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Abstract For elliptic partial differential equations with periodity oscillating
coefficients quadratic?-convergence of a corrected asymptotic expansion, which
is motivated by the theory of homogenization, is proven i dne-dimensional
case.

In the two-dimensional case the rate of convergence ancejterttiency on
the symmetry of the diffusion coefficient is numerically bisad. The correction
of the asymptotic expansion on a locally refined grid is theedded inside a
two-grid method and numerically compared with a classi€dBFmethod.

Keywords homogenization asymptotic expansionmultigrid method- elliptic
partial differential equation

Mathematics Subject Classification (2000)35B27- 74Q05- 78M35- 78M10

1 Introduction

Within this article the stationary diffusion equation
—div(AOu)=f inQcR",

u=0 ondQ

for a composite material with finely mixed constituents Wil studied. If the ma-
terial is additionally periodic, one can assume the extstef two characteristic
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scales, first a macroscopic scale, describing the globavetr of the compos-
ite and second a microscopic scale, describing the heteedtges on the unit cell

=10,I1[ x --- x]0,I,[. To describe the dependency on the giz# the unit cell,
one writes (1) in the form

div(A0Ou)=f inQ,
@ { =0 ondQ
with
€) A =A(2)

for aY-periodicA.
The theory of homogenization tries to characterize theittim
w0 = lim ué.
e—0

Homogenization does not mean to determifie but to establish a differential
equation foru®. In the case of the stationary diffusion equation this défgial
equation (called homogenized differential equation) ithef same type but with
constant coefficient. The intention of homogenization fsndtely the calculation
of the effective coefficier®, such that
@ —div(A’OW) =f inQ,

wW=0 ondQ.

So, replacing the original problem faf by the homogenized problem means that
one has to solve two problems instead of one. On the other tientiomoge-
nized problem is a differential equation with constant fioieints and therefore
(numerically) a lot easier to solve than the differentialiatipn forué.

The convergence aff towardsuC is only weak inH}(Q). The proof of the
last statement using the two-scale expansion

X X X
ué(x) = ul (x, —) +euy (x, —) + &%up (x, _) 4o
£ £ £

in [2], chapter 4, §1 shows, that the asymptotic expansidiirsiforderuf(x) =
WO(x, ¥) + euy (x, ¥) satisfies

0u°

U (X ZX'< ) z?xI )

wherex; € Wpe(Y) = {v e H}
solution of the so called cellJ problem

{ —div(A(y)Ox) = —div(A(y)a) in Y,

=0} fori =1,...,nis the unique weak

(5) Xi Y-periodic

(Xi)y=0
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on the unit cell. The various cell solutions are needed anyway, in orderterde
mine the homogenized diffusion coefficieslt by means of the equation

Al = (AT +Aq)y / —~ADx; +Aady

Y]

([5], Theorem 6.1, p. 112). Instead of settling for the hoeriged solution®,
one can use the asymptotic expansion of first order withguiifiéant additional
expenses. This has the further advantage of approximétingpiution of the orig-
inal problem in theH1-norm ([9], p. 28)

IU® = Ui ll4a() = O(VE).

Regarding thé 2-norm this gives no improvement of the approximative prop-
erty ([9], S. 29, 30)

Juf - UOHLZ(Q) = 0O(e),
Ju® —uill 2(q) = O(€).

On the other hand it is proved in [11], that by the right chad¢he right hand
sides of the equations for the finite element approximat'u;i,rnsm‘ﬁ| and)(if1 one

obtains
00~ m(uH -e3 S 7())

if Ais symmetric in the following sense

=0(&?),
12(0)

Definition 1 AMapA:Y — R™" s calledk-symmetricifffor i, j=1,...,n

(_1)6lkaﬁ (y17 ce 7yk717 _ykvyk+17 s >yn)(_1)6kl = aﬁ (y)»

Whereaﬁ is the periodic continuation odjj. A is calledsymmetri¢iff A is k-
symmetric foralk=1,...,n

In the first part of this article this statement will be showmrakytically for
the one-dimensional case in terms of tifenorm, provided that the sourdeis
regular enough (Theorem 1). Furthermore in the non symoedge an additional
correction problem with constant coefficient will sufficent@intain the quadratic
approximation property.

Afterwards this results will be numerically examined in th@-dimensional
case using finite element approximations. The finite elesates will be choos-
en so that the quadratic approximation property is traedlato the finite element
approximation (Theorems 8 and 9 as well as Corollaries 4 anditereby par-
ticularly the regularity of solutions of elliptic differ¢ial equations with periodic
boundary conditions will be used. This follows from the innegularity of solu-
tions of elliptic equations ([7], Theorem 8.8, p. 183 and Giteen 8.10, p. 186)
and the invariance under translationYoferiodic functions ([5], Lemma 2.3, p.
27) so that it just depends on the regularity of the diffusioefficient. Actual
aj € C™2L(Y)NH™L(Y) implies xi € HM(Y).
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Both the classical definition and the finite elements usedbeafound in [4].
Whereas finite elements for solving Dirichlet problems asadibed in almost ev-
ery book about numerical methods for partial differentigli&ions, there seems
to exist no corresponding source for the case of periodiathary conditions. The
approach for the numeric calculations (probably alreatigviced before) is based
on “periodic” subdivisions (Definition 3), for which the erpolation of a periodic
function itself is periodic. Since the periodicity cell isrectangle, it is reason-
able to decompose it into rectangles. To gain statemenis d@he regularity of
the global interpolation, one needs (just as for triangoites) another assumption
on the geometry of the subdivision. Therefore rectanguhati{Definition 2) are
defined.

After summarizing the numeric results for isotropic magksa two-grid meth-
od, which is based on the components needed for the calmulatithe corrected
asymptotic approximation of first order, will be presented @ompared with a
preconditioned conjugate gradient method (PCG-methodjlifterent sizes of
the unit cell.

2 Asymptotic approximation

In this section it will be shown that the improved-convergence of the first order
asymptotic expansion applies analytically in the one-disienal case for sym-
metricA.

An additional correction ofi; by the solution of another elliptic boundary

problem with constant coefficient preserves the improi&donvergence even
in the asymmetric case. The proof will make use of an integratesentation
for the first order asymptotic expansion. It applies e |xo,x1[, Y =]0,1[ and

f="fo+ dl with fp, f; € LZ(Q)

00 =000 —ex (X) 9 g

— 3| LR+ o) dst (ot talx-)| +
X0

. KA@) . :) . <<A>y _ ﬁ)} [(Fo+ f1) o — (Fo(X) + f1(3))]

with

a0—|</|%>1,
/ fods

Y ds

A(y)—/0 e
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2.1 Correction

Sincel? satisfies the Dirichlet boundary conditions #€, the first order asymp-
totic expansioru$ of u¢ is apparently no element &f}(Q). An immediate con-
sequence is the lower order of convergence (compared tothmstric case) of
u® —uj with respect td|~||H&(Q). The obvious correction af; would be the solu-

tion of
—div(A*OV¢) =0 inQ,

e L x\ oud
v‘g_ul_—ekzlxk(g>a—)q((x) onoQ.

