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Abstract

We examine a variant of the uncapacitated lot-sizing model of Wagner-
Whitin involving sales instead of fixed demands, and lower bounds on
stocks. Two extended formulations are presented, as well as a dynamic
programming algorithm and a complete description of the convex hull
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1 Introduction

The original uncapacitated single item lot-sizing model of Wagner-Whitin
[13] has been extended in many directions, to include among others backlog-
ging [14], capacities [3], [9], start-ups [4] and production in series [8]. There
is a vast literature both on these problems and on more general multi-item
problems containing the single-item problem as subproblem [6],[11]. In all
these models demand is assumed to be known exactly, and the usual objec-
tive is to minimize total cost. Recently we have encountered several models
constructed by an industrial partner in which demand is not pre-speci�ed,
but bounds on potential sales are presented, and the objective is pro�t max-
imization [5]. In an attempt to improve the formulation of these models, we
have been led to consider a single item lot-sizing problem with sales, and
in addition, for reason of practical applicability, we have also incorporated
lower bounds on stocks (safety stocks) in the model.

Below we �rst specify the ULS3 problem (Uncapacitated Lot-sizing Prob-
lem with Sales and Safety Stocks), and then formulate it as a mixed integer
program. We then derive equivalent formulations in which there is a �xed
demand (positive or negative) as well as potential sales. Next we analyse
the structure of the optimal solutions which allows us to conclude in stan-
dard fashion that dynamic programming provides a polynomial algorithm
for ULS3. We then terminate the introduction with an overview of later
sections.

Problem ULS3 is speci�ed by a time horizon n, an initial stock L0 � 0,
and for each period t = 1; : : : ; n, upper bounds ut � 0 on sales, lower bounds
on stocks Lt � 0, and objective coeÆcients consisting of unit selling prices
pt, unit production and storage costs ct and ht, and �xed set-up costs of
production ft.

Introducing variables

xt: production in period t,

st: stock at the end of period t (s0: initial stock),

vt: sales in period t,

yt 2 f0; 1g, a set-up variable with yt = 1 if xt > 0,
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we obtain the pro�t maximization formulation

max
nX

t=1

ptvt �
nX
t=1

ctxt �
nX

t=1

ftyt �
nX
t=1

htst;

st�1 + xt = vt + st; for t = 1; : : : n; (1)

0 � vt � ut; for t = 1; : : : n; (2)

(F1) xt �Myt; for t = 1; : : : n; (3)

st � Lt; for t = 1; : : : n; (4)

s0 = L0; (5)

xt � 0; 0 � yt � 1; for t = 1; : : : n; (6)

yt integral; for t = 1; : : : n: (7)

where M is a large positive constant. Constraint (3) forces yt to one when
xt is positive, but there is always an optimal solution with xt < M unless
ct +

Pn
i=t hi < 0. Any value of M greater than

Pn
t=1 ut + maxt=1;:::;nLt is

suÆcient. Note that it is possible to eliminate the variables xt or st from
the objective function, and so one can assume for convenience either that
ct = 0 for all t, or that ht = 0 for all t.

We now present an equivalent problem. The di�erence is the introduction
of (possibly negative) demands dt and the new stock variables �t which have
lower bound of zero. The constraints now take the form:

max
nX
t=1

ptvt �
nX
t=1

ctxt �
nX
t=1

ftyt �
nX
t=1

ht�t;

�t�1 + xt = dt + vt + �t; for t = 1; : : : n; (8)

0 � vt � ut; for t = 1; : : : n; (9)

(F2) xt �Myt; for t = 1; : : : n; (10)

�0 = 0; �t � 0; for t = 1; : : : n; (11)

xt � 0; 0 � yt � 1; for t = 1; : : : n; (12)

yt integral; for t = 1; : : : n: (13)

We go from the �rst formulation to the second by taking �t = st�Lt and
dt = Lt � Lt�1, for all t. To go from the second formulation to the �rst, we
take L0 = maxf0; maxt[�

Pt
i=1 di]g, Lt = L0+

Pt
i=1 di, and st = Lt+�t for

all t. The tradeo� between (F1) and (F2) is between having lower bounds
Lt on stocks, or having external demands dt. Figure 1 presents an instance
of this transformation.
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s0 = 3 s1 � 5 s2 � 2 s3 � 4 s4 � 3
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Figure 1: Transforming lower bounds on stocks into demands

De�ning dij =
Pj

t=i dt and using �t =
Pt

i=1 xi �
Pt

i=1 vi � d1t � 0 from
(8) to eliminate the variables �t, we obtain a third formulation which will
also be useful:

max
nX
t=1

ptvt �
nX
t=1

ctxt �
nX
t=1

ftyt;

tX
i=1

xi �
tX

i=1

vi + d1t; for t = 1; : : : n; (14)

(F3) 0 � vt � ut; for t = 1; : : : n; (15)

xt �Myt; for t = 1; : : : n; (16)

xt � 0; 0 � yt � 1; for t = 1; : : : n; (17)

yt integral; for t = 1; : : : n: (18)

Note that the three formulations are equivalent in the sense that there is a
1-1 correspondence between their feasible solutions. Let X � R3n be the set
of feasible solutions of (F3) described by (14)-(18).

