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1 Introduction

The paper analyzes the impact of discontinutaghnological change (TC) on the optimal
replacement of assets (capital equipment, machinea)framework traditional for Operations
Research (OR). The TC is understood in OR as agesxas decrease of the operating and
maintenance costs of possible replacement ass$etibefagers). It is usually described as:

» continuous TC as a continuous improvement in the newer vintagesjuipment (Grinyer
1973; Sethi and Chand 1979; Beanal 1994; Regnieret al 2004; Hritonenko and
Yatsenko, 1996b, 2005) or

» discontinuous TC in the form of instantaneous changes in the teldgieal parameters of
assets (Rogers and Hartman 2005; Hopp and Nair, Fefjagopalarmt al 1998).

The optimal asset replacememier the continuous TC has been intensively analyzed in the OR
literature, see (Grinyer 1973; Bedral 1994; Hartman 2000; Regnietral 2004; Hritonenko and

Yatsenko 2007, 2008b, 2008c; Sethi and Chand 19@&enko and Hritonenko 2008) and the
references therein. The case of the discontinu@issTess explored. At the same time, there is
economic evidence that both TC types are preseztonomic and engineering reality (Goolsbee

1998; Rogers and Hartman 2005).

Two fundamental categories of the OR equiimeplacement models are:
» serial replacement of a single asset (machine),

» andparallel replacement of many dependent assets that operate in parallel.

The majority of research on the equipment replacemeder TC (e.g., Bethuyne 1998, Regnier
et al 2004, Rogers and Hartman 2005) considers thel seplcement (of a single machine).
Also, the TC technological breakthroughs supposedffect the levels of exogenous

technological parameters (Rogers and Hartman 288%man and Rogers 2006).



This paper is inspired by Rogers and Hartif2005) who numerically analyzed the joint
impact of the continuous TC and periodic technaabibreakthroughs on theonstant asset
lifetime in aserial replacement model. They showed that the optimal lifetime ddeds isalways
smaller under more intensive continuous TC anduggally smaller under more intensive
discontinuous TC (with some exceptions). Followihg above mainstream of OR replacement
models, the present paper assumes:

» asingle asset,

» jumps in the level of technological parametersh@athan their rates).

While mostly focusing of the study of a single tktkaough, we also consider the case of several
successive breakthroughs to address the periodaktinroughs of Rogers and Hartman (2005)

and non-periodic breakthroughs in Hartman and Ro(R006).

The new contribution of the paper to the @Rlacement literature is theriable asset
lifetime, a general continuous TC as decreasingtalagnd maintenance costs, and a general
discontinuous TC as in the form of several nongquid technological breakthroughs. As shown
by Hritonenko and Yatsenko (1996a, 2005, 2007, Bp@®d Regnieet al (2004), the optimal
lifetime of assets can bariable even under the continuous exponential TC. Obwousis true

for the discontinuous TC.

In general, the issue of technological replaent under breakthroughs goes much beyond
the OR literature. More theoretical papers on isgsie consider technological breakthroughs as
radical innovations caused by the substitution é general-purpose technology for another.
Starting with Bresnahan and Trajtenberg (1995)hshieakthroughs explain economy-wide
structural changes. The steam engine, gasolineenglectric power, semiconductors were the
examples of such general-purpose (enabling) teohied. As Aures (2005) argues, the radical

innovations are necessary for continued long-tecmnemic growth. Many economic papers



interpret and analyze the more recent IT revoluisra major breakthrough as well (Greenwood

and Yorukoglu 1997, Boucekkine and de la Croix 3003

Returning to the scope of this paper, rdditeovations obviously affect the rational decisio
on replacing or upgrading related capital. Frons thiewpoint, the single machine used in this
paper can be considered as a metaphor for theajgmweblem of replacing the old technology at
the dawn of a new general purpose technology. Hewesuch a macroeconomic interpretation
raises new issues to take into consideration. hicpdar, the considered below breakthrough
shocks in level do not cover all cases observedality. Shocks in the TC growth rates seem to
be more important and are observed in the ICTdlitee (Greenwood and Yorukoglu, 1997, for
example).

To fully address the macroeconomic link besw technological breakthroughs and optimal
capital replacement, we need to employ vintagetalpnodels of economic growth theory
(Boucekkineet al 1997, 1999, 2008; Boucekkine and de la Croix 2808pnenko and Yatsenko
1996b, 2005, 2008a; Yorukoglu 1998). Such analigsise subject of a forthcoming paper of the
authors.