But to calculate* numerically would be as expansive as the original problem
(2). Therefore the diffusion coefficie®¢ of the correction problem is replaced
by the homogenized coefficieAP. As a result the numerical calculation of the
correction just needs a locally (near the boundary) refimad g

—div(A°OVE) =0 inQ,
o

n
Vg =U; = —£k;xk (;) a—xk(x) ondQ.

(6)

Now the improved_2-convergence ofi™":= uf — vé will be proven under ap-
propriate assumptions on the soufce

Remark 1If Q is made up of unit cells and is symmetric, therv§ = 0 ([11],
Corollary 2.4, p. 5), so already the first order asymptotipgagsion possess the
improvedL2-convergence.

Let f € LY(Q) c H71(Q). ThenF : [Xo,x1] — R defined by

F(x):= /X:fds

is an absolutely continuous function @h= |xg, X[ with ‘fj—'; = f (a.e. inQ) and
the first order asymptotic expansion satisfies

0= 25 |- [ Fods+ (Flalx-a)| +

£ KA(%) —a—10§> - <<A)y—%>} ((F)o —F(x).

Using thel-periodic functiorh: Y — R defined by

() = (A0 - 25) = (48 - 550 )
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yields the following integral representation for the cateal first order asymptotic
expansion

(%) (Flagier ~n (%) (Fra - (Falx—a) 5 2 |

Partial integration for absolutely continuous functiofik2{, Theorem 14.8, p.
104) provides

F09= 25 |- [ FOdst (Flatca)| +e[h(5) (Fla - F9)-
22504 (%) (Fla (Tl —30) - o (2) (Fla] +
£ U)(:f(s)h@) ds— )Z:X)fo : f(s)h(?) ds] +0(£?).

In summary it can be said

WE(X) — TE(X) = fo(s)h(f) ds— X=%0 le(s)h(?) ds} +O(2).

X0 € X1 —Xo Jxg

By definitionhs — (h)y = 0 weaks in L*(R) ([5], Theorem 2.6,p.33) implies

S

) /;(f(s)h(e) ds— 0

for all x € Q. The Holder's inequality yields

X S
[ ton(Z) o <l

so that for 1< p < o Lebesgue’s theorem provides

H/X:f(s)h(z) ds

— 0.
LP(Q)

Since

X—Xy [

— f(s)h(?) ds X=X

"X1 s
= f(sh( - ds‘
LP(Q) ‘/Xo ® (5) X1 =XollLp(@)

<a-x0)| [ f(9h($) ag — 0

it follows for 1 < p<
lu® = T3l o) = O(E).

Remark 2Statement (7) is just the lemma of Riemann-Lebesgue.
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Let f be a piecewisél*-function, i.e.

N
= > Xz 1ad
K1

with fx € HY(Qy), Qx :=]z_1,z] andxg = 20 < z1 < --- < zy = X1. Then after
possibly adding the jump € Q, that meang; = x for somei € {0,...,N}, it
follows with H(y) = [3 h(s)ds

U (%) — G (¥)]

/X:f(s)hg) ds— ;‘:‘0 X:lf(s)h<§) ds
/ f(sh J, e

<sz (S)ds +sz

<e

+0(&?)

<e s|+¢€

ds +O(&?)

/:1 s)h(S) ds| + O(e2)

<25 [ M - /Zjlfjjka<>H(§)ds|+0(gz>
<26% |H||oa (% (1) + iz >|>+§ dle >+0<e2>
® = Gl A flLagy

<ANE?(H]|Lo ) )i, fille() +O(?),

where the tern®(e?) is independent of = z. From this it follows
Ju® — 0l =) = O(&?).
That proofs the following theorem.

Theorem 1 Let Q = |xo,x1[, Y =]0,1[. If f € L}(Q) the corrected first order
asymptotic approximatiofi of u* fulfils

uS(x)ag(x)—sVX:f(s)h(z) ds— X0 X:lf(s)h@) ds}+0(52).

X1 —Xo.
with
() = (A - 35) = ({8~ 550
([E3) G S
so that

lu* — || o) = O(€)
forall 1< p<oo.
For piecewise H-functions f (especially for step functions) even applies

U — G| () = O(€?).
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2.2 Example

Now we exemplarily verify that the correction of the first erdasymptotic ex-
pansionuj is necessary to obtain the quadratic convergence proveuerém
1.

Example 1LetQ =Y =]0,1]CcR, f=A €Rand

1

W)= sy

Under the assumption= % follows for the errors

0 (x)— () = eAsin( 2 2m(1-2x) ¢ (ir;;s(%x) +sin())

2m(1—2x) — & (1 - cos(ZX) + 2sin( Z2))

£

uf(X) — uf(x) = €A

82 J
27 i (271X
u* (x) — 0 (x) = —£2A 1+COS(T8)71; 2sin(<)
so that
U9 = 1°(]|. = O(2),
Iu*(x) — Ui (¥) | > = O(e),
U (%) — G () || = O(€?)

Figure 1 clarifies that the order of magnitude of the errotlfwéspect to the&-
norm) of the homogenized solutiaf is not reduced by adding the term of first
order. Furthermore the boundary condition is violated.yGhk solution of the
correction problem (6) lowers the order of magnitude.

Remark 3The order of convergence with respect to th&norm is (generally)
not affected by the correction

3 Error estimations for elliptic problems

Definition 2 A rectangulationof a domainQ c R" is a subdivision ofQ in n-
rectangles for which any face of anyrectangleK is either a subset of the bound-
ary dQ, or a face of another-rectangle<’.

Remark 4For triangulations and rectangulation so called hangirdesare ex-
cluded. For this reason local refinements of rectangulaifahich are themselves
rectangulations) are strongly limited.
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Fig. 1 Analytic solution and error of the approximations in theeca$ layered media foe =
1/4.

Based on the interpolation theory for finite element spa@sCorollary 4.4.24,
p. 110) one can estimate the error of finite element apprdioms of elliptic
boundary problems. To simplify matters the interpolatiowebounds are quoted
first (Zm-1 denotes the set of polynomials of degreen— 1).

