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Abstract For elliptic partial differential equations with periodically oscillating
coefficients quadraticL2-convergence of a corrected asymptotic expansion, which
is motivated by the theory of homogenization, is proven in the one-dimensional
case.

In the two-dimensional case the rate of convergence and its dependency on
the symmetry of the diffusion coefficient is numerically analysed. The correction
of the asymptotic expansion on a locally refined grid is then embedded inside a
two-grid method and numerically compared with a classical PCG-method.
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1 Introduction

Within this article the stationary diffusion equation

(1)

{−div(A∇u) = f in Ω ⊂ R
n,

u = 0 on∂ Ω

for a composite material with finely mixed constituents willbe studied. If the ma-
terial is additionally periodic, one can assume the existence of two characteristic
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scales, first a macroscopic scale, describing the global behaviour of the compos-
ite and second a microscopic scale, describing the heterogeneities on the unit cell
Y = ]0, l1[×·· ·× ]0, ln[. To describe the dependency on the sizeε of the unit cell,
one writes (1) in the form

(2)

{−div(Aε∇uε ) = f in Ω ,

uε = 0 on∂ Ω

with

(3) Aε(x) = A
( x

ε

)

for aY-periodicA.
The theory of homogenization tries to characterize the “limit”

u0 = lim
ε→0

uε .

Homogenization does not mean to determineu0, but to establish a differential
equation foru0. In the case of the stationary diffusion equation this differential
equation (called homogenized differential equation) is ofthe same type but with
constant coefficient. The intention of homogenization is ultimately the calculation
of the effective coefficientA0, such that

(4)

{

−div(A0∇u0) = f in Ω ,

u0 = 0 on∂ Ω .

So, replacing the original problem foruε by the homogenized problem means that
one has to solve two problems instead of one. On the other handthe homoge-
nized problem is a differential equation with constant coefficients and therefore
(numerically) a lot easier to solve than the differential equation foruε .

The convergence ofuε towardsu0 is only weak inH1
0(Ω ). The proof of the

last statement using the two-scale expansion

uε(x) = u0
(

x,
x
ε

)

+ εu1

(

x,
x
ε

)

+ ε2u2

(

x,
x
ε

)

+ · · ·

in [2], chapter 4, §1 shows, that the asymptotic expansion offirst orderuε
1(x) =

u0(x, x
ε )+ εu1(x, x

ε ) satisfies

uε
1(x) = u0(x)− ε

n

∑
i=1

χi

(x
ε

) ∂u0

∂xi
(x),

whereχi ∈Wper(Y) =
{

v∈ H1
per(Y)|〈v〉Y = 0

}

for i = 1, . . . ,n is the unique weak
solution of the so called cell-problem

(5)







−div(A(y)∇χi) = −div(A(y)ei) in Y,

χi Y-periodic,

〈χi〉Y = 0
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on the unit cellY. The various cell solutions are needed anyway, in order to deter-
mine the homogenized diffusion coefficientA0 by means of the equation

A0ei = 〈−A∇χi +Aei〉Y =
1
|Y|

∫

Y
−A∇χi +Aei dy

([5], Theorem 6.1, p. 112). Instead of settling for the homogenized solutionu0,
one can use the asymptotic expansion of first order without significant additional
expenses. This has the further advantage of approximating the solution of the orig-
inal problem in theH1-norm ([9], p. 28)

‖uε −uε
1‖H1(Ω ) = O(

√
ε).

Regarding theL2-norm this gives no improvement of the approximative prop-
erty ([9], S. 29, 30)

∥

∥uε −u0
∥

∥

L2(Ω )
= O(ε),

‖uε −uε
1‖L2(Ω ) = O(ε).

On the other hand it is proved in [11], that by the right choiceof the right hand
sides of the equations for the finite element approximationsuε

h, u0
H andχi,ĥ one

obtains
∥

∥

∥

∥

∥

uε
h(x)− Ih

(

u0
H(x)− ε

n

∑
i=1

∂u0
H

∂xi
(x)χi,ĥ

( x
ε

)

)∥

∥

∥

∥

∥

L2(Ω )

= O(ε2),

if A is symmetric in the following sense

Definition 1 A Map A : Y → R
n×n is calledk-symmetric, iff for i, j = 1, . . . ,n

(−1)δika#
i j (y1, . . . ,yk−1,−yk,yk+1, . . . ,yn)(−1)δk j = a#

i j (y),

wherea#
i j is the periodic continuation ofai j . A is calledsymmetric, iff A is k-

symmetric for allk = 1, . . . ,n.

In the first part of this article this statement will be shown analytically for
the one-dimensional case in terms of theL∞-norm, provided that the sourcef is
regular enough (Theorem 1). Furthermore in the non symmetric case an additional
correction problem with constant coefficient will suffice tomaintain the quadratic
approximation property.

Afterwards this results will be numerically examined in thetwo-dimensional
case using finite element approximations. The finite elementspaces will be choos-
en so that the quadratic approximation property is translated into the finite element
approximation (Theorems 8 and 9 as well as Corollaries 4 and 5). Thereby par-
ticularly the regularity of solutions of elliptic differential equations with periodic
boundary conditions will be used. This follows from the inner regularity of solu-
tions of elliptic equations ([7], Theorem 8.8, p. 183 and Theorem 8.10, p. 186)
and the invariance under translation ofY-periodic functions ([5], Lemma 2.3, p.
27) so that it just depends on the regularity of the diffusioncoefficient. Actual
ai j ∈Cm−2,1(Y)∩Hm−1(Y) impliesχi ∈ Hm(Y).
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Both the classical definition and the finite elements used canbe found in [4].
Whereas finite elements for solving Dirichlet problems are described in almost ev-
ery book about numerical methods for partial differential equations, there seems
to exist no corresponding source for the case of periodic boundary conditions. The
approach for the numeric calculations (probably already followed before) is based
on “periodic” subdivisions (Definition 3), for which the interpolation of a periodic
function itself is periodic. Since the periodicity cell is arectangle, it is reason-
able to decompose it into rectangles. To gain statements about the regularity of
the global interpolation, one needs (just as for triangulations) another assumption
on the geometry of the subdivision. Therefore rectangulations (Definition 2) are
defined.

After summarizing the numeric results for isotropic materials a two-grid meth-
od, which is based on the components needed for the calculation of the corrected
asymptotic approximation of first order, will be presented and compared with a
preconditioned conjugate gradient method (PCG-method) for different sizes of
the unit cell.

2 Asymptotic approximation

In this section it will be shown that the improvedL2-convergence of the first order
asymptotic expansion applies analytically in the one-dimensional case for sym-
metricA.

An additional correction ofuε
1 by the solution of another elliptic boundary

problem with constant coefficient preserves the improvedL2-convergence even
in the asymmetric case. The proof will make use of an integralrepresentation
for the first order asymptotic expansion. It applies forΩ = ]x0,x1[, Y = ]0, l [ and
f = f0 + d f1

dx with f0, f1 ∈ L2(Ω )

uε
1(x) = u0(x)− εχ

( x
ε

) du0

dx
(x)

=
1
a0

[

−
∫ x

x0

(F0(s)+ f1(s))ds+ 〈F0+ f1〉Ω (x−x0)

]

+

ε
[(

A
( x

ε

)

− 1
a0

x
ε

)

−
(

〈A〉Y − l
2a0

)]

[〈F0+ f1〉Ω − (F0(x)+ f1(x))]

with

a0 = l

(

∫ l

0

ds
a(s)

)−1

,

F0(x) =

∫ x

x0

f0ds,

A(y) =

∫ y

0

ds
a(s)

.
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2.1 Correction

Sinceu0 satisfies the Dirichlet boundary conditions on∂ Ω , the first order asymp-
totic expansionuε

1 of uε is apparently no element ofH1
0(Ω ). An immediate con-

sequence is the lower order of convergence (compared to the symmetric case) of
uε −uε

1 with respect to‖·‖H1
0 (Ω ). The obvious correction ofuε

1 would be the solu-
tion of











−div(Aε∇vε) = 0 in Ω ,

vε = uε
1 = −ε

n

∑
k=1

χk

(x
ε

) ∂u0

∂xk
(x) on ∂ Ω .

