial that M(0, 0) = XR2.

For positive values of b and dP
V e, for each variable, there exists a non-empty real interval in

which the latter can take any value independently from the others in conv(XR2). Observe that
conv(XR2) ⊆ PR2 ⊆ R2n. Therefore, dim(conv(XR2)) = dim(PR2) = 2n. We show below that
for any value of (α, β), the optimal solution satisfies one of the inequality in PR2 as equality and
the intersection of PR2 with each of these equalities defines a proper face for PR2. The objective
function to optimize is thus,

max(
∑
i∈N

(αixi − βizi))

Below we denote by αi and βi the ith component of the cost vector (α, β).

• If ∃i with βi < 0, then M(α, β) ⊆ {(x, z) : zi = dP
V e}

• If ∃i with αi < 0, then M(α, β) ⊆ {(x, z) : xi = 0}

• If ∃i with αi = 0 and βi > 0, then M(α, β) ⊆ {(x, z) : zi = 0}. More generally, if V αi < βi,
then M(α, β) ⊆ {(x, z) : zi = 0}.
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By now, we assume that none of these cases happens. Therefore, we are in the situation in which
αi ≥ 0, βi ≥ 0 and V αi ≥ βi,∀i ∈ N . We partition N into = and =′

such that = = {i : αi > 0}
and =′

= {i : αi = 0}. Notice that ∀i ∈ =′
we have βi = 0. This implies that = 6= ∅, since there

must exist at least one component with αi 6= 0, otherwise we do not satisfy the initial condition
M(α, β) 6= XR2. In addition, ∃i ∈ = such that V αi = βi, then M(α, β) ⊆ {(x, z) : xi = V zi}.
Hence we have V αi > βi on =. We consider two cases depending on whether = is a cover or not.

• If |=|V dP
V e ≤ b then M(α, β) ⊆ {(x, z) : xi = V zi}

• If |=|V dP
V e > b then

– If ∃i ∈ = with βi = 0 then M(α, β) ⊆ {(x, z) :
∑

i∈= xi = b}
– Otherwise any optimal solution verifies

∑
i∈= xi = b or

∑
i∈= xi = b b

V cV and
∑

i∈= zi =
(|Cv|−1)dP

V e+η or
∑

i∈= zi = b b
V c. It implies that IFCI(=) is tight. M(α, β) ⊆ {(x, z) :∑

i∈= xi + (V − λv)(dP
V e|Cv| −

∑
i∈= zi) = b + (V − λv)(dP

V e − η)}.

It can easily be checked that all the faces used in the proof are proper faces of PR2. �

4.3 New valid inequalities: Mixed flow cover

The third valid relaxation of XLS−SW corresponds to (XR1 ∩ XR2) with the addition of lower
and upper bounds on the variables zi (see constraints (4) and (5) in XLS−SW formulation). We
denote by Xmix this new set. Since sets XR1 and XR2 are valid relaxations for the initial set
XLS−SW , their intersection is also valid. Therefore, there are n2 valid relaxations of this type
(one set for each interval {t, . . . , l}, 1 ≤ t ≤ l ≤ n). In this section, we derive non-trivial facets
for Xmix by lifting IFCI. Remember that the IFCI can be derived for the case in which dP

V e > 1.
Thus, to obtain the mixed flow cover inequality (MFCI) we also make this assumption.

Definition 1 Xmix is the set of points (x, y, z, s) ∈ Rn
+ × {0, 1}n × Zn

+ × R+ satisfying∑
i∈N

xi ≤ b + s

xi ≤ Pyi, i ∈ N

xi ≤ V zi, i ∈ N

yi ≤ zi ≤ d
P

V
eyi, i ∈ N

We first establish the dimension and exhibit trivial facets of Xmix, then we show the validity of
the mixed flow cover inequalities for Xmix for the case P mod V = 0.

Proposition 4 Xmix is full dimensional: dim(Xmix) = 3n + 1.

Proof. The number of variables in Xmix is 3n+1. Therefore, dim(Xmix) ≤ 3n+1. It suffices to
find 3n + 2 affinely independent points in Xmix. We assume b > 0. See Algorithm 1 to generate
3n points. The other two feasible points are; xj = 0, yj = 0, zj = 0, s = 0, ∀j ∈ {1, . . . , n} and
xj = 0, yj = 0, zj = 0, s = 1, ∀j ∈ {1, . . . , n}. Thus, dim(Xmix) ≥ 3n + 1, which gives the
dimension of Xmix, dim(Xmix) = 3n + 1. �

Proposition 5 Trivial facets of Xmix are

1. xi ≥ 0,∀i ∈ N

2. yi ≤ zi,∀i ∈ N

11



Algorithm 1 Generation of 3n feasible affinely independent points for Xmix.

δ =
{

(b mod P ) if (b mod P ) > 0,
P else.

for all k such that 1 ≤ k ≤ n do
for all j such that 1 ≤ j ≤ n do

if j = k then
xj ← δ, yj ← 1, zj ← d δ

V e, s← 0
else

xj ← 0, yj ← 0, zj ← 0, s← 0 or
xj ← 0, yj ← 1, zj ← 1, s← 0 or
xj ← 0, yj ← 1, zj ← dP

V e, s← 0
end if

end for
end for

3. zi ≤ dP
V eyi,∀i ∈ N

4. xi ≤ V zi,∀i ∈ N , for b ≥ 2V

5. yi ≤ 1,∀i ∈ N

6.
∑

i∈N xi ≤ b, for |Cp| < n

Proof. For each of these facets, 3n + 1 affinely independent points are given in Appendix A. For
b < 2V , xi ≤ byi becomes facet defining and replaces the 4th inequality which is redundant. �

In proposition 6, we prove the validity of the mixed flow cover inequality. We assume
P mod V = 0 to simplify the computation of the lifting coefficients. This result is extended
in proposition 10 for the case P mod V 6= 0 and in proposition 13 for the case in which Pi and
Vi are time varying. Remark that for P mod V = 0, we have |Cv| = |Cp| (|Cp| is the number
of variables in the flow cover), which is not the case for P mod V 6= 0. This equality can be
shown as follows. Observe that (|Cp| − 1)P + P − λp = b for the flow cover inequality and
(|Cv| − 1)P + V η − λv = b for the integer flow cover inequality. P − λp and V η − λv are the
quantities which exceed b b

P c in the flow and integer flow cover inequalities respectively. These
two quantities are then equal, therefore we have |Cv| = |Cp|.

Proposition 6 If Cv is an integer flow cover (b mod V 6= 0 is assumed) then, the mixed flow
cover inequality (MFCI)∑

i∈Cv

xi + (V − λv)(η − P

V
) +

∑
i∈Cv

(V − λv)(
P

V
− zi) + λv(η − 1)

∑
i∈Cv

(1− yi) ≤ b + s (15)

is valid for Xmix for P mod V = 0.

Proof. The validity of the IFCI (14) for XR2 implies also its validity for Xmix which is more
restricted than XR2. The MFCI (15) is derived from the IFCI assuming L = ∅, by a sequence
independent lifting procedure. The associated face to inequality (14) can be lifted to a higher
dimension adding the slack variables (1− yi) with a certain coefficient αi in the left hand side.

Let us first add α1(1− y1). For y1 = 1, there is no change. For 0 ≤ y1 < 1, a positive amount
will be added in the left hand side.∑

i∈Cv

xi + (V − λv)(η − P

V
) +

∑
i∈Cv

(V − λv)(
P

V
− zi) + α1(1− y1) ≤ b + s

12



The aim is to find the maximum value of α1 which makes the inequality the strongest possible,
without violating the initial constraints of the set Xmix. We can eliminate the variable s during
the computation of the lifting coefficients, since the exceeding amount of x variables goes into s
variable, which makes their difference 0. Hence,

α1 = b−max{
∑

i∈Cv
xi +(V −λv)(η− P

V )+
∑

i∈Cv
(V −λv)(P

V − zi) : y1 = 0, (x, y, z) ∈ Xmix}

Notice that y1 = 0⇒ x1 = 0, z1 = 0. By definition of the flow cover, we have
∑

i∈Cp\1 P < b.
The constraint

∑
i∈N xi ≤ b is thus redundant. The latter allows us to saturate all the other x

variables up to P , to realize the maximal value.

α1 = b− [(|Cv| − 1)P + (V − λv)(η − P

V
) + (V − λv)(

P

V
)]

Using the definition of the integer flow cover, one can write V η + (|Cv| − 1)P = b + λv, hence,

α1 = −(λv + P − V η) + P − (V − λv)η = λv(η − 1)

For the second variable, we proceed similarly but this time paying attention to the new term
added. In order to obtain the maximal value, again, all x values are saturated to P except x2.
Consider that x variables are not saturated and they take values less than P . If 0 ≤ xi < P then
it is trivial that the maximal value obtained decreases.

α2 = b−max{
∑
i∈Cv

xi + (V − λv)(η − P

V
) +

∑
i∈Cv

(V − λv)(
P

V
− zi) + λv(η − 1)(1− y1) :

y2 = 0, (x, y, z) ∈ Xmix} = λv(η − 1)

For any lifting sequence, the same coefficients are found, thus the lifting is sequence independent.
More formally, considering the following valid inequality, let us compute the value of αj+1.

