
bc− opt: a Branch-and-Cut Code for Mixed Integer

Programs ∗

Cécile Cordier†Hugues Marchand‡, Richard Laundy§,
Laurence A. Wolsey¶

October 9, 1997

Abstract

A branch-and-cut mixed integer programming system, called bc −
opt, is described, incorporating most of the valid inequalities that have
been used or suggested for such systems, namely lifted 0-1 knapsack
inequalities, 0-1 gub knapsack and integer knapsack inequalities, flow-
cover and continuous knapsack inequalities, path inequalities for fixed
charge network flow structure and Gomory mixed integer cuts. The
principal development is a set of interface routines allowing these cut
routines to generate cuts for new subsets or aggregations of constraints.

The system is built using the XPRESS Optimisation Subroutine
Library (XOSL) which includes a cut manager that handles the tree
and cut management, so that the user only essentially needs to develop
the cut separation routines.

Results for the MIPLIB3.0 library are presented - 37 of the in-
stances are solved very easily, optimal or near optimal solution are
produced for 18 other instances, and of the 4 remaining instances, 3
have 0, +1, -1 matrices for which bc− opt contains no special features.

∗This work has been supported in part by the Esprit projects 8755 (PAMIPS) and
20118(MEMIPS).
†Cécile Cordier, CORE, Université Catholique de Louvain.
‡Hugues Marchand, CORE, Université Catholique de Louvain. Supported in part by

a doctoral fellowship from Collège Interuniversitaire pour les Sciences du Management
(CIM).
§Richard Laundy, Dash Associates, Leamington Spa.
¶Laurence A. Wolsey, CORE and INMA, Université Catholique de Louvain.

1

1 Introduction

Over the last twenty years a large number of specialised branch-and-bound
codes based on strong cutting planes have been developed for a variety of
combinatorial optimisation problems, such as the travelling salesman prob-
lem [18],[10], the max cut problem [3], the two-connected network problem
[11], etc. The first more general code using strong cutting planes was that
of Crowder, Johnson and Padberg [8] for pure 0-1 problems incorporating
lifted cover inequalities. To handle mixed 0-1 programs, MPSARX [23] also
included flow cover inequalities and some simple (fixed charge) path inequal-
ities. Both these codes were cut-and-branch codes in which cuts were only
generated at the root of the enumeration tree. MINTO [22] was the first
branch-and-cut code incorporating cover and flow cover inequalities, and
later gub-cover inequalities [12]. More recently MIPO [1] is a branch-and-
cut system designed for mixed 0-1 problems using lift-and-project cuts, that
has also been used to test Gomory mixed integer cuts [2].

The branch-and-cut system described here, called bc− opt, incorporates
many features from the earlier codes such as lifted cover, flow cover, simple
path, gub-cover inequalities and Gomory mixed integer cuts. It also in-
cludes new routines including integer knapsack inequalities and knapsacks
with continuous variables. However the main new feature is a set of model
interface routines, creating new model relaxations on which the existing cut
routines can generate inequalities. The system is based on the XPRESS-MP
system and is built using the corresponding subroutine library XOSL [25].

On the MIPLIB 3.0 library [5] of mixed integer test instances, bc − opt
solves 37 of the problems very easily, and produces provably optimal or
near-optimal solutions to 18 other problems. 3 of the remaining 4 problems
are set covering problems with 0,1 or 0,+1,-1 matrices for which bc − opt
contains no special features.

Our goal in the paper is to briefly describe the bc− opt branch-and-cut
software as it has existed for the last couple of years, and the results ob-
tained with it. Thus in Section 2 we just give the idea of a branch-and-cut
algorithm, and describe the components of a generic cut routine. In Section
3 we describe the canonical structures used for cut generation. The cut-
ting plane and separation algorithms for these structures can all be found
in the literature. In Section 4 we present the model interfaces which start
from original model constraints and their classification and convert them to
one or more of the canonical structures. In Section 5 further details of the

2

bc − opt branch-and-cut system are given, and in Section 6 computational
results are presented.

2 Branch-and-Cut for MIP

We consider the problem:

(IP) z = max{cx : x ∈ S}

where an initial formulation P = {x ∈ Rn+ : Ax ≤ b} of the set of feasible
solutions S = P ∩ Zn is given. For simplicity of notation, the algorithm
is described for an integer program, but it applies just as well for a mixed
integer program.

A branch-and-bound algorithm to solve problem IP consists of:

• breaking up unsolved subproblems into new subproblems by parti-
tioning the set of feasible solutions. With subproblem j of the form
zj = max{cx : x ∈ P j ∩Zn}, it is important to stress that its formula-
tion is given by the polyhedron P j , and not just by the feasible region
Sj = P j ∩ Zn.

• bounding the value of the objective function for each subproblem j.
This phase consists of the solution of the linear program z̄j = max{cx :
x ∈ P j} with optimal solution x̄j . Thus z̄j = cx̄j ≥ zj ,and if x̄j ∈ Zn,
then zj = cx̄j ≤ z.

The choice of the formulation is therefore crucial in generating good
bounds on the objective value. In a Branch-and-Cut approach, the formu-
lation P j is progressively tightened by adding inequalities valid for the set
Sj but violated by the solution of the current relaxation xj .

The main approach used in bc−opt is to develop strong valid inequalities
for well-defined structures and then generate cuts whenever these structures
are found as part of a problem instance.

The theoretical development of such inequalities typically involves two
steps:
the derivation of a class of valid inequalities for some canonical structure,
and
a separation algorithm (exact or heuristic) that, given a point, tries to find
a violated inequality from this class.