Theorem 2 Let (%} )o<h<1 be a non-degenerate family of subdivisiongXfi.e.
there existp > 0 satisfying for allK € #pandallO<h <1

diamBy; > pdiamK,

where B is the largest ball contained i such thaK is star-shaped with respect
to B;. Let the finite elemerfK, 27,.4") and1 < p < oo satisfy

1. K is star-shaped with respect to some ball,
2. Pn1C P CW™(K),
3. 4 c (C(K)Y
4. (@ m—1—-n>0,ifp=1,
(b) m—1—n/p>0,ifp>1,

for adequate m and |. Suppose all finite eleméKtsZ;, 4% ), K € #,0<h<1
are affine interpolation-equivalent (&, &,.4"), then for0 < s<m

Huf Ihu”sp,h < C|7m7n7pvphmis‘u|wm’P(Q) ) vue Wm7p(Q)'
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Additionally for0 < s<|

HU* |hU||S/°°/h S q’m’n’p7phmisin/p ‘U|Wm,p<9) 3 VU 6 Wm7p(Q)

3.1 Dirichlet problems

Theorem 3 Let (#h)o<n<1 be a non-degenerate family of triangulations or rect-
angulations of2 ¢ R" with C°-elements, which satisfy the assumptions of theorem
2 for p= 2. If u is the solution of

a(uVv) = (f,V)y-1g 30y WEHHRQ)

for given f€ H=1(Q) and , is the finite element approximation in

Vh = {v:(vK)Kejgh € [ #«|3u € Hg(Q),ulk € C'(K), vk =1k, K € Ji’h},
KeJth

ie.
a(uhvvh) = (favh)H—l(Q)wH&(Q), YVh € W,
then ue H™(Q) implies
Ju— UhHH(}(Q) < Ca,B,I,m,n,p hm-1 ‘U‘Hm(g) .
Proof The definition assures
Ihn(H3(Q)NC'(Q)) C W

SinceCP-elements are used
Vi C H3(Q).
Therefore a combination of Theorem 2 and Céa’s theoremgtalke statement.
O

Corollary 1 LetQ c R? or Q C R® be a convex polygonal domain=div(AL-)

be uniformly elliptic with uniformly Lipschitz continuoasefficient A and &
L%(Q). If additionally m= 2 as well as |= 0 in the assumptions of Theorem 2
then

lu—tnllya (o) < Capohlulzie) < Cappachlfliza)-

Proof The regularity ofu is proved in [10] or rather [8], Theorem 3.2.1.2 and
Theorem 3.2.1.3 O

Corollary 2 Under the assumptions of Theorem 3
Ju—thllz) < Shjlu—u)
hilLz) = 4 hilHg (@) -
If additionally f € L?(Q) so that uc H?(Q), then

lu=Unl 20y < Cappnah®l fllizo)-

Proof Aubin-Nitsche’s theorem. O
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3.2 Periodic boundary conditions

Now the statement of Corollary 2 on periodic boundary coodg will be carried
over. In order to use Céa’s theorem, the finite element sggoaust satisfy the
conditionVy, C V = {u e HX,(Y)|{u)y = 0} . This leads to the following defini-
tion.

Definition 3 A subdivision.#” of Y C R" is calledperiodig iff for all sufficiently
regularY-periodic functionsai the global interpolatioh - u is alsoY-periodic.

Remark 5The easiest way to obtain a periodic subdivision consigisiimg “sym-
metric” rectangle elements: I#” is a rectangulation of with except for transla-
tion identicCO rectangle element§ =y, +]ay, by[ x - - - x Jan, bp[ and if the nodal
variables are just evaluations of the function and its @eifres, which are sym-
metrically distributed with respect to the bisectprix; = (i) + (bj —a;)/2},
then the rectangulation is periodic.

The Bogner-Fox-Schmitt rectangle for instance satisfies dandition. The
use ofn-simplices would also be possible, but not very reasonddgeause the
domainY is an-rectangle.

Theorem 4 LetueV = {u e H3.(Y)|(u)y = 0} be a weak solution of

—div(AQu) = finY,
u Y—periodisch
<U>y =0.
Let Ac M(a,B,Y) be Y -periodic, g € C™21(Y), f € H™2(Y) (with (f)y =
0) and let (“#h)o<h<1 be a non-degenerate family of periodic triangulation or

periodic rectangulations of Y- R", which satisfies the assumptions of Theorem 2
for p=2and m> 2. Then the finite element approximationio

Vh:{VZ(VK)Ke)i’hE [1 Zx|viv= > (w)k=0,
KeJth KeJth

3u € HL(Y), ulk € C'(K), vk = Iku, VK € ;ifh}
satisfies the error estimate

Hu - uhHHl(Y) < Cor.,B,I.,m.,n.,p.,Y hm_l |U|Hm(Y) < Ca,ﬁ.,l,m,n,p,M.,Y hm_l ” f HHm*Z(Y) )
where
M= max{ 2 Hcm*2~1(7)} :

Proof The regularity of the diffusion coefficient and the sourcelgu € H™(Y)
with

[Ullameyy < Cramy ([ Fllam-2eyy -
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Theorem 2 implies for the global interpolatityu

||u* |hu||H1(Y) < Cl,m,n,phmil‘U‘Hm(Y)
lu—Thull 2v) < Cimnph™[Ulpmey)
Since(u)y = 0and||- [| .1y < Gyl [l2(v) ([1], Theorem 2.14, p. 28) withu =
Ihu— (Ipu)y, it follows
[Ju—Thul[yay) = llu—Thu+ (U ey
< lu=Tnullyagyy + KWy 2y
= [[u=Thullzy) + [YT[{U=Tht)v|
< lu=Thullagyy + Y[ lu=Thull 2y
< [lu=1nullyrryy +Cpy lu—Tnull 2y,
< CI,m,n,p,|Y\h |U|Hm(Y)

As a complete subspaceldf(Y) (V, || - I41(vy) is @ Hilbert space. Due té, C V
Céa’s thearem yields

B .
Ju=Unllzey) < EVAQI/h\|U—Vh\|H1(Y)

thus the statement follows frofqu € V. O

Theorem 5 Under the assumptions of Theorem 4 foen2 without f € L2(Y)
follows

”u Uh|||_2 <CaBImanYhHu uh“H1
Proof Let
H = {ue L%(Y)|(uy =0}.