To derive an algorithm for ULS3 we next consider the structure of the
optimal solutions. We suppose that ft � 0 and ct +

Pn
i=t hi � 0 for all t, so

that there is always an optimal solution with xt < M . Consider formulation
(F2). If y� 2 f0; 1gn is �xed, the remaining problem is a minimum cost

ow problem in the network shown in Figure 2. In a basic optimal solution
(x�; v�; ��), the basic variables form an acyclic graph [14]. Such a basic op-
timal solution decomposes in a standard way into a sequence of regeneration
intervals.

We now look at intervals [i; i + 1; : : : ; j] in which ��i�1 = 0, ��i >
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Figure 2: ULS3 in a network

0; : : : ; ��j�1 > 0, and either ��j = 0, or j = n and ��n > 0. Consider �rst
an interval with ��j = 0 called a regeneration interval of Type 1, see Figure
3. Clearly if 0 < x�k < M and 0 < x�l < M with i � k < l � j, the set

i k j-1 j

x�k

> 0> 0= 0 > 0 > 0> 0 > 0

t

s

i+1
= 0

� � � � � � � � � � � �

Figure 3: Regeneration interval of Type 1

of basic variables forms a cycle. So there is at most one period k in the
interval [i; : : : ; j] with x�k > 0. If x�k > 0, all variables v�l are equal to 0 or
ul to avoid creating a cycle. Alternatively if x�k = 0 for all k = i; : : : ; j, then
one variable v�l can be basic with 0 < v�l < ul.

For regeneration intervals of Type 2 with j = n and ��n > 0, the situation
is as shown in Figure 4. Again (t; s) is basic, and thus x�k = 0 and v�k = 0 or
uk for all k = i; : : : ; j.

We now derive a dynamic program or shortest path problem using re-
generation intervals to solve ULS3.
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Figure 4: Regeneration interval of Type 2

Consider a regeneration interval [i; : : : ; j] of Type 1. The value �ij of
an optimal solution within this interval can be found by solving j � i + 2
minimum cost 
ow problems. There are j � i + 1 problems, one for each
l = i; : : : ; j. In the problem associated with a �xed l, we allow xl > 0 and
yl = 1, and xt = yt = 0 for t 6= l. There is also a �nal problem in which
xt = 0 for t = i; : : : ; j, which corresponds to the case of no production
(this also includes the regeneration intervals of Type 2). For l 2 fi; : : : ; jg,
problem l is

�lij = max
jX
t=i

ptvt � clxl �
jX
t=i

ht�t � fl;

�l�1 + xl = dl + vl + �l;

�t�1 = dt + vt + �t; for t = i; : : : j; t 6= l;

�i�1 = 0;

�j = 0; if j 6= n;

0 � vt � ut; for t = i; : : : j;

xt; �t � 0; for t = i; : : : j:

�0ij is de�ned similarly but with xl = 0 and without the cost term �fl, and

�ij = max[�0ij ;maxl=i;:::;j�
l
ij]. Note that it is not necessary to solve the

above problems by linear programming to calculate �lij .
De�ning the recursion F (0) = 0, F (j) = maxi�jfF (i � 1) + �ijg, the

optimal value of problem ULS3 is given by F (n). Working backwards leads
to an optimal solution.

We now discuss the contents of the paper. In Section 2 we give the main
result, a family of valid inequalities, called (t; S;R) inequalities, that are
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shown to provide a complete description of the convex hull of X. In Section
3 we consider the special case of ULS3 in which the lower bounds Lt are
nondecreasing over time in formulation (F1), or alternatively dt � 0 for all
t in formulations (F2) and (F3). We �rst derive an extended formulation
allowing one to solve ULS3 directly by linear programming, and then give
a combinatorial separation algorithm for the family of (t; S;R) inequalities.
Finally in Section 4 we provide an extended formulation for the case where
dt = 0 for all t in formulation (F2) and where we have \Wagner-Whitin"
costs. We terminate with a brief discussion of open questions and extensions.

2 The Convex Hull

To motivate the inequalities developed in this section, consider the small
example shown in Figure 5, where d = (3;�2; 4; 1) and u = (1; 1; 1; 1).

x1 x2 x3 x4

�1

v1

�2 �3 �4

v2 v3 v43 2 4 1

1 2 3 4

Figure 5: Small example

Examining periods 3 and 4, the in
ow-out
ow inequalities from [12], or the
(l; S) inequality of [1] with l = 4, S = f3; 4g give the valid inequality

x3 + x4 � 5y3 + 1y4 + v3 + v4 + �4

where the coeÆcient (d3+ d4) of y3 is the amount of in
ow in x3 that could
escape through the demand nodes d3, d4, and not through the arcs v3, v4 or
�4.