3

The implementation of a cut routine thus involves three layers:
a cut generation routine based on the separation algorithm for the canonical
structure;
a model interface routine that converts the specific model instance into this
canonical structure, and, if necessary, converts back a violated inequality
for the structure into an inequality in the original variables of the instance.
This conversion is done by examining the current solution and by using
information about the general problem structure;
a routine to recognise this general problem structure: classifying the con-
straints of the problem, recognising variable upper (lower) bound as well as
generalised upper bound constraints (explained in Section 3). This routine
is just called once, after the instance is read in initially.

The classes of inequalities and the separation routines implemented in
bc − opt are quite standard, but an effort has been made to use these cut
routines as extensively as possible, by refining the model interface routines.

In the next section we describe the structures on which bc− opt tries to
generate cuts, referring to the literature for the detailed description of the
inequalities generated and the separation algorithm. In section 4, we give
details about how our model interface routines recognise these canonical
structures.

3 Canonical Structures

In this section, we describe six canonical sets. For each we give references
for the valid inequalities and separation heuristics implemented in bc− opt,
as well as any special features of our implementation.

3.1 The integer knapsack set

XK = {y ∈ Zn :
∑
j∈N

ajyj ≤ b, yj ≤ uj for j ∈ N}

with aj > 0 for j ∈ N and b ≥ 0. For this set, separation routines for lifted
cover inequalities are described in [8], [23], [12].

3.2 The knapsack set with a continuous variable

XKC = {(y, s) ∈ Zn+ ×R1
+ :

∑
j∈N

ajyj ≤ b+ s, yj ≤ uj for j ∈ N}

4

where aj > 0 for j ∈ N , and b ≥ 0. Here, as described in [6], cover
inequalities are derived for the integer knapsack set, and the continuous
variable is then lifted.

3.3 The 0-1 knapsack set with gubs

XGK = {y ∈ Zn+ :
∑
j∈N

ajyj ≤ b,
∑
j∈Bk

yj ≤ 1 for k ∈ K}

where aj > 0 for j ∈ N , Bk ∩Bk′ = ∅ if k 6= k′ and ∪k∈KBk = N . The con-
straints

∑
j∈Bk yj ≤ 1 are called gubs (generalised upper bound constraints).

Cover inequalities for such sets are described in [24] and separation heuristics
are tested extensively in [12].

3.4 The single node flow set

XF = {(x, y) ∈ Rn+ ×Bn :
∑
j∈N+

xj −
∑
j∈N−

xj ≤ b (1)

ljyj ≤ xj ≤ ujyj for j ∈ N} (2)

The constraints ljyj ≤ xj and xj ≤ ujyj are called vlb (variable lower
bounds) and vub (variable upper bounds) respectively. The family of flow
cover inequalities are described in [19]. Separation routines are described in
[23],[17] and a computational study of lifted flow cover separation heuristics
is presented in [13].

3.5 The fixed charge path set

-
sk−1

�
rk−1

C
C
C
CW?

�
�
�
��

xjk ≤ u
j
ky
j
k

����k
�
�
�
��dk

C
C
C
CW vk

-
sk

�
rk

· · ·����t− 1
-

st−1

�
rt−1

C
C
C
CW?

�
�
�
��

xjt ≤ ujtyjt

����t
�
�
�
��dt

C
C
C
CW vt

-
st

�
rt

����t+ 1 · · ·
-

sl−1

�
rl−1

C
C
C
CW?

�
�
�
��

xjl ≤ u
j
l y
j
l

����l
�
�
�
��dl

C
C
C
CW vl

-
sl

�
rl

Figure 1: XP

5

st−1 − rt−1 +
∑
j∈Nt

xjt = dt + vt + st − rt for all t (3)

xjt ≤ ujtyjt for j ∈ Nt, vt ≤ ht for all t (4)
st, rt, vt ≥ 0 for all t, xjt , y

j
t ∈ {0, 1} for all j ∈ Nt and all t. (5)

Such a path models part of a fixed charge network flow problem. In
particular for a lot-sizing problem, the variables st, rt can be interpreted
as stock and backlog variables in period t, the variables xjt as the amount
produced by process j in period t, yjt is the associated fixed charge variable
that takes the value 1 if the corresponding arc is used (process j is active in
the period), vt is the amount sold in period t , while dt is the demand.

A family of path inequalities and their separation are presented in [23].
The inequalities are a generalization of inequalities for the uncapacitated
lot-sizing problem.

3.6 The LP tableau row

XG = {(x, y, y0) ∈ Rn+ × Zp+ × Z1
+ : y0 +

∑
j∈N1

ajyj +
∑
j∈N2

ajxj = a0}

where the associated LP solution has y0 = a0 /∈ Z, yj = 0 for j ∈ N1, xj = 0
for j ∈ N2. The Gomory mixed integer cut for such sets can be generated
by inspection [9],[17]. See [2] for recent computational experience with such
cuts. As the cuts are typically dense, care is taken in bc − opt to limit the
number of variables and not to generate too many cuts, because otherwise
the linear programs quickly become very difficult to solve.

4 Model Interfaces

The model interface routines of bc− opt reduce rows or sets of rows of some
specific class into the canonical sets. In this section, we start by describing
the row classification routines on which these interfaces are based and then
we give examples of such reductions.

4.1 Row Classification

One of the first tasks of bc − opt is to classify rows in preparation for the
cut separation routines. Rows are classified, based on the types of variables
occurring in the row, as:

6

• 0-1 rows

• integer rows

• variable lower/upper bound constraints

• gub constraints

• mixed integer rows if the row contains both continuous and discrete
variables, or if some continuous variables have associated 0-1 variable
lower and upper bound constraints

• continuous rows

This classification is similar to that employed in other codes such as
[22],[23].