But to calculatevε numerically would be as expansive as the original problem
(2). Therefore the diffusion coefficientAε of the correction problem is replaced
by the homogenized coefficientA0. As a result the numerical calculation of the
correction just needs a locally (near the boundary) refined grid.

(6)











−div(A0∇vε
0) = 0 in Ω ,

vε
0 = uε

1 = −ε
n

∑
k=1

χk

( x
ε

) ∂u0

∂xk
(x) on∂ Ω .

Now the improvedL2-convergence of ˜uε
1 := uε

1 − vε
0 will be proven under ap-

propriate assumptions on the sourcef .

Remark 1If Ω is made up of unit cells andA is symmetric, thenvε
0 ≡ 0 ([11],

Corollary 2.4, p. 5), so already the first order asymptotic expansion possess the
improvedL2-convergence.

Let f ∈ L1(Ω ) ⊂ H−1(Ω ). ThenF : [x0,x1] → R defined by

F(x) :=
∫ x

x0

f ds

is an absolutely continuous function onΩ = ]x0,x1[ with dF
dx = f (a.e. inΩ ) and

the first order asymptotic expansion satisfies

uε
1(x) =

1
a0

[

−
∫ x

x0

F(s)ds+ 〈F〉Ω (x−x0)

]

+

ε
[(

A
( x

ε

)

− 1
a0

x
ε

)

−
(

〈A〉Y − l
2a0

)]

(〈F〉Ω −F(x)) .

Using thel -periodic functionh : Y → R defined by

h(y) =
(

A(y)− y
a0

)

−
(

〈A〉Y − l
2a0

)
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yields the following integral representation for the corrected first order asymptotic
expansion

ũε
1 = uε

1−vε
0 =

1
a0

[

−
∫ x

x0

F(s)ds+ 〈F〉Ω (x−x0)

]

+ε
[

h
( x

ε

)

(〈F〉Ω −F(x))−

h
(x0

ε

)

〈F〉Ω
x1−x
x1−x0

−h
(x1

ε

)

(〈F〉Ω −〈 f 〉Ω(x1−x0))
x−x0

x1−x0

]

Partial integration for absolutely continuous functions ([12], Theorem 14.8, p.
104) provides

uε(x) =
1
a0

[

−
∫ x

x0

F(s)ds+ 〈F〉Ω (x−x0)

]

+ ε
[

h
( x

ε

)

(〈F〉Ω −F(x))−

x−x0

x1−x0
h
(x1

ε

)

(〈F〉Ω −〈 f 〉Ω(x1−x0))−
x1−x
x1−x0

h
(x0

ε

)

〈F〉Ω

]

+

ε
[

∫ x

x0

f (s)h
( s

ε

)

ds− x−x0

x1−x0

∫ x1

x0

f (s)h
( s

ε

)

ds

]

+O(ε2).

In summary it can be said

uε(x)− ũε
1(x) = ε

[

∫ x

x0

f (s)h
( s

ε

)

ds− x−x0

x1−x0

∫ x1

x0

f (s)h
( s

ε

)

ds

]

+O(ε2).

By definitionhε ⇀ 〈h〉Y = 0 weak∗ in L∞(R) ([5], Theorem 2.6,p.33) implies

(7)
∫ x

x0

f (s)h
( s

ε

)

ds→ 0

for all x∈ Ω . The Hölder’s inequality yields
∣

∣

∣

∣

∫ x

x0

f (s)h
( s

ε

)

ds

∣

∣

∣

∣

≤ ‖ f‖L1(Ω )‖h‖L∞(R)

so that for 1≤ p < ∞ Lebesgue’s theorem provides
∥

∥

∥

∥

∫ x

x0

f (s)h
( s

ε

)

ds

∥

∥

∥

∥

Lp(Ω )

→ 0.

Since
∥

∥

∥

∥

x−x0

x1−x0

∫ x1

x0

f (s)h
( s

ε

)

ds

∥

∥

∥

∥

Lp(Ω )

=

∣

∣

∣

∣

∫ x1

x0

f (s)h
( s

ε

)

ds

∣

∣

∣

∣

∥

∥

∥

∥

x−x0

x1−x0

∥

∥

∥

∥

Lp(Ω )

≤ (x1−x0)

∣

∣

∣

∣

∫ x1

x0

f (s)h
( s

ε

)

ds

∣

∣

∣

∣

→ 0

it follows for 1≤ p < ∞

‖uε − ũε
1‖Lp(Ω ) = o(ε).

Remark 2Statement (7) is just the lemma of Riemann-Lebesgue.
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Let f be a piecewiseH1-function, i.e.

f =
N

∑
k=1

fkχ]zk−1,zk[,

with fk ∈ H1(Ωk),Ωk := ]zk−1,zk[ andx0 = z0 < z1 < · · · < zN = x1. Then after
possibly adding the jumpx ∈ Ω , that meanszi = x for somei ∈ {0, . . . ,N}, it
follows with H(y) =

∫ y
0 h(s)ds

|uε(x)− ũε
1(x)|

≤ε
∣

∣

∣

∣

∫ x

x0

f (s)h
( s

ε

)

ds− x−x0

x1−x0

∫ x1

x0

f (s)h
( s

ε

)

ds

∣

∣

∣

∣

+O(ε2)

≤ε
∣

∣

∣

∣

∫ x

x0

f (s)h
( s

ε

)

ds

∣

∣

∣

∣

+ ε
∣

∣

∣

∣

∫ x1

x0

f (s)h
( s

ε

)

ds

∣

∣

∣

∣

+O(ε2)

≤ε
i

∑
k=1

∣

∣

∣

∣

∫ zk

zk−1

fk(s)h
( s

ε

)

ds

∣

∣

∣

∣

+ ε
N

∑
k=1

∣

∣

∣

∣

∫ zk

zk−1

fk(s)h
( s

ε

)

ds

∣

∣

∣

∣

+O(ε2)

≤2ε2
N

∑
k=1

∣

∣

∣

∣

[

fk(s)H
( s

ε

)]zk

zk−1

−
∫ zk

zk−1

d fk
dx

(s)H
( s

ε

)

ds

∣

∣

∣

∣

+O(ε2)

≤2ε2‖H‖L∞(R)

(

N

∑
k=1

(| fk(zk−1)|+ | fk(zk)|)+
N

∑
k=1

∥

∥

∥

∥

d fk
dx

∥

∥

∥

∥

L1(Ωk)

)

+O(ε2)

≤4Nε2‖H‖L∞(R) max
i∈{1,...,N}

‖ fi‖L∞(Ω ) +O(ε2),

where the termO(ε2) is independent ofx = zi . From this it follows

‖uε − ũε
1‖L∞(Ω ) = O(ε2).

That proofs the following theorem.

Theorem 1 Let Ω = ]x0,x1[, Y = ]0, l [. If f ∈ L1(Ω ) the corrected first order
asymptotic approximatioñuε

1 of uε fulfils

uε(x)− ũε
1(x) = ε

[

∫ x

x0

f (s)h
( s

ε

)

ds− x−x0

x1−x0

∫ x1

x0

f (s)h
( s

ε

)

ds

]

+O(ε2).

with

h(y) =
(

A(y)− y
a0

)

−
(

〈A〉Y − l
2a0

)

=

(

∫ y

0

ds
a(s)

− y
a0

)

−
(

1
l

∫ l

0

∫ y

0

ds
a(s)

dy− l
2a0

)

so that
‖uε − ũε

1‖Lp(Ω ) = o(ε)

for all 1≤ p < ∞.
For piecewise H1-functions f (especially for step functions) even applies

‖uε − ũε
1‖L∞(Ω ) = O(ε2).
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2.2 Example

Now we exemplarily verify that the correction of the first order asymptotic ex-
pansionuε

1 is necessary to obtain the quadratic convergence proved in theorem
1.

Example 1Let Ω = Y = ]0,1[ ⊂ R, f ≡ λ ∈ R and

a(y) =
1

2+sin(2πy)
.