SinceL2(Y) = C3(Y) with respect tq- [2¢vy ([1], Corollary 2.30, p. 38), so par-
ticularly L2(Y) = Hr}e,( ), follows H = V: Let U € Hper( ) be a sequence with
U — ue H in L2(Y). Since|(u — u)y| < ||u —UHL1 < Gy llui—ull2yy — 0
([1], Theorem 2.14, p. 28), it follow&y; )y — (U)y = Deflnlngv. =U—(U)y €
V yields [|vi — ul| 2¢y) < [[ui — Ul[ 2y + [Y][{Ui)y| — O.

Aubin-Nitsche’s theorem and theorem 4 then imply the statgm ad

Corollary 3 If in addition to the assumptions of Theorem 5 the sourcesfadi
f € L2(Y) (with (f)y = 0), then even

lu—Unll 2py) < Cagrmnpmy Dl Fllizey)
Proof Reapplication of Theorem 4. a

Remark 6In the case oin > 2 the quadratic convergence (with respect to the
L2-norm) follows directly from Theorem 4.
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Remark 7If the coefficient satisfies;; € C™21(Y)nH™1(Y) Theorem 4 im-
plies for an adequate finite element approximati@p of the solutiony; of the
cell-problems (5)

(8) 1 = Xinllsy) < Capmnpmy h™ VA jn oy

whereAl = (agj,--.,ani) is thei-th column ofA. Corollary 3 additionally implies
form=2

9) HXi - Xi,h|‘|_2(y) < Cq gmnpoMyY h? HdiVAi HLZ(Y) .

4 Finite element approximation

In this section the finite element spaces will be choosenatatpotential analytic
quadratid_2-convergence of the corrected first order asymptotic eXparsirries
over to the finite element approximation.

Theorem 1 states the quadrali&-convergence in the one-dimensional case.
The following numeric analysis will be an indication undemnieh assumption on
the coefficient and source quadratié-convergence of the corrected first order
asymptotic expansion can be expected in the two-dimenisiase.

Because of th&€”-regularity of the boundary and the compact embedding
H(Q) c C%(Q) the one-dimensional case is considerably easier to treateT
fore the following analysis will be restricted to the twardinsional case and a
comparison of the corresponding results for the one-diiaascase.

For the calculation of the finite element approximationshef first order a-
symptotic expansion, the correction and the solution ofattiginal problem the
finite element spaces of Table 1 will be used. At the momerstiitat clear, why
one should use these finite element spaces. Despite of tisatiseful to take a
look at the notation.

4.1 First order asymptotic approximation

Atfirst the difference between the first order asymptoticaggionu; and its finite
element approximation will be estimated. Therefore it ismdatory to analyse
the influence of using the finite element approximatignson the homogenized
diffusion coefficientAP.

The first error arises at interpolatiy= (&) € M(a,B,Y). SupposgKj,)
is a non-degenerate family of subdivisionsYgfthen Theorem 2 implies for the
interpolationA;, of A € H4(Y) using cubic Lagrange elements

|A—Ag ]| o < Coh®|Alyary) -
Hence for sufficiently smalh > 0

(10) (RN ) = ZIA3.
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Table 1 Description of the used finite element spaces.

Y
: 1 |

Q
ey
ke

Q
ke

Q

e

Finite element spaces on the unit cell

— (%) o<ih<1- NON-degenerate family of periodic rectangula-
tions with bi-cubic rectangular elements for interpolgtin
the diffusion coefficienA € M(a,3,Y),

— (J)o<h<1: Quasi-uniform family of periodic rectangula-
tions with Bogner-Fox-Schmitt rectangles or Hermite ele-
ments (in the one-dimensional case) for approximating the
cell-solutionsy;.

Finite element spaces dn

— (H)o<ri<1: NoN-degenerate family of bi-cubic rectangu-
lations for interpolating the sourdec H=1(Q),

— (#1)o<H<1: quasi-uniform family of rectangulations with
Bogner-Fox-Schmitt rectangles or Hermite elements (in
the one-dimensional case) for approximating the homog-
enized solution®,

— (J)o<ni<1: Non-degenerate family of triangulations with

guadratic triangular elements for approximating the cor-
rectionvg,

— (“h)o<n<1: quasi-uniform family of rectangulations with

bi-quadratic rectangular elements for approximating the
solutionué of the original problem.
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This makes it possible to estimate the error of the finite elerapproximation
Xi i in consequence of interpolating the diffusion coeffici¢et X; ;, be the finite

element approximation of the differential equation witteipolated diffusion co-
efficient. Since

—div(AR (X 5 — Xip)) = —div((AR —A) DX + (A-AR)e)

it follows using (10)

6= %, < 3 evean = AIEX 5+ (A= Ag)e)

(Pper(Y))'

< EH(AE—Amxi,w(A—Aa)a

2
< 2 (1Al sl
< Ca,p,YF‘3 |A|H4(Y)

L2(Y)
o 1A= Al

For measuring the error g, ; concerning the analytic solutiog only an
estimation for the error of; ; lacks.

For this the use of an inverse estimate will be necessarghwhiturn requires
an affine family of finite element spaces. Since alsaQhdifferentiability of the
finite element approximation will be needed, one autombyiearives at using
Bogner-Fox-Schmitt elements ([4], Theorem 2.2.15, p. 7¥ @n85), which are
normally used for fourth-order elliptic problems on regalar domains. There-
fore the cell-solutiong; have to satisfy higher regularity conditions:

Xi € HY(Q).
This is true forA € C21(Y) N H3(Y).
For a quasi-uniform family.#;) .., of periodic rectangulations with Bog-
ner-Fox-Schmitt elements the Theorems 2 and 4 yield
HX hXHHl <Cph |X|H4
HX *XﬁHHl(Y) < Ca,p,p,vh |X\H4(Y)

Since the subdivision is especially quasi-uniform, theeise estimate stated in
[3], Theorem 4.5.11, p. 112, even implies

(11) HX XhHW1°° <Ca/3th |X|H4 +Coer |A|H4

The next step consists in determing how this error influetlcescalculation
of the homogenized diffusion coefficient. Let
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be the components of the homogenized diffusion coefficeitulated using the
finite element approximatiok ; as well as the interpolatio&qu1 of the diffusion

coefficienta;; with cubic Lagrange elements. Then

5 9 (X~ Xicp) %,
o — &% = (ax—ays), <a1]h70y = > +<(auj—aq,-,ﬁ)(,—x,k> ,
j v Yily

SO

R e L I L I T L
A=Ay, Il
< [Jaw-aill, +H~a— ) HXK—M\ ot
145z ka . o, Xl

<Cth3‘A‘H4 1+HX||H1 )
aBth |X|H4 (CthS‘A|H4 Jr||AHL2(Y))
<CpYXh |A|H4 +CaﬁpYAh |X|H4Y)7

whereA = (a1, ..., an). Using the normj|Allc = n-max j_1 . ny |aj| (Which is
consistent with the Euclidean norm) follows immediately

(12) |A° — A%l < Cpy xh® Alpay +Caﬁp\(Ah IX|nacy)

According to [5], Proposition 6.12, p. 118, fére M(a, 3,Y) exists amg > 0
with (A°A, 1) > ao||A||3. Hence for sufficiently smali,h > 0

~ a
(B°.2) = ZIIAI3.

