
2008/74 
 
 
■ 

 
 

Technological breakthroughs and asset replacement 
 
 

Yuri Yatsenko and Natali Hritonenko 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CORE 
Voie du Roman Pays 34 
B-1348 Louvain-la-Neuve, Belgium. 
Tel (32 10) 47 43 04 
Fax (32 10) 47 43 01 
E-mail: corestat-library@uclouvain.be 
http://www.uclouvain.be/en-44508.html 



CORE DISCUSSION PAPER   
2008/74 

 
Technological breakthroughs and asset replacement 

 
Yuri YATSENKO 1 and Natali HRITONENKO2  

 
 

December 2008 
 

Abstract 
 

The authors analyze the optimal replacement of assets under continuous and discontinuous 
technological change. They investigate the variable lifetime of assets in an infinite-horizon 
replacement problem. Due to deterioration, the maintenance cost increases when the asset 
becomes older.  Because of technological change, both maintenance and new capital costs 
decrease for a fixed asset age. The dynamics of the optimal lifetime is investigated 
analytically and numerically under technological change in the cases of one and several 
technological breakthroughs. It is shown that the breakthroughs cause irregularities 
(anticipation echoes) in the asset lifetime before the breakthrough time. 

 
 
Keywords: asset replacement, technological change, optimal lifetime, anticipation echoes. 

JEL Classification: C61, L23, O14, O33 

                                                           
1 Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium; Houston Baptist 
University, Houston TX 77074, USA. E-mail: yyatsenko@hbu.edu 
2 Prairie View A&M University, USA. E-mail: nahritonenko@pvamu.edu 
 
The authors are grateful to Raouf Boucekkine for valuable remarks that essentially improved the paper 
motivation. The work of Yuri Yatsenko is supported in part by CORE. 

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction 
initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific 
responsibility is assumed by the authors. 



 



 1 

 

1    Introduction 

The paper analyzes the impact of discontinuous technological change (TC) on the optimal 

replacement of assets (capital equipment, machines) in a framework traditional for Operations 

Research (OR). The TC is understood in OR as an exogenous decrease of the operating and 

maintenance costs of possible replacement assets (challengers). It is usually described as: 

� continuous TC as a continuous improvement in the newer vintages of equipment (Grinyer 

1973; Sethi and Chand 1979; Bean et al 1994; Regnier et al 2004; Hritonenko and 

Yatsenko, 1996b, 2005)   or  

� discontinuous TC in the form of instantaneous changes in the technological parameters of 

assets (Rogers and Hartman 2005; Hopp and Nair 1991; Rajagopalan et al 1998). 

The optimal asset replacement under the continuous TC has been intensively analyzed in the OR 

literature, see (Grinyer 1973; Bean et al 1994; Hartman 2000; Regnier et al 2004; Hritonenko and 

Yatsenko 2007, 2008b, 2008c; Sethi and Chand 1979; Yatsenko and Hritonenko 2008) and the 

references therein. The case of the discontinuous TC is less explored. At the same time, there is 

economic evidence that both TC types are present in economic and engineering reality (Goolsbee 

1998; Rogers and Hartman 2005). 

       Two fundamental categories of the OR equipment replacement models are:  

� serial replacement of a single asset (machine),  

� and parallel replacement of many dependent assets that operate in parallel.  

The majority of research on the equipment replacement under TC (e.g., Bethuyne 1998, Regnier 

et al 2004, Rogers and Hartman 2005) considers the serial replacement (of a single machine). 

Also, the TC technological breakthroughs supposedly affect the levels of exogenous 

technological parameters (Rogers and Hartman 2005, Hartman and Rogers 2006).  
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       This paper is inspired by Rogers and Hartman (2005) who numerically analyzed the joint 

impact of the continuous TC and periodic technological breakthroughs on the constant asset 

lifetime in a serial replacement model. They showed that the optimal lifetime of assets is always 

smaller under more intensive continuous TC and is usually smaller under more intensive 

discontinuous TC (with some exceptions). Following the above mainstream of OR replacement 

models, the present paper assumes: 

� a single asset, 

� jumps in the level of technological parameters (rather than their rates). 

While mostly focusing of the study of a single breakthrough, we also consider the case of several 

successive breakthroughs to address the periodic breakthroughs of Rogers and Hartman (2005) 

and non-periodic breakthroughs in Hartman and Rogers (2006). 

 

       The new contribution of the paper to the OR replacement literature is the variable asset 

lifetime, a general continuous TC as decreasing capital and maintenance costs, and a general 

discontinuous TC as in the form of several non-periodic technological breakthroughs. As shown 

by Hritonenko and Yatsenko (1996a, 2005, 2007, 2008b) and Regnier et al (2004), the optimal 

lifetime of assets can be variable even under the continuous exponential TC. Obviously, it is true 

for the discontinuous TC.  