4.2 Reduction of Integer Rows

a) Reduction of Integer Rows to the form XK

Suppose that the model contains a 0-1 or integer constraint, which to-
gether with simple bounds lead to a set of the form:

{y ∈ Zn+ :
∑
j∈N

ajyj ≤ b, lj ≤ yj ≤ uj for j ∈ N}

The substitution y′j = yj − lj for j ∈ N with aj > 0 and y′j = uj − yj if
aj < 0 leads directly to a set in the canonical form XK .

The reduction of 0-1 rows and gub constraints to the formXGK is similar,
see [14].

4.3 Reduction of Mixed Integer Rows

a) Reduction of Mixed Integer Rows to Flow Sets XF

Suppose the instance contains a mixed 0-1 row, plus variable lower and
upper bounds of the form:∑

j∈N1

(ajxj + gjyj) +
∑
j∈N2

ajxj +
∑
j∈N3

gjyj ≤ b

l̃jyj ≤ xj ≤ ũjyj for j ∈ N1, l̃j ≤ xj ≤ ũj for j ∈ N2, l
′
j ≤ yj ≤ u′j for j ∈ N1∪N3

yj ∈ {0, 1} for j ∈ N1 ∪N3

7

where aj 6= 0, ajgj ≥ 0 for j ∈ N1, l̃j ≥ 0 for j ∈ N1 ∪ N2, aj 6= 0 for j ∈
N2, gj 6= 0 for j ∈ N3, and N1, N2, N3 is a partition of N .

Let N+
i = {j ∈ Ni : aj > 0} i = 1, 2 and N+

3 = {j ∈ N3 : gj > 0}.
Setting zj =| ajxj + gjyj | for j ∈ N1, zj =| ajxj | for j ∈ N2, zj =| gjyj |

for j ∈ N3, we obtain ∑
j∈N+

1 ∪N
+
2 ∪N

+
3

zj −
∑

j∈N−1 ∪N
−
2 ∪N

−
3

zj ≤ b

| aj l̃j + gj | yj ≤ zj ≤| aj ũj + gj | yj for j ∈ N1,
| aj | l̃j ≤ zj ≤| aj | ũj for j ∈ N2, zj =| gj | yj for j ∈ N3.
Finally introducing variables yj for j ∈ N2 with l′j = u′j = 1, we obtain

a set of the from XF .

b) Reduction of Mixed Integer Rows to Knapsack Sets XK

Suppose for simplicity of exposition that the mixed integer row has been
reduced as in 4.3a) to a flow set where the yj are now general integer vari-
ables. The resulting set is of the form:

{(x, y) ∈ R|N |+ × Z |N |+ :
∑
j∈N+

xj −
∑
j∈N−

xj ≤ b

ljyj ≤ xj ≤ ujyj , l′j ≤ yj ≤ u′j for j ∈ N}

where (N+, N−) is a partition of N .
Replace xj by ljyj for j ∈ N+ and by ujyj for j ∈ N−. The resulting

relaxation is a pure integer row:

X ′ = {y ∈ Z |N |+ :
∑
j∈N+

ljyj −
∑
j∈N−

ujyj ≤ b, l′j ≤ yj ≤ u′j for j ∈ N}.

Now, by the reduction of Section 4.2a), this can be converted to the form
XK .

c) Reduction of Mixed Integer Rows to the form XKC

Suppose again that the mixed integer row has been reduced to a flow
set with general integer variables XF of the form (1),(2), and that (x∗, y∗)
is the current value of the variables occurring in XF .

8

Let N+
l = N+ ∩ {j ∈ N : x∗j − ljy∗j ≤ ujy

∗
j − x∗j} and N+

u = N+ \N+
l .

Similarly define N−l and N−u . Replace xj by ljyj for j ∈ N+
l , by ljyj + sj

for j ∈ N−l , by ujyj for j ∈ N−u and by ujyj − sj for j ∈ N+
u . Let s =∑

j∈N−
l
∪N+

u
sj . The resulting relaxation is:

X ′ = {y ∈ Z |N |+ :
∑
j∈N+

l

ljyj +
∑
j∈N+

u

ujyj −
∑
j∈N−

l

ljyj −
∑
j∈N−u

ujyj ≤ b+ s,

l′j ≤ yj ≤ u′j for j ∈ N}.
Now using the same transformation as in Section 4.2a, this can be con-

verted to the form XKC .

Example 1.
We consider a set of constraints arising in gesa3.mat in the MIPLIB3.0

test library. The set involves the satisfaction of demand for electricity on
island 2 in period 14. The set is:

x2 + x3 + x4 − 0.13y2 − 0.26y3 − 0.35y4 + 0.97v1 − 1.5yv1 = 42.64 + v2

1.96y2 ≤ x2 ≤ 10.78y2, 4.9y3 ≤ x3 ≤ 34.3y3,

7.44y4 ≤ x4 ≤ 13.02y4, 0 ≤ vi ≤ 45yvi for i = 1, 2

y2, y3, yv1, yv2 ∈ {0, 1}, 0 ≤ y4 ≤ 3 and integer.

Here xj represents the electricity produced by generators of type j, yj is
the number of generators active, v1, v2 are the shipments of electricity into
and away from the island, and yvi i = 1, 2 the associated 0-1 variables.

The linear programming solution is x∗4 = 0.514, y∗4 = 0.069, yv∗1 = 1, v∗1 =
45 with all other variables zero.