Under the assumptionε = 1
N follows for the errors

uε(x)−u0(x) = ελ sin
(πx

ε

) 2π (1−2x)− ε
(

2cos
(πx

ε
)

+sin
(πx

ε
))

4π2 ,

uε(x)−uε
1(x) = ελ

2π (1−2x)− ε
(

1−cos
(

2πx
ε
)

+2sin
(

2πx
ε
))

8π2 ,

uε(x)− ũε
1(x) = −ε2λ

1+cos
(

2πx
ε
)

−2sin
(

2πx
ε
)

8π2

so that
∥

∥uε(x)−u0(x)
∥

∥

L∞ = O(ε),

‖uε(x)−uε
1(x)‖L∞ = O(ε),

‖uε(x)− ũε
1(x)‖L∞ = O(ε2).

Figure 1 clarifies that the order of magnitude of the error (with respect to theL∞-
norm) of the homogenized solutionu0 is not reduced by adding the term of first
order. Furthermore the boundary condition is violated. Only the solution of the
correction problem (6) lowers the order of magnitude.

Remark 3The order of convergence with respect to theH1-norm is (generally)
not affected by the correction

3 Error estimations for elliptic problems

Definition 2 A rectangulationof a domainΩ ⊂ R
n is a subdivision ofΩ in n-

rectangles for which any face of anyn-rectangleK is either a subset of the bound-
ary∂ Ω , or a face of anothern-rectangleK′.

Remark 4For triangulations and rectangulation so called hanging nodes are ex-
cluded. For this reason local refinements of rectangulations (which are themselves
rectangulations) are strongly limited.
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Fig. 1 Analytic solution and error of the approximations in the case of layered media forε =
1/4.

Based on the interpolation theory for finite element spaces ([3], Corollary 4.4.24,
p. 110) one can estimate the error of finite element approximations of elliptic
boundary problems. To simplify matters the interpolation error bounds are quoted
first (Pm−1 denotes the set of polynomials of degree≤ m−1).

Theorem 2 Let (Kh)0<h≤1 be a non-degenerate family of subdivisions ofΩ , i.e.
there existsρ > 0 satisfying for allK̃ ∈ Kh and all 0 < h≤ 1

diamBK̃ ≥ ρ diamK̃,

where B̃K is the largest ball contained iñK such thatK̃ is star-shaped with respect
to BK̃ . Let the finite element(K,P ,N ) and1≤ p≤ ∞ satisfy

1. K is star-shaped with respect to some ball,
2. Pm−1 ⊂ P ⊂Wm,∞(K),
3. N ⊂ (Cl (K))′

4. (a) m− l −n≥ 0, if p = 1,
(b) m− l −n/p > 0, if p > 1,

for adequate m and l. Suppose all finite elements(K̃,PK̃ ,NK̃), K̃ ∈Kh, 0< h≤ 1
are affine interpolation-equivalent to(K,P ,N ), then for0≤ s≤ m

‖u− Ihu‖s,p,h ≤Cl ,m,n,p,ρ hm−s|u|Wm,p(Ω ) , ∀u∈Wm,p(Ω ).
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Additionally for0≤ s≤ l

‖u− Ihu‖s,∞,h ≤Cl ,m,n,p,ρ hm−s−n/p |u|Wm,p(Ω ) , ∀u∈Wm,p(Ω ).

3.1 Dirichlet problems

Theorem 3 Let (Kh)0<h≤1 be a non-degenerate family of triangulations or rect-
angulations ofΩ ⊂R

n withC0-elements, which satisfy the assumptions of theorem
2 for p= 2. If u is the solution of

a(u,v) = ( f ,v)H−1(Ω ),H1
0 (Ω ), ∀v∈ H1

0(Ω )

for given f∈ H−1(Ω ) and uh is the finite element approximation in

Vh =

{

v=(vK)K∈Kh
∈∏

K∈Kh

PK

∣

∣

∣

∣

∣

∃u∈ H1
0(Ω ),u|K ∈Cl (K),vK = IKu,∀K ∈ Kh

}

,

i.e.
a(uh,vh) = ( f ,vh)H−1(Ω ),H1

0 (Ω ), ∀vh ∈Vh,

then u∈ Hm(Ω ) implies

‖u−uh‖H1
0 (Ω ) ≤Cα ,β ,l ,m,n,ρ hm−1 |u|Hm(Ω ) .

Proof The definition assures

Ih(H
1
0(Ω )∩Cl (Ω )) ⊂Vh.

SinceC0-elements are used
Vh ⊂ H1

0(Ω ).

Therefore a combination of Theorem 2 and Céa’s theorem yields the statement.
ut

Corollary 1 LetΩ ⊂R
2 or Ω ⊂R

3 be a convex polygonal domain, L= div(A∇·)
be uniformly elliptic with uniformly Lipschitz continuouscoefficient A and f∈
L2(Ω ). If additionally m= 2 as well as l= 0 in the assumptions of Theorem 2
then

‖u−uh‖H1
0 (Ω ) ≤Cα ,β ,ρh|u|H2(Ω ) ≤Cα ,β ,ρ,A,Ω h‖ f‖L2(Ω ) .

Proof The regularity ofu is proved in [10] or rather [8], Theorem 3.2.1.2 and
Theorem 3.2.1.3 ut
Corollary 2 Under the assumptions of Theorem 3

‖u−uh‖L2(Ω ) ≤
β
α

h‖u−uh‖H1
0 (Ω ) .

If additionally f ∈ L2(Ω ) so that u∈ H2(Ω ), then

‖u−uh‖L2(Ω ) ≤Cα ,β ,ρ,A,Ω h2‖ f‖L2(Ω ) .

Proof Aubin-Nitsche’s theorem. ut
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3.2 Periodic boundary conditions

Now the statement of Corollary 2 on periodic boundary conditions will be carried
over. In order to use Céa’s theorem, the finite element spaceVh must satisfy the
conditionVh ⊂ V =

{

u∈ H1
per(Y)|〈u〉Y = 0

}

. This leads to the following defini-
tion.

Definition 3 A subdivisionK of Y ⊂ R
n is calledperiodic, iff for all sufficiently

regularY-periodic functionsu the global interpolationIK u is alsoY-periodic.

Remark 5The easiest way to obtain a periodic subdivision consists inusing “sym-
metric” rectangle elements: IfK is a rectangulation ofY with except for transla-
tion identicC0 rectangle elementsKi = yi +]a1,b1[×·· ·× ]an,bn[ and if the nodal
variables are just evaluations of the function and its derivatives, which are sym-
metrically distributed with respect to the bisector

{

x|x j = (yi) j +(bj −aj)/2
}

,
then the rectangulation is periodic.

The Bogner-Fox-Schmitt rectangle for instance satisfies this condition. The
use ofn-simplices would also be possible, but not very reasonable,because the
domainY is an-rectangle.

Theorem 4 Let u∈V =
{

u∈ H1
per(Y)|〈u〉Y = 0

}

be a weak solution of







−div(A∇u) = f in Y,

u Y−periodisch,

〈u〉Y = 0.

Let A∈ M(α,β ,Y) be Y-periodic, ai j ∈ Cm−2,1(Y), f ∈ Hm−2(Y) (with 〈 f 〉Y =
0) and let (Kh)0<h≤1 be a non-degenerate family of periodic triangulation or
periodic rectangulations of Y⊂ R

n, which satisfies the assumptions of Theorem 2
for p = 2 and m≥ 2. Then the finite element approximation uh in

Vh =

{

v = (vK)K∈Kh
∈ ∏

K∈Kh

PK

∣

∣

∣

∣

∣

〈v〉Y = ∑
K∈Kh

〈vK〉K = 0,

∃u∈ H1
per(Y),u|K ∈Cl (K),vK = IKu,∀K ∈ Kh

}

satisfies the error estimate

‖u−uh‖H1(Y) ≤Cα ,β ,l ,m,n,ρ,Yhm−1 |u|Hm(Y) ≤Cα ,β ,l ,m,n,ρ,M,Yhm−1‖ f‖Hm−2(Y) ,

where

M = max
{

∥

∥ai j
∥

∥

Cm−2,1(Y)

}

.