The present paper is organized in the following mesn The next section introduces a
replacement model for a single asset with varidildéime over the infinite horizon. Section 3
exposes preliminary analytic results such as areextm condition and properties of the optimal
lifetime under continuous TC. Section 4 investigatee model under discontinuous TC with one
and several breakthroughs analytically and numiyicen an industrial data sample about car
replacement. It demonstrates how the variable @ptifietime of this single asset is impacted by
technological breakthroughs. The obtained resutisnaw in the OR asset replacement theory.

Section 5 concludes.



2 Model of Serial Asset Replacement under TC

Let us suppose that a production shop (plant, prise) keeps one asset (machine) of a certain
type. The shop periodically sells the old assetlang a new replacement asset. We consider this
replacement process in continuous tinusing the following notations:

* to=0: the starting point of planning horizon;

I <0: the given (initial) purchase time of the assé&tr@lacement time);

e I, k=1,2,..:the unknown time of thk-th replacement;

e Ly, k=1,2,... the unknown lifetime of thk-th replaced asset,x = & — Ti.1,

e p(t), t[0,): the capital cost (purchase price & installatimst) of an asset bought at time
e ((t,u), t[ 1o,), u[0,0): the operating and maintenance (O&M) coshattimeu for the
asset bought at tinteu>t;

e 1, r>0: the instantaneous discount rate.

Because of deterioration, the O&M cqgftu) increases i at a fixedt when the asset age

u—tincreases (the asset becomes older). At this peitnake a general TC assumption fi{gt

andq(t,u) decrease i for any fixed asset age—t (newer assets are less expensive and require

less maintenance). More specific TC assumptionisoeitonsidered in Sections 5 and 6.
Thereplacement policy is the setrr={ 7, i=1,2,..} of the sequential replacement timgs

The present value of the total cost of the repla#rmolicy over the infinitéhorizon [Og0) can be

expressed as

J(m) = Ze p(z) +Z [ e, udu (1)

(see Hritonenko and Yatsenko 2008b, 2008c; Griiy@f3; Regnier et al. 2004; Rogers and

Hartman 2005). The first sum in (1) is the discedntotal capital cost and the second sum is the



discounted total O&M co$tWe formulate the replacement problem as findivgdptimal policy

7={1,i=1,2,..} that minimizes the replacement cost (1):

J(n*)— m|n () (2)

3 Preliminary Results

In the section, we summarize some theoretical t®|dsential for the further analysis. No
proofs are provided, since this optimal program kha&en investigated in (Yatsenko and

Hritonenko 2008b, 2008c).

Theorem 1 (necessary condition for an extremum). If an optimal policy 77 ={ 7 , i=1,2,...}
exists, then every component 7 *, 0<y *<00, satisfies the condition

o5 =0, i=12,..., 3)

where

O =em{ pr)-rp(r) -, 1)+l + [ e

i+1 —r(u ) aCI(Tl ,U)
o du} (4

0T,

isthe partial derivative of function (1) in 7.

In the casg(t,u)=const,p(t)=constwith no TC and deterioratio®J/d7r;:<0 by (4) and the
optimal policy is trivial:r; = oo (no replacement).

A continuous equation for the optimal replacement times. By Theorem 1the optimal set

{75,i=1,2,...} for agiven initial replacement timey (if it exists) should satisfy the equality

(1) = rp(r) —a(r, 1) + AT )+ 'f‘“”aqgj’”)d =0 (5)

% Expression (1) omits possible salvage values. gsite impact of salvage values in the model (1 wi
continuous TC is discussed in (Hritonenko and Yatee2008b, 2008c).



for all i=1,2,... . To investigate the replacement process in contisiooe for any generic 1o,
let us assume that the current timés a replacement timeg and consider therevious
replacement time R(t)=7.1 (of the asseteplaced at timet=7 ) as a function of. By (5), the

unknown functiorR(t) satisfies the nonlinear equation
, RMD e 09(t,u
p'(t) = rp(t) + a(RE),H —a@,) + [ e ”%duzo, t0[0,00), (6)

where the inverse functioR™(t) of R(t) corresponds to the replacement timg of the asset
purchased att.