∑
i∈Cv

xi + (V − λv)(η − P

V
) +

∑
i∈Cv

(V − λv)(
P

V
− zi) + λv(η − 1)

j∑
i=1

(1− yi) ≤ b + s

αj+1 = b−max{
∑
i∈Cv

xi + (V − λv)(η − P

V
) +

∑
i∈Cv

(V − λv)(
P

V
− zi) + λv(η − 1)

j∑
i=1

(1− yi) :

yj+1 = 0, (x, y, z) ∈ Xmix} = λv(η − 1)

Therefore, the new class of valid inequalities, that we call mixed flow cover inequalities (MFCI),
can be written in the form (15) for P mod V = 0. �

Observation 1 Inequality (15) is valid for Xmix because of the construction procedure of the
lifting coefficients. They are all computed satisfying the initial constraints of Xmix.

Proposition 7 (15) is facet defining for the set Xmix if b mod V 6= 0 and P mod V = 0.

Proof. The validity of the inequality is known. To show that it is facet defining, 3n + 1 affinely
independent points satisfying inequality (15) as equality have to be found. There are two cases:
n = |Cv| and n > |Cv|. For each case, 3n linearly independent directions are shown in Appendix
B1, respectively in Tables 13 and 14. Each direction is the difference of two feasible solutions for
Xmix which satisfy inequality (15) as equality.
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For the first case where n = |Cv|, in order to find 2|Cv| affinely independent points, the idea
is to saturate all x variables to P , except one which takes either the value P − λp or 0. For the
last |Cv| points, if η > 1, all x variables are saturated to P , except one which is set to (η − 1)V .
Otherwise, if η = 1, all the variables except two are saturated to P , and the two variables take
values P − V and V . To obtain the last point, for one of the previous points, the value of s
variable is increased by one unit.

For the second case where n > |Cv|, 3|Cv|+ 1 directions are obtained as previously. In order
to obtain 3(n−|Cv|) other directions we proceed as follows. To obtain n−|Cv| directions, one can
substitute the value of each non-cover element in N \ Cv whose value is 0 by the cover element
in Cv whose value is P − λp. To obtain another n− |Cv| directions, y variables for the non-cover
elements can take the value 1 instead of 0. For the last n − |Cv| directions, the value of the z
variables in N \Cv are increased to their maximum value dP

V e > 1. As the terms in N \Cv do not
appear in the inequality, the change on the values of the non-cover variables does not influence
the LHS value. �

Proposition 8 The MFCI (15) can be lifted using variables in L ⊆ N \ Cv. The lifted MFCI∑
i∈Cv

xi + (V − λv)(η − P

V
) + (V − λv)

∑
i∈Cv

(
P

V
− zi) +

∑
i∈Cv

λv(η − 1)(1− yi) +
∑
i∈L

xi

−(V − λv)
∑
i∈L

zi −
∑
i∈L

λv(η − 1)yi ≤ b + s (16)

where L ⊆ N \ Cv is valid for Xmix.

Proof. Let us rewrite the non-lifted inequality with all variable components in the LHS and the
constant parts in the RHS.∑

i∈Cv

(xi − (V − λv)zi − λv(η − 1)yi)− s ≤ b− [(V − λv)(η − P

V
) + (V − λv)

P

V
|Cv|

+λv(η − 1)|Cv|] (17)

Without loss of generality, we may assume that s = 0. Observe that the maximal value of the
LHS can be obtained for different values of the variables. See the proof of proposition 9 for the
points which make (17) tight. The RHS value can be attained using only the variables in Cv.
Thus, |Cv| variables are enough to saturate

∑N
i=1 xi = b. Now, let us write the lifted form as,∑

i∈Cv∪L

(xi − (V − λv)zi − λv(η − 1)yi)− s ≤ b− [(V − λv)(η − P

V
) + (V − λv)

P

V
|Cv|

+λv(η − 1)|Cv|] (18)

Compared to inequality (17), we add the term
∑

i∈L(xi − (V − λv)zi − λv(η − 1)yi) in the LHS
and the RHS remains unchanged. Now consider that one opens a production period j in L and
decides to produce less in some periods j

′ ∈ Cv in order to satisfy
∑N

i=1 xi = b. If one continues
to produce in each period in Cv, then we have at least an additional setup period and maybe an
additional batch. The new LHS in (18) can only be less than or equal to the previous one in (17),
because y and z variables have negative coefficients. Therefore, to maximize the LHS value, one
period in Cv must become free. Observe that a substitution is done between the new production
period j in L and the old production period j

′
in Cv, which shows the validity of (18). �

Proposition 9 The lifted MFCI (15) is facet defining for the set Xmix in most cases if b mod
V 6= 0, P mod V = 0 and |Cv| < N .
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Proof. Respectively 3|Cv|+ 1 and 3(n− |Cv|) directions are given in Appendix B1 in Tables 13
and 14 for the case L = ∅. For the case L 6= ∅, the same 3|Cv|+ 1 and 3(n− |Cv| −L) directions
can be used. Additionally, we substitute the value of the variables in the cover with the 0 valued
variables in L. The value of the x variables to interchange are respectively P − λp, V (η− 1) and
P if η > 1, V otherwise. The new matrix obtained with the positive non-cover elements in L has
exactly the same stages as the one obtained with the cover elements in Cv. �

We showed the validity of the MCFIs with and without lifting for the case P mod V = 0
and identified the cases where they are facet defining for Xmix. Now, we remove the restriction
P mod V = 0, and show the validity of the MFCIs. P and V are again assumed to be constant.

Proposition 10 If Cv is an integer flow cover, then for the case P mod V 6= 0, the MFCI∑
i∈Cv∪S

xi + (V − λv)(η − dP
V
e) +

∑
i∈Cv

(V − λv)(dP
V
e − zi)−

∑
i∈S

(V − λv)zi + β(1− y1)

+
∑

i∈(Cv∪S)\{1}

α(1− yi) ≤ b + s (19)

where 1 ∈ Cv, Cv ⊆ Cp, S ⊆ Cp \ Cv, β = bv − φΣ + φ, α = min{β, φ}, bv = b − ((V − λv)(η −
dP

V e)+ (V −λv)dP
V e|Cv|), φ = max{P − (V −λv)dP

V e;λ
vbP

V c}, φΣ =
∑

Cv∪S φ, is valid for Xmix.

Proof. (We order the index of the cover variables in Cv according to the sequence of lifting). For
P mod V 6= 0, the computation of the lifting coefficients becomes sequence dependent. The first
slack variable (1 − y1) to lift has always a coefficient β greater than or equal to the coefficients
αi of the variables which follow in the lifting computation. Another important change is on the
number of integer flow cover elements |Cv|. For the case P mod V = 0, we have shown that
|Cv| = |Cp| but for P mod V 6= 0, we only have |Cv| ≤ |Cp|. For P mod V 6= 0, we observed
in PORTA2 that most of the mixed flow cover type inequalities defining a facet for Xmix are
obtained by lifting an initial IFCI containing already all the variables in Cp. It is also possible
to lift the IFCI containing only the variables in Cv ∪ S

′
with S

′ ⊂ Cp \ Cv to obtain a valid
inequality. The compromise is then either to obtain an inequality with less variables |Cv ∪S| but
a bigger β or with more variables |Cp| but a smaller β. Here we assume the more general case
where S ⊆ Cp \ Cv.

Consider the initial IFCI in which we add the first lifted term with a coefficient β.∑
i∈Cv∪S

xi + (V − λv)(η − dP
V
e) +

∑
i∈Cv

(V − λv)dP
V
e −

∑
i∈Cv∪S

(V − λv)zi + β(1− y1) ≤ b + s

Let us compute the biggest β, for which the inequality satisfies the initial constraints in Xmix

and remains valid. We denote by bv the following constant,

bv = b− ((V − λv)(η − dP
V
e) + (V − λv)dP

V
e|Cv|)

Therefore, one can write

β = bv −max{
∑

i∈Cv∪S

(xi − (V − λv)zi) : y1 = 0, (x, y, z) ∈ Xmix}

When y1 = 0, the constraint
∑

i∈N xi ≤ b becomes redundant, since
∑

i∈(Cv∪S)\1 P ≤
∑

i∈(Cp)\1 P <

b by definition. Therefore, we can compute the maximal value of each term xi − (V − λv)zi in-
dependently for all i. Let φi = max{xi − (V − λv)zi : (x, y, z) ∈ Xmix} and φΣ =

∑
Cv∪S φi.

Hence
β = bv − φΣ + φ1

2POlyhedron Representation Transformation Algorithm (by Thomas Christof, Heidelberg Univ.). Routine col-
lection to analyze polytopes and polyhedra. http://www.zib.de/Optimization/Software/Porta.
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We describe the computation φi at the end of the proof. Now, let us compute α2.

α2 = bv −max{
∑

i∈Cv∪S

(xi − (V − λv)zi) + β(1− y1) : y2 = 0, (x, y, z) ∈ Xmix}

There are 21 = 2 possibilities, either y1 = 0 or y1 = 1.