However the above inequality does not take into account the fact that
d2 is negative. Because d2 = �2 < 0, �2 � �d2 � v2, and so �2 + x3 �
(d3+ d4)+ v3+ v4+�4 implies x3 � (d2+ d3+ d4)+ v2+ v3+ v4+�4. Thus
the maximum in
ow through x3 that does not 
ow out through v2, v3, v4
or �4 is d2 + d3 + d4 = 3. This leads us to the inequality

x3 + x4 � 3y3 + 1y4 + v2 + v3 + v4 + �4:
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Now by introducing the complementary variables vj = uj � vj for j 2
R = f1; 3g, we convert u1 and u3 into �xed demands but with additional
in
ow vj, leading to the situation shown in Figure 6:

x1 x2 x3 x4

�1 �2 �3 �4

1

4321

2 4+13+1 v2 v3 v4v1

Figure 6: Small example after substitutions

Now we obtain

x3 + x4 � 4y3 + 1y4 + v2 + v4 + �4

with the coeÆcient of y3 equal to (d2 + d3 + u3 + d4). Eliminating �4 via
the equation

P4
t=1 xt =

P4
t=1 vt + d14 + �4, obtained by summing (8) for

t = 1; : : : ; 4, the resulting inequality is

x1 + x2 + 4y3 + 1y4 � 6 + v1 + v3: (19)

Now we describe formally a family of valid inequalities, called (t; S;R)
inequalities, generalizing the previous example. We show that they provide
all the inequalities missing in formulation (F3) to describe the convex hull
of the solutions of ULS3.

In order to compute the coeÆcients of the y variables we de�ne for
R � f1; : : : ; ng and 1 � i; j � n:

1. dij =
P

i�k�j dk, for 1 � i � j � n, dij = 0, if i > j;

2. uRij =
P

k2R;i�k�j uk, for 1 � i � j � n, uRij = 0, if i > j;

3. ~bRi = maxt=0:::i(u
R
1t + d1t), for i = 0; : : : ; n;

4. �(R; i) = minft 2 f0; : : : ; ig : (uR1t + d1t) = ~bRi g, for i = 0; : : : ; n;

5. ~bRij =
~bRj �

~bRi�1 � 0, for 1 � i � j � n.

Note that, if � = �(R; i), uRt+1;� + dt+1;� � 0, for 0 � t < � , and that

uR�+1;t + d�+1;t � 0, for � < t � i. For example, in inequality (19) with

R = f1; 3g, we have ~bR4 = 8, �(R; 4) = 4, ~bR2 = 4, �(R; 2) = 1, and ~bR34 = 4.
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Proposition 2.1 The (t; S;R) inequalities

X
j2TnS

xj +
X
j2S

~bRjtyj �
X
j2R

vj + d1t; (20)

are valid for X for all 1 � t � n; T = f1; : : : ; tg; S � T and R � T , such
that t = �(R; t).

Proof. Let (x�; y�; v�) 2 X. Suppose y�i = 0 for all i 2 S. Then as x�i = 0
for i 2 S,X

j2TnS

x�j +
X
j2S

~bRjty
�
j =
X
j2T

x�j �
X
j2T

v�j + d1t �
X
j2R

v�j + d1t:

Otherwise let k = minfi 2 S : y�i = 1g. Let � = �(R; k � 1). As � � k � 1,
x�j = 0 for j 2 S with j � � . Then

X
j2TnS

x�j �
X

j2TnS;j��

x�j =
X
j��

x�j �
X
j��

v�j + d1� �
X

j2R;j��

v�j + d1� : (21)

Also, X
j2S

~bRjty
�
j � ~bRkt =

~bRt �
~bRk�1 = uR1t + d1t � (uR1� + d1� )

=
X

j2R;�+1�j�t

uj + d�+1;t �
X

j2R;�+1�j�t

v�j + d�+1;t: (22)

Adding (21) and (22), the result follows.

Theorem 2.2 The inequalities (20) together with the inequalities (15)-(17)

describe conv(X).

Let M(c; f; p) � X be the set of all optimal solutions of the problem
maxf

Pn
i=1(�cixi � fiyi + pivi) : (x; y; v) 2 Xg.

To prove the theorem we need two lemmas characterizing the solutions
of M(c; f; p), which hold subject to certain conditions. We consider a non-
negative cost (c; f; p), an optimal solution (x�; y�; v�) 2 M(c; f; p) and an
integer q 2 f1; : : : ; n+ 1g. We de�ne R = fj : pj > 0g and � = �(R; q � 1).
The conditions are:

Condition A: q 2 f1; : : : ; n+ 1g satis�es condition A if either
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a) q = n+ 1, or
b) q 6= n+ 1, cq = 0 and either fq = 0 or y�q = 1.