Model Interface to XKC . As x∗j = ujy
∗
j j = 2, 3, v∗1 = 45yv∗1 and v∗2 = yv∗2 =

0, and s∗4 = x∗4 − l4y∗4 = 0, we choose to relax xj to ujyj for j = 2, 3, to
replace x4 by l4y4 + s4, s4 ≥ 0, to relax v1 to 45yv1, and to relax v2 to 0.
The resulting relaxation

(10.78−0.13)y2+(34.3−0.26)y3+(7.44−0.35)y4+s4+(0.97×45−1.5)yv1 ≥ 42.64,

9

is a canonical knapsack with continuous variable set XKC (to keep the phys-
ical interpretation of the variables, we have not complemented the integer
variables):

10.65y2 + 34.04y3 + 7.09y4 + 42.15yv1 + s4 ≥ 42.64

y2, y3, yv1 ∈ {0, 1}, 0 ≤ y4 ≤ 3 and integer, s4 ≥ 0

with linear programming solution (y∗2, y
∗
3, y
∗
4, yv

∗
1, s
∗
4) = (0, 0, 0.069, 1, 0).

The XKC separation heuristic produces the inequality

y2 + y3 + y4 + yv1 + (42.64− 42.15)−1s4 ≥ 2.

Returning to the original space by eliminating s4 gives the valid inequal-
ity

y2 + y3 + y4 + yv1 + (42.64− 42.15)−1(x4 − 7.44y4) ≥ 2

cutting off the original point with violation of 0.93.

4.4 Reduction of Sets of Mixed integer Rows

a) Reduction to simple paths XP

Starting from a set of mixed integer rows and variable upper bound con-
straints, a greedy row-by-row path augmenting procedure described in [23]
either terminates with a set in the form XP or decides that the set of rows
does not correspond to a path in a fixed charge network.

b) Reduction to an aggregated path set X̄P

Suppose that a path XP has been constructed, see (3)-(5), consisting of
nodes k, k+1, . . . , l asin Figure 1. We sum up the flow balance constraints of
XP . Adding simple uncapacitated path inequalities for xjt , we then obtain
the set X̄P

sk−1 − rk−1 +
l∑

t=k

∑
j∈Nt

xjt −
l∑

t=k

vt − sl + rl =
l∑

t=k

dt

xjt ≤ ujtyjt for j ∈ Nt, vt ≤ ht t = k, . . . , l

xjt ≤ rpjt−1
+ (

qjt∑
τ=pjt

dτ)yj + s
qjt

+
qjt∑

τ=pjt

vτ for j ∈ Nt, t = k, . . . , l

x, s, r, v ≥ 0, y ∈ {0, 1}

10

where for each j ∈ Nt and all t, [pjt , q
j
t] is an interval containing t, or is

empty. The additional inequality simply says that if one considers the sub-
path pjt , . . . , q

j
t , the inflow xjt either exits through a demand node, or by one

of the outflow arcs.
This intermediate structure is used in the two reductions described be-

low.

c) Reduction to a flow set XF

Starting from an aggregated path set X̄P , temporarily set (project) the
variables r

pjt−1
= s

qjt
= 0 for j ∈ Nt, t = k, . . . , l, and vt = 0 for t = k, . . . , l.

Eliminating the nonnegative variables sk−1, rl, we obtain a canonical flow
set XF in the form:

l∑
t=k

∑
j∈Nt

xjt ≤
l∑

t=k

dt + rk−1 + sl

xjt ≤ min[ujt ,
qjt∑

τ=pjt

dτ]yj j ∈ Nt,

x, s, r ≥ 0, y ∈ {0, 1}

Note that if a flow cover inequality
∑
πjzj ≤ π0 is generated, normalised

so that the flow variables have unit coefficients, lifting back the projected
variables gives an inequality

∑
πjzj ≤ π0 +

l∑
t=k

∑
j∈Nt

r
pjt−1

+
l∑

t=k

∑
j∈Nt

s
qjt

+
l∑

t=k

vt

valid for X̄P , XP and the original instance. Variants of this inequality can
be obtained by substituting vt = ht − v̄t with v̄t ≥ 0.

d) Reduction to a Knapsack Set with Continuous Variable XKC

Starting from an aggregated path set X̄P , eliminating the nonnegative
variables rk−1, sl, and replacing xjt directly by its variable upper bound ujty

j
t ,

we obtain the knapsack with continuous variable set XKC

sk−1 + rl +
l∑

t=k

∑
j∈N+

t

ujty
j
t ≥

l∑
t=k

dt

sk−1, rl ≥ 0, yjt ∈ {0, 1} for j ∈ Nt, t = k, . . . , l

11

Here any valid inequality for XKC is valid for X̄P , XP and the original
instance.

Example 2.
Here we consider a constant capacity lot-sizing problem without back-

logging. For the item under consideration, the model is:

st−1 + xt = dt + st t = 1, . . . , 6
xt ≤ uyt t = 1, . . . , 6

st, xt ≥ 0, yt ∈ {0, 1} t = 1, . . . , 6

The data are d = (3, 7, 6, 9, 4, 5), u = 10, and the linear programming solu-
tion is x∗ = (3, 7, 6, 10, 8, 0), y∗ = (1, 1, 1, 1, 0.8, 0), s∗ = (0, 0, 0, 1, 5, 0).

The reduction routine generates the simple path shown in Figure 2.

-
s3 = 0 ?

(x4, y4) = (10, 1)

����4
?
9

-
s4 = 1 ����5

?