• If y1 = 0 then

α
(1)
2 = bv − (max

Cv∪S
{xi − (V − λv)zi : y1 = 0, y2 = 0, (x, y, z) ∈ Xmix}+ β)

α
(1)
2 = bv − φΣ + φ1 + φ2 − β = φ2

• If y1 = 1 then

α
(2)
2 = bv − (max

Cv∪S
{xi − (V − λv)zi + β(1− y1) : y1 = 1, y2 = 0, (x, y, z) ∈ Xmix})

α
(2)
2 = bv − φΣ + φ2

α2 = min{α(1)
2 , α

(2)
2 } = min{φ2, bv − φΣ + φ2}

Now, let us compute α3,

α3 = bv −max{
∑

i∈Cv∪S

(xi − (V − λv)zi) + β(1− y1) + α2(1− y2) : y3 = 0, (x, y, z) ∈ Xmix}

There are 22 = 4 possibilities, either (y1 = 1, y2 = 1) or (y1 = 0, y2 = 1) or (y1 = 1, y2 = 0) or
(y1 = 0, y2 = 0). We compute α3 for each case.

• If y1 = 1, y2 = 1 then α
(1)
3 = bv − φΣ + φ3

• If y1 = 0, y2 = 1 then

α
(2)
3 = bv − (max

Cv∪S
{xi − (V − λv)zi : y1 = y3 = 0, y2 = 1, (x, y, z) ∈ Xmix})− β

α
(2)
3 = bv − φΣ + φ1 + φ3 − β = φ3

• If y1 = 1, y2 = 0 then

α
(3)
3 = bv − (max

Cv∪S
{xi − (V − λv)zi : y2 = y3 = 0, y1 = 1, (x, y, z) ∈ Xmix})− α2

α
(3)
3 = bv − φΣ + φ2 + φ3 − α2, as α2 = min{φ2, bv − φΣ + φ2} ⇒ φ2 ≥ α2, then

α
(3)
3 ≥ bv − φΣ + φ3 = α

(1)
3

• If y1 = 0, y2 = 0 then

α
(4)
3 = bv − (max

Cv∪S
{xi − (V − λv)zi +

2∑
i=1

αi(1− yi) : y1, y2, y3 = 0, (x, y, z) ∈ Xmix})

α
(4)
3 = bv − φΣ + φ1 + φ2 + φ3 − β − α2 ⇒ α

(4)
3 ≥ α

(2)
3
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Therefore, α3 = min{α(1)
3 , α

(2)
3 , α

(3)
3 , α

(4)
3 } = min{φ3, bv − φΣ + φ3}.

More generally, we consider αj = min{φj , bv − φΣ + φj} and compute αj+1.

αj+1 = bv −max{
∑

i∈Cv∪S

(xi − (V − λv)zi) +
j∑

i=1

αi(1− yi) : yj+1 = 0, (x, y, z) ∈ Xmix}

There are 2j possibilities to set the variables yi,∀i ∈ {1, . . . , j}, yj+1 is already fixed to 0. In the
computation of αj+1, for each variable i such that yi = 0, the term φi − αi is added, otherwise
there is no addition. Since αi = min{φi, bv − φΣ + φi}, then we have φi − αi ≥ 0. For each
variable i ∈ Cv ∪ S except the first one, αj+1 becomes bigger with the addition of this term.
The aim being to find the minimum value of αj+1, these cases can be eliminated. Thus, two
vectors are important in the comparison: (1, 1, · · · , 1) and (0, 1, 1, · · · , 1). One can conclude that
αj+1 = min{φj+1, bv − φΣ + φj+1}.

Let us now compute the values φi = max{xi − (V − λv)zi : (x, y, z) ∈ Xmix},∀i ∈ N
independently. One can easily remark that φi has its maximal value when xi = P (saturation of
the production capacity) or xi = bP

V cV (saturation of the maximum number of vehicles). Hence

φi = max{P − (V − λv)dP
V
e;λvbP

V
c}

For P and V constant, φi = φ = max{P − (V − λv)dP
V e;λ

vbP
V c}, for all i ∈ N . This allows to

write β = bv − φΣ + φ and α = min{β, φ}. This procedure yields a valid inequality, since in each
step all the initial constraints of Xmix are satisfied. �

Proposition 11 If Cv is an integer flow cover, L ⊆ N \ (Cv ∪ S) and β ≥ φ, the lifted MFCI∑
i∈Cv∪S∪L

xi + (V − λv)(η − dP
V
e) +

∑
i∈Cv

(V − λv)(dP
V
e − zi)−

∑
i∈S∪L

(V − λv)zi + β(1− y1)

+
∑

i∈(Cv∪S)\{1}

α(1− yi)−
∑
i∈L

αyi ≤ b + s (20)

is valid for Xmix.

Proof. Let us rewrite the non-lifted integer flow cover inequality (19) by putting all the variables
in the LHS and all the constant components in the RHS.∑

i∈Cv∪S

xi −
∑

i∈Cv∪S

(V − λv)zi − βy1 −
∑

i∈(Cv∪S)\{1}

αyi − s ≤ bv − β − (|Cv ∪ S| − 1)α

Compared to the above inequality, the lifted MFCI contains the term Ω =
∑

i∈L(xi−(V −λv)zi−
αyi) in its LHS. If β ≥ φ, then α = φ. Therefore, maxi∈L(xi− (V −λv)zi−αyi) ≤ 0 by definition
of φ, which means that the LHS value can not be increased by the addition of Ω, which shows
the validity of (20). Observe that, in this case the lifting is useless due to the negative or null
terms added in the LHS. �

Observation 2 The lifted MFCI (20) reduces to the IFCI (14) for η = 1.
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Example 1 On a simple example, we show how the MFCI cuts a fractional point which can not
be cut by the FCI or IFCI. Let us denote by Xe1 the following set,

max(x1 + x2 + x3 − 2y1 − 2y2 − 2y3 − 2z1 − 2z2 − 2z3)
3∑

i=1

xi ≤ 26

xi ≤ 9yi

xi ≤ 3zi

yi ≤ zi ≤ 3yi

(x, y, z) ∈ R3
+ × {0, 1}3 × Z3

+

See in Table 1 for the solutions of the linear relaxation of Xe1, with or without the addition of the
cover inequalities. The objective function value obtained after the addition of the MFCI is better
than the others.

cases x1 x2 x3 y1 y2 y3 z1 z2 z3 OF
no ineq. added 8 9 9 8

9 1 1 8
3 3 3 2.88

only flow cover 8 9 9 1 1 1 8
3 3 3 2.66

only integer flow cover 9 6 9 1 6
9 1 3 2 3 2.66

flow+int. flow cov. 9 6 9 1 0.75 1 3 2 3 2.5
only mix. flow cov. 9 9 8 1 1 1 3 3 3 2*

Table 1: Linear relaxation values for different cases.

For large values of n, the number of cover inequalities to add in the initial formulation of LS-SW
can be quite high. In order to add these inequalities only when they are needed, we propose a cut-
ting plane algorithm described in the next section. Before introducing the separation algorithm,
some statistics are given to have an idea on the number of different facet defining inequalities
obtained by PORTA for the set Xmix. For the test results, the instance of Example 1 is used.
The complete list for all b values can be found in Appendix C1, in Table 16. For b = 14, we
provide also all facet defining inequalities in Appendix D.

The results in Table 16 are obtained for Xe1 when P mod V = 0. Different tests are also
carried out for the case P mod V 6= 0. We found out that for this case, there are many more
inequalities which are not of cover type. We give Table 17 in Appendix C2 for P = 9, V = 4. In
this case, a new facet defining inequalities appears. Other trivial facets for P mod V 6= 0 remain
the same as in proposition 5.

Proposition 12 For P mod V 6= 0, the inequality

xi ≤ εyi + µzi, where
{

µ = P mod V

ε = P − dP
V eµ

defines a facet for Xmix

Proof. 3n + 1 affinely independent points satisfying this inequality as equality are given in
Appendix A. �

Before describing the cutting plane algorithm, we state a final proposition for the case where
the production and the vehicle capacities take time varying values.

Proposition 13 If Cv is an integer flow cover, for the case in which Pi, Vi take time varying
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values and if
∑

i∈Cv\j Pi < b,∀j ∈ Cv, then, the MFCI

∑
i∈Cv∪S

xi + (Vk − λv)+(ηk − d
Pk

Vk
e) +

∑
i∈Cv

(Vi − λv)+(dPi

Vi
e − zi)−

∑
i∈S

(Vi − λv)+zi + β(1− y1)

+
∑

i∈(Cv∪S)\{1}

αi(1− yj) ≤ b + s (21)

where 1 ∈ Cv, Cv ⊆ Cp, S ⊆ Cp \ Cv, β = bv − φΣ + φ1, αi = min{bv − φΣ + φi, φi}, bv =
b − ((Vk − λv)+(ηk − dPk

Vk
e) +

∑
i∈Cv

(Vi − λv)+dPi
Vi
e), φi = max{Pi − (Vi − λv)+dPi

Vi
e;λvbPi

Vi
c},

φΣ =
∑

i∈Cv∪S φi, is valid for Xmix.