Proof The regularity of the diffusion coefficient and the source yield u∈ Hm(Y)
with

‖u‖Hm(Y) ≤Cn,α ,M,Y ‖ f‖Hm−2(Y) .



12 Matthias Kabel, Jens Struckmeier

Theorem 2 implies for the global interpolationIhu

‖u− Ihu‖H1(Y) ≤Cl ,m,n,ρ hm−1|u|Hm(Y),

‖u− Ihu‖L2(Y) ≤Cl ,m,n,ρ hm|u|Hm(Y).

Since〈u〉Y = 0 and‖ · ‖L1(Y) ≤C|Y|‖ · ‖L2(Y) ([1], Theorem 2.14, p. 28) with̃Ihu =

Ihu−〈Ihu〉Y, it follows
∥

∥u− Ĩhu
∥

∥

H1(Y)
= ‖u− Ihu+ 〈Ihu〉Y‖H1(Y)

≤ ‖u− Ihu‖H1(Y) +‖〈Ihu〉Y‖H1(Y)

= ‖u− Ihu‖H1(Y) + |Y| |〈u− Ihu〉Y|
≤ ‖u− Ihu‖H1(Y) + |Y|‖u− Ihu‖L1(Y)

≤ ‖u− Ihu‖H1(Y) +C|Y|‖u− Ihu‖L2(Y)

≤Cl ,m,n,ρ,|Y|h
m−1|u|Hm(Y).

As a complete subspace ofH1(Y) (V,‖ · ‖H1(Y)) is a Hilbert space. Due toVh ⊂V
Céa’s theorem yields

‖u−uh‖H1(Y) ≤
β
α

inf
vh∈Vh

‖u−vh‖H1(Y),

thus the statement follows from̃Ihu∈Vh. ut

Theorem 5 Under the assumptions of Theorem 4 for m= 2 without f ∈ L2(Y)
follows

‖u−uh‖L2(Y) ≤Cα ,β ,l ,m,n,ρ,M,Yh‖u−uh‖H1(Y) .

Proof Let
H =

{

u∈ L2(Y)|〈u〉Y = 0
}

.

SinceL2(Y) = C∞
0 (Y) with respect to‖·‖L2(Y) ([1], Corollary 2.30, p. 38), so par-

ticularly L2(Y) = H1
per(Y), follows H = V: Let ui ∈ H1

per(Y) be a sequence with
ui → u ∈ H in L2(Y). Since|〈ui −u〉Y| ≤ ‖ui −u‖L1(Y) ≤ C|Y|‖ui −u‖L2(Y) → 0
([1], Theorem 2.14, p. 28), it follows〈ui〉Y →〈u〉Y = 0. Definingvi := ui −〈ui〉Y ∈
V yields‖vi −u‖L2(Y) ≤ ‖ui −u‖L2(Y) + |Y| |〈ui〉Y| → 0.

Aubin-Nitsche’s theorem and theorem 4 then imply the statement. ut

Corollary 3 If in addition to the assumptions of Theorem 5 the source satisfies
f ∈ L2(Y) (with 〈 f 〉Y = 0), then even

‖u−uh‖L2(Y) ≤Cα ,β ,l ,m,n,ρ,M,Yh2‖ f‖L2(Y) .

Proof Reapplication of Theorem 4. ut

Remark 6In the case ofm > 2 the quadratic convergence (with respect to the
L2-norm) follows directly from Theorem 4.
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Remark 7If the coefficient satisfiesai j ∈ Cm−2,1(Y)∩Hm−1(Y) Theorem 4 im-
plies for an adequate finite element approximationχi,h of the solutionχi of the
cell-problems (5)

(8)
∥

∥χi − χi,h
∥

∥

H1(Y)
≤Cα ,β ,l ,m,n,ρ,M,Yhm−1

∥

∥divAi
∥

∥

Hm−2(Y)
,

whereAi = (a1i , . . . ,ani) is thei-th column ofA. Corollary 3 additionally implies
for m= 2

(9)
∥

∥χi − χi,h
∥

∥

L2(Y)
≤Cα ,β ,l ,m,n,ρ,M,Yh2

∥

∥divAi
∥

∥

L2(Y)
.

4 Finite element approximation

In this section the finite element spaces will be choosen so that a potential analytic
quadraticL2-convergence of the corrected first order asymptotic expansion carries
over to the finite element approximation.

Theorem 1 states the quadraticL2-convergence in the one-dimensional case.
The following numeric analysis will be an indication under which assumption on
the coefficient and source quadraticL2-convergence of the corrected first order
asymptotic expansion can be expected in the two-dimensional case.

Because of theC∞-regularity of the boundary and the compact embedding
H1(Ω ) ⊂C0(Ω) the one-dimensional case is considerably easier to treat. There-
fore the following analysis will be restricted to the two-dimensional case and a
comparison of the corresponding results for the one-dimensional case.

For the calculation of the finite element approximations of the first order a-
symptotic expansion, the correction and the solution of theoriginal problem the
finite element spaces of Table 1 will be used. At the moment it is not clear, why
one should use these finite element spaces. Despite of that itis useful to take a
look at the notation.

4.1 First order asymptotic approximation

At first the difference between the first order asymptotic expansionuε
1 and its finite

element approximation will be estimated. Therefore it is mandatory to analyse
the influence of using the finite element approximationsχi,ĥ on the homogenized

diffusion coefficientA0.
The first error arises at interpolatingA = (ai j ) ∈ M(α,β ,Y). Suppose(Kh̃)

is a non-degenerate family of subdivisions ofY, then Theorem 2 implies for the
interpolationAh̃ of A∈ H4(Y) using cubic Lagrange elements

∥

∥A−Ah̃

∥

∥

L∞ ≤Cρ h̃3 |A|H4(Y) .

Hence for sufficiently small̃h > 0

(10) (Ah̃(y)λ ,λ) ≥ α
2
‖λ‖2

2.
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Table 1 Description of the used finite element spaces.

Y

1

Finite element spaces on the unit cell

– (Kh̃)0≤h̃≤1: non-degenerate family of periodic rectangula-
tions with bi-cubic rectangular elements for interpolating
the diffusion coefficientA∈ M(α ,β ,Y),

– (Kĥ)0≤ĥ≤1: quasi-uniform family of periodic rectangula-
tions with Bogner-Fox-Schmitt rectangles or Hermite ele-
ments (in the one-dimensional case) for approximating the
cell-solutionsχi .

Ω

εY

ε

Finite element spaces onΩ
– (KH̃)0≤H̃≤1: non-degenerate family of bi-cubic rectangu-

lations for interpolating the sourcef ∈ H−1(Ω),
– (KH)0≤H≤1: quasi-uniform family of rectangulations with

Bogner-Fox-Schmitt rectangles or Hermite elements (in
the one-dimensional case) for approximating the homog-
enized solutionu0,

Ω

ε

– (TĤ)0≤Ĥ≤1: non-degenerate family of triangulations with
quadratic triangular elements for approximating the cor-
rectionvε

0,

Ω

ε

– (Kh)0≤h≤1: quasi-uniform family of rectangulations with
bi-quadratic rectangular elements for approximating the
solutionuε of the original problem.
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This makes it possible to estimate the error of the finite element approximation
χi,ĥ in consequence of interpolating the diffusion coefficient.Let χ̃i,ĥ be the finite
element approximation of the differential equation with interpolated diffusion co-
efficient. Since

−div(Ah̃∇(χi,ĥ− χ̃i,ĥ)) = −div((Ah̃−A)∇χi,ĥ +(A−Ah̃)ei)

it follows using (10)

∥

∥

∥χi,ĥ− χ̃i,ĥ

∥

∥

∥

H1(Y)
≤ 2

α

∥

∥

∥div((Ah̃−A)∇χi,ĥ +(A−Ah̃)ei)
∥

∥

∥

(Wper(Y))′

≤ 2
α

∥

∥

∥(Ah̃−A)∇χi,ĥ +(A−Ah̃)ei

∥

∥

∥

L2(Y)

≤ 2
α

(

∥

∥Ah̃−A
∥

∥

L∞(Y)

∥

∥

∥χi,ĥ

∥

∥

∥

H1(Y)
+
∥

∥A−Ah̃

∥

∥

L2(Y)

)

≤Cα ,ρ,Yh̃3 |A|H4(Y) .