 

       In general, the issue of technological replacement under breakthroughs goes much beyond 

the OR literature. More theoretical papers on this issue consider technological breakthroughs as 

radical innovations caused by the substitution of one general-purpose technology for another. 

Starting with Bresnahan and Trajtenberg (1995), such breakthroughs explain economy-wide 

structural changes. The steam engine, gasoline engine, electric power, semiconductors were the 

examples of such general-purpose (enabling) technologies. As Aures (2005) argues, the radical 

innovations are necessary for continued long-term economic growth. Many economic papers 
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interpret and analyze the more recent IT revolution as a major breakthrough as well (Greenwood 

and Yorukoglu 1997, Boucekkine and de la Croix 2003).  

 

       Returning to the scope of this paper, radical innovations obviously affect the rational decision 

on replacing or upgrading related capital. From this viewpoint, the single machine used in this 

paper can be considered as a metaphor for the general problem of replacing the old technology at 

the dawn of a new general purpose technology. However, such a macroeconomic interpretation 

raises new issues to take into consideration. In particular, the considered below breakthrough 

shocks in level do not cover all cases observed in reality. Shocks in the TC growth rates seem to 

be more important and are observed in the ICT literature (Greenwood and Yorukoglu, 1997, for 

example).  

       To fully address the macroeconomic link between technological breakthroughs and optimal 

capital replacement, we need to employ vintage capital models of economic growth theory 

(Boucekkine et al 1997, 1999, 2008; Boucekkine and de la Croix 2003; Hritonenko and Yatsenko 

1996b, 2005, 2008a; Yorukoglu 1998). Such analysis is the subject of a forthcoming paper of the 

authors.  

The present paper is organized in the following manner. The next section introduces a 

replacement model for a single asset with variable lifetime over the infinite horizon. Section 3 

exposes preliminary analytic results such as an extremum condition and properties of the optimal 

lifetime under continuous TC. Section 4 investigates the model under discontinuous TC with one 

and several breakthroughs analytically and numerically on an industrial data sample about car 

replacement. It demonstrates how the variable optimal lifetime of this single asset is impacted by 

technological breakthroughs. The obtained results are new in the OR asset replacement theory. 

Section 5 concludes. 
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2  Model of Serial Asset Replacement under TC 

Let us suppose that a production shop (plant, enterprise) keeps one asset (machine) of a certain 

type. The shop periodically sells the old asset and buys a new replacement asset. We consider this 

replacement process in continuous time t using the following notations:  

• t0=0: the starting point of planning horizon;  

• τ0 ≤0: the given (initial) purchase time of the asset (0th replacement time);  

• τk,    k=1,2,…: the unknown time of the k-th replacement; 

• Lk,    k=1,2,…:  the unknown lifetime of the k-th replaced asset,  Lk = τk − τk-1,     

• p(t), t∈[0,∞): the capital cost (purchase price & installation cost) of an asset bought at time t; 

• q(t,u), t∈[τ0,∞), u∈[0,∞): the operating and maintenance (O&M) cost at the time u for the 

asset bought at time t, u≥t;  

• r, r>0: the instantaneous discount rate.  

       Because of deterioration, the O&M cost q(t,u) increases in u at a fixed t when the asset age 

u− t increases (the asset becomes older). At this point, we make a general TC assumption that p(t) 

and q(t,u) decrease in t for any fixed asset age u− t (newer assets are less expensive and require 

less maintenance). More specific TC assumptions will be considered in Sections 5 and 6.  

       The replacement policy is the set π ={ τi, i=1,2,…} of the sequential replacement times τi.       

The present value of the total cost of the replacement policy over the infinite horizon [0,∞) can be 

expressed as  
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 (see Hritonenko and Yatsenko 2008b, 2008c; Grinyer 1973; Regnier et al. 2004; Rogers and 

Hartman 2005). The first sum in (1) is the discounted total capital cost and the second sum is the 



 5 

discounted total O&M cost3. We formulate the replacement problem as finding the optimal policy 

π*={τi
*, i=1,2,…} that minimizes the replacement cost (1): 

                                                      )(min *)(
,...,1,

ππ
τ
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3  Preliminary Results  

In the section, we summarize some theoretical results essential for the further analysis. No 

proofs are provided, since this optimal program has been investigated in (Yatsenko and 

Hritonenko 2008b, 2008c).  

       Theorem  1 (necessary condition for an extremum). If an optimal policy π *={ τi
*, i=1,2,…} 

exists, then every component τi 
*, 0<τi

 *<∞, satisfies the condition  

                                          ∂J/∂τi  = 0,        i=1,2,…,                                                        (3) 
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is the partial derivative of function (1) in τi. 