(x5, y5) = (8, 0.8)

?
4

-
s5 = 5

Figure 2: Constant Capacity Lot-Sizing Path

Reduction to an aggregate path set produces the set X̄P

s3 + x4 + x5 = 13 + s5

x4 ≤ 10y4, x5 ≤ 10y5, x4 ≤ 13y4+s5, x5 ≤ 4y5+s5, x4, x5, s3, s5 ≥ 0, y4, y5 ∈ {0, 1}.
Reducing to a node set XF , we obtain:

x4 + x5 ≤ 13 + s5

x4 ≤ 10y4, x5 ≤ 4y5, x4, x5, s5 ≥ 0, y4, y5 ∈ {0, 1}.
The flow cover separation routine then generates the inequality

x4 + x5 ≤ 1 + 9y4 + 3y5 + s5

12

violated by 0.6.

Reducing to a knapsack set with continuous variable XKC , we obtain
the set

s3 + 10y4 + 10y5 ≥ 13, s3 ≥ 0, y4, y5 ∈ {0, 1},
and the separation routine then generates the inequality

1
3
s3 + y4 + y5 ≥ 2

violated by 0.2.

The two interface routines c) and d) enable us to generate tighter in-
equalities when capacities are present. For capacitated lot-sizing problems,
see [21], these are in many cases facet-defining.

Finally the description of XP and Figure 2 can be generalised to include
the possibility of arcs between non-adjacent nodes in the path. Such arcs
are allowed within the path construction routine, and either cancel out dur-
ing the aggregation procedure, or appear as additional outflow arcs in the
inequalities.

5 The bc-opt System

bc − opt has been developed with the tools provided by the XPRESS sub-
routine library (XOSL). XPRESS-MP[25] is one of the major commercial
mixed integer programming systems, and the subroutine library allows easy
access to a series of subroutines so as to:

• load matrices, names, priority files

• carry out optimisation tasks such as solving LPs and IPs and get bases

• view models and solutions

• modify models

• read and change control variables

• handle output

• compile, link, etc.

13

A unique feature of XOSL is a cut manager which handles the management
of a cut pool, thereby providing a branch-and-cut algorithm in which the
user only needs to provide cut separation routines. Essentially the branch-
and-cut algorithm is implemented as shown in figure 3.

Initialisation The first task of bc− opt, once the model has been read and
preprocessed, is to recognize and store the vub, vlb and gub structures
in the model, and classify the rows in preparation for the cut separation
routines as described in Section 2.

Cutting Phase After optimising the current node, a routine is called which
in turn calls the user provided cut separation routines. Each separa-
tion routine runs through the formulation row by row using the initial
row classification to decide if an appropriate canonical set can be con-
structed, and if so the separation routine is called. A complete cycle
through the rows is called a pass. Generated cuts can be added to the
matrix and cuts which are no longer binding can be removed. Having
done this the node is re-optimised and it is possible to call the cut
manager callback routine again to generate more cuts.

Branching Once the cut manager finishes processing a node, the branch-
and-bound algorithm continues in the usual way: an integer variable
whose linear programming value is fractional is selected for branching,
and the node is split into two by applying upper and lower bounds on
the branching variable. Once a subproblem is split into two, the new
subproblems are added to the node list with the appropriate pointers
to the cut pool.

Node Selection Previously the XPRESS default strategy was closer to
depth-first. It has been found useful to increase the options available
in XPRESS for node selection. Two important options are

i) the choice of a best bound strategy for a certain number of initial
nodes. This turns out to be effective when the cuts added by the
system succeed in reducing the duality gap.

ii) the use of a temporary cutoff. The idea is that if one has a good a
priori estimate of the optimal value, the temporary cutoff can be used
to prevent the algorithm wasting time searching in parts of the tree
that would not need to be explored if an optimal solution had already
been found.

14

INITIALISATION
The problem is: z = max cx

x ∈ S = P ∩ Zn
where P = {x ∈ Rn+|Ax ≤ b, lj ≤ xj ≤ uj∀j}
Perform Row Classification, store vubs, vlbs, gubs.
Set P0 = P;u0

j = uj ∀j; l0j = lj ∀j; z = −∞;NodeList = ∅; i = 0

RESTORE
Restore formulation P i for problem i: zi = max cx

x ∈ Si
where Si = P i ∩ Zn

P i = {x ∈ Rn+| Ax ≤ b
Πix ≤ Πi

0, l
i
j ≤ xj ≤ uij∀j}

Remove i from NodeList

LP RELAXATION
Solve zi =max cx = cxi

x ∈ P i

CUTTING - Iteration k
Look for

(
Πi,kΠi,k

0

)
s.t. Πi,kxi > Πi,k

0 and Πi,kx ≤ Πi,k
0 ∀x ∈ Si

If NO CUTS found goto PRUNING

else set Πi =

(
Πi

Πi,k

)
Πi

0 =

(
Πi

0

Πi,k
0

)
goto LP RELAX

PRUNING
If zi ≤ z goto NODE
else if xi ∈ Si then set z = zi goto NODE

BRANCHING
Choose k s.t. xik fractional
Create 2 new problems (Si = Si+ ∪ Si−)
li+k = dxike, ui−k = bxikc
Update NodeList = NodeList ∪ {i+, i−}
NODE
If NodeList = ∅ goto EXIT
Choose i ∈ NodeList goto RESTORE

EXIT
If z > −∞ then z = z

Figure 3: Different steps of a Branch-and-Cut Algorithm

15

As the latter option depends on some knowledge of the problem in-
stance, it may be particularly useful when several similar instances of
the same problem are solved.

bc − opt also contains several other features and options. During the
processing of a subproblem,
i) Apart from the six canonical separation routines described in Section 3.2
combined with the different interface routines of Section 4, it is also possible
to use model cuts. Here a set of constraints is introduced as part of the initial
matrix, but these constraints are removed from the formulation and stored
in the cut pool from which they can be loaded whenever violated. This is
useful when a class of valid inequalities can be described explicitly, but the
addition of a very large number of rows would significantly slow down the
solution of the linear programs.
ii) reduced cost fixing is used, and
iii) a primal heuristic based on successive rounding of fractional variables is
available.