For measuring the error of̃χi,ĥ concerning the analytic solutionχi only an
estimation for the error ofχi,ĥ lacks.

For this the use of an inverse estimate will be necessary, which in turn requires
an affine family of finite element spaces. Since also theC1-differentiability of the
finite element approximation will be needed, one automatically arrives at using
Bogner-Fox-Schmitt elements ([4], Theorem 2.2.15, p. 77 and p. 85), which are
normally used for fourth-order elliptic problems on rectangular domains. There-
fore the cell-solutionsχi have to satisfy higher regularity conditions:

χi ∈ H4(Ω ).

This is true forA∈C2,1(Y)∩H3(Y).
For a quasi-uniform family(Kĥ)0≤ĥ≤1 of periodic rectangulations with Bog-

ner-Fox-Schmitt elements the Theorems 2 and 4 yield
∥

∥χ − Iĥχ
∥

∥

H1(Y)
≤Cρ ĥ3 |χ|H4(Y) ,

∥

∥χ − χĥ

∥

∥

H1(Y)
≤Cα ,β ,ρ,Y ĥ3 |χ|H4(Y) .

Since the subdivision is especially quasi-uniform, the inverse estimate stated in
[3], Theorem 4.5.11, p. 112, even implies

(11)
∥

∥χ − χ̃ĥ

∥

∥

W1,∞(Y)
≤Cα ,β ,ρ,Yĥ2 |χ|H4(Y) +Cα ,ρ,Y

h̃3

ĥ
|A|H4(Y) .

The next step consists in determing how this error influencesthe calculation
of the homogenized diffusion coefficient. Let

ã0
ik =

〈

ai j ,h̃δ jk +ai j ,h̃

∂ χ̃k,ĥ

∂y j

〉

Y
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be the components of the homogenized diffusion coefficient,calculated using the
finite element approximatioñχk,ĥ as well as the interpolationai j ,h̃ of the diffusion
coefficientai j with cubic Lagrange elements. Then

a0
ik − ã0

ik =
〈

aik −aik,h̃

〉

Y
+

〈

ai j ,h̃

∂ (χk− χ̃k,ĥ)

∂y j

〉

Y

+

〈

(ai j −ai j ,h̃)
∂ χk

∂y j

〉

Y

,

so

|Y| ·
∣

∣a0
ik − ã0

ik

∣

∣≤
∥

∥

∥aik −aik,h̃

∥

∥

∥

L1(Y)
+
∥

∥

∥Ai,h̃

∥

∥

∥

L2(Y)

∥

∥

∥χk− χ̃k,ĥ

∥

∥

∥

H1(Y)
+

∥

∥

∥Ai −Ai,h̃

∥

∥

∥

L2(Y)
‖χk‖H1(Y)

≤
∥

∥

∥
aik −aik,h̃

∥

∥

∥

L1(Y)
+
∥

∥

∥
Ai,h̃−Ai

∥

∥

∥

L2(Y)

∥

∥

∥
χk− χ̃k,ĥ

∥

∥

∥

H1(Y)
+

‖Ai‖L2(Y)

∥

∥

∥χk− χ̃k,ĥ

∥

∥

∥

H1(Y)
+
∥

∥

∥Ai −Ai,h̃

∥

∥

∥

L2(Y)
‖χk‖H1(Y)

≤Cρ,Yh̃3 |A|H4(Y) (1+‖χ‖H1(Y))+

Cα ,β ,ρ,Y ĥ3 |χ|H4(Y) (Cρ,Yh̃3 |A|H4(Y) +‖A‖L2(Y))

≤Cρ,Y,χ h̃3 |A|H4(Y) +Cα ,β ,ρ,Y,Aĥ3 |χ|H4(Y) ,

whereAi = (ai1, . . . ,ain). Using the norm‖A‖G = n·max{i, j=1,...,n} |ai j | (which is
consistent with the Euclidean norm) follows immediately

(12) ‖A0− Ã0‖G ≤Cρ,Y,χ h̃3 |A|H4(Y) +Cα ,β ,ρ,Y,Aĥ3 |χ|H4(Y) .

According to [5], Proposition 6.12, p. 118, forA∈M(α,β ,Y) exists anα0 > 0
with (A0λ ,λ) ≥ α0‖λ‖2

2. Hence for sufficiently small̃h, ĥ > 0

(Ã0λ ,λ) ≥ α0

2
‖λ‖2

2.

The last two results make it possible to determine the difference of the analytic
solutionu0 of the homogenized equation and the finite element approximation of
the erroneous homogenized equation. Let ˜u0 be the solution of the homogenized
equation with erroneous diffusion coefficientÃ0 andũ0

H be the finite element ap-
proximation ofũ0, i.e.

∫

Ω
Ã0∇ũ0

H ·∇vdx=

∫

Ω
fH̃vdx

for all v ∈ VH , where fH̃ is the interpolation off with bi-quadratic rectangular
elements of a non-degenerate family(KH̃)0≤H̃≤1 of rectangulations.

From

div(Ã0∇(u0− ũ0)) = div(Ã0∇u0)+ f = div((Ã0−A0)∇u0)
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it follows according to [5], theorem 4.16, p. 72 and equation(12)

∥

∥u0− ũ0
∥

∥

H1
0 (Ω )

≤ 2
α0

∥

∥div((Ã0−A0)∇u0)
∥

∥

H−1(Ω )
≤ 2

α0

∥

∥(Ã0−A0)∇u0
∥

∥

L2(Ω )

≤ 2
α0

‖A0− Ã0‖G‖u0‖H1
0 (Ω )

≤
(

Cα0,ρ,Y,χ h̃3 |A|H4(Y) +Cα0,α ,β ,ρ,Y,Aĥ3 |χ|H4(Y)

)

‖u0‖H1
0 (Ω ).

The (analytic) solution of

{

−div(Ã0∇û0
H̃) = fH̃ in Ω ,

û0
H̃ = 0 on∂ Ω

satisfies

−div(Ã0∇(ũ0− û0
H̃)) = f − fH̃ .

Therefore Theorem 2 yields forf ∈ H2(Ω )

∥

∥ũ0− û0
H̃

∥

∥

H1
0 (Ω )

≤ 2
α0

‖ f − fH̃‖H−1(Ω ) ≤
2

α0
‖ f − fH̃‖L2(Ω ) ≤Cα0,ρ H̃2 | f |H2(Ω ) .

Finally Corollary 1 yields

∥

∥û0
H̃ − ũ0

H

∥

∥

H1
0 (Ω )

≤Cα ,β ,ρ,A,Ω H ‖ fH̃‖L2(Ω ) .

From this we have

Theorem 6 Let Ω ⊂ R
2 be a convex domain, which can be subdivided into rect-

angles, f∈H2(Ω ) and A∈C2,1(Y)∩H4
per(Y). Then using the finite element spaces

of Table 1 yields

∥

∥u0− ũ0
H

∥

∥

H1
0 (Ω )

≤Cα0,ρ,Y,χ h̃3 |A|H4(Y)‖u0‖H1
0 (Ω )+

Cα0,α ,β ,ρ,Y,Aĥ3 |χ|H4(Y) ‖u0‖H1
0 (Ω )+

Cα0,α ,β ,ρ,A,Ω H̃2 | f |H2(Ω ) +Cα ,β ,ρ,A,Ω H ‖ f‖L2(Ω ) .

