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Abstract. In the present work, we apply a variational discretization proposed by the first
author in [14] to Lavrentiev-regularized state constrained elliptic control problems. We extend the
results of [18] and prove weak convergence of the adjoint states and multipliers of the regularized
problems to their counterparts of the original problem. Further, we prove error estimates for finite
element discretizations of the regularized problem and investigate the overall error imposed by the
finite element discretization of the regularized problem compared to the continuous solution of the
original problem. Finally we present numerical results which confirm our analytical findings.
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1. Introduction. In the present work, we apply variational discretization pro-
posed by the first author in [14] to Lavrentiev-regularized state-constrained elliptic
control problems. Let Ω ⊂ R

n(n = 2, 3) denote an open, bounded domain with C0,1-
boundary Γ. As model problem, we consider for states y ∈ Y := H1(Ω) ∩ C(Ω̄) and
controls u ∈ L2(Ω)

(P)







minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to y = S u and y(x) ≤ yc(x) a.e. in Ω,

where yd ∈ L2(Ω), yc ∈ C(Ω̄) denote given functions, and S : L2(Ω) → Y denotes the
control-to-state mapping, i.e. the solution operator of the Neumann problem

−∆ y + y = u in Ω and ∂ny = 0 on Γ.

Associated to (P) is the Lavrentiev-regularized control problem

(Pλ)







minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to y = S u and λu(x) + y(x) ≤ yc(x) a.e. in Ω,

where λ > 0 denotes the regularization parameter. Since the constraints in (P) and
(Pλ), respectively, define closed convex sets, both problems admit unique solutions
(y∗, u∗) and (ȳλ, ūλ).

The numerical treatment of problem (P) causes difficulties through the presence of
the pointwise state constraints, since the corresponding Lagrange multiplier in general
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only represents a regular Borel measure (see Casas [7] or Alibert and Raymond [1]).
In [18], Rösch, Tröltzsch, and the second author propose to circumvent these diffi-
culties through approximating problem (P) by the family of problems (Pλ) (λ > 0).
Among other things, they prove convergence of (ȳλ, ūλ) → (y∗, u∗) in L2(Ω) for
λ → 0. Furthermore, they show that the Lagrange multiplier associated to the mixed
control–state constraint in (Pλ) is an L2-function for every λ > 0. The development
of numerical approaches to tackle problem (P) is ongoing [3, 17, 19]. An excellent
overview can be found in [12, 13], where also further references are given.

Numerical analysis for problem (P) is presented by the first author and Deckelnick in
[9]. Among other things, they prove convergence of finite element approximations to
the control and to the state of order 1 − ε in two-dimensions, and of order 1/2 − ε
in three dimensions, in L2 and H1, respectively. In [16], the second author obtains
the same convergence order for piecewise constant approximations of the controls,
and also extends these results to problems with additional box constraints on the
control, compare also [11]. A general framework for numerical analysis of problems
with pointwise state together with general constraints on the control is presented by
Deckelnick and the first author in [10].

In the present paper, we extend the results of [18] for problem (Pλ) and prove weak
convergence of the adjoint states pλ in L2 for λ tending to zero. Moreover, weak-∗
convergence of the multipliers µλ in C(Ω̄)∗ to their counterparts of problem (P) for
λ ↓ 0 is shown. Based on these results, we prove error estimates for variational discrete
approximations to problem (Pλ). More precisely, in Theorem 3.8, we show

‖ūλ − ūλ,h‖ + ‖ȳλ − ȳλ,h‖H1 ≤ Ch1−n

4 , (1.1)

and

‖ūλ − ūλ,h‖ + ‖ȳλ − ȳλ,h‖H1 ≤ C
1

λ2

(
h2 +

1

λ
h3 +

1

λ2
h4

)
(1.2)

is proven in Theorem 3.5. Here, n = 2, 3 denotes the space dimension and C is a
generic positive constant independent of the finite element grid size h and of λ. To
prove the first estimate we adapt the techniques developed in [10] for the analysis of
the limit problem (P). The key idea of the proof of the second estimate consists in
the fact that the substitution

v(x) = λu(x) + y(x) (1.3)

transforms (Pλ) into the purely control constrained optimal control problem

(PV)







minimize J̃(y, v) :=
1

2
‖y − yd‖2 +

α

2 λ2
‖v − y‖2

subject to −∆ y + cλ y =
1

λ
v in Ω

∂n y = 0 on Γ

and v(x) ≤ yc(x) a.e. in Ω.

Here, cλ := 1 + 1/λ. Since (PV) is a purely control-constrained problem, it ad-
mits a unique Lagrange multiplier in L2(Ω) associated to the inequality constraint.
Moreover, the discretization techniques developed in [14] are directly applicable to
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(PV) which is of major importance for the implementation of a semi–smooth Newton
method for the numerical solution of (PV) and (Pλ), respectively. Furthermore, we
also relate the finite element solution (ȳλ,h, ūλ,h) to (y∗, u∗), i.e. the solution of the
original purely state-constrained problem (P). Under the additional assumption that
the solutions uλ of (Pλ) are uniformly bounded in L∞(Ω), it follows by combining a
result of [19] with (1.1) that

‖u∗ − ūλ,h‖ ≤ C
(√

λ + max{h | log(h)|, h2−n/2}
)

, (1.4)

while its combination with (1.2) implies

‖u∗ − ūλ,h‖ ≤ C
(√

λ +
1

λ2

(
h2 +

1

λ
h3 +

1

λ2
h4

))

. (1.5)

In view of (1.4) and (1.5), the overall error consists of two different contributions:
one arising from the regularization and another one caused by the discretization.
Moreover, from (1.5), we deduce that both error contributions behave contrarily with
respect to λ (cf. Remark 3.7) which is also confirmed by our numerical findings (see
Section 4). Hence, the optimal value of λ for a given mesh size h is larger than zero,
and (1.4) indicates that the coupling λ ∼ h2 in case of n = 2 and λ ∼ h in three
dimensions might be optimal (see Remark 3.10). Indeed, this result is also confirmed
by our numerical observations.

The paper is organized as follows. In Section 2 we prove that, beside control and
state, also the adjoint state and the Lagrange multipliers converge in some weaker
sense to the solution of the original problem. Section 3 addresses the error analysis
for the regularized problems and investigates how to couple λ and h. In Section 4,
the numerical example is presented.

1.1. Notation. Throughout this article, we use the following notation. Given
an open, bounded set Ω ⊂ R

n, n = 2, 3, we denote by (. , .) the natural inner product
of in L2(Ω). The corresponding norm is denoted by ‖.‖. Moreover, for the dual pairing
between C(Ω̄) and C(Ω̄)∗, we write 〈. , .〉.

