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Abstract

In health care system, the operating theatre is recognized as having an important role, notably in
terms of generated income and cost. Its management, and in particular its scheduling, is thus a
critical activity, and has been the sub ject of many studies. However, the stochasticity of the
operating theatre environment is rarely considered while it has considerable effect on the actual
working of a surgical unit. In practice, the planners keep a safety margin, let’s say 15% of the
capacity, in order to absorb the effect of unpredictable events. However, this safety margin is
most often chosen sub jectively, from experience. In this paper, our goal is to rationalize this
process. We want to give insights to managers in order to deal with the stochasticity of their
environment, at a tactical-strategic decision level. For this, we propose an analytical approach
that takes account of the stochastic operating times as well as the disruptions caused by
emergency arrivals. From our model, various performance measures can be computed: the
emergency disruption rate, the waiting time for an emergency, the distribution of the working
time, the probability of overtime, the average overtime, etc. In particular, our tool is able to tell
how many operations can be scheduled per day in order to keep the overtime limited.
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1 Introduction

In recent years, throughout Europe, the hospital environment has been sub-
ject to profound changes. Authorities introduced numerous reforms in order
to rationalize health care expenses and to improve the citizens’ quality of
service. In addition to these structural challenges, health care management
is made more and more complex and critical by various factors: the con-
tinuously growing demand for medical care, the ageing population, and the
evolution of the pathologies, among others. This constrains hospitals to
manage more efficiently their human and material resources, in order to
reduce the costs while preserving the quality of care.

In this context, efficiently managing the operating theatre is a crucial
question for hospitals. Indeed, the operating theatre plays a critical role in
the hospital. It is an important activity for care creation, and it generates
large income. However, it is also well known that the surgical units are one
of the most important sources of expenses, with up to 10% of the hospital
budget [2]. A more effective management of the operating rooms comes
with a more rational use of the surgical resources, and consequently with
a refined planning of the surgical units. The planning of the operating
theatre aims at optimally scheduling the surgical operations that will take
place during a period of time, often one or two weeks, on the basis of the
demand coming from the surgical units or from the physicians. Each elective
surgery is assigned to a given day, taking into account human and material
constraints.

However, the actual realization of the planning cannot be perfectly pre-
dicted: the reality is stochastic. The length of a planned (or elective) op-
eration may vary, its length cannot be predicted exactly. Moreover, the
planning can be disrupted by some unplanned, urgent, operations, i.e. some
emergencies. Emergencies may come from outside, but also from inside the
hospital, if a patient’s condition evolves unexpectedly. Obviously, emergen-
cies cannot be planned as elective operations can, but may cause signifi-
cant disturbance to the operating schedule. Furthermore, the length of an
emergency operation is also stochastic. For the moment, in practice, most
managers build schedules that fill the operating rooms for a given fraction
of the available time (the occupation rate) and save a predetermined per-
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centage of it (often about 15% [17]). They keep a safety margin that will
allow absorption of the stochasticity, the unpredictable events. They hope
that the unallocated working time will be sufficient to deal with the un-
predicted long operations, and to treat the emergencies. Doing this, their
goal is to avoid getting too much overtime. In practice, this process is not
rationalized. Most often, the occupation rate is set subjectively, according
to people’s experience or by benchmarking.

This paper aims to bring some insights to take account of the stochas-
tic reality, in order to better manage the operating theatre, at a tactical—
strategic decision level. Our goal is to propose tools to operating theatre
managers in order to help them deal with the randomness of their envi-
ronment, coming from the random operating times as well as from the un-
predictable arrival of emergencies. In particular, our work should provide
measures allowing them to rationally choose the occupation rate to be ap-
plied in their operating rooms. From the configuration of the operating
theatre and the arrival rate of the emergencies, our tool is able to compute
the occupation rate of the operating theatre which will lead to a chosen, ac-
ceptable, probability of overtime. To achieve this, we propose an analytical
model of the operating theatre, based on a Markov process.

In this work, we thus choose to analytically treat the operating theatre.
Mathematical and simulation approaches have their own advantages and can
be considered as complementary: they are often used to validate each other.
However, in the present case, the mathematical approach can be justified and
shown to be appropriate. Our work is positioned at the tactical-strategic
level of decision. From few data on the system, we want to propose measures
on the behavior of the latter and how to better manage it. In this context,
the main advantage of the simulation, i.e. its ability to model in more
details, is not justified, or fruitful, since simulation needs a deeper knowledge
of the system than we consider. For the problem we are concerned with,
the analytical approach has the advantage of quickly offering reliable and
constant performance measures, requiring few data.