       In the case q(t,u)=const, p(t)=const with no TC and deterioration, ∂J/∂τ1<0 by (4) and the 

optimal policy is trivial: τ1
* = ∞ (no replacement).  

        A continuous equation for the optimal replacement times.  By Theorem 1, the optimal set 

{ τi
*, i=1,2,…} for a given initial replacement time τ0 (if it exists) should satisfy the equality 
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3 Expression (1) omits possible salvage values. A possible impact of salvage values in the model (1) with 
continuous TC is discussed in (Hritonenko and Yatsenko 2008b, 2008c). 
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for all i=1,2,… . To investigate the replacement process in continuous time for any generic τ0, 

let us assume that the current time t is a replacement time τi
* and consider the previous 

replacement time R(t)=τi-1 (of the asset replaced at time t=τi ) as a function of t.  By (5), the 

unknown function R(t) satisfies the nonlinear equation    

          0
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where the inverse function R −1(t) of R(t) corresponds to the replacement time τi+1 of the asset 

purchased at t.        

        Theorem 2 (Yatsenko and Hritonenko 2008b). If an optimal policy π *={τi
*, i=1,2,…} exists 

and the nonlinear integral equation (6) has a unique solution R(t), t∈[0,∞), then  

                                     τi−1
* = R(τi

*),      i = 2,3,… .                                                      (7) 

       The policy π uniquely determines the set {Li, i=1,2,…,} of the lifetimes Li of sequentially 

replaced assets. By Theorem 2, the optimal lifetime Li 
*=τi

*−τi-1
* of the asset replaced at time 

t=τi is equal to L(t) = t−R(t), hence by (7) 

                                   Li
*=L(τi

*)        at           τi
*

 = τi-1
*

 + Li
*,          i=1,2,….                 (8) 

So, if we know a solution to the nonlinear equation (6), we can find the optimal asset lives Li
*, 

i=1,2,…, for any initial replacement time τ0<0. Similar equations have been analytically and 

numerically studied for different smooth functions p and q by Hritonenko and Yatsenko (1996a,  

2008b), Yatsenko and Hritonenko (2005). Here we assume the exponential TC and deterioration:  

     q(t,u)= q~ (t,u)= q0
)( tucde − tcqe− ,   p(t)= )(~ tp =p0

tcpe− ,   cq+cd>0, cp+cd≥0.           (9) 

The TC rate in the capital and O&M costs can be different in (9): cp≠cq. These costs can increase 

(cp<0 or cq<0) but slower than the deterioration rate cd. Usually, both costs decrease: cp>0 and 

cq>0. We will refer to the case of equal rates cq=cp as the proportional TC.  
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       The properties of equation (6) allow us to analyze the dynamics of the variable optimal asset 

lifetime Li
*
 in the serial replacement model (1)-(2) under exponential TC and deterioration (9).  

 

       Theorem  3 (Yatsenko and Hritonenko 2008b). Under (9), the optimization problem (1)-(2) 

possesses a unique optimal policy { Li
*, i=1,2,…} such that:  

(a) If cq =cp, then Li
*= L*, i=1,2,…, where the constant L*>0 is uniquely determined from 

the non-linear equation 

                          r
Lcc dqe )( + + (cq+cd)

rLe−  = (r+cq+cd)[1+rp0/q0]                                   (10)    

and, L* ≈ [2p0/(q0(cq+cd))]  1/2   at small cq+cd  and r .                                                          

(b) If  cp  > cq,  then Li+1
* < Li

*, i=1,2,…,  and Li
* strives to 0 as i→∞.  

(c) If  −cd < cp < cq,  then Li+1
* > Li

*, i=1,2,…, and  Li+1
* ≅  Li

*(cq+cd)/(cp+cd) as k→∞. 

        Theorem 3 leads to the following qualitative conclusions (Yatsenko and Hritonenko 2008b): 

• In the case of the proportional TC, cq=cp=c, the optimal asset lifetime is constant: Li
* = L*, 

i=1,2,…. The optimal lifetime L*  is shorter when the proportional TC is more intense (when 

c is larger). 

• If the O&M cost q(t,u) decreases in t at the fixed age u-t slower than the capital cost p(t), 

then the optimal lifetime decreases, Li
*>Li+1

*, i=1,2,… (and converse).  

• For the same O&M cost rate cq, the optimal lifetime Li
* is shorter when the capital cost rate 

cp is larger (i.e., when the TC in capital cost is more intense). 

• For the same capital cost rate cp, the optimal lifetime Li
* is longer when the O&M cost rate cq 

is larger (i.e., when the TC in O&M cost is more intense). 
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4  Optimal Asset Lifetime under Discontinuous TC 

The discontinuous TC is understood as an instantaneous change in technological parameters 

due to the introduction of a new breakthrough vintage (model) of machines (Hopp and Nair 1991; 

Bean et al. 1994; Rajagopalan et al. 1998; Rogers and Hartman 2005). Rogers and Hartman 

(2005) consider the case of periodic breakthroughs in the maintenance cost at the presence of 

continuous TC. Other authors assume their stochastic appearance (stochastic times or sizes) 

(Hopp and Nair 1991; Rajagopalan et al. 1998).  