2. Weak convergence of the Lagrange multipliers. In the present section
we prove convergence of the adjoint states and of the Lagrange multipliers of prob-
lem (Pλ) to their counterparts of problem (P). For this purpose it is convenient to
introduce the reduced objective functional by f(u) = J(S u, u) and the Lagrange
functional L : L2(Ω) × C(Ω̄)∗ → R by

L(u, µ) := f(u) + 〈S u − yc , µ〉.

Lagrange multipliers associated to the state constraint in (P) then are defined as
follows:

Definition 2.1. Let u∗ denote the solution of (P). Then, µ ∈ C(Ω̄)∗ is called
Lagrange multiplier, if it satisfies the following conditions:

∂L
∂u

(u∗, µ) = f ′(u∗) + S∗µ = 0 (2.1)

〈S u∗ − yc , µ〉 = 0 (2.2)

〈y , µ〉 ≥ 0 ∀ y ∈ C(Ω̄)+, (2.3)
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where C(Ω̄)+ is defined by C(Ω̄)+ = {y ∈ C(Ω̄) | y(x) ≥ 0 ∀x ∈ Ω̄}.
By means of the generalized Karush-Kuhn-Tucker theory, it can be proven that, under
a certain Slater condition, problem (P) admits a Lagrange multiplier in C∗(Ω̄) that
satisfies the conditions in Definition 2.1 (see for instance Casas [7] or Alibert and Ray-
mond [1]). This Slater condition in the present setting is equivalent to the existence
of a û ∈ L2(Ω) with (S û)(x) < yc(x) for all x ∈ Ω̄. Due to the special structure of
the state equation, this is trivially fulfilled in our case, since every constant k with
k < yc(x) everywhere in Ω̄, satisfies (S k)(x) ≡ k < yc(x) for all x ∈ Ω̄. Next, define
G : L2(Ω) → L2(Ω) by the operator that arises if one considers the control-to-state
operator as an operator with range in L2(Ω), and set p∗ = G∗(Gu∗ − yd) + S∗ µ such
that p∗ ∈ L2(Ω). Casas [7] and Alibert and Raymond [1] proved that p∗ is the unique
very weak solution of

−∆ p∗ + p∗ = y∗ − yd + µ|Ω in Ω

∂n p∗ = µ|Γ on Γ,
(2.4)

that belongs to W 1,s(Ω), 1 < s < n/(n − 1). With the definition of p∗, (2.1) is
equivalent to

p∗ + α u∗ = 0, (2.5)

which implies in turn u∗ ∈ W 1,s(Ω), 1 < s < n/(n − 1). Notice that, together with
the state equation and the pointwise state constraint, (2.2), (2.3), (2.4), and (2.5) are
equivalent to the following optimality system

−∆ y∗ + y∗ = u∗ in Ω

∂n y∗ = 0 on Γ

−∆ p∗ + p∗ = y∗ − yd + µΩ in Ω

∂n p∗ = µΓ on Γ

α u∗ + p∗ = 0
∫

Ω̄

(y∗ − yc) dµ = 0 , y∗(x) ≤ yc(x) ∀ x ∈ Ω̄

∫

Ω̄

y dµ ≥ 0 ∀ y ∈ C(Ω̄)+,







(2.6)

where µΩ and µΓ denote the restrictions of µ on Ω and Γ, respectively (cf. also [7]
and [1]).

Based on the first-order necessary conditions for the auxiliary problem (PV) that was
introduced in the introduction, it is straightforward to derive the optimality system
for (Pλ). The latter is given by

−∆ ȳ + ȳ = ū in Ω

∂n ȳ = 0 on Γ

−∆ p + p = ȳ − yd + µ in Ω

∂n p = 0 on Γ

α ū(x) + p(x) + λµ(x) = 0 a.e. in Ω

(µ , λ ū + ȳ − yc) = 0

µ(x) ≥ 0 a.e. in Ω

λ ū(x) + ȳ(x) ≤ yc(x) a.e. in Ω,







(2.7)
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where (ȳ, ū) denotes the unique optimal solution to (Pλ). Now, let us consider a
sequence of positive real numbers {λn} tending to zero for n → ∞. The associated
regularized problems are denoted by (Pn) and their solutions will be referred to as
(ȳn, ūn) ∈ Y × L2(Ω) with an adjoint state pn ∈ Y and Lagrange multiplier µn ∈
L2(Ω). In [18] and [17], it is proven that the control and the state converge strongly
to the solution of (P), i.e.

ūn → u∗ in L2(Ω), ȳn → y∗ in Y. (2.8)

In the following, we establish corresponding convergence results for µn and pn. It is
clear that one cannot expect a result similar to (2.8) for µn as the multiplier in the
limit is only an element of C∗(Ω̄). We start with the following lemma.

Lemma 2.2. The sequence of Lagrange multipliers associated to the mixed constraint
in (Pn), denoted by {µn}, is uniformly bounded in L1(Ω).

Proof. The variational formulation of the adjoint equation is given by

∫

Ω

∇pn · ∇w dx +

∫

Ω

pn w dx =

∫

Ω

(ȳn − yd + µn)w dx ∀ w ∈ H1(Ω).

If we insert w ≡ 1 as test function, then

∫

Ω

µn dx =

∫

Ω

(pn − ȳn + yd) dx =

∫

Ω

(−α ūn − λn µn − ȳn + yd) dx

follows due to the gradient equation in (2.7). Together with the positivity of the
Lagrange multiplier, this implies

‖µn‖L1(Ω) ≤ (1 + λn) ‖µn‖L1(Ω) ≤ α ‖ūn‖ + ‖ȳn‖ + ‖yd‖ ≤ Cµ

with a constant Cµ independent of n since the optimality of (ȳn, ūn) implies their
uniform boundedness in L2(Ω).

Lemma 2.3. The sequence of Lagrange multipliers {µn} converges weakly-∗ in C(Ω̄)∗

to a weak-∗ limit µ̃ ∈ C(Ω̄)∗, i.e.

∫

Ω

µn w dx → 〈w , µ̃〉 ∀w ∈ C(Ω̄)

Proof. First, let us identify the function µn ∈ L2(Ω) with an element µ̃n in C(Ω̄)∗ by
defining

〈w , µ̃n〉 =

∫

Ω̄

w dµ̃n :=

∫

Ω

w µn dx ∀ w ∈ C(Ω̄).

Using Lemma 2.2, we obtain

‖µ̃n‖C(Ω̄)∗ = sup
g∈C(Ω̄)

g 6=0

|〈g , µ̃n〉|
‖g‖C(Ω̄)

= sup
g∈C(Ω̄)

g 6=0

∣
∣
∫

Ω

g µn dx
∣
∣

‖g‖C(Ω̄)

≤ ‖µn‖L1(Ω) ≤ Cµ,
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i.e. the uniform boundedness of {µ̃n} in C(Ω̄)∗. Hence, since the closed unit ball
in C(Ω̄)∗ is weakly-∗ compact, we are allowed to select a subsequence, converging
weakly-∗ in C(Ω̄)∗ to a weak limit denoted by µ̃. Because everything what follows is
also valid for any other weakly-∗ converging subsequence, a known argument yields
the assertion.