A quite vast literature exists on patient flow management, see [8]. About
the scheduling of the operating theatre in particular, we refer the interested
reader to Cardoen et al. [1] which gives a substantive state of the art. In
the following, we briefly sketch the literature related to stochastic modelling
in health care management. It is structured according to the tools applied:
queueing theory, Markov theory and simulation.

First, queueing theory has been applied in various studies, in health care
management. Green [7], Preater [19] provide good reviews. The majority
of these studies are concerned with the sizing of critical resources (the beds,



for example, [10]) or with the allocation of resources [6]. For this, Kim et al.
[11] focus on the evaluation of the waiting time to enter an intensive care
unit. Concerning the emergency flow, de Bruin et al. [3] applied queueing
theory to model the cardiac in—patient flow, and studied the occurrence of
bottleneck.

Second, Markov chains have been shown to be useful in patient flow
modelling. For the sizing of critical resources, Harrison et al. [9] showed
that they offer a more detailed modelling, compared to queueing theory,
and allow to compute the overflow and to take account of the variability.
McClean et al. [16] applied Markov theory and used phase—type distributions
to compute the length of stay in a geriatric care unit. The use of phase—type
in health care management has been reviewed in [4].

Third, the simulation approach has been extensively used to deal with
particular cases, taking advantage of its main asset: its ability to model
specific systems in details. In particular, the emergency patient flow, which
is inherently stochastic, has been studied by various authors. Kolker [12]
studies the patient flow to an emergency care unit. Komashie and Mousavi
[13] try to understand the behavior of the system with regard to the hidden
causes of excessive waiting times. Ruohonen et al. [20] explore the possibility
of a triage-team in order to better allocate the resources.

In our work, we consider the stochasticity brought into the operating the-
ater schedule by two different patient flows: elective operations and emergen-
cies. In the literature, emergencies have been studied moderately. Stochastic
operating times of elective operations are sometimes considered in the plan-
ning literature, but most often by simulation (see also [15]). However, to
the extent of our knowledge, very few papers consider both patient flows
and incorporate the emergencies in the operating theatre planning problem.
Gerchak et al. [5] propose a stochastic dynamic programming model for the
aggregate advance scheduling problem. They aim at determining how many
of the additional requests for elective surgery can be assigned for each day,
according to emergencies and already scheduled operations. They maximize
an expected profit function while penalizing overtime and postponements.
They consider the total daily working time used by emergencies as well as
elective operating times as random variables. They propose no other perfor-
mance measures than those connected with their profit function. A second
example is given by [14], where the authors propose a method to build an
operating programme, taking account of emergencies. However, they con-
sider emergencies through a stochastic time needed in the planning, avoiding
measures such as waiting time, and the elective operating time is determin-
istic. None of these approaches consider the possibility to dedicate rooms



to emergencies. Moreover, we found no research that clearly justifies how
to set the minimum room occupation rate in order to absorb unpredictable
events.

The rest of the paper is organized as follows. Section 2 describes our
modelling of the operating theatre, taking its stochasticity into account.
Section 3 details the Markov process used to analytically model the system
and to compute performance measures. Section 4 illustrates the utilization of
the proposed tool, by some experiments and examples. Concluding remarks
are given in Section 5.

2 Modelling of the operating theatre

As previously said, our goal is to help managers to deal with the randomness
of their environment, to help them planning the operations by taking the
unpredictable events into account. The stochasticity essentially comes from
two facts. First, the length of the operations cannot be exactly predicted.
Second, emergencies arrive unexpectedly, and cause a significant disruption
to the surgical schedule.

In our model, we thus consider stochastic operating times and we dif-
ferentiate scheduled operations and emergencies. In particular, we want to
measure the disruption of the operating schedule by the emergencies. In-
deed, when the emergency flow is sizeable, emergencies may significantly
disrupt the schedule. This affects the quality of service to elective oper-
ations as well as to emergencies. In this context, an option could be to
separate the flows, by dedicating one or more operating rooms to emergen-
cies. This would improve the care provided to the emergencies, by reducing
their waiting time, as well as to the planned operations by avoiding too
much disruption and delay. However, dedicating an operating room lowers
the available time for elective operations, as some rooms are not accessible
to them anymore. We thus included this option in our model: we differ-
entiate dedicated (to emergencies) rooms and versatile rooms (which treat
scheduled operations and, if necessary, emergencies). We suppose that the
versatile operating rooms can accommodate any kind of surgery treated in
the hospital [14]. In the following, an operating theater with n, versatile
rooms and ny dedicated rooms will be said to have a [n,|ng] configuration.