Proof. One can proceed in the same manner as in proposition 10. Each time we compute the
coefficient αj for a slack variable (1 − yj), we give the 0 value to yj . The fact that ∀j ∈ Cv,∑

i∈Cv\j Pi < b allows us to saturate the other variables values in order to compute αj . The first
change compared to proposition 10 is the construction of the initial integer flow cover set. This
one depends on the choice of the variable k. For different k values, Cv, λ

v and ηk will be different.
Once an integer flow cover inequality is found, the computation of β and αi remains thus the
same. �

Remark 2 If the initial assumption ∀j ∈ Cv,
∑

i∈Cv\j Pi < b does not hold, then we have to solve
an NP-hard optimization problem in order to compute the lifting coefficients. The constraints of
the problem are exactly the same as in Xmix. This optimization problem takes the form:

max
∑

i∈Cv\j

(xi − (Vi − λv)+zi − αiyi)∑
i∈Cv\j

xi ≤ b + s

Other constraints of Xmix

In this paper, we do not give further details on this second case.

5 Cutting plane algorithm

The separation problem for cover inequalities

Given (x∗, y∗, z∗, s∗) satisfying XLS−SW , either find a cover inequality (FCI, IFCI or MFCI)
cutting off the fractional point, or show that all inequalities are satisfied. In LS-SW, one can find
n2 valid relaxations of type Xmix (see Definition 1). Therefore, for each interval [k, l] with 1 ≤ k ≤
l ≤ n, a separation problem is solved for Xmix

[k,l] . For the set Xmix
[k,l] , N = {k, . . . , l}. Algorithm 2

and 3 constitute subprocedures for Algorithm 4. Algorithm 2 provides the computation of all the
parameters to be used for generating the cover inequalities for each interval [k, l]. Algorithm 3
is written to compute the constant and variable components in the LHS of each cover inequality.
In Algorithms below P and V are assumed to be constant. At the end of this section, the idea of
the basic differences and similarities will be given for the case in which Pi and Vi can take time
varying values.

Once all the parameters are computed in Algorithm 2 for each interval {t, . . . , l}, then the
cover sets must be chosen. The aim of the separation algorithm is to find the most violated
inequalities. Therefore, one has to choose the cover variables with the biggest variable component
values. f(i), I(i) and m(i) (see Algorithm 3) are sorted in a decreasing order in O(nlog(n)) time,
and their indices are saved in tables tf, tI and tm.
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Algorithm 2 Computation of the number of the cover elements, flow and integer flow cover
excess and η for Xmix

[k,l]

Require: t, l, d, P, V
Ensure: n, b, Cp, Cv, λ

p, λv, η, α, β
for all k such that 1 ≤ k ≤ n do

for all l such that k ≤ l ≤ n do
b =

∑
i∈{k,...,l} di

|Cp| = d b
P e {flow cover elements number}

|Cv| = d b
V dP

V
ee {integer flow cover elements number}

λp = d b
P eP − b {flow cover excess}

λv = d b
V eV − b {integer flow cover excess}

η =
{
d b

V e − (|Cv| − 1)dP
V e if (b mod P ) > 0,

0 otherwise.
α, β see the proof of proposition 10

end for
end for

• For the case P mod V = 0, the first |Cp| (respectively |Cv| and |Cp|) variables are chosen
to construct the flow (respectively integer and mixed) cover set.

• For the case P mod V 6= 0, the steps of the construction of the flow and the integer flow
cover sets are the same as in previous case. However, for the mixed flow cover set, one more
step is needed. Since β ≥ α then, in order to find the inequality the most violated, β must
be the coefficient of the biggest valued slack variable j. To find the latter, we proceed as
follows. First, we choose |Cp| − 1 variables with largest m() value. Then, two values are
compared to find the last variable. We choose it either among the first |Cp| variables in
table tm or among the variables in N \ Cp. The two values to be compared are,

1. m(tm(|Cp|))−mini∈Cp{(β − α)yi} choice among Cp variables,

2. maxi∈N\Cp
{m(i)− (β − α)yi} choice among N \ Cp variables

If (1) is bigger, then the last variable of the mixed cover set is j = tm(|Cp|) and in the MFCI,
the smallest y∗i , (i ∈ Cp) takes the coefficient β. Otherwise the last variable of the cover set is
j = argmaxi∈N\Cp

{m(i)− (β − α)yi} and in the MFCI, yj takes the coefficient β.
Once all the cover sets are constructed, the cover inequalities can be written. In table tf ,

(respect. tI and tm), the first |Cp| (respect. |Cv| and |Cp|) variable parts are added to the
constant part cf (respect. ci and cm) for the flow (respect. integer and mixed) cover inequalities.
The basic cover inequalities are obtained in this manner. Then, for the case P mod V = 0 or
(P mod V 6= 0 and β ≥ φ), to make these inequalities stronger, one has to check the positivity
of the variable components for the non-cover elements. If they are positive, then they are added
to the LHS of the inequalities, otherwise we stop. If the LHS value obtained is greater than the
rhs value b + s∗(l), then the inequality is violated, otherwise there is no violation. The violated
inequalities are added to the formulation. This procedure can be applied to the top node or to the
middle nodes in the search tree. For the case P mod V = 0, the implementation of Algorithm 4
requires O(n2) computations for all the intervals and in each interval the sorting procedure takes
O(nlog(n)) time. In total, the separation algorithm has a O(n3log(n)) time complexity. For the
case P mod V 6= 0, the choice of the slack variable having the coefficient β takes O(n) time but
is dominated by O(nlog(n)) quick sort algorithm. In total, the separation algorithm takes again
O(n3log(n)) time.

For the more general case in which Pi and Vi take time varying values, the integer flow cover
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Algorithm 3 Computation of the constant and variable components in the LHS of each cover
inequality and sorting of the variable parts, (P, V constant)
Require: n, P, V, |Cp|, |Cv|, λp, λv, η, α, β, (x∗, y∗, z∗, s∗)
Ensure: Constant and variable parts for each cover inequality

for all t such that 1 ≤ t ≤ n do
for all l such that t ≤ l ≤ n do

{Constant part computation}
cf ← (P − λp)+|Cp| { for flow cover}
ci← (V − λv)η + (V − λv)dP

V e(|Cv| − 1){ for integer flow cover}
cm← (V − λv)η + (V − λv)dP

V e(|Cv| − 1) + β + α(|Cp| − 1) { for mixed flow cover}

{Variable part computation}
for all i such that t ≤ i ≤ l do

f(i)← x∗i − (P − λp)+y∗i {Flow cover}
I(i)← x∗i − (V − λv)z∗i {Integer flow cover}
m(i)← x∗i − (V − λv)z∗i − αy∗i {Mixed flow cover}

end for

{Sorting f(i), I(i) and m(i) values in a decreasing order in tables tf, tI and tm respec-
tively.}

end for
end for

inequality to be lifted and the values Cp, Cv, λ
v, ηk depend on the choice of the variable k. There

are many possibilities to obtain an initial IFCI. Once the integer set is known, which can be
done in linear time, the αi values are computed for each variable in the cover. If we assume
∀j ∈ Cv,

∑
i∈Cv\j Pi < b, the coefficient values can be computed analytically, otherwise an NP-

hard optimization problem must be solved. For the restrictive case, the separation algorithm
takes O(n3) time. But one can not predict if the inequality obtained is the most violated or not.

6 Computational experiments

In this section, we describe some computational results in order to compare the performance of
different formulations and cutting planes for solving LS-SW.

Settings All experiments are carried out on an Intel Xeon 3.2 GHz (bi-processor HT), 4 Gb
RAM. For the tests we used Xpress-Mosel 1.6.0. We evaluate the effectiveness of the following
formulations and cutting planes:

• The natural formulation AGG (see Section 2) solved by a B&B procedure

• Extended formulations WW-P, WW-V, DM (see Section 3.2) solved by B&B (in the tests
the two formulations WW-P and WW-V are coupled for their increasing performance,
and denoted by Both in the tables)

• Cutting plane using lifted flow (L-Flow), lifted integer flow (L-Int) and lifted mixed flow
(L-Mix) cover inequalities (see Sections 4.2 and 4.3). Cutting plane using all the three flow
cover inequalities (All-Cover). We also give results for the mixed flow cover inequalities
without lifting (Mix) for some sets.

They are evaluated with the following criteria,

21



• Initial lower bound values (LP: initial linear relaxation value, SEP: linear relaxation value
obtained after the cutting plane algorithm applied to the root node for the cover type
inequalities), compared to the optimal solution value (OPT). If OPT is not found after a

time limit (300s), then the gap%=Best Integer Solution-Best Lower Bound
Best Integer Solution is given,

• Number of cuts added: cuts, Time in second: time, Number of nodes: nodes.

In order to measure the impact of the inequalities from Xpress cuts, we perform two sets of
experiments:

• a first set without Xpress cuts,

• a second with Xpress cuts

When Xpress Cuts are added in the formulation by default, we add the prefix X in the result
tables. The heuristic strategy of Xpress is switched off. The lot sizing problem instances created
are for the case with P and V constant. All formulations above can thus be used.