Theorem 2 (Yatsenko and Hritonenko 2008} an optimal policy 77 ={7 ,i=1,2,..} exists
and the nonlinear integral equation (6) has a unique solution R(t), t(J[0,), then

ia =R(5), 1=23,.... 7)

The policyrruniquely determines the selti{i=1,2,...,} of the lifetimesL; of sequentially
replaced assets. By Theorem 2, the optimal Iifetim%: Z'i* —Ti_l* of the asseteplaced at time
t=7 is equal td_(t) = t—R(t), hence by (7)

L'=L(5) at I =n4 +L, i=1,2,.... (8)

So, if we know a solution to the nonlinear equatié)) we can find the optimal asset livies,
i=1,2,..., for any initial replacement timefp<0. Similar equations have been analytically and
numerically studied for different smooth functigpsindq by Hritonenko and Yatsenko (1996a,
2008b), Yatsenko and Hritonenko (2005). Here werassthe exponential TC and deterioration:

qtu)=§ (tu)= goe™“™ e, p(t)=P(t)=poe ™', Cqtcs>0, Cy+ce20. (9)
The TC rate in the capital and O&M costs can biedint in (9).C;#Cq. These costs can increase
(Cp<0 or c4<0) but slower than the deterioration rate Usually, both costs decreass>0 and

Co>0. We will refer to the casef equal rates c;=c, asthe proportional TC.



The properties of equation (6) allow ustalgze the dynamics of thariable optimal asset

lifetime L;" in the serial replacement model (1)-(2) under exptial TC and deterioration (9).

Theorem 3 (Yatsenko and Hritonenko 2008k)nder (9), the optimization problem (1)-(2)
possesses a unique optimal policy {L;", i=1,2,...} such that:
(@) If cg=Cp, then Li*= L*, i=1,2,..., where the constant L >0is uniquely determined from

the non-linear equation

(cq+cd)L —rL

re + (CqtCa) € = (r+Cq+Cq)[1+rpo/do] (10)
and, L™ = [2po/(qo(Cq+ca))] 2 at small cqtcg and T .
(b) If ¢y >cq, then Li+1* < Li*, i=1,2,.., and Li* strivesto0 asi — .

(©) If —Ca<Cp<Cq thenLisy >Li",i=1,2,.., and Liss O Ly (Cq+C)/(Go+Ca) ask— oo,

Theorem 3 leads to the followiggalitative conclusions (Yatsenko and Hritonenko 2008b):

* In the case othe proportional TC, c,=c,=c, the optimal asset lifetime is constabf: = L,
i=1,2.... The optimal lifetimeL" is shorter when the proportional TC is more intefrgieen
cis larger).

« If the O&M costq(t,u) decreases ihat the fixed agel-t slower than the capital copft),
then the optimal lifetime decreasE§PLi+1*, i=1,2,... (and converse).

* For the same O&M cost ratg, the optimal lifetimel;” is shorter when the capital cost rate
Cy is larger (i.e., when the TC in capital cost isrenmtense).

* For the same capital cost ratgthe optimal lifetimeL;" is longer when the O&M cost rate,

is larger (i.e., when the TC in O&M cost is moréeimse).



4 Optimal Asset Lifetime under Discontinuous TC

The discontinuous TC is understood as an instantaneous change in tedicel parameters
due to the introduction of a new breakthrough \getémodel) of machines (Hopp and Nair 1991;
Bean et al. 1994; Rajagopalan et al. 1998; RogedsHartman 2005). Rogers and Hartman
(2005) consider the case of periodic breakthroughthe maintenance cost at the presence of
continuous TC. Other authors assume their stochagtpearance (stochastic times or sizes)
(Hopp and Nair 1991; Rajagopalan et al. 1998).

In model (1), the dynamics of thariable optimal asset lifetime under discontinuous TC
requires solving the nonlinear equation (6)rfon-smooth functionsp andqg. To do that, we will
combine analytic investigation and numeric simolati

To analyze model (1) on real replacement data, athors have developed numeric
algorithm and software for solving equation (6)heTalgorithm is based on thelling horizon
idea and assumes that the trend of the continuous T@ains the same in some future
(Hritonenko and Yatsenko 2008d). It is implemenitedS Excel/VBA and is provided to all
interested readers at request. The dataset formsimulation is taken from a discrete model
(Regnier et al, 2004) used to simulate the opteaakeplacement on automotive industry data for
1985-1998. We employed this data for the analysthecontinuous model (1) in (Yatsenko and
Hritonenko 2008b). The basic dataset in model(@)is

=0, ¢4=0.05, c4=1.34, r=0.14. 11
At (11), the optimal lifetime is approximately caast and found from the nonlinear equation
(10) asL*=10.5years (Yatsenko and Hritonenko 2008b).