This leads us to the model illustrated in Fig. 1. In this model, the
scheduled operations are treated in the versatile rooms. We thus consider
that the versatile operating rooms are continuously fed by a flow of elective
operations. This arrival process is said to be saturated. In other words, as
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Figure 1: Operating theatre made of four rooms, of which one is dedicated
to the emergencies and three are versatile ([3|1] configuration).

these operations are planned, the next elective surgery is always ready to
start when an operation ends. On the contrary, emergencies arrive following
a random process. We consider emergencies as events to carry out as a
priority. They represent critical cases that have to be treated in the day.
When an emergency arrives, it goes to a priority queue (of infinite capacity),
i.e. an emergency has priority over an elective case. In concrete terms,
when an emergency arrives, it goes directly to the dedicated rooms (if the
configuration of the surgical units contains some), if one is vacant. If not,
it waits in the queue till one operation ends in any room (dedicated or
versatile). If the first operation to end is in a versatile room, the emergency
has priority over the planned operation, and delays the latter. This is one of
the main sources of disruption of the planning (another source of disruption
are the stochastic operating times). Once an operation is performed (in
a stochastic time), the patient is taken to the recovery units. Although,
recovery beds management is a proper problem, and is not addressed in this
work. Finally, note that the model can be studied without any dedicated
room, i.e. every emergency treated in the versatile rooms.

We now list the modelling assumptions we make. They allow us to
analytically model the operating theatre depicted in Fig. 1 by a Markov
process (see the next section). However, note that we argue in Sect. 3.2
that these assumptions are not restrictive. We validate them by comparing
the results of the analytical modelling with simulation results. We essentially
make three assumptions:

e The operating time of a planned operation is supposed to be exponen-
tially distributed with rate \,, expressed in operations/day, where a



working day is supposed to count 8 hours. We decide not to distin-
guish the elective operations. We could differentiate the surgeries by
room, but it would lead to a much larger Markov chain. Furthermore,
we can consider that the difference in the operations is modelled by
their stochastic nature.

e We suppose that the emergencies arrive according to a Poisson process,
with arrival rate \;. This is a classical assumption in the literature. It
has been validated in many contexts (see [7] for example).

e We also assume that the operating time of an emergency is exponen-
tially distributed, with rate A.. Note that the elective operations and
emergencies processing times may include the preparation (preopera-
tive) and the cleaning (postoperative) of the room.

The modelling of the operating theatre is now defined. Our main ob-
jective is to evaluate the effect of stochasticity on the surgical schedule,
with various performance measures. From the managerial viewpoint, the
tool should allow us to compute measures such as the arrival rate of the
emergencies in the planning, the operating time of these emergencies, the
probability of overtime, and the desirable occupation rate. Concerning the
quality of care for emergencies, measures of interest are, for example, the
average waiting time for an emergency or the probability to wait more than
one hour. Furthermore, we would like to evaluate the opportunity to add or
remove dedicated (to emergencies) operating rooms.

3 The Markovian model

In this section, we present an analytical model of the operating theatre de-
scribed in the previous section. The assumptions required by the analytical
model are next validated by simulation. The problem in hand clearly brings
queueing theory to mind (see Fig. 1). However, the organization of the
system, in particular the differentiation of the dedicated rooms and the ver-
satile rooms, prevent the application of this theory. For example, the arrival
process of the emergencies to the versatile rooms cannot be considered as
Poisson. The emergencies reach the versatile rooms only when the dedicated
room(s) is (are) busy, i.e. intermittently. The complexity of the system leads
us to model the evolution of the operating theatre by a Markov process, as
described below.
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Figure 2: Continuous Markov chain for an operating theatre made of four
rooms, of which one is dedicated to the emergencies and three are versatile
([3|1] configuration).

3.1 The Markov process

As detailed in Sect. 2, we suppose the operating times to be exponentially
distributed (with rates A, and A.) and the emergency arrival process to be
Poisson (with rate );). These assumptions allow us to model the operating
theatre as a continuous Markov process.

The main goal of this Markov process is to measure the disturbance
brought by the emergencies in the schedule. We thus focus on them to build
the Markov chain (see the example given in Fig. 2). Each state dvq of the
chain is defined by the number of emergencies in each part of the system.
Each number in the state dvq refers to one part of the operating theatre:
the dedicated rooms (dvq), the versatile rooms (dvg), and the emergencies
priority queue (dvq). For example, the state dvg = 112 represents an operat-
ing theatre where one emergency is under treatment in the dedicated room,
one emergency is inserted in the versatile rooms, and two emergencies are
waiting for a room to become available.