In developing the branch-and-cut tree, the user has the option
i) to define a cutting plane strategy by selecting which cuts to look for,
ii) to generate cuts every x nodes, or every y levels in the tree,
iii) to generate either locally valid cuts or globally valid cuts by using
local/global bounds on variables. Violated globally valid cuts can be ad-
ded at any node of the search tree, and
iv) to delete inactive cuts.

6 Computational Results

The development of bc− opt has been part of an ESPRIT financed project
PAMIPS [20]. The project provided a series of practical production plan-
ning, network design and electricity generation problems as benchmarks.
In addition various other difficult problems encountered by XPRESS, and
problems encountered in studying mixed integer programming formulations
have been used as tests.

Below we report results on the MIPLIB3.0 library [5] which is a set of
integer and mixed integer programs assembled as a testbed for researchers
and software developers. Some of the PAMIPS instances already form part
of this library.

16

6.1 The MIPLIB3.0 Test Set

MIPLIB3.0 contains 59 instances. Rather than treat matrices in abstract,
we believe that improved formulations must in many cases be based on
structure, so below we also classify the instances by type and/or difficulty:
SC=set-covering, BP=pure 0-1, FN=fixed charge network, PP=production
planning, EG=electricity generation, GT=generalised transportation, FL=
facility location, D=diverse or unclear.

37 of the 59 problems can be classified as easy for bc− opt in that they
are solved within 5 minutes with the default strategy on a Pentium PRO
200 with 64 M of RAM. The default strategy is:

• At the top node: 5 rounds of cuts (one of pure knapsack inequalities
with and without gubs, one of flowcover and knapsack with continuous
variable inequalities, one of path inequalities, one of Gomory cuts, and
the last round with all the cut types). Non binding cuts are deleted.

• In the tree: knapsack and flowcover cuts are generated every 8 levels.
Non binding cuts are deleted.

• Tree search: use a best bound for 27−1 nodes, and then the XPRESS
default strategy.

These easy problems are presented in Tables 1 and 2. Table 1 contains 14
pure 0-1 instances and Table 2, 23 mixed integer problems. Column 1 con-
tains the MIPLIB3.0 name, column 2 the problem type (our classification),
columns 3-6 the number of rows, binary, integer and continuous variables
respectively. Columns 7-9 headed LP, XLP and IP present the value of the
initial LP after automatic preprocessing, the LP value after adding cuts at
the top node before branching, and IP the optimal value. Columns 10 and
11 contain the time required in seconds to prove optimality, and the number
of nodes in the branch-and-cut tree respectively when using Cuts every 8
levels in the tree, whereas columns 12 and 13 correspond to the cut-and-
branch case when cuts are added at the top node only. Column 14 indicates
which cuts are generated by bc − opt (BK=0-1 knapsack, GK=gub knap-
sack, IK=integer knapsack, FC=flow cover, KC=knapsack with continuous
variable, PI=Path inequalities, GM=Gomory mixed integer)

In Table 3 we list 8 other instances that can be solved to optimality
but require a greater computational effort. These results are for the same
default strategy but allowing a maximum time of 4 hours.