The last two results make it possible to determine the diffee of the analytic
solutionu® of the homogenized equation and the finite element appraiomaf
the erroneous homogenized equation. l%bé the solution of the homogenized
equation with erroneous diffusion coefficieit and u*) be the finite element ap-
proximation ofl®, i.e.

/ A ~Dvdx:/ fvdx
Q Q
for all v € V4, where f5 is the interpolation off with bi-quadratic rectangular

elements of a non-degenerate fantily; ), of rectangulations.
From -

div(A°0(° — i) = div(A°0WP) + f = div((A° — A%)Cu®)
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it follows according to [5], theorem 4.16, p. 72 and equafib2)

i} 2 2 (&

6~ < o V(A ATy 3 < oo (A= AO)DL] 2
2 170 RO 1,0

< a_o”A —Allellu o)

< (Cao7p,Y,x P® Al v) +Cap.a povalt® |X|H4(Y)> HUOHHt%(Q)

The (analytic) solution of

~:0 onoQ

C

{ div(A°00%) = fy  inQ,

satisfies

—div(A°O(® - 02)) = f — fs.

IO

Therefore Theorem 2 yields fdrc H?(Q)

2 ~
|a°—d <—Hf*fH||H <—||f*fHHL2 ) < CagpH? [ fl2(q)

HHHl

Finally Corollary 1 yields
a3 — i HHg(Q) <CapparaH|fallizg

From this we have
Theorem 6 Let Q c R? be a convex domain, which can be subdivided into rect-

angles, fe H2(Q) and Ac C2}(Y)NH3e,(Y). Then using the finite element spaces
of Table 1 yields

HUO— HHHl <Caoprh |A|H4 ||UOHH&(Q)+
Cap.a80xAN [X|nacy) \|U0HH3(Q)+
Cagappaah?|f lhz@) +Capoaat [ fllzo)

Using the last theorem one gets

Theorem 7 Under the assumptions of Theorem 6
X\ 0 o X\ A0
[x (3) 2001 (3) ek 00

~ B .
2 2
S CUO,U,B7P7Y-,A7f7X7UO (h + F +H +H> .

L2(Q)
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Proof Using theL”-estimate (see (11))

5 . he
X = Xall Loy < Cappx P [XInay) +Ca,p,Yﬁ |Alhagy)

yields
Ix (3) 005 (5) ook 0]

e () 00 ko) 1 () 5 2)) ki,
X

() -+ o ()5 2)) Cxbon-u
(x(3) =% ()=

S ||X”L“’(Y) HDUO — diy HLZ(Q) + HX 7XF1HL°°(Y) HDG& o DuoHLZ(Y) +
HX _)?ﬁHL“’(Y) HDUOHLZ(Q)

12(0)

<Cgopyxh® |Alhay) ||U0||Hg(9) +CapappYAxT XInaey) HUOHH&(Q)Jr
CavapoaxeH I fluzo) +CappaxaHlflliza) +
R h3 -
(Cor,B,p,Yhz |X|H4(Y) +Ca,p,YF |A|H4(Y)> (Coro,p,Y,th |A|H4(Y) ”uO”H(}(Q)+
Cao,a,ﬁ,p,Y,Aﬁs |X|H4(Y) ||UO||H(}(Q)+

Capappaat?|fluzo) +CappacH Ifllzg) + |U0|H1(Q)>

~ B .
<Cop.a.fpY AL X0 <h2+ T +H2+H> .

4.2 Original problem

It follows from the above and Corollary 2.

Theorem 8 Under the assumptions of Theorem 6

U — w0 +ex (;) Ou0(x)

L2(Q)

N ~ (X N
Ut — 0% + £X; <E) 0ad, (x)

L2(Q)
forh=h=H=H =c¢.

In the one-dimensional case the following result can begmov
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Theorem 9 Suppose? C R be an interval, ac C*1(Y) NHge(Y) C Cie(Y) and
f € H?(Q) c C}(Q), then using the finite element spaces of Table 1 yields

du’

X

E_ .0 AR Tkl — 2
Ut —u +ex(£) 0 | 20, O(e),
iff
e_ 0 o5 (X dép —O(s2
|u uH+sxh(£) dx L2<Q)7O(£)

forh=h=H=H =¢.

Remark 80f course, it would be interesting to estimate the efr— uf|| 2,

in order to be able to adjust the paramédtappropriately in the numeric analysis.
Though according to Corollary 2

IU® — Uil 2(0) < Cappae.an® [ fllzq)

this is not possible since the dependency of the con§lapt, s o On € is un-
known. At least in the one-dimensional case it can be proketQ, g , e 0 =

O(s71).

4.3 Correction

Now only the last term, i.e. the correction, has to be analyEberefore it is useful
to estimatd| x (2) Ou’(x) — % (%) DG (x)||H1(Q). For this to be defined one has

to supposex (%) Ou’(x), X; (¥) 002 (x) € HY(Q). A sufficient condition would
be the following properties of the homogenized solutiSnthe vectory of the
cell-solutions as well as the corresponding finite elempptaximationsu®, and
X

w0, a% e HA(Q),

X> X € W

While this is true fory and )?ﬁ, u® satisfies this assumption according to [10]
respectively [8], theorem 3.2.1.2 and theorem 3.2.1.3. &9simption ormE[ re-
quires usingC! finite elements. Since again an inverse estimate will be,ued
family of finite elements spaces has to be affine. All thesealitimms are satisfied
by the Bogner-Fox-Schmitt element. For this to be definedhaseto impose the
conditionu® € H4(Q).