We assume that the TC breakthroughs can appearest igstants on the background of the
continuous exponential TC and deterioration (9)e Dineakthroughs will normally impact both
TC parameterp(t) andq(t,u). To understand the dynamics, we start with thgokest case of one

breakthrough.



4.1 Caseof onetechnological breakthrough in capital cost

Let us assume thatis exponential (9) and the discontinuous TC catisesliscontinuity in

the capital cogp(t) at instant;:

[P i t<t,
p(t)_{Bpﬁ(t) ittt By <1, (12)

where p(t) is given by (9). Then, equation (6) has the form
—(Cq+Cy —C R —(r—cq)(u— Cd 1 —
doe N e ~ (¢, +e)q [ €TV du—e (rp(t) - P(1) =0, (13)
t[[0,), or after evaluating the integral,

e T = B, 770, p(t), P'L)), (14)
where
FE R, pO), PO) =€ +(c, +¢,)[-e O/ 1+ [rp(t) - p'©)}/ch,
Equation (13) represents a recurrent relation betvtee optimaR(t) and its inversdR™*(t). In
(Yatsenko and Hritonenko 2005), it is treated amalinear delay equation with respect to the
unknown functionR(t), tJ[0,00). Namely, if we knowR(t) (or its approximation) starting some
instantz, on [r, R*(7)] or a longer interval, the we can solve (14) segially from right to left

and obtairR(t) att[ 7o, 7). In the case (12) with a jump jpt) att=t;,

~c,pe if t<t,
P'(t) =1 pe "[-C, + - B)I(t-t)] if t=t, (15)
-c,B, pe™ if t>t,,

where J(t) is theDirac delta-function. Substituting (12) and (15) into (13), we obtain thect

recurrent formula

R(t) = (cq +ca) "1 Ingo ~In(F(t, R™(t), p (O, P'(V)) ] (16)



for the (13) solutiorR. Formula (16) worked well in (Hritonenko and Yatke, 2008b) in the
case (9) of continuoug andg. Now, (16) produces a continuous optini{t) on the interval
(t,,) right to the jump. However, by (15), the functiB(t, R'(t), p(t), p'(t)) includes the delta-
function Jt-t;). Correspondingly, the unknown optini(k) also includesXt-t;) andR(t;)=—co.

So, the solutiorR(t) of our unconstrained optimization problem (1),(2) in case (15) includes
jump to—oo at timet;, which is not feasible from both theoretical ardgbical viewpoints. In
practice, the optimdR(t) recommends the use of a very old machinetatfor a negligibly short
period of time. The theoretical problem is tifR{t) is not monotonic at=t;, hence, the unique
inverseR™(t) does not exist a&R(t;) andR(t) cannot be constructed by (16X<iR(t;). Hence, the
replacement problem (1),(2) has no solution injtimep case (15). We would like to emphasize
that this situation is specific only for technolcai breakthroughs.

To correct the situation and use equation (14)simulating optimal replacement policies in the
presence of TC jumps, we have to impose an additioonstraint on the replacement problem
(2),(2) in the jump case (15). A natural idea ikeep the regeneration tinRgt) monotonic (non-

decreasing). Technically, it means solving equaie¥) with restrictiorR'(t)>0.
Let introduce the smootheneaionotonic replacement trajectory Ii(t), t0[0,0). The

function R (t) is obtained by removing the jump to in a neighborhood df from the trajectory

R(t). Analytically, we replace the derivatiggt) in (15) with its smoothened monotonic version

_Ct .

" -C p,e " if t<t,

p(t)={ B . ' (17)
—-c,B,p.e if t=>t),

Then, the correspondirfg(t, R*(t), p(t), P (1)) in (16) does not include the delta-functidjt-t,)

and the corresponding optimél (), tO[0,») is monotonit.

* Another smoothing technique is required for patalkset replacement models (Hritonenko and
Yatsenko, 2003, 2005).