In model (1), the dynamics of the variable optimal asset lifetime under discontinuous TC 

requires solving the nonlinear equation (6) for non-smooth functions p and q. To do that, we will 

combine analytic investigation and numeric simulation.  

 To analyze model (1) on real replacement data, the authors have developed numeric 

algorithm and software for solving equation (6).  The algorithm is based on the rolling horizon 

idea and assumes that the trend of the continuous TC remains the same in some future 

(Hritonenko and Yatsenko 2008d). It is implemented in MS Excel/VBA and is provided to all 

interested readers at request. The dataset for numeric simulation is taken from a discrete model 

(Regnier et al, 2004) used to simulate the optimal car replacement on automotive industry data for 

1985-1998. We employed this data for the analysis of the continuous model (1) in (Yatsenko and 

Hritonenko 2008b). The basic dataset in model (1), (9) is  

                          cp=0,     cq=0.05,     cd=1.34,        r=0.14.                                            (11) 

At (11), the optimal lifetime is approximately constant and found from the nonlinear equation 

(10) as L*≈10.5 years (Yatsenko and Hritonenko 2008b).         

We assume that the TC breakthroughs can appear at given instants on the background of the 

continuous exponential TC and deterioration (9). The breakthroughs will normally impact both 

TC parameters p(t) and q(t,u). To understand the dynamics, we start with the simplest case of one 

breakthrough. 
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4.1  Case of one technological breakthrough in capital cost 

Let us assume that q is exponential (9) and the discontinuous TC causes the discontinuity in 

the capital cost p(t) at instant t1: 
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Equation (13) represents a recurrent relation between the optimal R(t) and its inverse R-1(t). In 

(Yatsenko and Hritonenko 2005), it is treated as a nonlinear delay equation with respect to the 

unknown function R(t), t∈[0,∞). Namely, if we know R(t) (or its approximation) starting some 

instant τf, on [τf, R
-1(τf)] or a longer interval, the we can solve (14) sequentially from right to left 

and obtain R(t) at t∈[τ0, τf). In the case (12) with a jump in p(t) at t=t1,  
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where δ(t) is the Dirac delta-function. Substituting (12) and (15) into (13), we obtain the exact 

recurrent formula  

                       R(t) = (cq +cd)
−1[ lnq0 − ln(F(t, R−1(t), p (t), p’(t))) ]                            (16) 
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for the (13) solution R. Formula (16) worked well in (Hritonenko and Yatsenko, 2008b) in the 

case (9) of continuous p and q. Now, (16) produces a continuous optimal R(t) on the interval 

(t1,∞) right to the jump. However, by (15), the function F(t, R-1(t), p(t), p’(t)) includes the delta-

function δ(t-t1). Correspondingly, the unknown optimal R(t) also includes δ(t-t1) and R(t1)=−∞.  

So, the solution R(t) of our unconstrained optimization problem (1),(2) in case (15) includes a 

jump to −∞ at time t1, which is not feasible from both theoretical and practical viewpoints. In 

practice, the optimal R(t) recommends the use of a very old machine at t=t1 for a negligibly short 

period of time. The theoretical problem is that R(t) is not monotonic at t=t1, hence, the unique 

inverse R-1(t) does not exist at t<R(t1) and R(t) cannot be constructed by (16) at t<R(t1). Hence, the 

replacement problem (1),(2) has no solution in the jump case (15). We would like to emphasize 

that this situation is specific only for technological breakthroughs.  

To correct the situation and use equation (14) for simulating optimal replacement policies in the 

presence of TC jumps, we have to impose an additional constraint on the replacement problem 

(1),(2) in the jump case (15). A natural idea is to keep the regeneration time R(t) monotonic (non-

decreasing). Technically, it means solving equation (14) with restriction R’(t)≥0.   

Let introduce the smoothened monotonic replacement trajectory R̂ (t), t∈[0,∞). The 

function R̂ (t) is obtained by removing the jump to -∞ in a neighborhood of t1 from the trajectory 

R(t). Analytically, we replace the derivative p’(t) in (15) with its smoothened monotonic version  
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Then, the corresponding F(t, R-1(t), p(t), p̂ (t)) in (16) does not include the delta-function δ(t-t1) 

and the corresponding optimal R̂ (t), t∈[0,∞)  is monotonic4.  