Condition B: q 2 f1; : : : ; n+ 1g satis�es condition B if for each j 2
f1; : : : ; �g, either cj > 0 or y�j = 0.

Lemma 2.3 If q satis�es condition A, then

1. for j = � + 1; : : : ; n, j 6= q, x�j = 0 whenever cj > 0;

2. for j = � + 1; : : : ; n, j 6= q, y�j = 0 whenever fj > 0; and

3. for j = � + 1; : : : ; n, v�j = uj whenever pj > 0.

Proof. In each case we will assume the contrary and produce a solution
(x0; y0; v0) which has higher value than (x�; y�; v�), contradicting the assump-
tion of optimality for (x�; y�; v�). Where not otherwise speci�ed, (x0; y0; v0)
coincides with (x�; y�; v�).

1) Suppose we have some j 6= q, � + 1 � j � n, with cj > 0 and x�j > 0.
Make x0j = 0 and v0k = 0 for k 62 R. If q 6= n + 1, make x0q = x�q + x�j
and y0q = 1. To verify that (x0; y0; v0) 2 X, we must show that it satis�es
inequality (14) for all t. If t < j or t � q, this fact is immediate as

tX
k=1

x0k =
tX

k=1

x�k �
tX

k=1

v�k + d1t �
tX

k=1

v0k + d1t:

Otherwise j � t � q � 1, and it follows that

Pt
k=1 x

0
k �

P�
k=1 x

0
k (� < t)

=
P�

k=1 x
�
k (� < j)

�
P�

k=1 v
�
k + d1� ((x�; y�; v�) is valid)

�
P�

k=1 v
�
k + uR�+1;t + d1t (uR�+1;t + d�+1;t � 0)

�
P�

k=1 v
0
k + uR�+1;t + d1t (v0k � v�k;8k)

�
P�

k=1 v
0
k +
Pt

k=�+1;k2R v
0
k + d1t (v0k � uk;8k)

=
Pt

k=1 v
0
k + d1t: (v0k = 0;8k 62 R)

Solution (x0; y0; v0) is worth cjx
�
j more than (x�; y�; v�), since if q 6= n+1

cq = 0 and either fq = 0 or y0q = y�q = 1, and pk = 0 for k 62 R.
2) Suppose we have some j 6= q, � � j � n, with fj > 0 and y�j = 1.

We construct (x0; y0; v0) in the same way as the above case and in addition
we set y0j = 0. Solution (x0; y0; v0) is worth cjx

�
j + fj more than (x�; y�; v�).

Note that cj and x�j may be zero.
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3) Suppose we have some j, � < j � n, with pj > 0 and v�j < uj . Make
v0j = uj and v0k = 0 for k 62 R. If q 6= n + 1, make x0q = x�q + uj � v�j
and y0q = 1. Everything shown for case 1) holds also for this case and the
reader can verify the validity of the inequalities (14) following the same
steps. Solution (x0; y0; v0) is worth pj(uj � v�j ) more than (x�; y�; v�).

Lemma 2.4 If q satis�es conditions A and B, then

1.
P�

k=1 x
�
k =
P�

k=1 v
�
k + d1� , and

2. for j = 1; : : : ; � , v�j = 0 whenever pj = 0.

Proof. We proceed in the same way as in Lemma 2.3.
1) Suppose that s =

P�
k=1 x

�
k �
P�

k=1 v
�
k � d1� is positive. Then, ifP�

k=1 x
�
k = 0, we have

�
�X

k=1

v�k � d1� > 0

which implies, since uR1� + d1� � 0 and v�k � 0 for all k, that

�X
k=1;k2R

v�k < uR1� :

Hence either
P�

k=1 x
�
k > 0 or

P�
k=1;k2R v

�
k < uR1� . It follows that there exists

j 2 f1; : : : ; �g with either x�j > 0, or j 2 R and v�j < uj . Choose the largest
such j. Then for k = j + 1; : : : ; � , x�k = 0 and v�k = uk when k 2 R.

Case A: Suppose �rst that x�j > 0 and take � = minfs; x�jg. Make v0k = 0
for k 62 R, x0j = x�j � �, and x0q = x�q + � in case q 6= n+ 1. We need to show
that (x0; y0; s0) 2 X by showing that it satis�es (14).