Based on the previous lemma, we are now in the position to discuss the convergence
of {pn}. We will see that it converges weakly in L2(Ω) which is also important for
the finite element error analysis in the subsequent section (see the proof of Lemma
3.4 below).

Lemma 2.4. The sequence of adjoint states associated to (Pn), denoted by {pn},
converges weakly in L2(Ω) to the solution of

−∆ p + p = y∗ − yd + µ̃|Ω in Ω

∂n p = µ̃|Γ on Γ,
(2.9)

which is denoted by p̃ in all what follows.

Proof. Using again the identification of µn ∈ L2(Ω) with µ̃n ∈ C(Ω̄)∗, one obtains for
a fixed, but arbitrary w ∈ L2(Ω)

(w , pn) =
(
w , G∗(ȳn − yd + µn)

)

=
(
w , G∗(ȳn − yd)

)
+ (w , S∗ µ̃n)

= (Gw , ȳn − yd) + 〈S w , µn〉 → (Gw , y∗ − yd) + 〈S w , µ̃〉
=

(
w , G∗(y∗ − yd) + S∗ µ̃

)
= (w , p̃),

where we used Lemma 2.3 and ȳn → y∗ in L2(Ω). Since w ∈ L2(Ω) was chosen
arbitrarily, this is equivalent to pn ⇀ p̃.

Next, it is shown that the weak-∗ limit µ̃ indeed represents a Lagrange multiplier for
problem (P).

Theorem 2.5. The sequence of Lagrange multipliers associated to the regularized
pointwise state constraints in (Pλ), denoted by {µn}, converges weakly-∗ in C(Ω̄)∗ to µ̃
if n → ∞. Moreover, the weak-∗ limit µ̃ is a Lagrange multiplier for the unregularized
problem (P) according to Definition 2.1.

Proof. The weak-∗ convergence is stated in Lemma 2.3. It remains to show that the
weak-∗ limit satisfies the conditions in Definition 2.1, i.e. (2.1)–(2.3). Using Lemma
2.3, the positivity of µ̃ is straightforward to show: the positivity property of µn in
(2.7) implies

∫

Ω

µn w dx ≥ 0 ∀w ∈ C(Ω̄)+

with C(Ω̄)+ as defined in Definition 2.1. Hence for every fixed, but arbitrary w ∈
C(Ω̄)+, Lemma 2.3 yields

0 ≤
∫

Ω

µn w dx → 〈w , µ̃〉

and thus (2.3).
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To verify (2.1), we multiply the gradient equation in (2.7) with a fixed but arbitrary
function w ∈ C(Ω̄) and integrate over Ω:

∫

Ω

(α ūn + pn)w dx + λn

∫

Ω

µn w dx = 0 ∀w ∈ C(Ω̄). (2.10)

In view of Lemma 2.3, we have
∫

Ω
µn w dx → 〈w , µ̃〉, and hence

λn

∫

Ω

µn w dx → 0, (2.11)

for every fixed, but arbitrary w ∈ C(Ω̄), because of λn → 0 for n → ∞. Due to
ūn → u∗ in L2(Ω) and pn ⇀ p̃ in L2(Ω), (2.11) implies for (2.10), when passing to
the limit,

0 =

∫

Ω

(α ūn + pn)w dx + λn

∫

Ω

µn w dx →
∫

Ω

(α u∗ + p̃)w dx ∀w ∈ C(Ω̄),

and hence, α u∗ + p̃ = 0, where p̃ solves (2.9). However, as already stated in context
of (2.5), this equation is equivalent to (2.1) in Definition 2.1, i.e. f ′(u∗) + S∗µ̃ = 0.

It remains to prove the complementary slackness condition (2.2). The slackness con-
ditions in (2.7) read

∫

Ω

λn µn ūn dx +

∫

Ω

(ȳn − yc)µn dx = 0,

where the second addend converges to 〈y∗−yc , µ̃〉 thanks to Lemma 2.3 and ȳn → y∗

in Y . Notice that one can of course not apply (2.11) to the first addend since {ūn}
does clearly not converge in C(Ω̄). However, the gradient equation in (2.7) implies

∫

Ω

λn µn ūn dx = −
∫

Ω

ūn (α ūn + pn) dx → 0,

due to ūn → u∗ in L2(Ω) and (α ūn +pn) ⇀ (α u∗+ p̃) = 0 in L2(Ω) as derived above.
Therefore, we obtain

〈y∗ − yc , µ̃〉 = 0,

which is equivalent to (2.2).

Remark 2.6. In view of Lemma 2.5, p̃ is clearly an adjoint state associated to the
original problem.

2.1. The homogeneous Dirichlet case. Similarly to (P), one can discuss an
analogous optimal control problem with homogeneous Dirichlet boundary conditions,
i.e.

(Q)







minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to −∆ y = u in Ω

y = 0 on Γ

and y(x) ≤ yc(x) a.e. in Ω.
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As will be seen subsequently, the weak-∗ convergence of the Lagrange multipliers
associated to the pointwise state constraints in (Q) can be proven similarly to the
theory above. The main difference is the uniform L1(Ω)-boundedness of the multipli-
ers which is established by Lemma 2.8 above. It is well known that the state equation
in (Q) admits a unique solution y in the state space Y := H1

0 (Ω) ∩ C(Ω̄) for every
u ∈ L2(Ω). Again, we denote the associated control-to-state operator with range in
C(Ω̄) by S and with range in L2(Ω) by G. In view of the homogeneous Dirichlet
boundary conditions, problem (Q) only is meaningful if yc(x) ≥ 0 everywhere on Γ.
To satisfy the Slater condition for (Q), we further have to require yc(x) > 0 for all
x ∈ Γ. The Slater condition then reads

Assumption 2.7. There exists a û ∈ L2(Ω) such that

(S û)(x) < yc(x) for all x ∈ Ω̄.