The transitions between the states correspond to the different events
that may occur in a given state. These events are of four types:

e When an emergency arrives (with rate J);), it enters in a dedicated
room if possible (transition 020 to 120 for example), otherwise it joins
the queue (112 to 113).

e When an emergency ends in a dedicated room (with rate negAe, ned
being the number of emergencies in progress in the dedicated rooms),
it leaves the corresponding room. If another emergency is waiting for



treatment, it replaces the finished one in the same operating room (112
to 111). Otherwise, the queue stays empty and the dedicated room
becomes free (120 to 020).

e When an emergency leaves a versatile room (with rate ney,Ae, ney being
the number of emergencies in progress in the versatile rooms), it is
replaced by another emergency if one was waiting (112 to 111, again).
If the queue was empty, a scheduled operation may enter the room
(120 to 110).

e The last case corresponds to an elective operation ending (with rate
npAp, np being the number of elective operations in progress, i.e. the
number of versatile rooms minus ne,). If an emergency is waiting for
treatment, the emergency reaches the versatile room (112 to 121). If
not, a new planned operation enters the room, and the state stays the
same (120 for example).

As the states and transitions are defined, the continuous Markov chain
modelling the system can be built. It is illustrated in Fig. 2 for an operating
theatre composed of four operating rooms with a [3|1] configuration, i.e. one
is dedicated to emergencies. It can be seen that the structure of the chain is
different depending on the presence of emergencies in the queue or not, as can
be deduced from the description of the various transitions. We implemented
this Markov process, to get a tool as flexible as possible. The different rates
(Ai, Ae and A,), the number of operating rooms, as well as their repartition
in dedicated and versatile rooms, can be chosen. Moreover, the Markov
process offers a complete modelling of the evolution of the emergencies in
the operating theatre. Consequently, various performance measures can be
derived from it. We describe the most relevant ones in the following.

First, the implemented tool computes the stationary probabilities of the
states of the Markov chain. Informally speaking, the stationary probability
of one state gives the proportion of time during which the operating theatre
is in this state. In order to compute them, we fix a maximum size for the
priority waiting queue, so that the Markov chain becomes finite. This size is
chosen so that the ignored state probabilities are negligible, i.e. so that the
final results are not affected. The stationary probabilities 7; of the states of
a continuous finite Markov process can be easily computed with the classical
formula 7@ = 0, with ), 7; = 1 and where @ is the transition matrix of the
Markov process. From the stationary probabilities, we can derive several
measures (with any parameter choice):



e The disruption rate, denoted \;;,, is the average rate of the emergencies
entering the versatile rooms. In other words, it reflects the disturbance
of the schedule by the emergencies. It is computed as the sum of the
rates of the transitions leading to such a disruption, weighted by the
stationary probabilities of the corresponding states. Note that if no
operating room is dedicated to emergencies, we have \;, = A;.

e The disruption rate can be straightforwardly translated into the work-
ing time needed to treat the emergencies entering the versatile rooms.
The latter gives a first idea of the time slot that the planner should
reserve for emergencies, on average.

e In order to evaluate the quality of treatment of the emergencies, we
compute the probability for an emergency to wait (it equals one if
no room is dedicated to the emergencies). It equals the probability
for an emergency to arrive when all the dedicated rooms are busy,
i.e. the sum of the stationary probabilities of the states showing this
characteristic.

e Again, with the same goal, we can evaluate the average waiting time in
the queue for an emergency. It can be computed using the Little’s law:
the arrival rate is deduced from the waiting probability (see previous
item) and the average number of emergencies in the queue is easily
inferred from the stationary probabilities.

e The distribution of the waiting time can also be inferred from the
Markov chain and its stationary probabilities. It can be shown that
this distribution is continuous phase-type [18]. From the distribution,
the probability for an emergency to wait more than a given time, one
hour for example, can be found.

e Many other measures could be computed such as: the average number
of emergencies in the operating theatre, the average occupancy rate of
the dedicated rooms, the average number of emergencies in the queue,
etc.

However, even if these measures give interesting insights, the stationary
probabilities do not allow to compute the overtime. At this stage, we are
not able to answer our main question: which occupancy rate should be
taken by the planner in order to reach a chosen maximum overtime 7 In
order to compute the overtime, we need to find the distribution of the global
operating time for a day, for planned operations as well as for emergencies.



For this, we first need to find the distribution of the number of emergencies
disrupting the planning in one day, i.e. the probabilities to have zero, one,
two, etc. emergencies operated in the versatile rooms.