Using the last theorem one gets

Theorem 7 Under the assumptions of Theorem 6

∥

∥

∥χ
( x

ε

)

∇u0(x)− χ̃ĥ

(x
ε

)

∇ũ0
H(x)

∥

∥

∥

L2(Ω )

≤Cα0,α ,β ,ρ,Y,A, f ,χ,u0

(

ĥ2 +
h̃3

ĥ
+ H̃2+H

)

.
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Proof Using theL∞-estimate (see (11))

∥

∥χ − χ̃ĥ

∥

∥

L∞(Y)
≤Cα ,β ,ρ,Y ĥ2 |χ|H4(Y) +Cα ,ρ,Y

h̃3

ĥ
|A|H4(Y)

yields
∥

∥

∥χ
( x

ε

)

∇u0(x)− χ̃ĥ

(x
ε

)

∇ũ0
H(x)

∥

∥

∥

L2(Ω )

=
∥

∥

∥χ
( x

ε

)

(

∇u0(x)−∇ũ0
H(x)

)

+
(

χ
(x

ε

)

− χ̃ĥ

(x
ε

))

∇ũ0
H(x)

∥

∥

∥

L2(Ω )

=
∥

∥

∥χ
( x

ε

)

(

∇u0(x)−∇ũ0
H(x)

)

+
(

χ
(x

ε

)

− χ̃ĥ

(x
ε

))

(

∇ũ0
H(x)−∇u0)+

(

χ
( x

ε

)

− χ̃ĥ

( x
ε

))

∇u0
∥

∥

∥

L2(Ω )

≤‖χ‖L∞(Y)

∥

∥∇u0−∇ũ0
H

∥

∥

L2(Ω )
+
∥

∥χ − χ̃ĥ

∥

∥

L∞(Y)

∥

∥∇ũ0
H −∇u0

∥

∥

L2(Y)
+

∥

∥χ − χ̃ĥ

∥

∥

L∞(Y)

∥

∥∇u0
∥

∥

L2(Ω )

≤Cα0,ρ,Y,χ h̃3 |A|H4(Y) ‖u0‖H1
0 (Ω ) +Cα0,α ,β ,ρ,Y,A,χ ĥ3 |χ|H4(Y) ‖u0‖H1

0 (Ω )+

Cα0,α ,β ,ρ,A,χ,Ω H̃2 | f |H2(Ω ) +Cα ,β ,ρ,A,χ,Ω H ‖ f‖L2(Ω ) +
(

Cα ,β ,ρ,Yĥ2 |χ|H4(Y) +Cα ,ρ,Y
h̃3

ĥ
|A|H4(Y)

)

(

Cα0,ρ,Y,χ h̃3 |A|H4(Y) ‖u0‖H1
0 (Ω )+

Cα0,α ,β ,ρ,Y,Aĥ3 |χ|H4(Y) ‖u0‖H1
0 (Ω )+

Cα0,α ,β ,ρ,A,Ω H̃2 | f |H2(Ω ) +Cα ,β ,ρ,A,Ω H ‖ f‖L2(Ω ) +
∣

∣u0
∣

∣

H1(Ω )

)

≤Cα0,α ,β ,ρ,Y,A, f ,χ,u0

(

ĥ2 +
h̃3

ĥ
+ H̃2+H

)

.

ut

4.2 Original problem

It follows from the above and Corollary 2.

Theorem 8 Under the assumptions of Theorem 6
∥

∥

∥uε −u0 + εχ
( x

ε

)

∇u0(x)
∥

∥

∥

L2(Ω )
= O(ε2),

iff
∥

∥

∥uε − ũ0
H + εχ̃ĥ

( x
ε

)

∇ũ0
H(x)

∥

∥

∥

L2(Ω )
= O(ε2)

for h̃ = ĥ = H = H̃ = ε.

In the one-dimensional case the following result can be proven.
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Theorem 9 SupposeΩ ⊂ R be an interval, a∈C2,1(Y)∩H4
per(Y) ⊂C3

per(Y) and
f ∈ H2(Ω ) ⊂C1(Ω ), then using the finite element spaces of Table 1 yields

∥

∥

∥

∥

uε −u0 + εχ
( x

ε

) du0

dx

∥

∥

∥

∥

L2(Ω )

= O(ε2),

iff
∥

∥

∥

∥

uε − ũ0
H + εχ̃ĥ

( x
ε

) dũ0
H

dx

∥

∥

∥

∥

L2(Ω )

= O(ε2)

for h̃ = ĥ = H = H̃ = ε.

Remark 8Of course, it would be interesting to estimate the error
∥

∥uε −uε
h

∥

∥

L2(Ω )

in order to be able to adjust the parameterh appropriately in the numeric analysis.
Though according to Corollary 2

‖uε −uε
h‖L2(Ω ) ≤Cα ,β ,ρ,Aε ,Ω h2‖ f‖L2(Ω ) ,

this is not possible since the dependency of the constantCα ,β ,ρ,Aε ,Ω on ε is un-
known. At least in the one-dimensional case it can be proven thatCα ,β ,ρ,Aε ,Ω =

O(ε−1).

4.3 Correction

Now only the last term, i.e. the correction, has to be analysed. Therefore it is useful
to estimate

∥

∥χ
(

x
ε
)

∇u0(x)− χ̃ĥ

(

x
ε
)

∇ũ0
H(x)

∥

∥

H1(Ω )
. For this to be defined one has

to supposeχ
(

x
ε
)

∇u0(x), χ̃ĥ

(

x
ε
)

∇ũ0
H(x) ∈ H1(Ω ). A sufficient condition would

be the following properties of the homogenized solutionu0, the vectorχ of the
cell-solutions as well as the corresponding finite element approximations ˜u0

H and
χ̃ĥ

u0, ũ0
H ∈ H2(Ω ),

χ, χ̃ĥ ∈W1,∞.

While this is true forχ and χ̃ĥ, u0 satisfies this assumption according to [10]
respectively [8], theorem 3.2.1.2 and theorem 3.2.1.3. Theassumption on ˜u0

H re-
quires usingC1 finite elements. Since again an inverse estimate will be used, the
family of finite elements spaces has to be affine. All these conditions are satisfied
by the Bogner-Fox-Schmitt element. For this to be defined onehas to impose the
conditionu0 ∈ H4(Ω ).

Sinceu0 satisfies this condition normally only if∂ Ω is aC4-boundary ([6],
Theorem 5, p. 323), the usage of Bogner-Fox-Schmitt elements has to be critically
considered, because domains, which are made up of rectangles do not possess a
C4-boundary. Therefore the following should only be considered as motivation for
the choice of the finite element spaces.
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Theorem 2 yields for a non-degenerate family(KH) of rectangulations with
Bogner-Fox-Schmitt elements,

∥

∥u0− IHu0
∥

∥

H2(Y)
≤CρH2

∣

∣u0
∣

∣

H4(Y)
,

∥

∥u0− IHu0
∥

∥

H1(Y)
≤CρH3

∣

∣u0
∣

∣

H4(Y)
.

From this with Ceá’s theorem it follows that
∥

∥u0−u0
H

∥

∥

H1(Y)
≤Cα ,β ,ρ H3

∣

∣u0
∣

∣

H4(Y)
.

The inverse estimate ([3], theorem 4.5.11, p. 112) implies for a quasi-uniform
subdivision

∥

∥u0
H − IHu0

∥

∥

H2(Y)
≤ Cρ

H

∥

∥u0
H − IHu0

∥

∥

H1(Y)
.

Therefore
∥

∥u0−u0
H

∥

∥

H2(Y)
≤Cα ,β ,ρ H2

∣

∣u0
∣

∣

H4(Y)
.

Theorem 10 Let Ω ⊂ R
2 be a rectangle, A∈C2,1(Y)∩H4

per(Y) and f ∈ H3(Ω ),
then using the finite element spaces of Table 1 yields

∥

∥u0
H − ũ0

H

∥

∥

H1
0 (Ω )

≤Cα ,β ,ρ,Y,χ,u0 h̃3 |A|H4(Y) +

Cα ,β ,ρ,Y,A,u0 ĥ3 |χ|H4(Y) +Cα0,ρH3 | f |H3(Ω ) ,

∥

∥u0
H − ũ0

H

∥

∥

H2(Ω )
≤Cα ,β ,ρ,Y,χ,u0

h̃3

H
|A|H4(Y) +

Cα ,β ,ρ,Y,A,u0
ĥ3

H
|χ|H4(Y) +Cα0,ρH2 | f |H3(Ω ) .