Sincew satisfies this condition normally only #Q is aC*-boundary ([6],
Theorem 5, p. 323), the usage of Bogner-Fox-Schmitt elesrieast to be critically
considered, because domains, which are made up of recsashgleot possess a
C*-boundary. Therefore the following should only be considieais motivation for
the choice of the finite element spaces.
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Theorem 2 yields for a non-degenerate faniiy ) of rectangulations with
Bogner-Fox-Schmitt elements,

Ju?— 'HUOHHZ(Y) = CPH2|”O|H4(Y)

Ju?~ 'HUOHHl(Y) = CPH3|”O|H4(Y)
From this with Cea’s theorem it follows that

6= 10y < Corp o H e

The inverse estimate ([3], theorem 4.5.11, p. 112) impl@saf quasi-uniform
subdivision

<22, -

H”H*IHL‘OHH2 IHUOHHl(Y)

Therefore -
[1u? = Ui lzyy < CapoH? W] ay,

Theorem 10 Let Q C R? be a rectangle, & C*1(Y) NHg.(Y) and fe H3(Q),
then using the finite element spaces of Table 1 yields

| u? — uHHH1 <CaBpru0h [Alkey)
Ca.B,p,Y.A,UOh ‘X‘H“ JrCO’OPH ‘”H3

HUH UHHHZ <Cor[3pru0 |A|H4 Y)+

Ca.,e,p,v.A,uO |X|H4 vy +CaooH?| flis (o)
Proof Since
—div(A°O(ud, — %)) = —div((A° — A% 00U, + f — fy

the first part of the statement follows from estimate (12)e Tkcond part is just
an application of the inverse estimate ([3], theorem 4,51112). a

From this it follows

Theorem 11 LetQ C R? be a rectangle, A2 C?1(Y) N Hge (Y ) and fe H3(Q),

then using the finite element spaces of Table 1 withh = H = H = ¢ yields for
w e H4(Q)

Ix (5) 000 -5 (3) ek 0

Proof
[x (5) 0003 (5) B9

(= %) (2) 000+ % () (O () — 066 9)|

=||x (5) (OW°(x) — Ou (x)) +

£

=0(e).
iy~ O
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Theorem 12 The solution § of the correction problem

—div(A°0vg) =0 inQ,
Vg = —ex (g) Ow(x) ondQ

and the finite element approximatiﬁ@ﬁ of the solution7 of the problem

— div(A°0IE) = inQ,
U5 = —€Xp ( > 0l (x) ondQ

satisfy using the finite element spaces of table 1 withh=H=H=¢

H1<Q>> ’

Thereby.7; must be choosen such that the boundary conditigné2 ) Ou®(x)
andef; (%) OGY (x) can be described itv;.

V-4

ol 1

L2(Q) OH‘

Proof Let V§ be the solution of
{div(Aomg) =0 inQ,
e 5 0
V5= £X<£) Ou’(x) ondQ.

From

div(A°D(vG  — 95 ) = div((A®— A%) VS )

follows with estimate (12)

R PN

<Coango12° O e (5
Vo,

o[+, @)-

Forw® e H4(Q)andh=h=H=H =¢

x)|

o 6%l

o)

~ ~ X 0 ,.,A X 0
‘Vgﬁ 7\'879‘ HL(Q) < Caofo H ('SX (E) OUX) —exq (E) HH (X))‘ HL(Q)
= 0O(&?).
A simple application or the triangle inequality proves thetament. a

Remark 9The last theorem suggests the usage of a locally refined grithé
correction problem.
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Corollary 4 LetQ C R? be a rectangle, A2 C>*(Y) NHg,(Y) and fe H3(Q).

Suppose Uc H4(Q), then using the finite element spaces of Table 1 Withh =
H = H = £ and appropriate7; yields

~Wex (2) D)+ (9 2oy = OE)
iff
uf — O + X, ( ) 003 (%) + 5 4 (%) o)~ O(2).
Proof Application of the last theorems. ad

In the one-dimensional case tHé-regularity ofu® is satisfied without further
assumption. Therefore

Corollary 5 Let Q C R be an interval, ac C*1(Y) NHge(Y) and fe H3(Q),

then using the finite element spaces of Table 1 withh=H = H = ¢ yield

c 0 x\ duP 2
U =t ex () o+ vy~ O
iff .
o
=i () e 0+ Bal0)], = Ole)

5 Numeric results

For the numeric results the finite element spaces of Tablgd leen implemented
using the C++-library getfem++ extended by the Bogner-Fox-Schmitt element
and periodic boundary conditions. The calculations haenbeade on an AMD
Opteror.

The locally (near the boundary) refined grid for the cor@mttias been com-
puted by iterative division of the outermost triangles utite size of them has
been reduced by the facter

Definition 4 The Estimated Order of Convergence (EO@f)a sequence of ap-
proximative solutions is the sequence defined by

EOC(;) = log, ( L/z Uag,z‘) :
pp
Remark 10All iterative solvers use the stopping criterion
1[I,
vl =

whererK is the residual of th&-th approximative solution.

<1079,

1 http://home.gna.org/getfem/
2 CPU-frequence 2.3 GHz, 16 GB RAM
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The numeric analysis is restricted to isotropic materiads,

Aly) =ay)l,

because the influence of the regularity as well as the symyroétthe diffusion
coefficient is the primary focus. Nevertheless also angitrproblems have to
be solved, because the homogenized diffusion coefficieisbtfopic materials is
generally anisotropic. Furtherma=Y =]0,1[> andf = 10 in all examples. For
the examples with discontinuous diffusion coefficient tinédi element spaces of
Table 1 have to be adjusted appropriately.

5.1 Symmetric diffusion coefficients

For symmetric diffusion coefficients the solutigfof the correction problem (6)
equals zero ([2], 6.3 and [11], Corollary 2.4, p. 5).
As first example let

1
~ 2+cog2my;)cog2my;)’

a(y)

For the homogenized diffusion coefficient one gets numbyica

o_ (052 0
A<o 052)"

Tabular 2 shows that already for the first order approxinmatip the order of
convergence equals 2 with respect totRenorm and equals 1 with respect to the
Hl-norm. The latter is theoretically assured ([9], S. 29, 30).

The comparison of the runtimes for solving the approxinregiand the origi-
nal problem is done in Tabular 3. Thereby one has to bear in thiait the subdi-
visions of the unit cel¥ and the domaim2 are refined foe becoming smaller, so
that especially the calculation of the homogenized satytichich is independent
of €, becomes more costly for smaller

Loosening the assumption on the regularity of the coeffidie®m does not in-
fluence the order of convergence qualitatively (Tables bG 7) as the follow-
ing discontinuous examples shows. Therefore the coeffii@re approximated
by step functions. Furthermore the Bogner-Fox-Schmithelets are replaced by
Lagrange elements, because the cell-solutions can not betlsifor discontinu-
ous coefficients.

Let

ay)_ {1 Iy- (0505, >025
Y=32, |y-(05,05)|, <0.25

™
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Table 2 EOC for smooth symmetric diffusion coefficient (2d).