In order to compute the distribution of the number of disrupting emer-
gencies, we extend the Markov chain. A fourth attribute (dvgp) is added
to each state of the chain. It counts the number of emergencies which en-
tered the versatile rooms. The transitions are thus modified accordingly:
each transition which corresponds to an emergency entering the versatile
rooms now goes from dvgp to d'v'¢'p+ 1 (where d'v'q’ stays the same as
for the previous Markov chELin). For example, for an operating theatre with
a [3|1] configuration (three versatile rooms and one dedicated room), from
state 1121, if the emergency currently operated in a versatile room ends, a
waiting emergency will enter the corresponding room, leading to state 1112
(with rate A¢). If one elective operation ends, it will lead to state 1212
(with rate 2),, similarly to the chain given in Fig. 2), one waiting emer-
gency entering the versatile room. The Markov chain is thus very similar
to the one presented in Fig. 2. Informally said, the new Markov chain has
one more dimensionality, and transitions occurs from one level to the upper
level (dvgp to d'v'q'p + 1) if an emergency enters the versatile rooms.

From the extended Markov chain, the transient probabilities 7 (t) of the
states can be computed, using the classical equation 7(t) = 7(0)e?!(see [21]
for example), where @ is the transition matrix and 7(0) gives the initial
condition!. The transient probabilities 7(8 hours) give the probability of
each state at the end of a working day. By construction of the extended
chain, we thus get the probability that, for example, two emergencies disrupt
the planning during one day. For this, we just need to sum the transient
probabilities of every state dvq2 of the extended Markov chain. Finally, we
can thus compute the distribution of the number of emergencies disrupting
the schedule. Note that, again, we truncate the chain in order to make it
finite, removing states with negligible probabilities.

From the distribution of the number of disrupting emergencies, we can
infer the distribution of the global working time in the versatile rooms. The
latter distribution appears to be a continuous phase—type distribution. A
phase—type distribution is a complex composition of exponential distribu-
tions which can be modelled as the time until absorption of a Markov process
with one absorbing state. It is fully characterized by the transition matrix
of the Markov process and the initial probabilities of starting in any of the

'Here, we suppose that, at the beginning of the day, there is no emergency in the
operating theatre, i.e. moo00(0) = 1.
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Figure 3: Continuous phase—type distribution of the global working time in
the versatile operating rooms, for one day.

states of the chain [see 18]. To begin, suppose there are, on a particular
day, two emergencies which disrupt the surgical schedule. In this case, the
global working time in the versatile rooms will be composed of N, planned
operations and two urgent operations. To get the total working time on all
versatile rooms, we just have to sum all the exponentially distributed times
of these operations (planned and urgent). In terms of Markov process, it
can be modelled by N, + 2 states in series (with transition rates A, for the
planned operations and A, for the emergencies, see the third “branch”, from
top, of the chain in Fig. 3). However, the number of emergencies disrupting
the planning is not fixed: it is random. The number of emergencies to be
added to the N, planned operations changes accordingly (see the “branches”
for 0, 1, 2 and n emergencies in Fig. 3). As the distribution of the number
of disruptions can be computed (see previous paragraph), the probability
of each case is known. It leads us to the phase-type distribution illustrated
in Fig. 3. The first “branch” of the Markov process corresponds to a day
without disruption, the second branch to a day with a single disruption,
etc. The initial probabilities to enter each branch (pg, p1, etc.) equal the
probability to have zero, one, etc. disruptions on a given day. The time to
reach the end of a “branch”, i.e. the absorbing state A, equals the sum of
the operating times, with the right number of operations of each type and
the right transition rates.

Fortunately, the theory on phase—type distribution is well established
[see 18]. The density function and the distribution function, as well as the
moments (like the mean and the variance), are known, from the transition
matrix and the initial probabilities. We are able to compute them. It
allows us to compute the overtime. Indeed, the probability of overtime
corresponds to the probability that the working time in the versatile rooms
exceeds 8 hours per room, i.e. 1—F(n, 8 hours) where F(t) is the cumulative

11



distribution function of the distribution of the global working time, which
is known, and n, the number of versatile rooms. We built the tool we were
looking for: we are able to link the occupancy rate planned by a manager
and the probability to have overtime. It allows to answer questions such as:
what occupancy rate should be chosen, in other words how “loaded” should
be the operating programme, to have no more than one day of overtime per
week, on average?