        

                                                 
4 Another smoothing technique is required for parallel asset replacement models (Hritonenko and 
Yatsenko, 2003, 2005). 
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Optimal replacement at the TC jump in p (t )
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Figure 1. Optimal asset replacement in the case of the TC jump Bp=0.35 at t1=25 (and the TC rates 
cp=cq=0.05). The solid line corresponds to the previous replacement time R(t) and the dashed line is the 

inverse R−1(t). The gray lines describe the monotonic replacement time R̂ (t) and its inverse R̂ −1(t). 
 

To observe the actual dynamics of R(t) and R̂ (t), we provide a numeric simulation of equation 

(13). The parameters are Bp=0.35, t1=25, the initial τ1=0, the horizon length is T=60 years, the 

discretization step h=0.1, and the other parameters are as in (11). The solid line in Figure 1 

demonstrates the simulated solution R(t) of (13) and the dashed line shows the inverse R-1(t). As 

expected, the functions R(t) and R-1(t) are symmetric with respect to the (dotted) straight line y=t 

also shown in Figure 1. The behaviour of R(t) is similar to the one predicted by formula (16). 

Since the simulation is done with the finite discretization step, the delta function in (16) at t=t1 is 

replaced with the negative R(t) jump of a finite size because of numeric differentiation. The size 

of the jump essentially depends on the value of h (it →−∞ at h→0). So, in simulation, the TC 

jump (12) at t=t1 is compensated in (13) by the “approximate” delta-function in R(t) at t=t1. 
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The monotonic replacement trajectory R̂ (t) is indicated in Figure 1 with the gray line. 

Then, the left–hand side of equation (13) has a positive jump at t=t1 because it is not longer 

compensated by the delta-function in R(t1). Hence, the constructed R̂ (t) is not optimal at the 

moment t=t1. At t=t1, instead of bringing an older asset, the policy is to wait until a cheaper 

challenger becomes available.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The optimal asset replacement in the case of the TC jump in p(t) at t1. The solid line is the 

monotonic replacement time R̂ (t), the dashed line is the inverse R̂ -1(t), and the straight 45º line 

highlights the symmetry between them. The marked intervals are ∆1 =[α1, β1], β1= R̂ (t1), ∆2 =[α2, 

β2], ∆3 =[α3, β3], where the trajectory R̂ (t) is not optimal (see Theorem 5 below). 

 
Let us discuss the impact of our smoothing technique on the optimality of the solution to 

problem (1)-(2). The monotonic replacement trajectory R̂ (t) is depicted in Figure 2 in more 

 . 
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R̂ (t)  

 t1111 



 13 

details. By construction, R(t) at t=t1 determines its inverse R-1(t) at t=R(t1). The non-optimality of 

R̂ (t) at t=t1 leads to its non-optimality in the neighborhoods of the times R(t1), R(R(t1)), .., and 

so on, such that …<R(R(t1))< R(t1)< t1. Namely, by (14), the vertical segment [α1, β1] of R̂ (t) 

at t=t1 in Figure 2 produces a horizontal segment R̂ −1(t)≡t1 in R̂ −1(t) at t∈∆1=[α1, β1] such that 

the next replacement time is t1 for all t∈∆1. By (14), this segment causes the irregular part  

                      R̂ (t) = (cq +cd)
−1[ lnq0 − ln(F(t, t1, p (t), p̂ (t))]                             

in R̂ (t) at t∈∆1. If a replacement time τk
*∈∆1, then the next replacement time is τk+1=t1, which is 

not optimal. In turn, the irregular R̂ (t) on ∆1 leads to a perturbation in R̂ −1(t) and in R̂ (t) over 

the interval ∆2= R̂ (∆1). If the time t1 is large enough, such echoed perturbations appear (from 

right to left) at R̂ (t1), R̂ ( R̂ (t1)), R̂ ( R̂ ( R̂ (t1))),…, until ∆M+1<τ0 for some number M>0.  

       We will refer to such perturbations as the anticipation echoes because they appear before the 

jump time t1 in the anticipation of the future TC breakthrough at t1. The anticipation echoes 

disseminate from right to left, starting at the jump time. Such irregularities represent a common 

pattern in serial optimal replacement models (Hritonenko and Yatsenko 1996b, 2005, 2008a; 

Yatsenko and Hritonenko 2005). First three echoes ∆1, ∆2, ∆3 are shown in Figure 2. Thus, the 

constructed policy involves a finite set ∆  of intervals  

                                ∆  = {∆M, ,…, ∆2 , ∆1:   if τk
*∈∆l, then τk+l =t1 } .                          (18) 

The original policy π is impacted and becomes non-optimal if only if one of the replacement time 

τk  falls inside ∆. 

We summarize the above outcome with the following analytic conclusion that relates the 

constructed monotonic replacement trajectory R̂  to the optimal replacement policy π * .  
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        Theorem 4. In the case of discontinuous TC with jump (12), if a policy π *={τk
*, k=1,2,…} 

satisfies (7) and all the times τk
*, k=1,2,…, do not belong to the set (18) and do not coincide with 

the jump time t1, then π * is an optimal policy in the problem (1)-(2). 