Proof Since

−div(Ã0∇(u0
H − ũ0

H)) = −div((Ã0−A0)∇u0
H)+ f − fH

the first part of the statement follows from estimate (12). The second part is just
an application of the inverse estimate ([3], theorem 4.5.11, p. 112). ut

From this it follows

Theorem 11 Let Ω ⊂ R
2 be a rectangle, A∈C2,1(Y)∩H4

per(Y) and f ∈ H3(Ω ),

then using the finite element spaces of Table 1 withh̃ = ĥ = H = H̃ = ε yields for
u0 ∈ H4(Ω )

∥

∥

∥χ
( x

ε

)

∇u0(x)− χ̃ĥ

( x
ε

)

∇ũ0
H(x)

∥

∥

∥

H1(Ω )
= O(ε).

Proof
∥

∥

∥χ
( x

ε

)

∇u0(x)− χ̃ĥ

(x
ε

)

∇ũ0
H(x)

∥

∥

∥

H1(Ω )
=
∥

∥

∥χ
( x

ε

)

(

∇u0(x)−∇u0
H(x)

)

+

(

χ − χ̃ĥ

)

( x
ε

)

∇u0
H(x)+ χ̃ĥ

( x
ε

)

(

∇u0
H(x)−∇ũ0

H(x)
)

∥

∥

∥

H1(Ω )
= O(ε).

ut
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Theorem 12 The solution vε0 of the correction problem






−div(A0∇vε
0) = 0 in Ω ,

vε
0 = −εχ

(x
ε

)

∇u0(x) on ∂ Ω

and the finite element approximationṽε
0,Ĥ

of the solutionṽε
0 of the problem







−div(Ã0∇ṽε
0) = 0 in Ω ,

ṽε
0 = −εχ̃ĥ

(x
ε

)

∇ũ0
H(x) on∂ Ω

satisfy using the finite element spaces of table 1 withh̃ = ĥ = H = H̃ = ε
∥

∥

∥vε
0− ṽε

0,Ĥ

∥

∥

∥

L2(Ω )
= O

(

ε2 +
∥

∥

∥vε
0−vε

0,Ĥ

∥

∥

∥

L2(Ω )
+ ε3

∥

∥

∥vε
0−vε

0,Ĥ

∥

∥

∥

H1(Ω )

)

.

TherebyTĤ must be choosen such that the boundary conditionsεχ
(

x
ε
)

∇u0(x)
andεχ̃ĥ

(

x
ε
)

∇ũ0
H(x) can be described inTĤ .

Proof Let v̂ε
0 be the solution of







−div(Ã0∇v̂ε
0) = 0 in Ω ,

v̂ε
0 = −εχ

(x
ε

)

∇u0(x) on ∂ Ω .

From
div(Ã0∇(vε

0,Ĥ − v̂ε
0,Ĥ)) = div((Ã0−A0)∇vε

0,Ĥ)

follows with estimate (12)
∥

∥

∥vε
0,Ĥ − v̂ε

0,Ĥ

∥

∥

∥

H1
0 (Ω )

≤Cα0,β0
‖A0− Ã0‖G

(

∥

∥

∥εχ
(x

ε

)

∇u0(x)
∥

∥

∥

H1(Ω )
+
∥

∥

∥vε
0−vε

0,Ĥ

∥

∥

∥

H1(Ω )

)

=O

(

ε3 + ε3
∥

∥

∥
vε

0−vε
0,Ĥ

∥

∥

∥

H1(Ω )

)

.

For u0 ∈ H4(Ω ) andh̃ = ĥ = H = H̃ = ε
∥

∥

∥
ṽε

0,Ĥ
− v̂ε

0,Ĥ

∥

∥

∥

H1(Ω )
≤Cα0,β0

∥

∥

∥

(

εχ
( x

ε

)

∇u0(x)− εχ̃ĥ

(x
ε

)

∇ũ0
H(x)

)∥

∥

∥

H1(Ω )

= O(ε2).

A simple application or the triangle inequality proves the statement. ut

Remark 9The last theorem suggests the usage of a locally refined grid for the
correction problem.
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Corollary 4 Let Ω ⊂ R
2 be a rectangle, A∈ C2,1(Y)∩H4

per(Y) and f ∈ H3(Ω ).

Suppose u0 ∈ H4(Ω ), then using the finite element spaces of Table 1 withh̃= ĥ =
H = H̃ = ε and appropriateTĤ yields

∥

∥

∥uε −u0 + εχ
(x

ε

)

∇u0(x)+vε
0(x)

∥

∥

∥

L2(Ω )
= O(ε2),

iff
∥

∥

∥uε − ũ0
H + εχ̃ĥ

( x
ε

)

∇ũ0
H(x)+ ṽε

0,Ĥ(x)
∥

∥

∥

L2(Ω )
= O(ε2).

Proof Application of the last theorems. ut
In the one-dimensional case theH4-regularity ofu0 is satisfied without further

assumption. Therefore

Corollary 5 Let Ω ⊂ R be an interval, a∈ C2,1(Y)∩H4
per(Y) and f ∈ H3(Ω ),

then using the finite element spaces of Table 1 withh̃ = ĥ = H = H̃ = ε yield
∥

∥

∥

∥

uε −u0 + εχ
(x

ε

) du0

dx
(x)+vε

0(x)

∥

∥

∥

∥

L2(Ω )

= O(ε2),

iff
∥

∥

∥

∥

uε − ũ0
H + εχ̃ĥ

( x
ε

) dũ0
H

dx
(x)+ ṽε

0,Ĥ(x)

∥

∥

∥

∥

L2(Ω )

= O(ε2).

5 Numeric results

For the numeric results the finite element spaces of Table 1 have been implemented
using the C++-library getfem++1, extended by the Bogner-Fox-Schmitt element
and periodic boundary conditions. The calculations have been made on an AMD
Opteron2.

The locally (near the boundary) refined grid for the correction has been com-
puted by iterative division of the outermost triangles until the size of them has
been reduced by the factorε.

Definition 4 The Estimated Order of Convergence (EOC)of a sequence of ap-
proximative solutions is the sequence defined by

EOC
(ε

2

)

= log2





∥

∥uε −uε
app

∥

∥

∥

∥

∥
uε/2−uε/2

app

∥

∥

∥



 .

Remark 10All iterative solvers use the stopping criterion
∥

∥rk
∥

∥

2

‖r0‖2
< 10−9,

whererk is the residual of thek-th approximative solution.

1 http://home.gna.org/getfem/
2 CPU-frequence 2.3 GHz, 16 GB RAM
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The numeric analysis is restricted to isotropic materials,i.e.

A(y) = a(y)I ,

because the influence of the regularity as well as the symmetry of the diffusion
coefficient is the primary focus. Nevertheless also anisotropic problems have to
be solved, because the homogenized diffusion coefficient ofisotropic materials is
generally anisotropic. FurthermoreΩ =Y =]0,1[2 and f ≡ 10 in all examples. For
the examples with discontinuous diffusion coefficient the finite element spaces of
Table 1 have to be adjusted appropriately.

5.1 Symmetric diffusion coefficients

For symmetric diffusion coefficients the solutionvε
0 of the correction problem (6)

equals zero ([2], §6.3 and [11], Corollary 2.4, p. 5).
As first example let

a(y) =
1

2+cos(2πy1)cos(2πy2)
.

For the homogenized diffusion coefficient one gets numerically

A0 =

(

0.52 0
0 0.52

)

.

Tabular 2 shows that already for the first order approximation uε
1 the order of

convergence equals 2 with respect to theL2-norm and equals 1 with respect to the
H1-norm. The latter is theoretically assured ([9], S. 29, 30).

The comparison of the runtimes for solving the approximations and the origi-
nal problem is done in Tabular 3. Thereby one has to bear in mind that the subdi-
visions of the unit cellY and the domainΩ are refined forε becoming smaller, so
that especially the calculation of the homogenized solution, which is independent
of ε, becomes more costly for smallerε.