Notice that this condition need not be automatically fulfilled as in case of (P). How-
ever, if for instance yc(x) > 0 everywhere in Ω̄, then the Slater condition is satisfied
with û ≡ 0. Based on Assumption 2.7, one can verify that the optimal control u∗

satisfies the following optimality system (cf. for instance Casas [6]):

−∆ y∗ = u∗ in Ω

y∗ = 0 on Γ

−∆ p∗ = y∗ − yd + µ in Ω

p∗ = 0 on Γ

α u∗ + p∗ = 0
∫

Ω̄

(y∗ − yc) dµ = 0 , y∗(x) ≤ yc(x) ∀ x ∈ Ω̄

∫

Ω̄

y dµ ≥ 0 ∀ y ∈ C(Ω̄)+,







(2.12)

where the Lagrange multiplier µ is again an element of C(Ω̄)∗. In [6], it is shown
that the adjoint equation admits a solution p∗ ∈ W 1,s, 1 ≤ s < n/(n − 1). Notice
that the adjoint equation exhibits homogeneous Dirichlet boundary conditions, i.e. the
multiplier does not generate a measure on Γ. This is due to the fact that the singular
part of µ is concentrated on the boundary of the active set which was proven by
Bergounioux and Kunisch in [4]. Hence, thanks to the Slater condition which ensures
that the state constraint is inactive on the boundary, we have µΓ = 0 (see also [6]).

As above, we introduce the regularized counterpart of (Q) by

(Qλ)







minimize J(y, u) :=
1

2
‖y − yd‖2 +

α

2
‖u‖2

subject to −∆ y = u in Ω

y = 0 on Γ

and λu(x) + y(x) ≤ yc(x) a.e. in Ω.

By the same arguments as in case of (Pλ), this problem exhibits a regular Lagrange
multiplier in L2(Ω). Similarly to (2.7), the optimality system, satisfied by the unique



State-constrained problems 9

optimal solution (ȳ, ū), is given by

−∆ ȳ = ū in Ω

ȳ = 0 on Γ

−∆ p = ȳ − yd + µ in Ω

p = 0 on Γ

α ū(x) + p(x) + λµ(x) = 0 a.e. in Ω

(µ , λ ū + ȳ − yc) = 0

µ(x) ≥ 0 a.e. in Ω

λ ū(x) + ȳ(x) ≤ yc(x) a.e. in Ω.







(2.13)

As in the section above, we consider a sequence of regularization parameters tending to
zero, i.e. {λn} with λn → 0 for n → ∞. The associated regularized control problems as
well as their solutions and the corresponding adjoint states and Lagrange multipliers
are again referred to by the subscript n. It is easy to see that the analysis in [17] that
yields the strong convergence of ūn to u∗ in L2(Ω) and ȳn to y∗ in Y , respectively,
can be adapted to the case with homogeneous Dirichlet boundary conditions. To be
more precise, the theory in [17] is mainly based on the fact that G : L2(Ω) → L2(Ω) is
compact and self adjoint, which is clearly also fulfilled in case of (Q). For the adjoint
state and the Lagrange multiplier, we derive a result analogous to Lemma 2.5 and
Remark 2.6. We again start with the boundedness of the multipliers that follows from
the Slater condition in assumption 2.7.

Lemma 2.8. Under Assumption 2.7, the sequence of Lagrange multipliers {µn} is
uniformly bounded in L1(Ω).

Proof. Together with the maximum principle for the state equation, Assumption
2.7 yields the existence of a function u0 ∈ L2(Ω) with u0(x) ≤ 0 a.e. in Ω and
(S u0)(x) < yc(x) for all x ∈ Ω̄. Thus, there is a τ > 0 such that, for all λ ≥ 0,

λu0(x) + (S u0)(x) ≤ yc(x) − τ a.e. in Ω, (2.14)

i.e. u0 is a Slater point for the regularized problem (Qλ), λ ≥ 0. Next, let us define
an auxiliary sequence {ûn} by

ûn = u0 − ūn.

Together with (2.14), this definition immediately implies

−
(
λnûn(x) + (S ûn)(x)

)
≥ τ + λnūn(x) + (S ūn)(x) − b(x) a.e. in Ω. (2.15)

The gradient equation in (2.13) is equivalent to
∫

Ω

(α ūn + G∗(Gūn − yd + µn) + λnµn)u dx = 0 for all u ∈ L2(Ω).

If we now choose u = û, we obtain
∫

Ω

−(λn ûn + G ûn)µn dx =

∫

Ω

(α ūn + G∗(Gūn − yd))û dx.

Together with the complementary slackness condition, i.e.
∫

Ω

(λnūn + G ūn − b)µn dx = 0
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and (2.15), this gives in turn

∫

Ω

τ µn dx ≤
((

α + ‖G‖2
)
‖ūn‖ + ‖G‖ ‖yd‖

)(
‖u0‖ + ‖ūn‖

)
.

Due to the uniform boundedness of {ūn} in L2(Ω) that follows from the optimality
of ūn, this and the positivity property of µn imply the assertion.

For the rest of the proof, we can proceed as in case of the homogeneous Neumann
boundary conditions, since the underlying analysis does not depend on the particular
structure of the state equation. In this way, one obtains the following result:

Theorem 2.9. Suppose that Assumption 2.7 holds true and let {µn} denote the se-
quence of Lagrange multipliers associated to the regularized pointwise state constraints
in (Qλ), while {pn} is the sequence of adjoint states. Then

µn
∗
⇀ µ̃ in C(Ω̄)∗ and pn ⇀ p̃ in L2(Ω)

hold true, where µ̃ ∈ C(Ω̄)∗ is a Lagrange multiplier for (Q) in the sense of Definition
2.1 and p̃ ∈ W 1,s(Ω), 1 ≤ s < n/(n − 1), solves the adjoint equation in (2.12) with µ̃
on the right-hand side.

Now, we turn to the impact of the Lavrentiev regularization on the numerical treat-
ment of state-constrained optimal control problems. To be more precise, we discuss
the variational discretization of the regularized problem in the spirit of [14]. The
analysis is carried out for problem (P), i.e. the problem with homogeneous Neumann
boundary conditions. Nevertheless, it is easy to verify that the same arguments apply
in case of (Q) such that the error estimates in Theorem 3.5 and Theorem 3.8 also
hold for homogeneous Dirichlet boundary conditions.

3. Error analysis for the regularized problem. In the following, we discuss
a variational discretization of problem (Pλ) according to the approach proposed in
[14]. To that end, let us introduce a family of regular triangulations {Th}h>0 of Ω,
i.e. Ω̄ =

⋃

T∈Th
T̄ . With each element T ∈ Th, we associate two parameters ρ(T ) and

R(T ), where ρ(T ) denotes the diameter of the set T and R(T ) is the diameter of the
largest ball contained in T . The mesh size of Th is defined by h = maxT∈Th

ρ(T ). For
the upcoming error analysis, we have to require some additional conditions on Th and
the domain.

Assumption 3.1. The domain Ω is a open bounded and convex subset of R
n, n = 2, 3

and its boundary Γ is a polygon (n = 2) or a polyhedron (n = 3). Moreover, there
exist two positive constants ρ and R such that

ρ(T )

R(T )
≤ R ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0. Furthermore, the regularization parameter is
bounded from above by by a constant λmax < ∞.