The values of the production capacity and of the number of periods are fixed to P = 80 and
n = 20 respectively. The values of the vehicle capacities and of the average demand, denoted by d
are varied. We tested three demand configurations: the average demand is low (d = 20) with big
variations from one period to another; the average demand is the half of the production capacity
(d = 40) with small variations and finally the average demand is close to the capacity (d = 60).
We also tested the following configuration P = 40, n = 20, V = 10, d = 30. The number of
periods n = 40 is also tested for some sets.

The performance of the cover type inequalities depends on the objective function. If, in the
objective function, the coefficients of each decision variable are close to their value in the cover
inequalities, then they can be more effective and they can cut more infeasible regions. For the
test results in Tables 2 to 12 except Tables 4, 5, 6 and 7, we used the objective function F1 =∑n−dn

8
e

i=1 xi +
∑n

i=1(V d
n
2 ezi +2P dn2 eyi). This one seems to have the closest coefficients to those of

L-Mix. The second objective function F2 =
∑n

i=1 xi +
∑n

i=1(1000zi + 5yi) is more advantageous
for L-Int and is used in Tables 4 and 5. The third one is F3 =

∑n
i=1 xi +

∑n
i=1(5zi + 1000yi), in

which the setup cost is very high compared to the unit production and transportation costs. F3
is used in Tables 6 and 7.

Another parameter changed is the maximum value that can take the variable s(l) in the
cutting plane algorithm. In the tables below, smax(l) = 0. We also tested some positive values
for smax(l). The separation algorithm is called in the root node. At the end of this section, we
also make some observations for the case when the separation algorithm is called in each node of
the B&B tree (B&Cut). In all experiments, if the optimal solution is not yet found after 300 s,
the execution is stopped.

Results We provide results for 12 different sets which we mentioned at the footnote of each
table. For example in Table 2, the instance chosen is P = 80, n = 20, V = 17, d = 20. We have
separated the tables of results into four columns. In each column we give respectively the results
of the natural formulation AGG, of the extended formulations Both and DM, of the cutting plane
algorithm in order to add cover cuts (Mix, L-Mix, L-Flow or L-Int) and finally of the cutting
plane algorithm which calls all L-Mix, L-Flow and L-Int cover cuts (All-Cover).

For different test results we observe the following points:

• The LP bound of L-Mix is better than that of Mix.

Most of the time, L-Mix takes less time, generates less cuts and is closer to the optimal
solution than Mix. One of the few counterexample we found is for the set [P = 40, n = 20,
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V = 12, d = 30], where Mix explores less nodes and runs in less time than L-Mix. Thus, in
Tables 4, 5, 6 and 7, test results for Mix are not given.

Compared to AGG, in most cases, L-Mix is very efficient (see Tables 2 to 12) while Mix
and L-Flow can be worse than AGG in terms of the execution time, the total nodes or the
final gap (see for instance Tables 2, 3 and 12). For low and high demands, L-Mix is more
efficient than for the case where demand does not vary with time and is in average half of
the capacity. For some scarce instances (i.e. Table 12), L-Mix solves to the optimum at the
root node.

AGG Both DM Mix L-Mix L-Flow L-Int All-Cover
LP 12400 14050 14050 12400 12400 12400 12400 12400
SEP - - - 12558 12691 13980 12477 14050

OPT/gap 14081 14081 14081 0.14% 14081 14081 14081 14081
cuts - - - 167 129 70 54 81,65,172

time 207s 11s 125s > 300s 46s 202s 100s 2.5s
nodes 643616 6109 3595 377784 66942 527532 230770 1226

X-AGG X-Both X-DM X-Mix X-L-Mix X-L-Flow X-L-Int X-All-Cover
LP 12481 14050 14050 12481 12481 12481 12481 12481
SEP - - - 12681 12691 13980 12501 14064

OPT/gap 14081 14081 14081 14081 14081 14081 14081 14081
cuts - - - 23 26 28 1 37,19,77

time 88s 10s 190s 100s 20s 139s 86s ' 0s
nodes 384542 4361 4990 338365 49821 379738 318688 406

Table 2: P = 80, n = 20, V = 17, d = 20, objective function F1

• The LP bound after the addition of L-Flow is significantly improved.

For low demand, the LP value is increased by L-Flow but the total time can also be increased
(see Tables 2, 3, 9, etc.). The improvement depends strongly on the cost repartition. In
Tables 6 and 7, surprisingly L-Flow decreases the initial gap between the value of the LP
relaxation and the best integer value but this time it takes more time and explores more
nodes than all the other methods. Except L-Flow, all the other methods are very efficient
for this cost configuration F3 in which the setup cost is very high compared to the other
components.

• The increase on the LP value by the addition of L-Int is small but for the instances where
P mod V = 0, the LP value obtained is close to that obtained by L-Mix (see Tables 3, 9
and 12).

• Most of the time, the LP value given by All-Cover, Both and DM are identical. For some
instances, the LP value of All-Cover is even better then that of Both and DM (see Tables 8,
10 and 11).

Surprisingly, the addition of all the lifted flow cover inequalities (L-Flow, L-Int and L-
Mix) has the same effect than the addition of DM or Both into the formulation. For the
sets tested, where DM and Both solve the problem to the optimum at the root node, the
addition of All-Cover gives also the optimum on the root node (see Tables 3, 9, 12). For
P mod V = 0, the linear relaxation of DM and Both gives the optimal solution. However
when P mod V 6= 0, DM and Both sometimes can not give directly the optimal solution
on the root node. For this case, DM can take more time than L-Mix and All-Cover with a
worse final gap (see Tables 2, 8, 10 and 11).
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AGG Both DM Mix L-Mix L-Flow L-Int All-Cover
LP 12400 14170 14170 12400 12400 12400 12400 12400
SEP - - - 12431 12979 13980 12970 14170

OPT/gap 14170 14170 14170 1.13% 14170 1.21% 14170 14170
cuts - - - 41 51 42 44 46,39,43

time 171s ' 0s 2s > 300s 4s > 300s 4s ' 0s
nodes 798349 1 3 752838 10608 644631 13362 1

X-AGG X-Both X-DM X-Mix X-L-Mix X-L-Flow X-L-Int X-All-Cover
LP 12431 14170 14170 12431 12431 12431 12431 12431
SEP - - - 12431 12989 13980 12989 14170

OPT/gap 1.13% 14170 14170 1.13% 14170 0.13% 14170 14170
cuts - - - 6 7 26 3 29,15,23

time > 300s ' 0s 1.5s > 300s 11s > 300s 11.5s ' 0s
nodes 650799 1 1 663766 36678 681408 36591 1

Table 3: P = 80, n = 20, V = 20, d = 20, objective function F1

AGG Both DM L-Mix L-Flow L-Int All-Cover
LP 24014 24431 24431 24014 24014 24014 24014
SEP - - - 24021 24019 24426 24431

OPT/gap 1.71% 24431 24431 1.71% 1.71% 24431 24431
cuts - - - 204 80 64 103,72,200

time > 300s 1s 6s > 300s > 300s 23s 1s
nodes 902413 663 317 376461 720335 56885 625

Table 4: P = 80, n = 20, V = 17, d = 20, objective function F2

• Concerning the running time of the All-Cover, DM and Both: DM explores always less
nodes in the time limits because of the big size of the formulation which implies more time
spent in each node. In most cases, Both takes less time than DM and there are less cases
where L-Mix can be better than Both in terms of the running time (see Tables 8, 10, etc.).
For almost all the sets tested, All-Cover is the most efficient of all the methods. Even for
P mod V 6= 0, the total time and the total number of nodes are decreased significantly
compared to the other methods.

AGG Both DM L-Mix L-Flow L-Int All-Cover
LP 41156 41861 41861 41156 41156 41156 41156
SEP - - - 41857 41161 41857 41861

OPT/gap 1.70% 41861 41861 41861 1.70% 41861 41861
cuts - - - 70 58 42 58,42,55

time > 300s ' 0s 1s 41s > 300s 30s ' 0s
nodes 949567 25 3 90295 842711 96057 3

Table 5: P = 80, n = 20, V = 20, d = 20, objective function F2

• The addition of different cover type inequalities is most of the time quite advantageous for
each objective function tested.

For the different objective function coefficient tested (apart from F1, F2 and F3, we also
performed tests with different objective functions, under different capacity and demand
configurations), with the addition of cover type cuts, we always observe an improvement
of the LP value, of the total number of nodes and of the total time, compared to the non-
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addition of these cuts. One of the few counterexample is given in Table 6. The improvement
depends strongly on the cost distribution.

For the objective function F2, the addition of L-Int decreases very significantly the initial
gap between the value of the LP relaxation and the best integer value (from 1.7% to 0.2%).
The total time and the number of nodes also decrease (see Tables 4 and 5). All-Cover is
again very efficient compared to the other methods.

AGG Both DM L-Mix L-Flow L-Int All-Cover
LP 5531 6521 6521 5531 5531 5531 5531
SEP - - - 5542 6518 5533 6521

OPT/gap 6521 6521 6521 6521 6521 6521 6521
cuts - - - 107 70 53 76,58,154

time 145s ' 0s 6s 18s 243s 34s ' 0s
nodes 544129 238 75 30984 587348 94486 21

Table 6: P = 80, n = 20, V = 17, d = 20, objective function F3

• In most cases, Xpress cuts decrease the total time of the formulation. For some instances,
this strategy can also increase the execution time, the final gap and the number of total
nodes (see Table 3).