3.2 Validation by simulation

The Markovian process detailed in the previous section enables us to ana-
lytically model the operating theatre described in Sect. 2. Nevertheless, it
requires some technical assumptions on the statistical distributions of the
events. Modelling the unpredictable arrival of emergencies as a Poisson pro-
cess is a classical assumption. However, the validity of the assumptions is
not as obvious on the processing times of the various operations. In this
section, we therefore want to check the robustness of our theoretical results
according to the variability of the statistical distributions of the operating
times.

We used the software AnyLogic [22] to develop a simulation model that
depicts the problem we are concerned with. Our goal is to validate the
assumptions on the statistical distributions of the operating times. For that
purpose, we assess how the disruption rate \;, evolves according to the
variability of these distributions. As shown later, we can argue that our
Markovian model is accurate and that the required assumptions alter very
slightly the final results.

Using simulation, we estimate the performances of an operating theatre
composed of seven rooms with a [6|1] configuration, i.e. six versatile rooms
and one dedicated room. This configuration is the one used in a Belgium
hospital we have contact with. The default values for the rates are \; = 4
(four emergencies arrive a day, on average), \e = 4 (four emergencies are
treated a day, by room, on average) and A, = 3 (three elective cases are
treated a day, by room, on average). We compare in Table 1 the analytical
and simulation values of the disruption rate \;,, i.e. the arrival rate of
emergencies in the versatile rooms. The arrival process of emergencies in the
operating theatre is Poisson with rate \; ranging from 2 to 5. The simulated
operating times of emergencies follow a Gamma distribution with a rate of
4 operations/day, while the simulated operating times of the elective cases
follow a Gamma distribution with rate of 3 operations/day. The parameters
of the Gamma distributions are chosen so that the coefficients of variability

12



Table 1: Analytical and simulated values of the arrival rate \;, of emergen-
cies in the versatile rooms ([6]|1] configuration). The simulated operating
times follow Gamma distributions with various coefficients of variability cv.

Arr. r. Anal. cv=05 cv=0.75 cv=1 cv=125 cv=1.5

A =2 0.58 0.58 (01) 0.58 o1) 0.59 (o1) 0.58 (o1) 0.58 (.01)
A=3 114 1.15co1) 1.16 (o2) 1.15 (o1) 1.15 (o1) 1.16 (.02)
Ai=4 1.81 1.81 co1) 1.81 (02) 1.82(02) 1.82 (o1) 1.82 (.02
Ai=5b 254 25502 255 (02 2.57 (02) 2.55 (02) 2.55 (.02)

cv range from 0.5 to 1.5. The simulation time equals 10,000 days, and
each simulation is replicated 10 times. Table 1 shows the average \;, and,
between brackets, the corresponding standard deviations.

On Table 1, it obviously appears that the disruption rates A;, are highly
homogeneous regarding the statistical distribution variability (cv). The
difference between Markovian and simulation results are negligible. The
Markovian approach is proved to be robust to the variability.

4 Computational results

In the previous sections, we developed a model of the operating theatre,
paying particular attention to its stochasticity. From it, we built a flexible
tool which computes various performances measures. The goal is to help
operating theatre managers to take the stochasticity of their environment
into account, especially when planning the operations. Moreover, we pay
special attention to the disruption of the schedule caused by the emergencies.
In the present section, we illustrate how our tool can be used, and how
it provides insights about the behavior of the operating theatre. We also
show how the various parameters (rates and numbers of rooms) affect the
performance measures. By default, we will suppose the operating theater to
show a [6]1] configuration such as in the Belgium hospital we have contact
with?. The default values for the rates are \; = 4 (four emergencies arrive
a day, on average), A = 4 (four emergencies are treated a day, by room,
on average) and A\, = 3 (three elective cases are treated a day, by room, on
average).

2In this hospital, the average operating time approximately equals three hours for an
elective operation and two hours for an emergency.
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Figure 4: Operating time of the disrupting emergencies, with rates A;, A\, and
Ap varying, for a [6|1] configuration. The legend shows the couple (Ac, Ap).

First, we analyse how the rates of the operating time distributions and of
the Poisson emergency arrival affect the disruption of the surgical schedule.
Figure 4 shows how the working time needed to treat the disrupting emer-
gencies changes when the rates \;, A\ and A\, vary. For example, with the
default rates (i.e. four emergency arrive per day while four can be treated
per day, which means that, in a deterministic environment, every emergency
could be treated in the dedicated room), approximately four hours of op-
eration, on average, will be needed in the versatile rooms to operate the
emergencies. In other words, in this case, about two (1.81) emergencies
among four will enter the versatile rooms and disrupt the elective opera-
tions. This clearly reflects the importance of considering the stochasticity
of the hospital environment. It can also be seen on Fig. 4 that, unsur-
prisingly, when the arrival rate of the emergencies increases, the disruption
of the schedule increases. Similarly, when the time to operate emergencies
increases (. decreases), their impact is bigger. Concerning the rate A, to
operate elective cases, Fig. 4 shows that it has little influence. This ob-
servation tends to validate our assumption about the non—differentiation of
the elective operations (see Sect. 2): specifying the lengths of the elective
operations would not have much impact on the results, for our problem.