17

instance Class m B I C LP XLP IP Secs Nodes Secs Nodes Type

Branch&Cut Cut&Branch

p0033 BP 16 33 0 0 2819 3089 3089 0 1 0 1 BK,GK,GM

p0201 BP 133 201 0 0 7125 7125 7615 13 956 10 1022 GK

p0282 BP 241 282 0 0 180000 256512 258411 3 69 3 91 BK,GK

p0548 BP 176 548 0 0 426 8691 8691 2 1 2 1 BK,GK

p2756 BP 236 2756 0 0 2701 3117 3124 59 668 624 15399 BK,GK,GM

enigma BP 21 100 0 0 0 0 0 1 315 2 598 BK,GK

fiber BP 348 1195 0 0 156082 385255 405935 9 152 10 203 BK,GK

lseu BP 28 89 0 0 944 1030 1120 3 878 3 1012 BK,GK

misc03 BP 96 159 0 1 1910 1910 3360 5 644 5 806 BK

mod008 BP 6 319 0 0 290 294 307 31 1664 50 1262 BK

mod010 BP 146 2655 0 0 6532 6535 6548 6 19 6 19 GK

air03 SC 124 10757 0 0 338864 340159 340159 51 1 51 1 GM

stein27 SC 28 27 0 0 13 13 18 18 9903 18 9903 GM

mitre BP 1663 10724 0 0 114782 115155 115155 65 48 72 132 GK

Table 1: 0-1 MIPLIB3 problems easy with bc-opt default

instance Class m B I C LP XLP IP Secs Nodes Secs Nodes Type

Branch&Cut Cut&Branch

bell3a FN 98 27 29 54 866171 873883 878430 189.9 49365 145 49159 GM

egout FN 41 28 0 24 511 568 568 0 6 0 6 FC,KC,PI,GM

fixnet6 FN 478 378 0 499 3192 3634 3983 14 133 16 261 FC,KC,PI

modglob FN 287 98 0 286 20430947 20720532 20740508 11 468 10 552 FC,KC,PI,GM

qnet1 FN 371 1288 129 0 14274 15664 16029 14 30 14 30 IK

qnet1o FN 333 1288 129 0 12095 15663 16029 6 13 6 13 IK

pp08a PP 134 64 0 170 2748 7192 7350 21 1456 20 1772 FC,KC,PI,GM

pp08aCuts PP 244 64 0 173 5480 7166 7350 42 1763 31 1324 FC,KC,PI,GM

rgn PP 25 100 0 80 48.8 66 82.2 12 2276 11 2474 FC,PI,GM

set1ch PP 424 235 0 408 35118 54517 54537 7 120 7 120 FC,KC,PI,GM

vpm1 PP 155 104 0 127 16.43 19.5 20 3 319 2 324 FC,KC,PI,GM

gen EG 479 108 5 534 112233 112313 112313 1 1 1 1 BK,FC

gesa2 EG 1345 240 168 768 25492512 25726923 25779856 194 3968 151 4485 GM,KC

gesa3 EG 1297 216 168 696 27846437 27919556 27911042 26 383 19 440 IK,KC,GM

gesa3o EG 1153 336 312 432 27833632 27916560 27911042 15 438 12 445 KC,GM

gt2 GT 29 22 151 0 13460 20670 21160 1 13 1 13 IK,GM

khb FL 101 24 0 1275 95919464 106735640 106940225 2 27 2 27 FC,KC,PI

dcmulti FL 258 75 0 458 184034 184573 188182 12 987 10 935 FC,KC,GM

blend2 D 179 227 20 81 6.91 7.01 7.59 107 10013 88 14678 KC

dsbmip D 1028 160 0 1479 -305 -305 -305 91 803 39 392 FC,GM

flugpl D 17 0 10 6 1167185 1172560 1201500 1 357 23 32235 IK,GM

rentacar D 967 28 0 2717 28928379 29363158 30356761 30 24 29 24 FC,KC,GM

misc06 D 552 112 0 1295 12841 12844 12850 3 98 3 98 GM

Table 2: Mixed Integer MIPLIB3 problems easy with bc-opt default

instance Class m B I C LP XLP IP Secs Nodes Secs Nodes Type

Branch&Cut Cut&Branch

air04 SC 783 8904 0 0 55535 55535 56137 13782 3218 13608 3218

air05 SC 409 7195 0 0 25877 25877 26374 13879 10763 13701 10763

stein45 SC 332 45 0 0 22 22 30 739 141994 739 141994 GM

misc07 BP 212 253 0 0 1415 1415 2810 528 31784 902 62696 BK

l152lav BP 98 1989 0 0 4656 4656 4722 773 15892 787 17886 GK

cap6000 BP 2172 5995 0 0 -2451537 -2451524 -2451403 1289 7989 1201 8838 BK,GK

qiu D 1193 49 0 792 -931 -703 -132 5320 40942 4475 40942 KC

vpm2 PP 155 104 0 127 10.26 12.16 13.75 3436 295946 *** FC,KC,PI,GM

Table 3: Problems solved using more ressources (*** Time limit exceeded)

Table 4 contains results for 10 hard instances after running for 4 hours.
For 6 of these problems the limiting factor was the memory rather than
the time limit (they exceeded 32000 actives nodes). Column IP contains
the best IP solution known for this problem. For each of these problems
the Best Lower Bound is shown in the column headed BLB, the value of
the best feasible solution found in column BIP and the gap between these
bounds as a percentage of BIP.

Four instances appear out of reach with the present code, three are 0-1
set covering problems with very large (0,+1,−1) matrices (fast0504, nw04
and seymour) for which bc−opt has no specialized routines. The remaining
mixed-integer problem, dano3mip, is a multicommodity fixed charge net-
work flow model for which solving a single linear programming relaxation is
already very time-consuming [4].

These results show that even though Branch-and-Cut is in most cases 10
to 20 % slower than Cut-and-Branch, it seems interesting for hard problems
(p2756, misc07) and, what is more important, it guarantees a significant
reduction of the number of nodes, therefore allowing one to solve problems
for which otherwise memory would be a limiting factor (vpm2).

Finally we should note that specialized strategies permit bc−opt to solve
most instances in Table 3 more rapidly, and to find the optimal solutions
(but without a proof of optimality) of most of the instances in Table 4.

7 Conclusions

The results in this paper show that for many mixed integer problems, a
combination of new separation routines and a branch-and-cut system permit
us to now solve a large number of instances within a reasonable time. For a
few of the more difficult instances adding cuts just at the top node (cut-and-
branch) is insufficient. This contrasts with the observation that on the easier
problems branch-and-cut is often slower than cut-and-branch. The extension
of knapsack routines to include continuous variables seriously enlarges the
range of problems for which cuts are generated. This idea has been taken
further recently in [16].

One observation from this work is that progress in solving problems by
cutting planes can be of at least three different types. Whereas most research
to date has concentrated on either
i) Finding new valid inequalities and a separation routine for an existing
canonical structure, or

21

instance Class m B I C LP XLP BLB BIP
BIP−BLB

BIP IP Type Limit

10teams SC 211 1600 0 0 917 917 917.99 924 0.6% 924 TIME

harp2 D 102 1374 0 0 -74325169 -74166793 -74028979 -73766390 0.35% -73899798* BK NODE

arki001 767 387 96 477 7579599 7579959 7580069 7582827 0.036% 7580813 IK,GM TIME

bell5 FN 86 29 28 44 8608417 8937853 8942489 8997480 0.61% 8966406 IK,GM NODE

danoint FN 601 56 0 401 62.63 62.66 63.10 65.66 3.89% 65.66 FC,KC TIME

gesa2o EG 1201 384 336 456 25476489 25680201 25769865 25782082 0.047% 25779856 KC,GM NODE

pk1 D 46 55 0 31 0 0 4.97 11 54.81% 11 FC,KC,GM NODE

mod011 D 1469 96 0 6704 -62081950 -62053347 -55121821 -54558535 1.02% -54558535 FC TIME

noswot D 182 80 20 25 -43 -43 -43 -40 6.97% -43 IK,FC,KC,GM NODE

rout D 291 300 15 240 981 982 1012 1083 6.55% 1077 IK,KC NODE

Table 4: Hard problems

ii) Finding valid inequalities and a separation routine for a new canonical
structure which must then be detected via a model interface,
the progress reported here has been largely due to
iii) Applying existing separation routines for a canonical structure via a new
interface.