AGG Both DM L-Mix L-Flow L-Int All-Cover
LP 5513 6506 6506 5513 5513 5513 5513
SEP - - - 5756 6501 5756 6506

OPT/gap 6506 6506 6506 6506 6506 6506 6506
cuts - - - 91 78 52 105,53,104

time 126s ' 0s 3s 9s 268s 5s ' 0s
nodes 790093 1 3 18763 783298 13107 11

Table 7: P = 80, n = 20, V = 20, d = 20, objective function F3

• One can not generalize the influence of the value of smax(l) on the running time.

In the cutting plane algorithm, when smax(l) is increased from 0 to the positive values (we
tested until smax(l) = 50), again it is difficult to generalize the influence of the parameters.
For the set chosen in Table 2, when smax(l) = 50, the total number of nodes decreases from
66942 to 39675 and the total time from 46s to 33s. 13 more cuts are generated. However,
for the set [P = 40, n = 20, V = 12, d = 30], the total time increased from 75s to 170s, and
the number of nodes explored from 63872 to 74380. 106 more cuts are generated for this
case.

• For some sets tested we observe that, when the separation algorithm is called in each node
instead of only top node, the number of nodes explored in the limited time decreases but
the final gap increases. For larger instances (i.e. n=40), the LP time of DM increases. The
final gap increases for each formulation. The similar remark above can be made for the
larger sets.

7 Conclusions

We identified a new class of valid inequalities for a special case of the lot sizing problem, that
we called mixed flow cover inequalities. A single-item is produced with a limited capacity, and
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AGG Both DM Mix L-Mix L-Flow L-Int All-Cover
LP 24895 26481 26486 24895 24895 24895 24895 24895
SEP - - - 25245 25493 26375 25001 26497

OPT/gap 4.34% 0.60% 0.64% 3.77% 0.48% 0.45% 4.63% 0.32%
cuts - - - 206 161 126 100 149,117,404

time > 300s > 300s > 300s > 300s > 300s > 300s > 300s > 300s
nodes 609389 343735 24130 254340 557253 554455 619376 131424

X-AGG X-Both X-DM X-Mix X-Lift X-L-Flow X-L-Int X-All-Cover
LP 25081 26481 26486 25081 25081 25081 25081 25081
SEP - - - 25409 25493 26389 25082 26543

OPT/gap 0.11% 0.11% 0.64% 0.11% 0.64% 0.11% 0.11% 0.11%
cuts - - - 87 40 45 7 54,20,203

time > 300s > 300s > 300s > 300s > 300s > 300s > 300s > 300s
nodes 1202272 394473 26675 779255 903474 737250 1177293 796405

Table 8: P = 80, n = 20, V = 17, d = 40

AGG Both DM Mix L-Mix L-Flow L-Int All-Cover
LP 24895 26515 26515 24895 24895 24895 24895 24895
SEP - - - 24906 25326 26375 25315 26515

OPT/gap 0.49% 26515 26515 0.49% 26515 0.49% 26515 26515
cuts - - - 105 97 76 51 74,45,72

time > 300s ' 0s 1.5s > 300s 30s > 300s 20s ' 0s
nodes 1199538 1 1 893000 56163 448135 46406 1

X-AGG X-Both X-DM X-Mix X-Lift X-L-Flow X-L-Int X-All-Cover
LP 24906 26515 26515 24906 24906 24906 24906 24906
SEP - - - 24906 25326 26375 25326 26515

OPT/gap 0.49% 26515 26515 0.49% 26515 0.49% 26515 26515
cuts - - - 17 27 27 12 45,17,43

time > 300s ' 0s 1.5s > 300s 25s > 300s 37s ' 0s
nodes 1092156 1 1 1015020 56129 740036 74267 3

Table 9: P = 80, n = 20, V = 20, d = 40

for each batch produced, a fixed cost is paid in addition to the setup cost per production period.
This new class is derived from the integer flow cover inequalities which have been first proposed
for the single node flow set which is a generalization of the set Xmix we study. For Xmix, we
provided also the flow and integer flow cover inequalities and different extended formulations we
found in the literature. These extended formulations are proposed for Xmix itself or for its valid
relaxations. We proposed a separation algorithm for the cover type cuts, which runs in polynomial
time when the capacities are constant. For Xmix, this new class of valid inequalities is shown
to be more effective than the flow cover and the integer flow cover inequalities. The insertion
of the extended formulations based on the divisible mixing set and on the mixing set are very
efficient when the vehicle capacity divides the production capacity. Their linear relaxation gives
the optimal solution in this case. Otherwise they can take more time than the violated mixed flow
cuts added to the root node. Surprisingly, for the sets tested until now, the addition of all the
violated cover type inequalties (lifted flow, integer and mixed flow cover), the total time and the
total number of nodes decreased significantly. For the case where the vehicle capacity divides the
production capacity, we obtain the optimum at the root node after the addition of all cover type
inequalities, as the extended formulations do. Even for the more general case where the vehicle
capacity does not divide the production capacity, we obtain very good results compared to other
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AGG Both DM Mix L-Mix L-Flow L-Int All-Cover
LP 38415 39239 39286 38415 38415 38415 38415 38415
SEP - - - 40002 40037 39135 38558 40117

OPT/gap 42440 42440 2.76% 42440 42440 42440 42440 42440
cuts - - - 190 157 42 53 44,53,210

time 67s 70s > 300s 7s 3.8s 66s 50s 3s
nodes 130428 70687 29185 3499 3010 124973 80234 1227

X-AGG X-Both X-DM X-Mix X-Lift X-L-Flow X-L-Int X-All-Cover
LP 42046 40009 42130 42046 42046 42046 42046 42046
SEP - - - 42046 42046 42046 42130 42130

OPT/gap 42440 42440 42440 42440 42440 42440 42440 42440
cuts - - - 3 3 0 16 0,16,3
time ' 0s 2.5s 9s ' 0s ' 0s ' 0s ' 0s ' 0s
nodes 333 2321 506 323 323 333 284 284

Table 10: P = 80, n = 20, V = 70, d = 60

AGG Both DM Mix L-Mix L-Flow L-Int All-Cover
LP 24895 26736 26736 24895 24895 24895 24895 24895
SEP - - - 26802 26698 26386 25256 26875

OPT/gap 4.50% 4.41% 5.71% 2.75% 2.19% 2.72% 4.77% 3.83%
cuts - - - 356 170 66 58 80,86,1726

time > 300s > 300s > 300s > 300s > 300s > 300s > 300s > 300s
nodes 659350 300315 24202 105330 295192 560897 653341 14995

X-AGG X-Both X-DM X-Mix X-Lift X-L-Flow X-L-Int X-All-Cover
LP 27218 26736 26736 27218 27218 27218 27218 27218
SEP - - - 27218 27218 27218 27423 27423

OPT/gap 28336 2.65% 4.96% 28336 28336 28336 28336 28336
cuts - - - 11 13 9 24 8,23,12

time 8s > 300s > 300s 11s 10s 9s 24s 25s
nodes 12207 253582 24733 19355 22620 18193 47443 56523

Table 11: P = 80, n = 20, V = 70, d = 40

methods, in terms of the total time, the final gap and the number of nodes. The efficiency of
each method depends on the cost repartition.

We established different cases where the cover inequalities and extended formulations are
and are not efficient. We performed many experiments to evaluate the performance of all the
optimization methods, comparing the total execution time, the total number of nodes explored
and the linear relaxation value at the top node. The parameters which influence these criteria
are found to be the coefficients of the objective function, the demand repartition and its closeness
to the production capacity, the vehicle capacities, the number of periods and the value of the
stock variable in the cutting plane. More investigation on the case where the production and
the vehicle capacities take time varying values deserves attention. Preliminary observations show
that in this case, with the addition of the mixed flow cover inequalities, a gain is possible in terms
of the total execution time and the final gap. A new separation algorithm has to be proposed for
the more general case, solving an NP-hard optimization problem.