Notice that the last assumption on the values for λ is not really restrictive, since our
aim is to approximate the original state-constrained problem (P).

For domains satisfying Assumption 3.1, one finds the following result (cf. for instance
Dauge [8]):
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Lemma 3.2. Suppose that Ω fulfills the condition in Assumption 3.1 and let f be a
given function in L2(Ω), while z solves

−∆ z + z = f in Ω

∂n z = 0 on Γ.
(3.1)

Then, z ∈ H2(Ω) and the estimate

‖z‖H2(Ω) ≤ c ‖f‖

holds true with a constant c independent of f and h.

The finite element approximation for (3.1) is given by

(∇zh , ∇wh) + (zh , wh) = (f , wh) ∀ wh ∈ Wh,

where Wh denotes the space of linear finite elements, i.e. Wh = {w ∈ C(Ω̄) | w|T ∈
P1 ∀ T ∈ Th}. Standard finite element error analysis yields

‖z − zh‖ ≤ c h2 ‖f‖ (3.2)

‖z − zh‖L∞(Ω) ≤ c h2−n/2 ‖f‖, (3.3)

where, as above, n denotes the spatial dimension. Applying the finite element approx-
imation to the state equation, we arrive at the variational discrete version of (Pλ),
which is then given by

(Pλ,h)







min
u∈L2(Ω)

J(yh, u) :=
1

2
‖yh − yd‖2 +

α

2
‖u‖2

subject to (∇yh , ∇wh) + (yh , wh) = (u , wh) ∀ wh ∈ Wh

and λu(x) + yh(x) ≤ yc(x) a.e. in Ω.

Note that we do not discretize the control u. The optimal solution of (Pλ,h) is denoted
by ūh while, as above, ū denotes the solution of (Pλ) in all what follows. Notice that
in general ūh /∈ Wh. In the following, we derive two different error estimates for
‖ū − ūh‖ the first one depending on λ whereas the second one is uniform in λ.

3.1. An error estimate for fixed λ. The overall error analysis of this section is
based on a consideration of the transformed problem (PV) with the auxiliary control
v. Based on (Pλ,h) and the transformation formula (1.3), which reads

v = λu + yh (3.4)

n the discrete setting, we obtain for the variational discrete counterpart of (PV)

(PVh)







min
v∈L2(Ω)

J̃(yh, v) :=
1

2
‖yh − yd‖2 +

α

2 λ2
‖v − yh‖2

subject to (∇yh , ∇wh) + cλ (yh , wh) =
1

λ
(v , wh) ∀ wh ∈ Wh

and v(x) ≤ yc(x) a.e. in Ω.
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The optimal solution of (PVh) is denoted by v̄h and again, in general v̄h /∈ Wh. Notice
that (PVh) coincides with the variational discretization of purely control-constrained
problems following the approach of [14]. Now let us turn to the optimality conditions
for (PV) and (PVh). In a standard way, one deduces

(∇ȳ , ∇w) + cλ (ȳ , w) = (v̄ , w) ∀ w ∈ H1(Ω) (3.5)

(∇p , ∇w) + cλ (p , w) =
(
ȳ − yd +

α

λ2
(ȳ − v̄) , w

)
∀ w ∈ H1(Ω) (3.6)

(
v̄ − ȳ +

λ

α
p , v − v̄

)
≥ 0 ∀ v ∈ Vad (3.7)

with Vad := {v ∈ L2(Ω) | v(x) ≤ yc(x) a.e. in Ω}. For the optimality system of (PVh),
we find

(∇ȳh , ∇wh) + cλ (ȳh , wh) = (v̄h , wh) ∀ wh ∈ Wh (3.8)

(∇ph , ∇wh) + cλ (ph , wh) =
(
ȳh − yd +

α

λ2
(ȳh − v̄h) , wh

)
∀ wh ∈ Wh (3.9)

(
v̄h − ȳh +

λ

α
ph , v − v̄h

)
≥ 0 ∀ v ∈ Vad. (3.10)

Due to the variational discrete approach, the solution v̄ of (PV) is feasible for (PVh)
and therefore, we are allowed to insert v̄ in the variational inequality (3.10). On the
other hand, we insert v̄h in (3.7). Adding both inequalities then yields

(
v̄ − v̄h − (ȳ − ȳh) +

λ

α
(p − ph) , v̄h − v̄

)
≥ 0,

which in turn gives

0 ≤ −‖v̄ − v̄h‖2 +
(
yh(v̄) − ȳ , v̄h − v̄

)
+

λ

α

(
p − ph(v̄) , v̄h − v̄

)

+
λ

α

(
ph(v̄) − ph(v̄) , v̄h − v̄

)

︸ ︷︷ ︸

=: A

+
(
ȳh − yh(v̄) , v̄h − v̄

)
+

λ

α

(
ph(v̄) − ph , v̄h − v̄

)

︸ ︷︷ ︸

=: B

(3.11)

Here, the notation y(v) with an arbitrary v ∈ L2(Ω) corresponds to the solution of

(∇y , ∇w) + cλ (y , w) =
1

λ
(v , w) ∀ w ∈ H1(Ω), (3.12)

while yh(v) solves

(∇yh , ∇wh) + cλ (yh , wh) =
1

λ
(v , wh) ∀ wh ∈ Wh. (3.13)

Moreover, ph(v) is defined as solution of

(∇ph , ∇wh) + cλ (ph , wh) =
(
y(v) − yd +

α

λ2
(y(v) − v) , wh

)
∀ wh ∈ Wh (3.14)
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and similarly, ph(v) denotes the solution to

(∇ph , ∇wh)+cλ (ph , wh) =
(
yh(v) − yd +

α

λ2
(yh(v) − v) , wh

)
∀ wh ∈ Wh

(3.15)

Notice that, with these notations at hand, we have ȳ = y(v̄), ȳh = yh(v̄h), p = p(v̄),
and ph = ph(v̄h). Before we further exploit (3.11) let us provide some auxiliary results.
To begin with we consider

(∇z , ∇w) + cλ (z , w) = (g , w) ∀ w ∈ H1(Ω) (3.16)

with some g ∈ L2(Ω). Similarly to above, we introduce the discrete version of (3.16)
by

(∇zh , ∇wh) + cλ (zh , wh) = (g , wh) ∀ w ∈ Wh

and denote the associated solution by zh(g). Now, we derive an estimate analogous
to (3.2) which takes into account the dependency on λ.

Lemma 3.3. Under Assumption 3.1, there exists a constant C(Ω) independent of λ
such that

‖zh(g) − z(g)‖L2(Ω) ≤ C(Ω)
(
h2 +

1

λ
h3 +

1

λ2
h4

)
‖z(g)‖H2(Ω)

holds true.