Proof follows directly from (14)-(17). In this case, the above solution procedure produces a 

unique monotonic replacement trajectory R̂ (t) over [0,∞), shown in Figure 2. The functions (15) 

and (17) differ only at t=t1. Correspondingly, by (14) and (16), the smoothened recurrent 

trajectory R̂ (t) does not satisfy equation (13) only at t1 and on the intervals ∆1 , ∆2 ,…, ∆M. If no 

times τk
*, k=1,2,…, coincide with the time t1, then all the times τk

*, k=1,2,…, are optimal.  The 

theorem is proved.  

Thus, we give up the optimality during the anticipation echoes (18) preceding the jump time 

t1 and shown in Figure 2 to be able to produce an optimal replacement strategy over the infinite 

horizon [0,∞). The anticipation echoes deteriorate fast. In Figure 1, the first anticipation echo ∆1 

is visible at t≈15 years, the second echo ∆2 is barely visible at t≈6 years, and the third echo ∆3 is 

out of the graph range and is too smooth to see.  

To analyze the dependence of the replacement process on the TC intensity, we have solved 

equation (6) in case (9) for cq=0.05 and five different values cp=0.15, 0.1, 0.05, 0, −0.02. Figure 3 

displays the asset lifetime L(t)=t- R̂ (t) for different scenarios cp<cq, cp≠cq, and cp>cq. Several 

important effects are visible in Figure 3. Namely, the optimal lifetime of assets:  

• is variable in the general case,  

• decreases or increases depending on the sign of cp−cq,  

• monotonically increases in time immediately before the TC jump (anticipation effect);  

• produces quickly weakening replacement echoes during the regeneration periods 

preceding the TC jump (anticipation echoes).  

• is shorter for a larger capital cost rate at every point of the planning horizon.  
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Optimal lifetime at the TC jump in p (various TC rates) 
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Figure 3. The smoothened optimal asset lifetime in the case of the TC jump Bp=0.35 at t1=25, the 
O&M cost rate cq=0.05, and the different capital cost rates cp=0.15, 0.1, 0.05, 0, −0.02 (shown from 
top to bottom). 

 
 

       In the presence of technology jumps, more intensive TC in the capital cost requires more 

frequent replacements (the same holds for continuous TC by Theorem 3). When the optimal asset 

lifetime decreases, the echoes appear more frequently (see two lower curves in Figure 3).  

Let us focus on the third (solid) line in Figure 3 that corresponds to the case cp=cq=c=0.95 of 

the proportional TC. It appears that, under the jump (23), the lifetime permanently changes from 

the constant value Lb≈ 9.7 years before the jump to the constant La≈ 8.2 years after the jump.   

At the proportional TC with no technology jumps, the optimal lifetime is constant and known 

analytically by Theorem 3. We can prove an analytic result for the proportional TC with jumps. 

        Theorem 5. If cp=cq, the function p(t) has the jump (12) at t=t1, and all the replacement 

times τk
* do not belong to the set (18) and do not coincide with t1, then the optimal lifetimes 
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Lk
*=τk

*-τk-1
*≡Lb while τk

*>t1, and the optimal Lk
*→ La when τk

*<t1 and k decreases to 1. The 

constants La and Lb are found from equation (10) at p≡ p~ and p=Bp p~  correspondingly. 

       Proof. By Theorem 3, equation (6) has a unique solution L(t)≡Lb=const on the infinite 

interval (t1,∞), where p(t) is the exact exponent )(~ tp from (9). Then by Theorem 4, the optimal 

Lk
* coincides with Lb while τk

*>t1 . Now, since R(t)=t-Lb is uniquely known at t∈(t1,∞), we can 

determine the smoothened solution R̂ (t) of equation (13) over the interval [0, t1) using formulas 

(16) and (17). As shown in (Yatsenko and Hritonenko 2005), the constructed R(t) by (16) 

converges and strives to t-La, when t→0 and t1 is large. The constant La is the unique constant 

solution of (13) at p≡Bp p̂ . By Theorem 4, the optimal Lk
* coincides with τk

*-R(τk
*). The theorem 

is proven. 

 

4.2  A single breakthrough in Q&M cost 

Now let us assume that the discontinuous TC causes the discontinuity in q(t,u) at instant t1: 

                     1,      
    ,   if  ),(ˆ

  ,   if    ),(ˆ
),(

1

1





<
≥
<

= q
q

B
ttutqB

ttutq
utq                                           (19) 

whereas q̂  and p are the exponents given by (9).  