Acknowledgement We are grateful to L.A. Wolsey for his careful reading of this paper.
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AGG Both DM Mix L-Mix L-Flow L-Int All-Cover
LP 18415 18556 18556 18415 18415 18415 18415 18415
SEP - - - 18436 18556 18516 18536 18556

OPT/gap 18556 18556 18556 18556 18556 18556 18556 18556
cuts - - - 17 10 10 6 10,6,9
time 3s ' 0s 0.5s 4s ' 0s 2s ' 0s ' 0s
nodes 11277 1 3 14351 1 7133 5 1

X-AGG X-Both X-DM X-Mix X-Lift X-L-Flow X-L-Int X-All-Cover
LP 18436 18556 18556 18436 18436 18436 18436 18436
SEP - - - 18436 18556 18516 18556 18556

OPT/gap 18556 18556 18556 18556 18556 18556 18556 18556
cuts - - - 7 5 4 3 4,3,4

time 4s ' 0s 0.7s 3.3s ' 0s 3.2s ' 0s ' 0s
nodes 14565 1 1 11257 1 8045 1 1

Table 12: P = 40, n = 20, V = 10, d = 30
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Appendix A

Proof for the trivial facets of Xmix

1. xi ≥ 0,∀i ∈ N

∀i ∈ N

{
xi ← 0 yi ← 0 zi ← 0 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 0 yi ← 1 zi ← 1 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 0 yi ← 1 zi ← dP

V e s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

The last point ;
{

xj ← 0 yj ← 0 zj ← 0 s← 1 ∀j ∈ N

2. yi ≤ zi,∀i ∈ N

∀i ∈ N

{
xi ← 0 yi ← 0 zi ← 0 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 0 yi ← 1 zi ← 1 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 1 yi ← 1 zi ← 1 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

The last point ;
{

xj ← 0 yj ← 0 zj ← 0 s← 1 ∀j ∈ N

3. zi ≤ dP
V eyi,∀i ∈ N

∀i ∈ N

{
xi ← 0 yi ← 0 zi ← 0 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 0 yi ← 1 zi ← dP

V e s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 1 yi ← 1 zi ← dP

V e s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

The last point ;
{

xj ← 0 yj ← 0 zj ← 0 s← 1 ∀j ∈ N

4. xi ≤ V zi,∀i ∈ N

∀i ∈ N

{
xi ← 0 yi ← 0 zi ← 0 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← P yi ← 1 zi ← dP

V e s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← V yi ← 1 zi ← 1 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

The last point ;
{

xj ← 0 yj ← 0 zj ← 0 s← 1 ∀j ∈ N

5. yi ≤ 1,∀i ∈ N

∀i ∈ N

{
xi ← 0 yi ← 1 zi ← 1 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 0 yi ← 1 zi ← dP

V e s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← 1 yi ← 1 zi ← 1 s← 0
xj ← P yj ← 1 zj ← dP

V e s← 0 ∀j ∈ N \ i

The last point ;
{

xj ← 0 yj ← 1 zj ← 1 s← 1 ∀j ∈ N
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6.
∑

i∈N xi ≤ b, for |Cp| < n
At least one of the variables can take 0 value and the others are saturated (n points are
obtainable in this manner). For the other n points, the 0 valued y and z variables can be
increased by one. For the last n points, the 0 valued y and z variables can be increased by
1 and dP

V e units respectively. For the final point, for any of these 3n points, the variable s
value can be increased by one unit.

• xi ≤ ayi + bzi,∀i ∈ N

∀i ∈ N

{
xi ← P yi ← 1 zi ← dP

V e s← 0
xj ← 0 yj ← 0 zj ← 0 s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← bP

V cV yi ← 1 zi ← bP
V c s← 0

xj ← 0 yj ← 0 zj ← 0 s← 0 ∀j ∈ N \ i

∀i ∈ N

{
xi ← bP

V cV yi ← 1 zi ← bP
V c s← 0

xj ← 0 yj ← 1 zj ← 1 s← 0 ∀j ∈ N \ i

The last point ;
{

xj ← 0 yj ← 0 zj ← 0 s← 1 ∀j ∈ N

Appendix B1

1. 3|Cv| linearly independent directions for the case n = |Cv|. Other assumptions are P mod
V = 0, b mod V 6= 0 and L = ∅. −→et is the unit vector ∀t ∈ {1, · · · , 3n + 1}. We denote by
−→et

′
= −−→en+t and by −→et

′′
= −−−→e2n+t. Xt, Yt, Zt and St describes the vectors.

Direction (F-S) First solution (F) Second solution (S)
∀t ∈ [2, |Cv|] ∀i ∈ [2, |Cv|] ∀i ∈ [1, |Cv|] \ t

Xt = λp−→et , Zt = ( P
V
− η)−→et

′′
xi = P, yi = 1, zi = P

V
, s = 0 xi = P, yi = 1, zi = P

V
, s = 0

X1 = −λp−→e1 , Z1 = (η − P
V

)−→e1
′′

x1 = P − λp, y1 = 1, z1 = η xt = P − λp, yt = 1, zt = η

∀i ∈ Cv \ t ∀i ∈ Cv \ t

∀t ∈ Cv Xt = (P − λp)−→et xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Yt = −→et
′
, Zt = η−→et

′′
xt = P − λp, yt = 1, zt = η xt = 0, yt = 0, zt = 0

if η > 1 ∀i ∈ Cv \ t ∀i ∈ Cv \ t

∀t ∈ Cv xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Xt = (V − λv)−→et , Zt = −→et
′′

xt = P − λp, yt = 1, zt = η xt = (η − 1)V, yt = 1, zt = η − 1

if η = 1 ∀i ∈ Cv \ t xj = P − V

∀t ∈ Cv, ∃j ∈ Cv \ t xi = P, yi = 1, zi = P
V

, s = 0 xt = V, yt = 1, zt = 1

Xt = −λv−→et , Zt = (η − 1)−→et
′′

xt = P − λp, yt = 1, zt = η ∀i ∈ Cv \ {t, j}
Xj = V−→ej , Zj = −→ej

′′
xi = P, yi = 1, zi = P

V
, s = 0

∀i ∈ Cv ∀i ∈ [2, |Cv|]
X1 = λp−→e1 , S = λp−−−→e3n+1 xi = P, yi = 1, zi = P

V
, s = λp xi = P, yi = 1, zi = P

V
, s = 0

Z1 = ( P
V
− η)−→e1

′′
x1 = P − λp, y1 = 1, z1 = η

Table 13: 3|Cv| linearly independent directions for the case n = |Cv|.

2. 3|Cv| linearly independent directions are given in Table 13. One has to find another 3(n−
|Cv|) direction to show that inequality (15) is still facet defining for n > |Cv|. In Table 14
we give only these additional 3(n− |Cv|) directions. The cover elements indices are ordered
in the interval [1, |Cv|]. The other assumptions remain the same.
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Direction (S-F) First solution (F) Second solution (S)
∀i ∈ [1, |Cv| − 1] ∀i ∈ [1, |Cv| − 1]

∀t ∈ N \ Cv xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Xt = (P − λp)−→et , Yt = −→et
′
, Zt = η−→et

′′
x|Cv| = P − λp, y|Cv| = 1, z|Cv| = η x|Cv| = 0, y|Cv| = 0, z|Cv| = 0

X|Cv| = (P − λp)−−→e|Cv| ∀j ∈ N \ Cv xt = P − λp, yt = 1, zt = η

Y|Cv| = −−→e|Cv|
′
, Z|Cv| = η−−→e|Cv|

′′
xj = 0, yj = 0, zj = 0 ∀j ∈ (N \ Cv) \ t,xj = yj = zj = 0

∀i ∈ [1, |Cv| − 1] ∀i ∈ [1, |Cv| − 1]

∀t ∈ (N \ Cv) xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Yt = −→et
′
, Zt = −→et

′′
x|Cv| = P − λp, y|Cv| = 1, z|Cv| = η x|Cv| = P − λp, y|Cv| = 1, z|Cv| = η

∀j ∈ (N \ Cv) xt = 0, yt = 1, zt = 1

xj = 0, yj = 0, zj = 0 ∀j ∈ (N \ Cv) \ t,xj = yj = zj = 0

∀i ∈ [1, |Cv| − 1] ∀i ∈ [1, |Cv| − 1]

∀t ∈ (N \ Cv) xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Zt = ( P
V
− 1)−→et

′′
x|Cv| = P − λp, y|Cv| = 1, z|Cv| = η x|Cv| = P − λp, y|Cv| = 1, z|Cv| = η

xt = 0, yt = 1, zt = 1 xt = 0, yt = 1, zt = P
V

∀j ∈ (N \ Cv) \ t,xj = yj = zj = 0 ∀j ∈ (N \ Cv) \ t,xj = yj = zj = 0

Table 14: 3(n− |Cv|) linearly independent directions for the case n = |Cv|.

3. See Table 15 for 3|L| linear directions.

Direction First solution Second solution
∀i ∈ [1, |Cv | − 1] ∀i ∈ [1, |Cv | − 1]

∀t ∈ L xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Xt = (P − λp)−→et , Yt = −→et
′
, Zt = η−→et

′′
x|Cv| = P − λp, y|Cv| = 1, z|Cv| = η x|Cv| = 0, y|Cv| = 0, z|Cv| = 0

X|Cv| = −(P − λp)−−−→e|Cv| ∀j ∈ [|Cv |+ 1, n] xt = P − λp, yt = 1, zt = η

Y|Cv| = −−−−→e|Cv|
′
, Z|Cv| = −η−−−→e|Cv|

′′
xj = 0, yj = 0, zj = 0 ∀j ∈ [|Cv |+ 1, n] \ t,xj = yj = zj = 0

∀i ∈ [1, |Cv | − 1] ∀i ∈ [1, |Cv | − 2]

∀t ∈ L xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Xt = P−→et , Yt = −→et
′
, Zt = P

V
−→et

′′
x|Cv| = y|Cv| = z|Cv| = 0 x|Cv|−1 = y|Cv|−1 = z|Cv|−1 = 0

X|Cv| = −P−−−→e|Cv|, Y|Cv| = −−−−→e|Cv|
′ ∀j ∈ [|Cv |+ 1, n] x|Cv| = y|Cv| = z|Cv| = 0