€ HUS*UOHLZ(Q) EOC ||UE*UOHH1(Q) EOC
1/2 00453033143 - (7396763548 -
1/4 00198023429 1939454650 ®924529308 M951781502
1/8 00096168501 D420347991 826984688 M204674917
1/16 Q0047723836 D108544194  ®803285078 M050169725
1/32 00023817780 1D026710405 ®797724979 M011795488
€ ||U£*U5H|_2(Q) EOC ||U£*Ui||H1(Q) EOC
1/2 00150663057 - 2189079145 -
1/4 00035537233 D839224641 (194965457 B733552000
1/8 00008830151 D088212755 ME617623306 (0521698162
1/16 Q0002193059 2D094937688 M310311422 ([®930103922
1/32 Q0000546916 D035525323 M155313801 (®985307736
Table 3 Runtimes (s) for smooth symmetric diffusion coefficient)(2d
€ w ué ué
1/2 002 003 003
1/4 002 005 014
1/8 007 057 330
1/16 031 942 11637
1/32 152 17009 1282812
Table 4 EOC for discontinous symmetric diffusion coefficient (2d).
€ HUE_UOHB(Q) EOC ||US_UOHH1(_Q) EOC
1/2 00239518289 - 3416978653 -
1/4 00117225822 D308454275 (B406784255 @M043106475
1/8 00057796767 D202296871 (3450890791 —0.0185582308
1/16 00028760931 D068784421  (B465445275 —0.0060719180
1/32 00014361379 1D019160630 (B469459848 —0.0016703345
€ ||UE_U€IE.HL2(Q) EOC ||U£_Ui||H1(Q> EOC
1/2 00074396050 - 0951826775 -
1/4 00027864411 1168023867 M489383481 (597336338
1/8 00007968061 B061230500 M256343033 (328897161
1/16 Q0002080745 B371286759 M130790994 (®708124860
1/32 Q0000528195 B779580265 M065997939 867703186

The (numerically calculated) homogenized diffusion caeédfit then fulfils

The last symmetric example is the symmetric checkerboadiatefined by

p0_ (12 0001
=\o0001 12 )
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Table 5 Runtimes (s) for discontinuous symmetric diffusion coédfit (2d).

€ w ué ué
1/2 001 002 001
1/4 001 004 004
1/8 004 053 178
1/16 Q18 928 8416
1/32 102 16924 645378
Table 6 EOC for symmetric checkerboard media (2d).
€ HUE_UOHB(Q) EOC ||US_UOHH1(_Q) EOC
1/2 00163724770 - 3095758450 -
1/4 00076974322 1D88B234487 (139580561 —0.0202789239
1/8 00037765208 D273195215 (3219953159 —0.0364678695
1/16 00018822135 D046274532  (B248096859 —0.0125549533
1/32 Q0009406925 1D006351948  (B258576955 —0.0046474118
€ ||U£_U5H|_2(Q) EOC ||U£_Ui||H1(Q) EOC
1/2 00059345065 - 032529360 -
1/4 00013423883 2443260663 M480595898 1032865655
1/8 00003378550 D903259254 M245391079 (0697415346
1/16 Q0000843014 D027753245 123250493 (934893838
1/32 00000210614 D009553368 061709050 980394212
1, 0.25<y1 < 0.75 undy;, < 0.25, a=1
1 0.25< y1 < 0.75 undyz > 0.75, a=2
aly) =41, 0.25< y» < 0.75 undy; < 0.25,
1, 0.25<y» < 0.75 undy; > 0.75,
2 otherwise

For the homogenized diffusion coefficient one gets (alsopamawith [9], p.

37)

AO—(?\%)

Table 7 Runtimes (s) for symmetric checkerboard media (2d).

€ uw ué ut
1/2 001 002 002
1/4 003 006 005
1/8 005 053 177
1/16 Q18 935 8443
1/32 101 16945 647010
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Table 8 EOC for smooth layered media (2d).

0 0
£ flu-u HLZ(Q) EOC [uf —u HHl(Q) EOC

1/2 00753795658 - 568077129 —

1/4 00524915563 (220881141  B229203871 —0.1208260732

1/8 00290220394 B549364701 3596651469 —0.0630219519

1/16 Q0148975437 (620744180 3691848233 —0.0158881673

1/32 Q0074988942 (903247135 B716373795 —0.0040650825
€ ||U£*U5H|_2(Q) EOC ||U£*Ui||H1(Q) EOC

1/2 00811675407 - ®017144340 —

1/4 00452225062 B438619550 (3111532438 ®514536780

1/8 00239634065 ®162079399 (571932788 (®850857540

1/16 Q0121963564 (©743827882 789971925 9926662461

1/32 00061268676 (932286336 M396156716 957301213
€ ||U£_‘]iHL2(Q) EOC ||U£_‘]§||H1(Q> EOC

1/2 00304643433 - (3000975354 -

1/4 00083997149 B587093738 (552774971 ®505827016

1/8 00021197667 DB864348440 799556498 ®575768840

1/16 Q0005338653 B893577599 M406563081 M®757207669

1/32 Q0001343803 B901539728 205461175 ®846134151

5.2 Asymmetric diffusion coefficient

Again the first example has a smooth diffusion coefficientréfarecisely the first
example generalises the one-dimensional Example 1

1

aly) = 2-+sin(2my;)’

From [5], Theorem 5.10, p. 99 follows for the homogenizedfugibn coefficient

A0 1/2 0
0 1/v3)
Unlike the case of symmetric diffusion coefficients the eotion does not
vanish any more. Tabular 8 shows that the correction enisatheeorder of con-

vergence with respect to thé-norm by one. The additional effort for determing
the correction is contained, as Tabular 9 shows.

Table 9 Runtimes (s) for smooth layered media (2d).

€ uw ur ae ut
1/2 002 003 004 004
1/4 002 005 009 014
1/8 008 059 098 335
1/16 Q30 966 1319 11786

1/32 148 17051 21123 1246908
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Table 10 EOC for layered media (2d).