      The numeric simulation of this case has been provided at Bq=0.35, t1=20, and shown in 

Figures 4 and 5. The qualitative picture is similar to the one shown in Section 4.1 with some 

additional complications. Namely, as opposed to Figure 1, the first discontinuity in R(t) happens 

at the instant R-1(t1).  Indeed, instead of (13), now the left–hand side of equation (6) is instantly 

changed by factor Bq when a(tc)=t1, i.e., at tc=a-1(t1).  The corresponding small R(t) jump is clearly 

visible in Figure 4 at tc≈30. It is preceded by the numeric “delta-function” in the optimal R(t) at 

t=t1=20 similar to shown in Figure 1. The delta-function has similar causes as in the case (12) of 
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discontinuous p(t). It is removed in the smoothened monotonic replacement time R̂ (t) using the 

solution technique of Section 4.1. 

 

Optimal replacement time at the jump in q(t,u) 

-10

0

10

20

30

40

0                             10                                  20                              30   (years)

Fu
nc

tio
ns

 R
(t

) a
nd

 R
-1

(t
)

 

 

Figure 4. Case of the TC jump Bq=0.35 in the Q&M cost at t1=20. The solid line is the previous 
replacement time R(t) and the dashed line is the inverse R-1(t), and the solid gray line is the 

“smoothened” replacement R̂ (t). 
 

       Figure 5 illustrates the smoothened lifetime L(t)=t− R̂ (t) of assets in the case of the TC jump 

Bq=0.6 at t1=15 for cq=0.05 and five different values cq=0, 0.02, 0.05, 0.08, 0.1. Figure 5 

demonstrates that, at the fixed cp, the optimal dynamic lifetime is always longer for a larger 

O&M cost rate cq (for both continuous and discontinuous TC). Also, the optimal asset lifetime 

increases in t when the O&M cost rate cq is larger than cp.  
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Optimal lifetime under discontinous q(t,u)
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Figure 5. The smoothened optimal asset lifetime in the case of TC jump Bq=0.6 at t1=15, the capital 
cost rate cq=0.05, and the different O&M rates cq=0, 0.02, 0.05, 0.08, 0.1 (shown from top to bottom). 

 

       As in Section 4.1, the optimal lifetime L(t) possesses anticipation echoes before the jump 

time, that disseminate to the left. The first anticipation echo is visible just before t≈15 years, the 

second echo is much smaller but also visible around t=3-7 years, and the third echo is out of the 

graph range and too small to see. The relative jumps are smaller than for similar values of Bp.  

 

4.3. A single breakthrough in both Q&M and capital costs 

Now let us assume that the discontinuous TC causes the discontinuities (12) and (19) in both 

p(t) and q(t,u) at the instant t1. The qualitative picture remains essentially the same as above. 

Figure 6 illustrates the variable optimal lifetime for the TC jump Bp=Bq=0.65 in both p and q at 
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t1=15, cp=0.95, and various rates cq=0.86, 0.9, 0.95, 1, 1.02. As in the previous case, the optimal 

asset lifetime is larger when the continuous TC rate in O&M cost is larger.  

 

Optimal lifetime under TC jumps in p(t) and q(t,u)

0

2

4

6

8

10

12

14

16

  0                           10                            20                        30

O
p

ti
m

al
 L

(t
)

 

 
Figure 6. The smoothened optimal asset lifetime in the case of TC jump Bp=Bq=0.65 in both Q&M and 
capital costs at t1=15, and the various rates of continuous TC cp=cq=0.15, 0.1, 0.05, 0, −0.02 (shown 
from top to bottom). 

Figure 6 demonstrates that the “proportional” TC jump Bp=Bq does not impact the optimal 

lifetime L(t) permanently and L(t) returns to the previous trajectory after one regeneration period. 

It is especially clear in the case when the continuous TC is also proportional, cp=cq=0.95 (the 

third solid line in Figure 6). Then, by Theorem 2, the optimal lifetime is constant, Lk
*=τk

*-τk-1
*≡ 

L*, k=1,2,…, and is found from equation (10) as L*≈9.6 years when there is no TC jumps. In the 

case of the TC jump, the optimal variable L(t) is initially constant (9.6 years) and returns to this 

constant value when time t > a-1(t1)≈25 years. This fact can be proven analytically using equation 

(16). Namely, the following property holds. 
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        Theorem  6. If Bp=Bq, cp=cq, p(t) has the jump (12) at t=t1, q(t,u) has the jump (19) at t=t1, 

and all the replacement times τk
*, k=1,2,…, do not belong to the set (18) and do not coincide with 

t1, then the optimal Lk
*≡ L*  while τk

*>a-1(t1), and Lk
*→ L* when τk

*<t1 and k decreases to 1.  