Z|Cv| = −P
V
−−−→e|Cv|

′′
xj = 0, yj = 0, zj = 0 xt = P, yt = 1, zt = P

V

∀j ∈ [|Cv |+ 1, n] \ t,xj = yj = zj = 0

if η > 1 ∀i ∈ [1, |Cv | − 1] ∀i ∈ [1, |Cv | − 1]

∀t ∈ L, Xt = (η − 1)V−→et xi = P, yi = 1, zi = P
V

, s = 0 xi = P, yi = 1, zi = P
V

, s = 0

Yt = −→et
′
, Zt = (η − 1)−→et

′′ ∀j ∈ [|Cv |, n] ∀j ∈ [|Cv |, n] \ t

xj = yj = zj = 0 xj = yj = zj = 0

xt = (η − 1)V, yt = 1, zt = η − 1

if η = 1 ∀i ∈ [1, |Cv | − 1] ∀i ∈ [1, |Cv | − 2]

∀t ∈ L Xt = V−→et , Yt = −→et
′
, Zt = −→et

′′
xi = P, yi = 1, zi = P

V
, s = 0 xi = P, yi = 1, zi = P

V
, s = 0

X|Cv|−1 = −V−−−−−→e|Cv|−1 ∀j ∈ [|Cv |, n] ∀j ∈ [|Cv |, n] \ t xj = yj = zj = 0

Z|Cv|−1 = −−−−−−→e|Cv|−1
′′

xj = yj = zj = 0 x|Cv|−1 = P − V, y|Cv|−1 = 1

z|Cv|−1 = dP−V
V

e
xt = V, yt = 1, zt = 1

Table 15: 3|L| linearly independent directions.
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Appendix C1

Some abbreviations are, T.F: trivial facets (see proposition 5), F.C: flow cover inequality, L.F.C:
lifted FC, I.C: integer flow cover inequality, L.I.C: lifted IC, M.C: mixed flow cover inequality,
L.M.C: lifted MC, Nmb: total number of inequalities. In the column Others, the number of
inequalities that could not be classified as cover inequality nor trivial facets is given.

b T.F. F.C. L.F.C. I.C. L.I.C. M.C L.M.C. Others Nmb.
≥ 27 15 - - - - - - - 15
26, 25 15 - - - - 1 - - 16

24 15 1 - - - - - - 16
23, 22 15 1 - - - 1 - - 17

21 15 1 - - - - - - 16
20, 19 15 1 - 1 - - - 3 20

18 15 1 - - - - - 3 19
17, 16 16 - - - 1 3 1 12 33

15 16 3 1 - - - - 3 23
14, 13 16 3 1 - 1 3 1 15 40

12 16 3 1 - - - - 3 23
11, 10 16 3 1 3 1 - - 18 45

9 16 - - - - - - 12 28
8, 7 16 - - - 4 3 - 66 89
6 16 3 - - - - - 9 28

5, 4 13 3 - - 4 3 - 12 35
≤ 3 13 3 - - - - - - 16

Table 16: Number of different facet defining inequalities for Xmix in the case where P mod V = 0:
complete list for each b value in Z+. (P = 9, V = 3, n = 3)

Appendix C2

b T.F. F.C. L.F.C. I.C. L.I.C. M.C L.M.C. Others Nmb.
≥ 27 18 - - - - - - - 18
26 18 1 - - - 1 - - 20
25 18 1 - - - - - 6 25
24 18 1 - - - - - 18 37
23 18 1 - - - - 1 22 42
22 18 1 - - - - 1 13 33
21 18 1 - - - - 1 12 32
20 18 1 - - - - - 31 50
17 19 3 1 - 1 - - 21 45
15 19 3 1 - 1 3 1 145 173
14 19 3 1 - 1 3 1 118 146
13 19 3 1 - 1 3 1 30 58
10 19 3 1 - 4 - - 130 157
8 16 3 - - - - - 9 28
≤ 4 16 - - - - - - - 16

Table 17: Number of different facet defining inequalities for Xmix in the case where P mod V 6= 0.
(P = 9, V = 4, n = 3)
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Appendix D

All facet defining inequalities for b = 14, P = 9, V = 3 are given below. |Cp| = 2, |Cv| = 2, λp =
4, λv = 1, η = 2.

• Trivial facet defining inequalities (16 in total);

– xi ≥ 0,∀i ∈ {1, . . . , 3}
– yi ≤ zi,∀i ∈ {1, . . . , 3}
– zi ≤ 3yi,∀i ∈ {1, . . . , 3}
– xi ≤ 3zi,∀i ∈ {1, . . . , 3}
– yi ≤ 1,∀i ∈ {1, . . . , 3}
–

∑
i∈{1,...,3} xi ≤ 14

• Flow cover inequalities;
x2 + x3 − 5y2 − 5y3 ≤ 4
x1 + x3 − 5y1 − 5y3 ≤ 4
x1 + x2 − 5y1 − 5y2 ≤ 4

• Lifted flow cover inequalities;
x1 + x2 + x3 − 5y1 − 5y2 − 5y3 ≤ 4

• Lifted integer flow cover inequalities;
x1 + x2 + x3 − 2z1 − 2z2 − 2z3 ≤ 4

• Mixed flow cover inequalities;
x2 + x3 − y2 − y3 − 2z2 − 2z3 ≤ 2
x1 + x3 − y1 − y3 − 2z1 − 2z3 ≤ 2
x1 + x2 − y1 − y2 − 2z1 − 2z2 ≤ 2

• Lifted mixed flow cover inequalities;
x1 + x2 + x3 − y1 − y2 − y3 − 2z1 − 2z2 − 2z3 ≤ 2

• Others
x1 + x2 + x3 − 2y1 + y2 + y3 − 2z1 − 3z2 − 3z3 ≤ 2
x1 + x2 + x3 + y1 − 2y2 + y3 − 3z1 − 2z2 − 3z3 ≤ 2
x1 + x2 + x3 + y1 + y2 − 2y3 − 3z1 − 3z2 − 2z3 ≤ 2
x1 + x2 + x3 − 5y1 − 5y2 − y3 − 2z3 ≤ 4
x1 + x2 + x3 − 5y1 − y2 − 5y3 − 2z2 ≤ 4
x1 + x2 + x3 − y1 − 5y2 − 5y3 − 2z1 ≤ 4
x1 + 3x2 + 3x3 − 5y1 − 3y2 − 3y3 − 6z2 − 6z3 ≤ 6
3x1 + x2 + 3x3 − 3y1 − 5y2 − 3y3 − 6z1 − 6z3 ≤ 6
3x1 + 3x2 + x3 − 3y1 − 3y2 − 5y3 − 6z1 − 6z2 ≤ 6
x1 + x2 + x3 − 2y1 − 2y2 + 2y3 − 2z3 ≤ 10
x1 + x2 + x3 − 2y1 + 2y2 − 2y3 − 2z2 ≤ 10
x1 + x2 + x3 + 2y1 − 2y2 − 2y3 − 2z1 ≤ 10
x1 + 3x2 + 3x3 − 2y1 − 6z2 − 6z3 ≤ 12
3x1 + x2 + 3x3 − 2y2 − 6z1 − 6z3 ≤ 12
3x1 + 3x2 + x3 − 2y3 − 6z1 − 6z2 ≤ 12
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Algorithm 4 Separation algorithm for the cover inequalities
Require: n, P, V, b and all values returned by Algorithm 2 and 3
Ensure: Violated inequalities flow, integer, mixed or no violation

IF(condition, a, b) returns a if condition is true, otherwise returns b.
for all k such that 1 ≤ k ≤ n do

for all l such that k ≤ l ≤ n do
Call Algorithm 3

{Violation of flow cover inequality }
violf ← cf +

∑
j∈Cp

f(tf(j)) +
∑

j∈N\Cp
IF (f(tf(j)) > 0, f(tf(j)), 0)

if (violf > b + s∗(l)) then
flow ← cf +

∑
j∈Cp

(xtf(j) − (P − λp)ytf(j)) +
∑

j∈N\Cp
IF (f(tf(j)) > 0, xtf(j) − (P −

λp)ytf(j), 0)
else

Return non violation of flow cover inequality
end if

{Violation of integer flow cover inequality }
violi← ci +

∑
j∈Cv

I(ti(j)) +
∑

j∈N\Cv
IF (I(ti(j)) > 0, I(ti(j)), 0)

if (violi > b + s∗(l)) then
integer ← ci +

∑
j∈Cv

(xti(j) − (V − λv)zti(j)) +
∑

j∈N\Cv
IF (I(ti(j)) > 0, xti(j) − (V −

λv)zti(j), 0)
else

Return non violation of integer flow cover inequality
end if

{Violation of mixed flow cover inequality}
violm← cm +

∑
j∈Cv∪S m(tm(j)) +

∑
j∈N\(Cv∪S) IF (m(tm(j)) > 0,m(tm(j)), 0)

if (violm > b + s∗(l)) then
mixed← cm+

∑
j∈Cv∪S(xtm(j)−(V −λv)ztm(j)−αytm(j))+

∑
j∈N\(Cv∪S) IF (m(tm(j)) >

0, xtm(j) − (V − λv)ztm(j) − αytm(j), 0)
else

Return non violation of mixed flow cover inequality
end if

end for
end for
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