Proof. The proof follows standard arguments. Using the Galerkin orthogonality and
standard interpolation error estimates, one obtains

‖zh(g) − z(g)‖H1(Ω) ≤ ‖z(g)− Ihz(g)‖H1(Ω) +
1

λ
‖z(g)− Ihz(g)‖

≤ C(Ω)
(
h +

1

λ
h2

)
‖z(g)‖H2(Ω)

where Ih denotes the linear interpolation operator. Applying the well known argument
according to Nitsche then gives the assertion.

Lemma 3.4. Suppose that Assumption 3.1 is fulfilled. Then there exists a constant
C(Ω) independent of λ such that the following estimate is valid

‖yh(v̄) − ȳ‖ ≤ C(Ω)
(
h2 +

1

λ
h3 +

1

λ2
h4

)
. (3.17)

In addition

λ ‖ph(v̄) − p‖ ≤ C(α, Ω)
(
h2 +

1

λ
h3 +

1

λ2
h4

)
(3.18)

holds true with a constant C(α, Ω) independent of λ.

Proof. By construction, ȳ = y(v̄) is also the solution of the state equation in (Pλ) with
ū = 1/λ (v̄ − ȳ) on the right hand side, i.e. it solves (3.1) with ū as inhomogeneity.
Therefore, Lemma 3.2 together with (2.8) yields

‖ȳ‖H2(Ω) ≤ c ‖ū‖ ≤ c,
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where the optimality of ū guarantees its uniform boundedness w.r.t. λ in L2(Ω).
Together with Lemma 3.3, this implies (3.17).

Moreover, again due to (1.3), i.e. ū = 1/λ (v̄ − ȳ), the adjoint state solves

−∆ p + p = ȳ − yd − 1

λ
p +

α

λ
ū in Ω

∂n p = 0 on Γ,

and hence, again by Lemma 3.2,

λ ‖p‖H2(Ω) ≤ c
(

λ ‖ȳ‖ + λ ‖yd‖ + α ‖ū‖ + ‖p‖
)

follows with a constant c independent of λ. Thanks to their optimality, ū and ȳ
are uniformly bounded in L2(Ω) independent of λ. Moreover, consider again an
arbitrary sequence {λn} tending to zero for n → ∞. Then, from Lemma 2.4, we know
that the associated sequence of adjoint states converges weakly in L2(Ω), giving in
turn its uniform boundedness such that ‖p‖ ≤ c independent of λ. Thus, we obtain
λ ‖p‖H2(Ω) ≤ c and consequently, Lemma 3.3 gives the assertion.

Theorem 3.5. Suppose that Assumption 3.1 is fulfilled. Then, there is a constant
C(α, Ω, λmax) independent of λ such that

‖ū − ūh‖ + ‖ȳ − ȳh‖H1(Ω) ≤ C(α, Ω, λmax)
1

λ2

(
h2 +

1

λ
h3 +

1

λ2
h4

)
(3.19)

is satisfied.

Proof. The result will be obtained by estimating the addends on the right hand side of
(3.11) by means of the above lemmata. We start with (3.15) with v̄ as inhomogeneity
and subtract the analogous equation for v̄h on the right hand side. This gives

(

∇
[
ph(v̄) − ph(v̄h)

]
, ∇wh

)

+ cλ

(

ph(v̄) − ph(v̄h) , wh

)

=
(

yh(v̄) − yh(v̄h) +
α

λ2

(
yh(v̄) − yh(v̄h) − v̄ + v̄h

)
, wh

)

∀ wh ∈ Wh.
(3.20)

We note that by definition ȳh = yh(v̄h) and ph(v̄h) = ph. Now we consider (3.13) with
v̄h − v̄ as right hand side, use ph(v̄)− ph there as test function, and choose ȳh − yh(v̄)
as test function in (3.20). Next we form the difference of the arising equations and
obtain

1

λ

(

ph(v̄) − ph , v̄h − v̄
)

=
(

yh(v̄) − ȳh +
α

λ2

(
yh(v̄) − ȳh − v̄ + v̄h

)
, ȳh − yh(v̄)

)

,
(3.21)

so that B of (3.11) admits the form

B = −
(

1 +
λ2

α

)

‖yh(v̄) − ȳh‖2 + 2
(
ȳh − yh(v̄) , v̄h − v̄

)
(3.22)

Similarly we obtain for A of (3.11)

A =
(

1 +
λ2

α

) (
ȳ − yh(v̄) , yh(v̄h) − yh(v̄)

)
. (3.23)
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Inserting (3.22) and (3.23) into (3.11), straight-forward estimation yields

0 ≤−
[

‖v̄ − v̄h‖2 − 2(ȳ − ȳh , v̄ − v̄h) + ‖ȳ − ȳh‖2
]

− λ2

α
‖ȳ − ȳh‖2

+
(
ȳ − yh(v̄) , v̄h − v̄

)
+

λ

α

(
p − ph(v̄) , v̄h − v̄

)

−
(

1 +
λ2

α

)(
yh(v̄) − ȳ , ȳ − ȳh

)
.

Notice that, in view of the transformation formulas (1.3) and (3.4), the term in the
squared brackets is equivalent to λ2‖ū − ūh‖2. Hence, we replace v̄ and v̄h by ū and
ūh, respectively, and obtain

α ‖ū − ūh‖2 + ‖ȳ − ȳh‖2 ≤α

λ

(
ȳ − yh(v̄) , ūh − ū

)
+

(
p − ph(v̄) , ūh − ū

)

+
1

λ

(
p − ph(v̄) , ȳh − ȳ

)
−

(
yh(v̄) − ȳ , ȳh − ȳ

)
.

Using Young’s inequality we arrive at

(α − 2κ) ‖ū − ūh‖2 + (1 − 2κ)‖ȳ − ȳh‖2

≤
( α2

κλ2
+

1

κ

)

‖ȳ − yh(v̄)‖2 +
( 1

κλ2
+

1

κλ4

)

λ2 ‖p − ph(v̄)‖2

with κ > 0 arbitrary. Lemma 3.4 now yields

(α − 2κ) ‖ū − ūh‖2 + (1 − 2κ)‖ȳ − ȳh‖2

≤ C(α, Ω, λmax)
1

κλ4

(
h2 +

1

λ
h3 +

1

λ2
h4

)2
,

so that choosing κ small enough delivers the result for ‖ū − ūh‖. The estimate for
‖ȳ − ȳh‖H1(Ω) follows from the continuity of the control-to-state operator together
with (3.2) and the optimality of ū which implies ‖ū‖L2(Ω) ≤ c independent of λ.