For t = j; : : : ; � we have

Pt
k=1 x

0
k �

Pt
k=1 x

�
k � � (j � t; x�j � �; q > j)

=
P�

k=1 x
�
k � � (x�k = 0;8k = j + 1; : : : ; �)

�
P�

k=1 v
�
k + d1� (s � �)

�
Pt

k=1 v
�
k +
P�

k=t+1;k2R v
�
k + d1� (t � �; v�k � 0)

=
Pt

k=1 v
�
k + uRt+1;� + d1� (v�k = uk;8k 2 R;

k = j + 1; : : : ; �)
�
Pt

k=1 v
�
k + d1t (uRt+1;� + dt+1;� � 0)

�
Pt

k=1 v
0
k + d1t: (v0k � v�k;8k)
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Case B: Suppose now that v�j < uj, j 2 R, and take � = minfs; uj � v�jg.
Make v0j = v�j + � and v0k = 0 for k 62 R. If q 6= n+ 1, make x0q = x�q + � and
y0q = 1. For t = j; : : : ; � we have

Pt
k=1 x

0
k =

Pt
k=1 x

�
k (t < q)

=
P�

k=1 x
�
k (x�k = 0;8k = j + 1; : : : ; �)

�
P�

k=1 v
�
k + d1� + � (s � �)

�
P�

k=1 v
0
k + d1� (v0j = v�j + �; v0k � v�k;8k 6= j)

=
Pt

k=1 v
0
k +
P�

k=t+1;k2R v
0
k + d1� (v0k = 0;8k 62 R)

=
Pt

k=1 v
0
k + uRt+1;� + d1� (v0k = v�k = uk;8k 2 R;

k = j + 1; : : : ; �)
�
Pt

k=1 v
0
k + d1t: (uRt+1;� + dt+1;� � 0)

In both cases we have shown the validity of inequalities (14) for t =
j; : : : ; � . For t < j or t � q, the validity is immediate. Finally, for t =
� + 1; : : : ; q � 1,

Pt
k=1 x

0
k �

P�
k=1 x

0
k (� < t)

�
P�

k=1 v
0
k + d1� (already shown

for the case t = �)
�
P�

k=1 v
0
k + uR�+1;t + d1t (uR�+1;t + d�+1;t � 0)

�
P�

k=1 v
0
k +
Pt

k=�+1;k2R v
0
k + d1t (v0k � uk;8k)

=
Pt

k=1 v
0
k + d1t: (v0k = 0;8k 62 R)

In case A solution (x0; y0; v0) is worth �cj more. As x�j > 0; y�j = 1 and
thus by hypothesis cj > 0. In case B, (x0; y0; v0) is worth �pj more, and
pj > 0 as j 2 R.

2) Suppose v�j > 0 with 1 � j � � and pj = 0. To see that (x�; y�; v�)
cannot be an optimal solution it suÆces to change it by setting v�j = 0. The
solution is worth the same, but now s =

P�
k=1 x

�
k�
P�

k=1 v
�
k�d1� is positive.

As we have shown in part 1) of the proof, such a solution cannot be optimal.

Proof of Theorem 2.2. We use a technique due to Lov�asz [7]. For an
arbitrary non-zero objective function max

Pn
i=1(�cixi � fiyi + pivi) we will

show case by case that all points in M(c; f; p) satisfy one of the inequalities
(20), (15), (16) or (17) at equality (note that inequalities (14) are special
cases of (20)). This proves that the description of the convex hull is complete,
since when the objective function is parallel to a facet of the polyhedron the

11



corresponding facet-de�ning inequality is the only valid inequality that is
satis�ed at equality by all optimal solutions.

If ci < 0 for some i, then M(c; f; p) � f(x; y; v) : xi = Myig. If fi < 0
for some i, then M(c; f; p) � f(x; y; v) : yi = 1g. If pi < 0 for some i,
then M(c; f; p) � f(x; y; v) : vi = 0g. We suppose next that c, f and p are
non-negative.

As (�c;�f; p) 6= 0, we can de�ne l as the last period such that cl, fl and
pl are not all zero. Let t = �(R; l), T = f1; : : : ; tg, S = fi 2 T : ci = 0g and
R = fi : pi > 0g.

Suppose there is k � l such that ck = fk = 0. Then Lemma 2.3 can be
applied with q = k and j = l. If pl > 0, then M(c; f; p) � f(x; y; v) : vl =
ulg. Otherwise pl = 0 and thus k < l and either cl > 0 or fl > 0. It follows
that M(c; f; p) � f(x; y; v) : xl = 0g or M(c; f; p) � f(x; y; v) : yl = 0g. So
we assume from now on that there is no such k, and so fi > 0 for all i in S.

Suppose next that pi > 0 for some i > t. Then Lemma 2.3 can be applied
with q = l + 1 and by 3) M(c; f; p) � f(x; y; v) : vi = uig. So from now on
we can assume that R � T .

Consider an optimal solution (x�; y�; v�) in M(c; f; p). We now show
that the inequality (20) holds at equality.