1C



Optimal replacement at the TC jump in p (t)

40

Functions R (t) and R *(t)

0 10 20 30 (years)

Figure 1. Optimal asset replacement in the case of the T jB,=0.35 att;=25 (and the TC rates
C,;=C4=0.05). The solid line corresponds to the previeyacement tim&(t) and the dashed line is the

inverseR™(t). The gray lines describe the monotonic replacériee R (t) and its inverseR ~(t).

To observe the actual dynamicsR(t) and R (t), we provide a numeric simulation of equation
(13). The parameters aBy=0.35,t,=25, the initial =0, the horizon length i$=60 years, the
discretization sten=0.1, and the other parameters are as in (11).sbhd line in Figure 1
demonstrates the simulated soluti(t) of (13) and the dashed line shows the invé&&g). As
expected, the functiorR(t) andR(t) are symmetric with respect to the (dotted) stralme y=t
also shown in Figure 1. The behaviourRff) is similar to the one predicted by formula (16).
Since the simulation is done with the finite disizaion step, the delta function in (16)tat; is
replaced with the negativg(t) jump of a finite size because of numeric difféi@ion. The size
of the jump essentially depends on the valué @t - -« ath-0). So, in simulation, the TC

jump (12) ati=t; is compensated in (13) by the “approximate” déltaction inR(t) att=t;.

11



The monotonic replacement trajectolfg/(t) is indicated in Figure 1 with the gray line.

Then, the left-hand side of equation (13) has atipegump att=t; because it is not longer

compensated by the delta-functionR{;). Hence, the constructeR (t) is not optimal at the
momentt=t;. At t=t;, instead of bringing an older asset, the policyoisvait until a cheaper

challenger becomes available.

Figure 2. The optimal asset replacement in the case of @guinp inp(t) att;. The solid line is the
monotonic replacement timé (), the dashed line is the inveré%'l(t), and the straight 45° line
highlights the symmetry between them. The markeéehials ared, =[a, £, Gi= Ii (t), Ldo=[ar,
B, 4s=[as, [3], where the trajector;FAQ () is not optimal (see Theorem 5 below).

Let us discuss the impact of our smoothing techaigun the optimality of the solution to

problem (1)-(2). The monotonic replacement trajﬁ;cté (t) is depicted in Figure 2 in more

12



details. By constructiorR(t) att=t, determines its invers&’(t) att=R(t,). The non-optimality of
R (t) att=t; leads to its non-optimality in the neighborhoodishe timesR(t;), R(R(t1)), .., and
so on, such that.<R(R(t1))< R(t1)< t;. Namely, by (14), the vertical segmemt; [ 5] of R ()

att=t; in Figure 2 produces a horizontal segméﬁ(t)ztl in Ii‘l(t) attdd=[a1, B] such that

the next replacement timetisfor all t04;. By (14), this segment causes the irregular part
R(®) = (cq +ca) [ Ingo ~IN(F(t, tr, p (©), p (V)]

in R (t) attdd,. If a replacement timafDAl, then the nexteplacementime is 7+ 1=t;, which is

not optimal. In turn, the irregulalﬁ (t) on 4, leads to a perturbation iR “(t) and in R (t) over

the intervalAzzli(Al). If the timet; is large enough, such echoed perturbations apjresn (

right to left) atR (t,), R (R (), R(R (R (t))...., until Ays1< 7 for some numbe>0.

We will refer to such perturbations as #in&cipation echoes because they appelagfore the
jump timet; in the anticipation of the future TC breakthrough at t;. The anticipation echoes

disseminate from right to left, starting at the putime. Such irregularities represent a common

pattern in serial optimal replacement models (hetdko and Yatsenko 1996b, 2005, 2008a;

Yatsenko and Hritonenko 2005). First three echdgsd,, 4; are shown in Figure 2. Thus, the
constructed policy involves a finite st of intervals

A={Du,. 0o, O if .04, thentis =t }. (18)
The original policyrzis impacted and becomes non-optinfianly if one of the replacemetine

Ik falls insideA.

We summarize the above outcome with the followinglgtic conclusion that relates the

constructed monotonic replacement trajectéryo the optimal replacement politzy* :

13



Theorem 4. In the case of discontinuous TC with jump (12) ipolicy 77 ={ 1, k=1,2,..}

satisfies (7) and all the timag, k=1,2,..., do not belong to the set (18) and do nataide with
the jump timet,, thens7 is an optimal policy in the problem (1)-(2).