In view of Theorem 3.5, we thus obtain quadratic convergence of the control for a
fixed λ as in case of the purely control-constrained case discussed in [14]. On the
other hand, the approximation behavior of the solution of (Pλ,h) strongly depends on
the value of λ. For the overall approximation error, we find

‖u∗ − ūλ,h‖ ≤ ‖u∗ − ūλ‖ + ‖ūλ − ūλ,h‖,

where, as before, u∗ denotes the solution of the original purely state-constrained prob-
lem (P). Moreover, ūλ is the exact solution of (Pλ) for a given λ > 0 and ūλ,h denotes
the associated discrete solution. Assuming that the sequence {ūλ}λ↓0 is uniformly
bounded in L∞(Ω), it is shown in [19] that

‖u∗ − ūλ‖ ≤ c
√

λ (3.24)

holds true with a constant c independent of λ. This together with (3.19) prove

Theorem 3.6. Let Assumption 3.1 be fulfilled and assume that the sequence of op-
timal solutions to (Pλ) for λ ↓ 0, denoted by {ūλ}, is uniformly bounded in L∞(Ω).
Then, with the notations introduced above there holds

‖u∗ − ūλ,h‖ ≤ C(α, Ω)
(√

λ +
1

λ2

(
h2 +

1

λ
h3 +

1

λ2
h4

))

, (3.25)
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with a generic positive constant C(α, Ω) independent of λ and h.

From (3.25), we deduce the following theoretical prediction concerning the qualitative
impact of the Lavrentiev regularization on the numerical approximation of (P).

Remark 3.7. We observe that, for the minimization of ‖u∗ − ūλ‖ a small value of λ
seems to be favorable, while the discretization error ‖ūλ − ūλ,h‖ may be increased by
a reduction of λ. Hence, the two different contributions to the overall error seem to
behave contrarily.

3.2. A error estimate uniform in λ. We now derive an error estimate for
‖ū − ūh‖ which does not depend on λ. In contrast to the theory presented in section
3.1, we do not utilize the auxiliary problem (PV) for the underlying analysis. As
before ū denotes the solution of (Pλ) for a given λ while ūh is the solution of (Pλ,h).

Theorem 3.8. There exists some 0 < h0 ≤ 1 such that

‖ū − ūh‖ + ‖ȳ − ȳh‖H1(Ω) ≤ Ch1−n/4 ∀ 0 < h ≤ h0 (3.26)

holds with a positive constant C > 0 which is independent of λ.

Proof. We switch back to (Pλ,h), i.e. the variational discrete version of (Pλ). The
associated optimality system is given by

(∇ȳ , ∇wh) + (ȳ , wh) = (ūh , wh) ∀ wh ∈ Wh (3.27)

(∇ph , ∇wh) + (ph , wh) =
(
ȳh − yd + µh , wh

)
∀ wh ∈ Wh (3.28)

αūh(x) + ph(x) + λµh(x) = 0 a.e. in Ω, (3.29)

µh(x) ≥ 0 a.e. in Ω, λūh(x) + ȳh(x) ≤ yc(x) a.e. in Ω (3.30)
∫

Ω

(λūh + ȳh − yc)µhdx = 0. (3.31)

Here, µh denotes the discrete Lagrange multiplier associated to the mixed constraints
in (Pλ,h). Notice that, due to (3.29), we have in general µh /∈ Wh since ūh /∈ Wh.
Note moreover, that with (3.4), i.e. v̄h = λ ūh + yh, and (3.29), ph is equivalent to the
solution of (3.9), i.e. the solution of the adjoint equation of (PVh). Now we multiply
the difference of (3.29) and its counterpart in (2.7) by ū − ūh and integrate over Ω.
We obtain

α‖ū−ūh‖2 = (−λ(µ−µh), ū−ūh)+(ph−ph, ū−ūh)+(ph−p, ū−ūh) =: (1)+(2)+(3),

where ph denotes the finite element solution to

(∇ph , ∇wh) + (ph , wh) =
(
ȳ − yd + µ , wh

)
∀ wh ∈ Wh,

which coincides with ph(v̄), v̄ = λū + ȳ, as defined in (3.14). Using the finite element
solution yh of

(∇yh , ∇wh) + (yh , wh) = (ū, wh) ∀ wh ∈ Wh,

we obtain

(2) = (∇(yh − ȳh) , ∇(ph − ph)) + (yh − ȳh , ph − ph)

= (ȳh − ȳ, yh − ȳh) + (µh, yh − ȳh) − (µ, yh − ȳh).



State-constrained problems 17

Now, since ȳh ≤ yc − λūh and µ ≥ 0 we have, using the complementarity condition
for yc − λū − ȳ in (2.7),

(µ, ȳh − yh) ≤ (µ, yc − λūh − yh) = (µ, yc − λūh − yh − yc + λū + ȳ) =

= (µ, λ(ū − ūh)) + (µ, ȳ − yh).

Analogously, we find

(µh, yh − ȳh) ≤ (µh, λ(ūh − ū)) + (µh, yh − ȳ).

Thus,

(1) + (2) + (3) ≤ (−λ(µ − µh), ū − ūh) + (µ − µh, λ(ū − ūh))+

+ (ȳh − ȳ, yh − ȳh) + (µ, ȳ − yh) + (µh, yh − ȳ) + (ph − p, ū − ūh) =

= (ȳh − ȳ, yh − ȳ) − ‖ȳh − ȳ‖2 + (µ, ȳ − yh) + (µh, yh − ȳ) + (ph − p, ū − ūh).

Using the Cauchy–Schwarz inequality, we obtain

α‖ū − ūh‖2 + ‖ȳh − ȳ‖2 ≤ C
{

‖ȳ − yh‖2 +
(
‖µ‖L1(Ω) + ‖µh‖L1(Ω)

)
‖ȳ − yh‖∞

+
1

α
‖p − ph‖2

}

.

From Lemma 2.2 we infer ‖µ‖L1(Ω) ≤ C uniformly in λ. An inspection of its proof
also delivers ‖µh‖L1(Ω) ≤ C uniformly in λ, since ‖ȳh‖, ‖ūh‖ are uniformly bounded
in h and λ due to their optimality. The uniform boundedness of ‖µh‖L1(Ω) w.r.t. h, λ
also holds true in the case of Dirichlet boundary conditions. This follows immediately,
if one replaces S by Sh and G by Gh in the proof of Lemma 2.8.