       Proof is similar to the proof of Theorem 5. The difference is that, in this case, the optimal 

L(t)= L*=const is determined from the nonlinear equation (10) in the absence of TC jump,  if 

both  p and q are exponential on [0,∞). Equation (6) has a unique solution L(t)≡L* on the infinite 

interval (a-1(t1),∞). So, by Theorem 5, the optimal Lk
* coincides with L* while τk

*>a-1(t1). As 

shown in Section 4.3, the first discontinuity in a(t) happens at  the instant a-1(t1).    

       Since τ(t) is known at t∈(t1,∞), we determine the unique τ(t)=t-L(t) on the previous interval 

(0, t1) using the recurrent expression (16) from the right to the left. In this case, the iterations (16) 

converge and strive to t-L*, when t→0 and t1 is large. The optimal Lk
* coincides with τk

*-R(τk
*) 

by Theorem 4. 

The theorem is proven. 

The sizes of the instantaneous jumps Bp are Bq in the car prices and Q&M costs have been 

intentionally chosen too large to better illustrate the nature of the response. In the considered real 

example, more reasonable numbers for these jumps in the range 0.9-0.95 are not visible in the 

above figures.  

 

   4.4  Case of several breakthroughs 

Many technological breakthroughs can arise at different times. In model (1), the case of 

several TC jumps is handled similarly to the above Sections 4.1-4.3 with single TC jumps. It 

appears that in our framework the presence of several TC jumps does not add a new complexity 

to the analytic and numeric investigation.  
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Non-monotonic replacement with three TC jumps 
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Figure 7. The non-monotonic optimal replacement time R(t) in the case with three TC jumps: Bp=0.93 
at t=12, Bp=0.1 at t=20, and Bp=0.12 at t=25 (and the continuous TC rates cp= cq=0).  
 

We have provided a series of experiments with several breakthroughs. The dynamics of the 

optimal replacement has been analyzed for several scenarios. Figures 7 and 8 illustrate that, in 

both considered cases of the non-monotonic (original) and monotonic (smoothened) regeneration 

time, the irregularities caused by earlier jumps sequentially superimpose on the top of 

irregularities and echoes caused by the later jumps. Since the echoes caused by every jump 

weaken fast, the process strives to the continuous TC dynamics. The jump sizes and times have 

been chosen arbitrarily in these figures.  

Summarizing the results of this section, we notice that the TC jump causes repetitive 

irregularities (echoes) in the optimal asset lifetime before the jump time t1. The echoes in the 

optimal asset lifetime disseminate to the left of t1 and are damped pretty fast (the only one 
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preceding echo is visible in Fig. 2, 4, and 5). If the time before jump increases, the optimal 

lifetime returns quickly to a continuous trajectory for the continuous TC. 

 

Monotonic replacement with two TC jumps 
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Figure 8. The smoothened optimal asset replacement time R̂ (t) in the case of two TC jumps Bp=0.65 
at t=21 and Bp=0.6 at t=27 (and the continuous TC rates cp=0,  cq= 0.05).  

 

 Following (Rogers and Hartman, 2005), we have also simulated periodical technological 

breakthroughs arising after the same time period. The behavior is similar if the jump size and 

frequency are moderate. The echoes caused by every jump weaken fast (when the time before the 

jump increases). The replacement process strives to the continuous TC dynamics, except for the 

jump points and the corresponding anticipation echoes (where no policy is optimal). 
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5 Concluding Remarks 

       The paper considers a model of the optimal asset replacement on the infinite horizon under 

general assumptions of discontinuous TC. The model involves the variable lifetime of assets. The 

variable lifetime allows providing a more refined analysis of the replacement problem. The 

employed technique from (Hritonenko and Yatsenko 2005, 2008b, 2008c) does not directly solve 

the formulated optimization problem but analyzes a nonlinear equation derived from extremum 

conditions.  

       We have shown that there is no feasible optimal replacement decision exactly at the time of 

TC jump (a technological breakthrough). More exactly, the optimization problem recommends 

the use of an infinitely old machine at that time for a negligibly short period of time. Every TC 

jump also creates a set of anticipation echoes in the optimal asset lifetime during the regeneration 

periods preceding the jump. During these echoes, the replacement is impacted by the future TC 

jump and no optimal policy exists. When the time before the jump increases, the echoes decline 

quickly and the optimal asset lifetime strives to an optimal trajectory for the continuous TC. So, 

the optimal lifetime of assets appears to be stable under the TC jumps (except for the jump times). 

       We have provided theoretic and numeric analysis of the optimal asset replacement under 

various assumptions about continuous and discontinuous TC. The results indicate that, in the 

cases of both continuous and discontinuous TC, the optimal asset lifetime: 

• is always smaller for more intensive TC in the capital cost; 

• is always smaller for more intensive proportional TC (with equal rates of capital and Q&M 

costs); 

• is always larger for more intensive TC in the Q&M cost only. 
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