Proof follows directly from (14)-(17). In this case, théove solution procedure produces a
uniguemonotonic replacement trajecto@(t) over [0g0), shown in Figure 2ZThe functions (15)

and (17) differ only att=t;. Correspondingly, by (14) and (16), the smootheneclrrent
trajectory R (t) does not satisfy equation (13) onlytaand on the intervald, , 4 ,..., 4u. If no

times rk*, k=1,2,...,coincide with the timd,, then all the timesrk*, k=1,2,...,are optimal. The
theorem is proved.

Thus, we give up the optimality during the antitipa echoes (18) preceding the jump time
t; and shown in Figure 2 to be able to produce amaptreplacement strategy over the infinite
horizon [0g). The anticipation echoes deteriorate fast. InufgdlL, the first anticipatioacho4,
is visible att=15 years, the second echpis barely visible at=6 years, and the third ecla is
out of the graph range and is too smooth to see.

To analyze the dependence of the replacement mraceshe TC intensity, we have solved

equation (6) in case (9) fag=0.05 and five different valuex=0.15, 0.1, 0.05, 6;0.02. Figure 3

displays the asset lifetime(t)=t- R (t) for different scenariogp<cCg, Cp%Cq, andcp>Cy. Several
important effects are visible in Figure 3. Naméhe optimal lifetime of assets:
» s variable in the general case,
» decreases or increases depending on the sigytc,
* monotonically increases in time immediately befitie TC jump énticipation effect);
» produces quickly weakening replacement echoes gluthe regeneration periods
preceding the TC jumgafticipation echoes).

» isshorter for alarger capital cost rate at every point of the planning horizon.

14



Optimal lifetime at the TC jump in p (various TC rates)

16
147 i __»-f"‘

12 - LT RUPIRTREEE R

----------

10

Optimal L (t) (years)

Figure 3. The smoothened optimal asset lifetime in the adsthe TC jumpB,=0.35 att;=25, the

O&M cost ratec,=0.05, and the different capital cost ratgs0.15, 0.1, 0.05, 0;0.02 (shown from
top to bottom).

In the presence of technology jumps, motensive TC in the capital cost requires more

frequent replacements (the same holds for contind@@iby Theorem 3). When the optimal asset

lifetime decreases, the echoes appear more frdygsee two lower curves in Figure 3).
Let us focus on the third (solid) line in Figuréh@t corresponds to the cageCy=C=0.95 of
the proportional TC. It appears that, under the jump (23), the lifetipermanently changes from

the constant value L= 9.7 years before the jump to ttenstant L,= 8.2 years after the jump.

At the proportional TC with no technology jumpse thptimal lifetime is constant and known
analytically by Theorem 3. We can prove an anakgsult for the proportional TC with jumps.

Theorem 5. If cy=c,, the functionp(t) has the jump (12) att;, and all the replacement

times 7, do not belong to the set (18) and do not coingiita t,, then the optimal lifetimes

1t



L =T - Ty =Lp while 7, >t;, and the optimal, — L, when i <t; andk decreases to 1. The
constantd , andLy, are found from equation (10) p& p andp=B, p correspondingly.

Proof. By Theorem 3, equation (6) has a unique soluti@=Ly,=const on the infinite
interval ¢;,00), wherep(t) is the exact exponenp(t) from (9). Then by Theorem 4, the optimal
L, coincides withL, while 7 >t; . Now, sinceR(t)=t-L;, is uniquely known at{](t;,»), we can
determine the smoothened solutié(t) of equation (13) over the interval [Q) using formulas
(16) and (17). As shown in (Yatsenko and Hritoner®®5), the constructeR®(t) by (16)
converges and strives td_;, whent— 0 andt; is large. The constatt, is the unique constant
solution of (13) ap=By, f . By Theorem 4, the optim&l™ coincides withz, -R(z ). The theorem

is proven.

4.2 A single breakthrough in Q& M cost

Now let us assume that the discontinuous TC catsediscontinuity irg(t,u) at instant;:

qit,u) if t<t,
at.w) ! B <1, (19)

qt,u) =4, - .
{qu(t,u) if t>t, L

whereas(j andp are the exponents given by (9).