It is also of interest to see how the operating theatre configuration in-
fluences the disruption of the planning. Figure 5 shows how the emergency
arrival rate into the versatile rooms decreases when the number of dedicated
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Figure 5: Arrival rate of the disrupting emergencies, with \; increasing
(Ae =4 and )\, = 3), and for various operating theatre configurations [n,|ng].

rooms increases. With the default rates (A\; =4, A = 4 and A\, = 3), if we
dedicate two rooms to emergencies instead of one, the arrival rate of the
disrupting emergencies decreases from 1.81 to 0.61.

These performance measures are related to the disruption of the schedule
by the emergencies. A second kind of measures reveals the quality of service
to the emergencies, which is mainly connected to their waiting time. Figure
6 shows how the average waiting time, for an emergency, is affected when
the rates \;, A\c and A, vary. For the default example, an emergency will
have to wait 14 minutes on average, which looks reasonable. Note that,
without dedicated room, it would have to wait 26 minutes on average. It
can be seen in Fig. 6 that the waiting time increases with the arrival rate
of emergencies and with the average operating time of an emergency (as
more emergencies have to wait). Moreover, the operating time of an elective
operation has more impact than previously. This comes from the fact that
a queueing emergency has to wait longer for an operation to end.

More detailed information about the waiting time comes with its distri-
bution. In particular, it is relevant to check the probability for an emergency
to wait what is considered as a too long time. For example, Fig. 7 shows
the probability to wait more than one hour, for various operating theatre
configurations. Again for the default example, the probability to wait more
than one hour equals 5.3% (17.1% for half an hour). A manager could
consider this proportion as excessive. One option could be to dedicate an-
other operating room to emergencies. In this case, the probability to wait
more than one hour decreases to 2% (6.9% for half an hour). Also note
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that, without dedicated room, the probability would be 10.3% (32.3% for
half an hour), what could be considered as an argument for dedicating one
room. Unsurprisingly, the waiting probability increases with the arrival rate
of emergencies, and with the number of versatile rooms (for a given number
of room).

We now analyse the overtime, which is one of the main concern of man-
agers, as it is an important source of cost. By overtime, we mean here a work-
ing time exceeding the available time on all the versatile room (n, -8 hours).
Figure 8 reveals the probability of overtime according to the number of elec-
tive operations planned in the versatile rooms. This picture offers an answer
to the following important practical question: what should the occupancy
rate of the planning be in order to avoid getting more than, say, one day of
overtime per week (a week contains here five working days)? For the default
configuration (\; = 4, A = 4 and A\, = 3, configuration [6/1]), it can be
seen that 13 operations can be scheduled in order to have a probability of
overtime smaller than 0.2, i.e. one day of overtime per week (of five days). If
the manager decides to allow two days of overtime per week, he could then
plan 16 operations per day. Another way to present these measures is to use
the average occupancy rate: 13 planned operations per day is equivalent to
an occupancy rate of 72.2% and 16 operations is equivalent to an occupancy
rate of 88.9%. However, this does not include the disrupting emergencies.
Adding the emergencies, the versatile rooms will be busy 78.3% of the time,
on average, if one day of overtime per week is allowed. It two days are
considered as reasonable, the versatile rooms will be occupied 94.9% of the
time, on average. It can also be seen on Fig. 8 that, when more emergencies
are arriving in the hospital, less operations can be planned in order to keep
the probability of overtime under the fixed treshold. When the number of
versatile rooms decreases, the number of planned operations has to decrease,
of course.

If the overtime is the main concern of a manager, he can also get a
more detailed information thanks to the distribution of the working time.
Figure 9 depicts this distribution for various allowed probability of overtime
(one day every two weeks, one day a week, or two days a week). The
probability that the working time exceeds 48 hours (6 rooms times 8 hours)
equals the probability of overtime. The distribution provides various other
informations. For example, it tells the manager that, in the case of two
“overtime days” a week, there is 40.5% chance that the operations of the
day will take less than 42 hours (i.e. 7 hours per room, on average). In
other words, the manager now knows that two days a week, on average, the
rooms, and the associated ressources, will be free for more than one hour.
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The average amount of overtime can also be computed (and could have been
chosen as the criteria to choose the occupancy rate). For example, in the
case of two “overtime days” a week, the average overtime per room, if there
is overtime, equals 1.49 hours. In other words, in this configuration, if the
planner choose to plan sixteen operations per day, there will be overtime
twice a week and for one hour and an half on average.