€ HUS*UOHLZ(Q) EOC ||UE*UOHH1(Q) EOC
1/2 00301482923 - 2790714535 -
1/4 00200507515 (884199752 2977509503 —0.0934715550
1/8 00109363794 B745211066 (3083434409 —0.0504320450
1/16 Q0055957736 ®667256927 (3114974056 —0.0146819900
1/32 Q0028144330 (914932777 (3123237718 —0.0038222334
€ ||U£*U5H|_2(Q) EOC ||U£*Ui||H1(Q) EOC
1/2 00333610942 - 2312360181 —
1/4 00182724957 3684929129 (1192249442 ®556800265
1/8 00095836605 (®310249823 601919623 ®860433521
1/16 Q0048601412 ®795785886 302273055 ®937184678
1/32 00024391302 (946314686 M151488619 ®966429737
€ ||U£_‘]iHL2(Q) EOC ||U£_‘]§||H1(Q> EOC
1/2 00102038362 - 1044334018 —
1/4 00028560276 B370298092 532558581 ®715710809
1/8 00007309319 D662010154 272786145 651698590
1/16 Q0001846220 B851624713 138590398 ®769430634
1/32 Q0000464546 D906809929 069990899 ®855880614

The next example is the problem of (discontinuous) layeredien

As proven in [5], Theorem 5.10, p. 99, one gets for the homizgeidiffusion

coefficient

y1 < 0.5,
y1 > 0.5.

A= (463 3?2) :

[
11
N

According to Tabular 10 the first order approximatignhas only the order
of convergence 1 with respect to th&-norm, whereas the corrected approxima-
tion has the order of convergence 2 with respect tolthaorm. The order of
convergence with respect to tie!-norm is not considerably influenced by the
correction.

As in the case of smooth coefficients, the additional expaftsehe correction
problem are justifiable (Tabular 11).

If the problem is asymmetric for both directions, there exisxamples for
which the correction does not enhance the order of conveegeh possible ex-
ample is the checkerboard, i.e.
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Table 11 Runtimes (s) for layered media (2d).

€ w ué & ué
1/2 002 002 003 001
1/4 001 004 008 004
1/8 005 055 093 179
1/16 Q19 931 1277 8850
1/32 100 16962 20955 690770

Table 12 EOC for checkerboard media (2d).

€ HUS*UOHB(Q) EOC ||UE*U0HH1(Q) EOC
1/2 00161774046 - 2268342841 —
1/4 00085648440 ®174812869 2563242817 —0.1763314439
1/8 00046063517 B948024023 (2891273304 —0.1737348370
1/16 Q0024018905 (394541991 (8075452366 —0.0890936420
1/32 Q0012272049 (687942027 (3170389096 —0.0438612794

€ ||U£_UiHL2(Q) EOC ||U£_Ui||H1(Q> EOC
1/2 00200220247 - 3052071004 -
1/4 00080652016 1118053713 2196768661 @744055763
1/8 00036548677 1418914178 (594285293 (1624731308
1/16 Q0017417208 D693057915 (1135195716  @1899687691
1/32 Q0008500261 1349343740 804082929 2975248426

€ ||U£_‘]iHL2(Q) EOC ||U£_‘]§||H1(Q> EOC
1/2 00105382132 - 795852569 —
1/4 00053155046 ®873517113 M626434086 5194342947
1/8 00029842713 (B328279685 461270740 2415489371
1/16 Q0015751167 (219199254 @325400238 (5033984726
1/32 Q0008084339 (®622569956 228024854 $130242220

1, yy2<05
ay)=41  yuy2>05
2, otherwise B B
a=1 a=2

The homogenized diffusion coefficient suffices ([9], p. 37)

Aoz(\éz\%>.

Tabular 12 shows that the correction does not enhance tige ofdonvergence

for this problem.

Besides the short runtimes another advantage of appraxigntite solution
by means of homogenization is the considerably smaller mgmeguirement,
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Table 13 Runtimes (s) for checkerboard media (2d).

€ u ué ae ué
1/2 001 002 003 001
1/4 002 005 008 005
1/8 005 054 091 176

1/16 018 930 1267 8452
1/32 103 16962 20899 646173

because the original problem does not have to be assemlmedr{til the two-
grid method of the next section).

Q is made up of1/¢)" (n = 1,2) unit cells. Constructing the grid fa2 by
copying the grid of the unit cell increases the number of eegof freedom by the
factor (1/¢)" (n = 1,2) (same choice of shape functions). Therefore assembling
the linear system of equations for the original problem poes a matrix which
has compared to the matrix for the cell-problems a by thefddy/ )" (n=1,2)
increased amount of non-zero entries.

On the other hand using the corrected first order asymptepiaresion means
to solven+ 2 small linear systems of equations (homogenized problencell-
problems + correction problem) and thereby only the memapacity for three
small matrices has to be allocated. Therewith also probleamsbe (approxi-
mately) solved even if the original problem can not be as$edntue to lack
of memory.

6 Two-grid method

The numeric results of the last section show, that the cboredoes not always
enhance the order of convergence. Hence it is all the moreript to construct
an effective algorithm for solving the original problem. erfollowing numeric
analysis verifies, that this is possible using the finite elet® used in order to
determine the corrected asymptotic expansion.

The error functions in Figure 2 show the the corrected firdebasymptotic
expansion is well suited for a coarse-grid correction oncallg near the bound-
ary refined grid. Exactly such a grid was already used forisglthe correction
problem. Therefore all components for the tow-grid methedea hand.

1. The already calculated interpolation fraffy to % is used as prolongation
for the coarse-grid correction.

2. The transposed interpolation matrix is used as regiri¢tcalerkin choice).

3. The discretised homogenized problem is used to deterthineoarse grid
correction.

4. The PCG-method also used for solving the original protdéectly is applied
as smoother.

5. The method starts with the corrected first order asynmpésgpansion.

The most interesting feature of this two-grid method is tet, fthat it amends
compared to the pure PCG-method §édrecoming smaller. This has the following
reason: For large the mainpart of the numerical expenses consists in calculat
ing the restriction as well as the prolongation. On the otteard for smalk the
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Fig. 2 Numeric solution and approximation error for checkerbaastlia € = 1/4).

smoothing steps are rather expensive. But exactly the nuaflsenoothing steps
is substantially reduced by the coarse-grid correction.

The exact runtimes and rate of convergence of the two-grithadefor the
the checkerboard media is listed in Tabular 14. Hererdlte of convergence i
defined as the quotient of the Euclidean norms of the last ésimluals before the
abort

Q"=
Irm™=4,

The corresponding runtimes of the pure PCG-method can belfuTabular 13.

Table 14 Runtimes (s) and rates of convergence for checkerboardani2d).

£ Runtime(s) Iterations Rate of convergence

1/2 004 6 Q043
1/4 012 6 Q018
1/8 181 8 Q057
1/16 3311 14 0263
1/32 100348 36 0621

The runtimes suggest to use the two-grid-methodc:fer1/16. Fore = 1/32
the the two-grid method reduces the runtime by the facibr$o already foe =
1/64 one can expect that the runtime is reduced by one order.
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