The numeric simulation of this case has beevided atBy=0.35,t,=20, and shown in
Figures 4 and 5. The qualitative picture is simtlarthe one shown in Section 4.1 with some
additional complications. Namely, as opposed tafedL, the first discontinuity iR(t) happens
at the instanR'(t;). Indeed, instead of (13), now the left-hand silequation (6) is instantly
changed by factdB, whena(ty)=ty, i.e., att=a’(t;). The corresponding sma{t) jump is clearly
visible in Figure 4 at=30. It is preceded by the numeric “delta-functiamthe optimalR(t) at

t=t;=20 similar to shown in Figure 1. The delta-funotitas similar causes as in the case (12) of
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discontinuoug(t). It is removed in the smoothenenotonic replacement time R (t) using the

solution technique of Section 4.1.

Optimal replacement time at the jump in q(t,u)

40
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=
o
|

Functions R (t) and R (t)

-10
0 10 20 30 (years)

Figure 4. Case of the TC jumB,=0.35 in the Q&M cost at;=20. The solid line is the previous
replacement timeR(t) and the dashed line is the inverB&(t), and the solid gray line is the

“smoothened” replacemeri® (t).

Figure 5 illustrates the smoothened Iifetlr(iezt—li (t) of assets in the case of the TC jump
B,=0.6 att;=15 for c,=0.05 and five different values,=0,0.02, 0.05, 0.08, 0.1. Figure 5
demonstrates that, at the fixeg the optimal dynamic lifetime is always longer for a larger
O&M cost rate Cq (for both continuous and discontinuous TC). Ald® optimal asset lifetime

increases it when the O&M cost rate, is larger tharc,.
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Optimal lifetime under discontinous q(t,u)
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Figure 5. The smoothened optimal asset lifetime in the @dsEC jumpB,=0.6 att;=15, the capital
cost ratec;=0.05, and the different O&M rates=0, 0.02, 0.05, 0.08, 0.1 (shown from top to bottom).

As in Section 4.1, the optimal lifetinh€t) possesses anticipati@mthoes before the jump
time, that disseminate to the left. The first a@ptitionecho is visible just before=15 years, the
second echo is much smaller but also visible arau8eV years, and the third echo is out of the

graph range and too small to see. The relative guang smaller than for similar valuesBf

4.3. A single breakthrough in both Q& M and capital costs

Now let us assume that the discontinuous TC cahsediscontinuities (12) and (19) in both
p(t) andg(t,u) at the instant;. The qualitative picture remains essentially thens as above.

Figure 6 illustrates the variable optimal lifetirfee the TC jumpB,=B,=0.65 in bothp andq at

18



t,=15, ¢,=0.95, and various rateg=0.86, 0.9, 0.95, 1, 1.02. As in the previous c#se optimal

asset lifetimeaslarger when the continuous TC rate@&M cost is larger.

Optimal lifetime under TC jumps in p(t) and q(t,u)
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Figure 6. The smoothened optimal asset lifetime in the chJeC jumpB,=B,=0.65 in both Q&M and

capital costs at;=15, and the various rates of continuous d,€c,=0.15, 0.1, 0.05, 0;0.02 (shown
from top to bottom).

Figure 6 demonstrates that the “proportional” T@puB,=B, does not impact the optimal
lifetime L(t) permanently and(t) returns to the previous trajectory after one negation period.
It is especially clear in the case whiie continuous TC is alsoproportional, ¢,=c,;=0.95 (the
third solid line in Figure 6). Then, by Theoremti®e optimal lifetime is constanit, =7 - f.; =
L*, k=1,2,..., and is found from equation (10)Las=9.6 years when there is no TC jumps. In the
case of the TC jump, the optimal variablg) is initially constant (9.6 years) and returnghis
constant value when time> a™(t))=25 years. This fact can be proven analytically usiggation

(16). Namely, the following property holds.
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Theorem 6. If By=B,, Cy=C,, P(t) has the jump (12) att;, q(t,u) has the jump (19) att,,
and all the replacement timas, k=1,2,..., do not belong to the set (18) and do notaide with
t;, then the optimal, = L* while 7 >a™(t,), andL, — L* whenf <t, andk decreases to 1.

Proof is similar to the proof of Theorem 5. The diffeceris that, in this case, the optimal
L(t)= L*=const is determined from the nonlinear equatidd (& the absence of TC jump, if
both p andq are exponential on [®). Equation (6) has a unique solutibft)=L* on the infinite
interval @%(t,),»). So, by Theorem 5, the optimb} coincides withL* while 7 >a™(t;). As
shown in Section 4.3, the first discontinuityait) happens at the instaat(t,).