In [5], it is proven for the case of homogeneous Dirichlet boundary conditions that

‖p− ph‖2 ≤ h4−n
(

‖ȳ − yd‖2 + ‖µ‖2
L1(Ω)

)

. (3.32)

It is easy to see that the same duality argument also applies in case of homogeneous
Neumann boundary conditions such that (3.32) holds in both cases (cf. [5, Theorem
3] and the corresponding proof). Furthermore, we have ‖ȳ − yh‖2 ≤ Ch4, and ‖ȳ −
yh‖L∞(Ω) ≤ Ch2−n/2 by (3.2) and (3.3) and the optimality of ū which implies ‖ū‖ ≤ c
independent of λ. Hence the estimation of ‖ū− ūh‖ follows. Then ‖ȳ − ȳh‖H1(Ω) can
be estimated as in the proof of Theorem 3.5 such that claim follows.

Next let us consider (3.1) for f ∈ L∞(Ω), and let us assume that the corresponding
unique solution satisfies z ∈ W 2,q(Ω) for all 1 ≤ q < ∞. Then, due to [11, Lemma 1]

‖z − zh‖∞ ≤ Ch2 | log(h)|2‖v‖L∞(Ω). (3.33)

Now let us assume that ū is uniformly bounded in L∞(Ω) which is the same assump-
tion that was already needed for the estimation of the regularization error in (3.24).
Then, we deduce from the proof of the previous Theorem

Corollary 3.9. Assume that the sequence of optimal solutions to (Pλ) for λ ↓ 0,
denoted by {ūλ}, is uniformly bounded in L∞(Ω), and assume further that the solution
of (3.1) satisfies z ∈ W 2,q(Ω) for all 1 ≤ q < ∞ if f ∈ L∞(Ω). Then the sequence of
solutions of (Pλ,h), denoted by {ūλ,h} satisfies

‖ūλ − ūλ,h‖ ≤ C max{h | log(h)|, h2−n/2} for all 0 < h ≤ h0. (3.34)
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with a constant C independent of λ and h. Hence (3.24) immediately implies

‖u∗ − ūλ,h‖ ≤ ‖u∗ − ūλ‖ + ‖ū − ūλ,h‖ ≤ C
(√

λ + max{h | log(h)|, h2−n/2}
)

(3.35)

with a constant C > 0 that does not depend on λ and h.

Remark 3.10. Let the assumptions of Corollary 3.9 be satisfied. Then, (3.35) implies

‖u∗ − ūλ,h‖ ∼
√

λ +

{

h | log(h)| if n = 2,

h1/2 if n = 3,

which suggests the coupling

√
λ ∼

{

h if d = 2,

h1/2 if d = 3,
(3.36)

of λ and the finite element grid size h.

4. Numerical investigation. Finally we present a numerical experiment which
supports the findings in the previous section. Specifically it turns out that the coupling
of λ and the finite element grid size h proposed in (3.36) seems to be optimal.

The test case used for the following numerical investigation is taken from [15], and its
numerical implementation using the variational discrete concept is performed along
the lines of [20]. It is constructed such that the Lagrange multipliers associated to
the pure state constraints are continuous. The considered control problem coincides
with (P) unless that there is an additional bound from below in the state constraint,
i.e. ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω. It is easy to verify that this additional bound
does not influence the theory presented above. We choose Ω = (0, 1)2 as test domain.
Moreover, the desired state yd and the bounds ya and yb are defined by

ya(x) =

{

g(x) , if g(x) ≤ −0.7

−0.7 , if g(x) > −0.7
, yb(x) =

{

g(x) , if g(x) ≥ 0.7

0.7 , if g(x) < 0.7

yd(x) =

{(
(2π2α − 1)(2π2 + 1) + 11

)
g(x) − 7 , if g(x) ≥ 0.7

(
(2π2α − 1)(2π2 + 1) + 11

)
g(x) + 7 , if g(x) < 0.7

with x = (x1, x2) and g(x) := cos(π x1) cos(π x2). It is straightforward to verify that
the exact solution for this problem is given by

y∗(x) = g(x) , u∗(x) = (2 π2 + 1) g(x) , p∗(x) = −α (2 π2 + 1) g(x)

µa(x) =

{
−10 g(x) − 7 , if g(x) ≤ −0.7

0 , if g(x) > −0.7
, µb(x) =

{
10 g(x) − 7 , if g(x) ≥ 0.7

0 , if g(x) < 0.7.

For the numerical solution of the Lavrentiev regularized problems a semi-smooth
Newton method is applied to the numerical solution of the variational discretization
(PVh) of (PV). We note that this algorithm is kept on the infinite-dimensional level
since the controls v are not discretized. The numerical implementation then is non–
standard. For details we refer to [14, 20].

In Tab. 4.1 the dependence of the L2-error ‖u∗ − ūh‖ on λ and h is presented for the
case α = 10−2. It turns out that the overall error is increased if λ is chosen too small.
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Table 4.1

Dependence of the L2 error ‖u∗ − ūh‖ on λ and h for α = 0.01.

λ =

h/
√

2 10−2.5 10−3 10−3.5 10−4 10−4.5 10−5 10−5.5 10−6

0.1 0.6429 1.0828 3.3982 10.715 34.307 107.48 337.80 1065.2

0.05 0.6221 0.3125 0.7956 2.515 7.950 25.09 79.26 250.2

0.025 0.6326 0.2148 0.2111 0.637 2.009 6.34 20.05 63.5

0.0125 0.6358 0.2097 0.0840 0.165 0.516 1.62 5.12 16.2

0.00625 0.6365 0.2101 0.0682 0.045 0.125 0.39 1.23 3.9
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‖
ū

λ
,
h
−̄u
‖

‖
ū
‖

Fig. 4.1. Relative error ‖u∗ − ūh‖/‖u
∗‖ over λ for h = 6.25 × 10−3.

This is also illustrated by Fig. 4.1 which depicts the relative error ‖u∗− ūh‖/‖u∗‖ over
λ for h = 6.25 × 10−3. We observe that the theoretical prediction of Remark 3.7, is
confirmed by the numerical findings, i.e. the discretization error and the regularization
error behave contrarily such that the optimal value of λ is larger than zero and depends
on the mesh size h.

Now let us denote by λ(h) the Lavrentiev parameter which delivers the smallest L2-
error for a given grid size h. In Fig. 4.2 we present a log plot of ‖u∗ − ūλ(h),h‖/‖u∗‖
for varying values of α. It shows that for the present numerical example we could
expect an error behaviour of the form

‖u∗ − ūλ(h),h‖ ∼ h,

which also would be delivered by the coupling λ ∼ h2 suggested in (3.36) for the case
n = 2.

Acknowledgment. The authors are grateful to Morten Vierling who provides
the numerical results of Section 4. The first author acknowledges support of the DFG



20 M. HINZE, C. MEYER

−2.5 −2 −1.5 −1
−2.5

−2

−1.5

−1

log
10

(h)

lo
g 10

(|
|u

* −
u h||)

 

 

α = 1
α = 0.001
α = 0.01

h

Fig. 4.2. log plot of ‖u∗ − ūλ(h),h‖/‖u
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