Finally, let us summarize the measures computed by our tool. We sup-
pose a manager who would like to have insights about how to take account
of the randomness when he plans the operations for the next week. The
operating theater is composed of seven rooms. He estimates the number
of emergencies per day to equal four, the operating times for elective and
emergency operations to be, on average, 2 hours and 40 minutes, and 2
hours, respectively. The manager notices that the number of emergencies
arriving corresponds to the number of emergencies that can be operated on
per day. He thus thinks about dedicating one room to the emergency. The
main advantage of this option is to reduce the waiting time of the emer-
gencies, which is critical. He measures that, when the number of dedicated
rooms goes from zero to one, the probability to wait more than half an hour
goes from 32% to 17%, while the probability for one hour goes from 10%
to 5% (with two dedicated rooms, these probabilities drop off to 7% and
2%, respectively). For the quality of service to the emergencies, it seems
to be advisable to dedicate at least one room to them. With one dedicated
room, an average of 1.8 emergencies would still disrupt the schedule, each
day. While with two dedicated rooms, only 0.6 emergency would enter the
versatile rooms. Then, to build the schedule, a central concern is to know
how many operations can be planned in order to keep the overtime limited.
If the manager decides that overtime is allowed once a week on average, only
13 and 11 operations can be planned, with one and two dedicated rooms,
respectively. The manager wants to test if more flexibility offers a signifi-
cant profit. He thus tests the case where overtime is permitted twice a week
on average. In this case, three supplementary operations can be planned
each day, which represents a valuable income. The manager thus decides to
choose this alternative. Moreover, dedicating only one room to the emer-
gencies leads to treatment of two supplementary elective operations each
day. As the manager already measured that this configuration allows keep-
ing the waiting time reasonnably low, he decides to organize the operating
theater like this. When these decisions are taken, the manager can use the
tool to get various measures. He learns that he can plan 16 operations a
day, that 1.8 emergencies will disrupt the planning, leading to an occupancy
rate of 95% (89% whitout the emergencies). Moreover, he can measure that
there will be overtime twice a week, for one hour and a half on average.
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Finally, note that a similar analysis could be performed for other parame-
ters (number of rooms, rates). For instance, if the hospital is located in a
skiing region, the emergency arrival rate could increase during the winter,
and could justify the decision to dedicate a second room to emergencies.
The tool offers answers to such questions too.

5 Conclusion

In this paper, we propose an approach to help operating theater managers
deal with the stochasticity of their environment. We consider the random-
ness brought by the operating times as well as by the arrival of emergen-
cies. We develop an analytical approach based on a Markov process that
completely models the operating theater, focusing on the behavior of the
emergencies. Using simulation, we show that the assumptions required to
build the Markov process have minor influence on the final analytical results.
This approach allows analysis of both patient flows (elective or urgent) and
to evaluate performance measures showing the quality of the service to both
kinds of patients. Finally, our tool answers questions at the tactical-strategic
level of decisions, such as: what is the disruption of the surgical schedule
by the emergencies? What is the chance for an emergency to be treated
directly? How much time will it have to wait on average?” How many op-
erations can be scheduled each working day in order to keep the overtime
limited? In other words, what is the maximal occupation rate to allocate
for the elective cases in the planning? What is the average overtime? What
is the distribution of the working time? Is it useful to dedicate operating
rooms to exclusively treat emergencies? If so, how many? What are the
consequences on the quality of the service?

Concerning possible extensions of our work, although the proposed Marko-
vian approach models the whole operating theatre, it could be appropriate
to include recovery beds, which also have interesting implications. We could
refine the modelling of the operations, and distinguish the operating rooms
(i.e. consider different elective operating times) as well as different prior-
ity levels for the emergencies. The dispatch rule of the emergencies to the
versatile rooms could be improved: the emergencies could be mainly dis-
patched to operating rooms treating low variance operations, for example.
Our approach could also be applied to catastrophe management, where the
emergencies are dispatched through a hospital network. The flow of emer-
gencies would be transfered with priority to the nearest hospital (which
corresponds to our dedicated room), but some emergencies would also be
redirected to other hospitals in the network (our versatile rooms).
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