Suppose �rst that y�i = 0 for all i 2 S. Then

X
j2TnS

x�j =
X
j2T

x�j ; and
X
j2S

~bRjly
�
j = 0:

Since l = n or cl+1 = fl+1 = 0, and for i 2 T y�i = 1 implies that i 62 S
and hence ci > 0 for i � �(R; l) such that yi = 1, Lemma 2.4 can be applied
with q = l + 1:

1) gives
X
j2T

x�j =
X
j2T

v�j + d1t;

and 2) gives
X
j2T

v�j =
X

j2R\T

v�j =
X
j2R

v�j :

So, X
j2TnS

x�j +
X
j2S

~bRjly
�
j =
X
j2T

x�j =
X
j2T

v�j + d1t =
X
j2R

v�j + d1t;

and the inequality (20) holds at equality.
Otherwise take k = minfi 2 S : y�i = 1g. Let � = �(R; k � 1). Applying

Lemma 2.3 with q = k, y�k = 1 and ck = 0,

X
j2TnS;j>�

x�j = 0 using 1), (23)

12



X
j2S

~bRjty
�
j =

~bRk;t =
~bRt �

~bRk�1 using 2), and (24)

X
j2R;j>�

v�j = uR�+1;t using 3): (25)

We have ck = 0, y�k = 1 and cj > 0 for all 1 � j � k � 1 with y�j = 1 by
de�nition of k. So applying Lemma 2.4 with q = k, 1) givesX

j��

x�j =
X
j��

v�j + d1� ; (26)

and by 2), X
j��

v�j =
X

j2R;j��

v�j : (27)

Now using (24),X
j2TnS

x�j +
X
j2S

~bRjty
�
j =

X
j2TnS

x�j +
~bRt �

~bRk�1:

Now, by the fact that ~bRk�1 =
~bR� , that x

�
j = 0 if j 2 S and j � � � k � 1,

and from (23),X
j2TnS

x�j +
~bRt �

~bRk�1 =
X

j2TnS;j��

x�j +
X

j2TnS;j>�

x�j +
~bRt �

~bRk�1

=
X
j��

x�j +
~bRt �

~bR� :

From (26), (27) and the de�nition of ~bRiX
j��

x�j +
~bRt �

~bR� =
X

j2R;j��

v�j + d1� + uR1t + d1t � (uR1� + d1� );

=
X

j2R;j��

v�j + uR�+1;t + d1t:

Finally, from (25), X
j2R;j��

v�j + uR�+1;t + d1t =
X
j2R

v�j + d1t;

and the proof is complete.

13



3 ULS3 with non-negative demands

When dt � 0 for all t, ULS3 simpli�es in a variety of ways. It is natural to �x
�n = 0, and it is no longer necessary in a regeneration interval to consider
a solution with 0 < v�t < ut as this would only be possible if x�k = 0 for all k
in the interval, and then it is impossible to produce v�t > 0. So we restrict
attention to the set ~X = X \ f(x; v; y; �) : �n = 0g, and the corresponding
face conv( ~X)= conv(X) \ f(x; v; y; �) : �n = 0g. The inequalities xt �Myt
are no longer necessary to describe conv( ~X). Also the value ~bRij used in

describing facets is given directly by ~bRij = uRij + dij for 1 � i � j � n.

Proposition 3.1 Every extreme point is characterized by three sets I; J;K �
f1; : : : ; ng, I = ft1 < t2 < : : : < tqg � J where

yt =

(
1; if t 2 J;
0; otherwise;

vt =

(
ut; if t 2 K;
0; otherwise;

xt =

( Ptj+1�1
i=tj

(vi + di); if t = tj 2 I;

0; otherwise:

where we take tq+1 = n+ 1.

Now we present an extended formulation for ~X . We let bt = ut + dt for
all t, and introduce the 0-1 variables �ij , �ij where �ij = 1 if the amount dj
is produced in period i � j and �ij = 1 if the amount dj + uj is produced
in period i � j. The resulting formulation is:

max
X
t

ptvt �
X
t

ftyt �
X
t

ctxt;

X
j�i

(bj�ij + dj�ij) = xi; i = 1; : : : ; n;

(F4)
X
i�j

(bj�ij + dj�ij) = vj + dj ; j = 1; : : : ; n;

X
i�j

(�ij + �ij) = 1; j = 1; : : : ; n;

(�ij + �ij) � yi; 1 � i � j � n;

vi; yi; xi; �ij ; �ij � 0; 1 � i � j � n

yi � 1; i = 1; : : : ; n:

14



Let P � be the polytope de�ned by the constraints of (F4).
It is readily veri�ed that the points in P � with �; �; y integer are the

points of ~X, so P � is a valid extended formulation for ~X, and conv( ~X) �
projx;y;vP

�.

Proposition 3.2 projx;y;vP
� = conv( ~X).