Sincer(t) is known att[](t;,0), we determine the uniqugt)=t-L(t) on the previous interval
(0, ty) using the recurrent expression (16) from thetrighthe left. In this case, the iterations (16)
converge and strive teL*, whent - 0 andt; is large. The optimal, coincides withz, -R(z )

by Theorem 4.

The theorem is proven.

The sizes of the instantaneous junisare B, in the car prices and Q&M costs have been
intentionally chosen too large to better illustrite nature of the response. In the considered real
example, more reasonable numbers for these jumpgeimange 0.9-0.95 are not visible in the

above figures.

4.4 Case of several breakthroughs

Many technological breakthroughs can arise at wiffe times. In model (1), the case of
several TC jumps is handled similarly to the ab&eztions 4.1-4.3 with single TC jumps. It
appears that in our framework the presence of ab¥& jumps does not add a new complexity

to the analytic and numeric investigation.
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Non-monotonic replacement with three TC jumps

Functions R (t) and R ™(t)

0 10 20 30 (years)

Figure 7. The non-monotonic optimal replacement tiR{§) in the case with three TC jum3,=0.93
att=12,B,=0.1 att=20, andB,=0.12 att=25 (and the continuous TC raigs c,=0).

We have provided a series of experiments with sé\meakthroughs. The dynamics of the
optimal replacement has been analyzed for seveeslasios. Figures 7 and 8 illustrate that, in
both considered cases of then-monotonic (original) andmonotonic (smoothened) regeneration
time, the irregularities caused by earlier jumpgusatially superimpose on the top of
irregularities and echoes caused by the later jurBpsce the echoes caused by every jump
weaken fast, the process strives to the contindi@islynamics. The jump sizes and times have

been chosen arbitrarily in these figures.

Summarizing the results of this section, we notilcat the TC jump causes repetitive
irregularities (echoes) in the optimal asset lifetimbefore the jump time t;. The echoes in the

optimal asset lifetime disseminate to the lefttpfand are damped pretty fast (the only one
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preceding echo is visible in Fig. 2, 4, and 5)thé time before jump increases, the optimal

lifetime returns quickly to a continuous trajectdoy the continuous TC.

Monotonic replacement with two TC jumps

Functions R (t) and R "(t)

-10

0 10 20 30 (years)

Figure 8. The smoothened optimal asset replacement ﬁ:h(e in the case of two TC jum,=0.65
att=21 andB,=0.6 att=27 (and the continuous TC rags0, c,= 0.05).

Following (Rogers and Hartman, 2005), we have aBuoulated periodical technological
breakthroughs arising after the same time peridgk Behavior is similar if the jump size and
frequency are moderate. The echoes caused by ewvepyweaken fast (when the tirbefore the
jump increases). The replacement process strivédsetoontinuous TC dynamics, except for the

jump points and the corresponding anticipation eshi@here no policy is optimal).
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5 Concluding Remarks

The paper considers a model of the optimaetireplacement on the infinite horizon under
general assumptions of discontinuous TC. The miodelves the variable lifetime of assets. The
variable lifetime allows providing a more refinedadysis of the replacement problem. The
employed technique from (Hritonenko and Yatsenk@52@008b, 2008c) does not directly solve
the formulated optimization problem but analyzesoalinear equation derived from extremum
conditions.

We have shown that there is no feasiblenmgdtreplacement decision exactly at the time of
TC jump (a technological breakthrough). More exadihe optimization problem recommends
the use of an infinitely old machine at that tinoe & negligibly short period of time. Every TC
jump also creates a setanfticipation echoes in the optimal asset lifetime during the regerierat
periods preceding the jump. During these echoesrdplacement is impacted by the future TC
jump and no optimal policy exists. When the timéobe the jump increases, the echoes decline
quickly and the optimal asset lifetime strives toaptimal trajectory for the continuous TC. So,
the optimal lifetime of assets appears to be stabtker the TC jumps (except for the jump times).

We have provided theoretic and numeric asiglpf the optimal asset replacement under
various assumptions about continuous and discasmu C. The results indicate that, in the
cases of both continuous and discontinuous TCoptieal asset lifetime:

* isawayssmaller for moreintensive TC in the capital cost;
* is always smaller for more intensive proportional TC (with equal rates of capital and Q&M
costs);

* isawayslarger for moreintensive TC in the Q&M cost only.
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