Many options remain to be tested. The default used in all the results
presented here has been to treat cuts in the tree as local. As far as we know,
all systems developed to date have used globally valid cuts. In comparing
local and global cuts on a small number of problems, we have not observed
significant differences, but further experimentation is needed.

Another question concerns branching strategies. As in [23], limited ex-
perimentation suggests that, when the cuts added are effective, a best bound
solution strategy should be adopted for at least 100 or 200 nodes, before pos-
sibly returning to a default branching strategy.

Acknowledgement. We are grateful to G. Belvaux to his program-
ming of the extension to the path routines, to Y. Pochet for many helpful
comments and to the partners in the PAMIPS project for their collaboration
and help.

References

[1] E. Balas, S. Ceria and G. Cornuéjols, Mixed 0–1 Programming by Lift-
and-Project in a Branch-and-cut Framework, Management Science 42,
(1996) 1229-1246.

[2] E. Balas, S. Ceria, G. Cornuéjols and N. Natraj, Gomory Cuts Revis-
ited, Operations Research Letters 19, (1996) 1-9. .

[3] F. Barahona, M. Groetschel, M. Juenger and G. Reinelt, An application
of combinatorial optimization to statistical physics and circuit layout
design, Operations Research 36 (1988) 493-513.

[4] D. Bienstock, and O. Günlük, Computational Experience with a Diffi-
cult Mixed Integer Multicommodity Flow Problem, Mathematical Pro-
gramming 68, (1995) 213-237.

[5] R.E. Bixby, S. Ceria, C.M. McZeal and M.W.P. Savelsbergh,
An updated Mixed Integer Programming Library: MIPLIB

23

3.0, text and problems available at { http://www.caam.rice.edu/̃
bixby/miplib/miplib.html }

[6] S. Ceria, C. Cordier, H. Marchand and L.A. Wolsey, Cutting Planes
for Integer Programs with General Integer Variables, CORE DP9575,
Université Catholique de Louvain, Louvain-la-Neuve (1995).

[7] W. Cook, L. Lovasz and P. Seymour, eds., Combinatorial Optimization,
DIMACS Series in Discrete Mathematics and Computer Science, AMS
1995

[8] H. Crowder, E.L. Johnson and M.W. Padberg, Solving Large Scale
Zero-One Linear Programming Problems, Operations Research 31,
(1983)803-834.

[9] R. E. Gomory, An algorithm for the mixed integer problem, RM-2597,
The Rand Corporation (1960).

[10] M. Groetschel, On the symmetric travelling salesman problem: solution
of a 120 city problem, Mathematical Programming Study 12 (1980) 61-
77.

[11] M. Groetschel, C.L. Monma and M. Stoer, Computational results with
a cutting plane algorithm for designing communication networks with
low-connectivity constraints, Operations Research 40, (1992) 309-330.

[12] Z.Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Lifted Cover Inequal-
ities for 0-1 Integer Programs: Computation, School of Industrial and
Systems Engineering, Georgia Institute of Technology, revised August
1995.

[13] Z.Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Lifted Flow Cover In-
equalities for Mixed 0-1 Integer Programs, LEC-96-05, School of Indus-
trial and Systems Engineering, Georgia Institute of Technology (1996).

[14] E.L. Johnson and M.W. Padberg, A Note on the Knapsack Problem
with Special Ordered Sets, Operations Research Letters 1, (1981) 18-22.

[15] M. Juenger, G. Reinelt and S. Thienel, Practical problem solving with
cutting plane algorithms in combinatorial optimization, 11-152 in [7].

[16] H. Marchand and L.A. Wolsey, The 0-1 knapsack problem with a single
continuous variable, CORE Discussion Paper 9720, Louvain-la-Neuve,
March 1997

24

[17] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optim-
ization, Wiley (1988).

[18] M.W. Padberg and S. Hong, On the symmetric traveling salesman
problem: a computational Study, Mathematical Programming Study 12
(1980) 78-107.

[19] M.W. Padberg, T.J. Van Roy and L.A. Wolsey, Valid Linear Inequalit-
ies for Fixed Charge Problems, Operations Research 33, (1985) 842-861.

[20] Pamips, Esprit Project 8755, Public Report Ref. DR4.3.5/I, 31/1/95.

[21] Y. Pochet, Valid inequalities and separation for capacitated economic
lot-sizing, Operations Research Letteres 7, (1988) 109-116.

[22] M.W.P Savelsbergh and G.L. Nemhauser, Functional description of
MINTO, a Mixed INTeger Optimizer, Report COC-91-03A, Georgia
Institute of Technology, Atlanta, Georgia (1993).

[23] T.J. Van Roy and L.A. Wolsey, Solving Mixed 0-1 Problems by Auto-
matic Reformulation, Operations Research 35, 45-57 (1987).

[24] L.A. Wolsey, Valid inequalities for mixed integer programs with gener-
alised and variable upper bound constraints, Discrete Applied Mathem-
atics 25, (1990) 251-261.

[25] XPRESS-MP Optimisation Subroutine Library, Reference Manual, Re-
lease 9, Dash Associates, Blisworth House, Blisworth, Northants NN7
3BX, UK.

25