Proof. Consider a point (x; y; v; �; �) in P � and let us show that (x; y; v) is
in conv( ~X). It suÆces to show that (x; y; v) satis�es the inequalities which
describe conv(X) and that �n =

Pn
t=1 xt �

Pn
t=1 vt � d1n = 0. Indeed,

nX
t=1

xt =
nX

t=1

X
j�t

(bj�tj + dj�tj) =
nX

j=1

X
t�j

(bj�tj + dj�tj) =
nX

j=1

vj + d1n;

what implies that �n = 0. Also,

tX
k=1

xk =
tX

k=1

nX
j=k

(bj�kj + dj�kj) �
tX

j=1

jX
k=1

(bj�kj + dj�kj) =
tX

j=1

(vj + dj);

vt =
X
i�t

(bt�it + dt�it)� dt � bt
X
i�t

(�it + �it)� dt = bt � dt = ut;

vt =
X
i�t

(bt�it + dt�it)� dt � dt
X
i�t

(�it + �it)� dt = dt � dt = 0;

xt =
X
j�t

(bj�tj + dj�tj) �
X
j�t

bj(�tj + �tj) �
X
j�t

bjyt �Myt;

so the inequalities (14)-(16) are satis�ed. Also clearly (17) holds. We com-
plete the proof by checking for the (t; S;R) inequalities (20):

X
k2S

xk +
X

k2TnS

~bRktyk =

=
X
k2S

X
j�k

(bj�kj + dj�kj) +
X

k2TnS

(
X

j�k;j2R

bjyk +
X

j�k;j2TnR

djyk)

=
X
k2S

X
j�k;j2R

(bj�kj + dj�kj) +
X
k2S

X
j�k;j2TnR

(bj�kj + dj�kj) +

+
X

k2TnS

X
j�k;j2R

bjyk +
X

k2TnS

X
j�k;j2TnR

djyk
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�
X
k2S

X
j�k;j2R

(bj�kj + dj�kj) +
X
k2S

X
j�k;j2TnR

dj(�kj + �kj) +

+
X

k2TnS

X
j�k;j2R

bj(�kj + �kj) +
X

k2TnS

X
j�k;j2TnR

dj(�kj + �kj)

�
X
k2T

X
j�k;j2R

(bj�kj + dj�kj) +
X
k2T

X
j�k;j2TnR

dj(�kj + �kj)

=
X
j2R

X
k�j

(bj�kj + dj�kj) +
X

j2TnR

dj
X
k�j

(�kj + �kj)

�
X
j2R

(vj + dj) +
X

j2TnR

dj;

=
X
j2R

vj + d1t:

Now we consider the separation problem for conv( ~X). Suppose that a
point (x�; y�; v�) satis�es (14)-(17), and ��n = 0, but is not in conv( ~X). Then
by Theorem 2.2 at least one of the inequalities

X
j2TnS

xj +
X
j2S

~bRjtyj �
X
k2R

vk + d1t

is violated. Since dt � 0 for all t implies ~bRij = uRjt + djt, for a �xed t and
T = f1; : : : ; tg the separation problem can be solved by minimizing over
R;S � f1; : : : ; tg, the di�erence

X
j2TnS

x�j +
X
j2S

(uRjt + djt)y
�
j �
X
k2R

v�k

which can be rewritten asX
j2TnS

x�j +
X
j2S

y�j (
X

k2R;j�k�t

uk) +
X
j2S

djty
�
j �
X
k2R

v�k:

To minimize this expression, we take � and � respectively as the char-
acteristic vectors of S and R = T n R. We then minimize over � and �

tX
j=1

x�j(1� �j) +
tX

j=1

tX
k=j

uky
�
j�j(1� �k) +

tX
j=1

djty
�
j�j �

tX
k=1

v�k(1� �k)
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which is equivalent to minimizing

tX
j=1

(
tX

k=j

(uk + dk)y
�
j � x�j )�j +

tX
k=1

v�k�k �
tX

j=1

tX
k=j

uky
�
j�j�k:

It is well known that minimizing a quadratic boolean function in which
all quadratic terms have non-positive coeÆcient reduces to a maximum 
ow
problem. Thus solving for each t = 1; : : : ; n leads to a polynomial algorithm.

4 ULS3 with Zero Demands and Wagner-Whitin

Costs

With dt � 0 for all t as in the previous section, the facet-de�ning inequalities
still depend on subsets S and R. Here, when dt = 0 for all t, we show that
the number of facets, though still exponential, decreases by an order of
magnitude in the presence of Wagner-Whitin costs. To see this we again
introduce an extended formulation.

Assume that the cost functions ct; ht satisfy the Wagner-Whitin con-
dition ct + ht � ct+1 for t = 1; : : : ; n � 1. Alternatively eliminating the
production variables from the objective function, the resulting storage costs
h0t = ct + ht � ct+1 � 0. This restriction says that, ignoring �xed costs, it is
always best to produce as late as possible. Formulations in the presence of
Wagner-Whitin costs have been studied in [10].

As the amount sold in period t is either 0 or ut in an optimal extreme
solution, we can de�ne the following 0-1 variables:

wt = 1 if vt = ut in period t, and wt = 0 if vt = 0 (wt = vt=ut)

Ælk = 1 if vl = ul and the stock at the end of k contains the correspond-
ing sale ul.

Clearly Ælk = max(0; wl �
Pl

t=k+1 yt) due to the Wagner-Whitin property.
The resulting formulation is:

max
nX
t=1

ptutwt �
nX
t=1

ftyt �
nX

t=1

h0t�t;

�k =
nX

l=k+1

ulÆ
l
k 1 � k < t (28)
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Ælk � wl +
lX

i=k+1

yi � 0 1 � k < l � t (29)

Ælk � 0 1 � k < l � t (30)

0 � wk � 1; 0 � yk � 1 1 � k � t (31)

yk integer 1 � k � t (32)

Proposition 4.1 The polyhedron Q de�ned by contraints (29)-(31) is inte-

gral.

Proof. In fact the constraints (29)-(31) de�ne a totally unimodular matrix.
Since the constraints (30) and (31) are submatrices of the identity, these
rows can be ignored. The same holds for the columns of (29) corresponding
to the vector Æ. Let faijgij be the remaining matrix with the set of columns
partitioned into set Y = fC1; : : : ; Cng, corresponding to vector y, and the
set W = fD1; : : : ; Dng, corresponding to the vector w.

We base our proof on the theorem which states that faijgij is totally
unimodular if for any subset of columns J there is a partition (J1; J2) of J
such that j

P
j2J1 aij �

P
j2J2 aij j � 1, for every row i.

Let J be a subset of columns and let Ci1 ; : : : ; Cip be the columns of Y
in J . For convenience, let i0 = 1 and ip+1 = n+ 1.

We allocate alternatively Ci1 ; Ci2 ; : : : ; Cip to J1 and J2 so that Ci1 2 J1,
Ci2 2 J2 and so on. The columns Di in W are allocated to the same set as
Cij , where j is such that ij � i < ij+1.

Now let us consider one row of the matrix faijgij . Suppose it cor-
responds to variable Ælk. In this row the non-zero entries are �1 for Dl

and 1 for Ck+1; : : : ; Cl. De�ning rY =
P

j2Y \J1 aij �
P

j2Y \J2 aij and
rW =

P
j2W\J1 aij �

P
j2W\J2 aij, we have to show that jrW + rY j � 1.

Since fCk+1; : : : ; Clg corresponds to an interval of columns of Y , the
columns of this set are also alternatively allocated to J1 and J2. So jrY j � 1.
Clearly jrW j � 1 also, since there is only one non-zero entry in W for each
row. Suppose now that rY = 1. Then in particular the last column in J of
the interval Ck+1; : : : ; Cl is allocated to J1. So Dl is also allocated to J1, and
thus rW = �1. The case rY = �1 is analogous. Therefore jrW + rY j � 1.

Now we consider the projection of Q into the space of the original (�; v; y)
variables. Using vt = utwt for all t, and eliminating the Ælk variables in (28)
by using (29) or (30) leads directly to the projection, and gives a proof of
the next proposition.
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Proposition 4.2 The polyhedron

�k �
X
l2U

(vl � ul

lX
i=k+1

yi); for all U � fk + 1; : : : ; ng and all k; (33)

0 � vk � uk; for k = 1; : : : ; n; (34)

0 � yk � 1; for k = 1; : : : ; n; (35)

0 � �k; for k = 1; : : : ; n; (36)

(37)

has y integral at all its extreme points.

Note that the (k; U) inequalities (33) form a special subset of the (t; S;R)
inequalities. Speci�cally taking t = maxfi : i 2 Ug, (33) can be rewritten
as

kX
j=1

xj +
tX

i=k+1

yi(
X

i�j�t;j2U

uj) �
X
l2U

vl +
kX

j=1

vj;

or setting T = f1; : : : ; tg, R = U [ f1; : : : ; kg and S = fk + 1; : : : ; tg as

X
j2TnS

xj +
X
j2S

~bRjtyj �
X
j2R

vj:

5 Extensions

Various extensions of the type studied for the classical uncapacitated lot-
sizing model appear important. We have initial results for the constant
capacity case including a polynomial algorithm and a generalisation of the
(t; S;R) inequalities. Results for ULS3 with backlogging and start-up vari-
ables are also needed to treat certain real-life instances.

Theoretically we have only been able to separate the (t; S;R) inequal-
ities in polynomial time when dt � 0 for all t. For formulation (F1), this
means that the lower bounds fLtg

n
t=0 are nondecreasing. In practice it is

often the case that the initial stock L0 is arbitrary, and Lt = L constant for
t = 1; : : : ; n. Thus the only diÆculty arises when L0 > L. In terms of for-
mulation (F3), d1 = L� L0, and dt = 0 for t = 2; : : : ; n. The combinatorial
separation algorithm can be extended to this case. Practically we plan to
develop and test separation heuristics both for ULS3 and for �xed charge
network 
ows, in which paths with both positive and negative demands are
treated, extending the path inequalities developed in [2].
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