Loosening the assumption on the regularity of the coefficient the does not in-
fluence the order of convergence qualitatively (Tables 4, 5 and 6, 7) as the follow-
ing discontinuous examples shows. Therefore the coefficients are approximated
by step functions. Furthermore the Bogner-Fox-Schmitt elements are replaced by
Lagrange elements, because the cell-solutions can not be smooth for discontinu-
ous coefficients.

Let

a(y) =

{

1, ‖y− (0.5,0.5)‖∞ > 0.25,
2, ‖y− (0.5,0.5)‖∞ < 0.25.

a≡ 1

a≡ 2

Y
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Table 2 EOC for smooth symmetric diffusion coefficient (2d).

ε
∥

∥uε −u0
∥

∥

L2(Ω)
EOC

∥

∥uε −u0
∥

∥

H1(Ω)
EOC

1/2 0.0453033143 – 0.7396763548 –
1/4 0.0198023429 1.1939454650 0.6924529308 0.0951781502
1/8 0.0096168501 1.0420347991 0.6826984688 0.0204674917
1/16 0.0047723836 1.0108544194 0.6803285078 0.0050169725
1/32 0.0023817780 1.0026710405 0.6797724979 0.0011795488

ε
∥

∥uε −uε
1

∥

∥

L2(Ω)
EOC

∥

∥uε −uε
1

∥

∥

H1(Ω)
EOC

1/2 0.0150663057 – 0.2189079145 –
1/4 0.0035537233 2.0839224641 0.1194965457 0.8733552000
1/8 0.0008830151 2.0088212755 0.0617623306 0.9521698162
1/16 0.0002193059 2.0094937688 0.0310311422 0.9930103922
1/32 0.0000546916 2.0035525323 0.0155313801 0.9985307736

Table 3 Runtimes (s) for smooth symmetric diffusion coefficient (2d).

ε u0 uε
1 uε

1/2 0.02 0.03 0.03
1/4 0.02 0.05 0.14
1/8 0.07 0.57 3.30
1/16 0.31 9.42 116.37
1/32 1.52 170.09 12828.12

Table 4 EOC for discontinous symmetric diffusion coefficient (2d).

ε
∥

∥uε −u0
∥

∥

L2(Ω)
EOC

∥

∥uε −u0
∥

∥

H1(Ω)
EOC

1/2 0.0239518289 – 0.3416978653 –
1/4 0.0117225822 1.0308454275 0.3406784255 0.0043106475
1/8 0.0057796767 1.0202296871 0.3450890791 −0.0185582308
1/16 0.0028760931 1.0068784421 0.3465445275 −0.0060719180
1/32 0.0014361379 1.0019160630 0.3469459848 −0.0016703345

ε
∥

∥uε −uε
1

∥

∥

L2(Ω)
EOC

∥

∥uε −uε
1

∥

∥

H1(Ω)
EOC

1/2 0.0074396050 – 0.0951826775 –
1/4 0.0027864411 1.4168023867 0.0489383481 0.9597336338
1/8 0.0007968061 1.8061230500 0.0256343033 0.9328897161
1/16 0.0002080745 1.9371286759 0.0130790994 0.9708124860
1/32 0.0000528195 1.9779580265 0.0065997939 0.9867703186

The (numerically calculated) homogenized diffusion coefficient then fulfils

A0 =

(

1.2 0.001
0.001 1.2

)

.

The last symmetric example is the symmetric checkerboard media defined by
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Table 5 Runtimes (s) for discontinuous symmetric diffusion coefficient (2d).

ε u0 uε
1 uε

1/2 0.01 0.02 0.01
1/4 0.01 0.04 0.04
1/8 0.04 0.53 1.78
1/16 0.18 9.28 84.16
1/32 1.02 169.24 6453.78

Table 6 EOC for symmetric checkerboard media (2d).

ε
∥

∥uε −u0
∥

∥

L2(Ω)
EOC

∥

∥uε −u0
∥

∥

H1(Ω)
EOC

1/2 0.0163724770 – 0.3095758450 –
1/4 0.0076974322 1.0888234487 0.3139580561 −0.0202789239
1/8 0.0037765208 1.0273195215 0.3219953159 −0.0364678695
1/16 0.0018822135 1.0046274532 0.3248096859 −0.0125549533
1/32 0.0009406925 1.0006351948 0.3258576955 −0.0046474118

ε
∥

∥uε −uε
1

∥

∥

L2(Ω)
EOC

∥

∥uε −uε
1

∥

∥

H1(Ω)
EOC

1/2 0.0059345065 – 0.1032529360 –
1/4 0.0013423883 2.1443260663 0.0480595898 1.1032865655
1/8 0.0003378550 1.9903259254 0.0245391079 0.9697415346
1/16 0.0000843014 2.0027753245 0.0123250493 0.9934893838
1/32 0.0000210614 2.0009553368 0.0061709050 0.9980394212

a(y) =



























1, 0.25< y1 < 0.75 undy2 < 0.25,
1, 0.25< y1 < 0.75 undy2 > 0.75,
1, 0.25< y2 < 0.75 undy1 < 0.25,
1, 0.25< y2 < 0.75 undy1 > 0.75,
2, otherwise.

a≡ 1

a≡ 2

Y

For the homogenized diffusion coefficient one gets (also compare with [9], p.
37)

A0 =

(√
2 0

0
√

2

)

.

Table 7 Runtimes (s) for symmetric checkerboard media (2d).

ε u0 uε
1 uε

1/2 0.01 0.02 0.02
1/4 0.03 0.06 0.05
1/8 0.05 0.53 1.77
1/16 0.18 9.35 84.43
1/32 1.01 169.45 6470.10
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Table 8 EOC for smooth layered media (2d).

ε
∥

∥uε −u0
∥

∥

L2(Ω)
EOC

∥

∥uε −u0
∥

∥

H1(Ω)
EOC

1/2 0.0753795658 – 0.7568077129 –
1/4 0.0524915563 0.5220881141 0.8229203871 −0.1208260732
1/8 0.0290220394 0.8549364701 0.8596651469 −0.0630219519
1/16 0.0148975437 0.9620744180 0.8691848233 −0.0158881673
1/32 0.0074988942 0.9903247135 0.8716373795 −0.0040650825

ε
∥

∥uε −uε
1

∥

∥

L2(Ω)
EOC

∥

∥uε −uε
1

∥

∥

H1(Ω)
EOC

1/2 0.0811675407 – 0.6017144340 –
1/4 0.0452225062 0.8438619550 0.3111532438 0.9514536780
1/8 0.0239634065 0.9162079399 0.1571932788 0.9850857540
1/16 0.0121963564 0.9743827882 0.0789971925 0.9926662461
1/32 0.0061268676 0.9932286336 0.0396156716 0.9957301213

ε
∥

∥uε − ũε
1

∥

∥

L2(Ω)
EOC

∥

∥uε − ũε
1

∥

∥

H1(Ω)
EOC

1/2 0.0304643433 – 0.3000975354 –
1/4 0.0083997149 1.8587093738 0.1552774971 0.9505827016
1/8 0.0021197667 1.9864348440 0.0799556498 0.9575768840
1/16 0.0005338653 1.9893577599 0.0406563081 0.9757207669
1/32 0.0001343803 1.9901539728 0.0205461175 0.9846134151

5.2 Asymmetric diffusion coefficient

Again the first example has a smooth diffusion coefficient. More precisely the first
example generalises the one-dimensional Example 1

a(y) =
1

2+sin(2πy1)
.

From [5], Theorem 5.10, p. 99 follows for the homogenized diffusion coefficient

A0 =

(

1/2 0
0 1/

√
3

)

.

Unlike the case of symmetric diffusion coefficients the correction does not
vanish any more. Tabular 8 shows that the correction enhances the order of con-
vergence with respect to theL2-norm by one. The additional effort for determing
the correction is contained, as Tabular 9 shows.

Table 9 Runtimes (s) for smooth layered media (2d).

ε u0 u1 ũε
1 uε

1/2 0.02 0.03 0.04 0.04
1/4 0.02 0.05 0.09 0.14
1/8 0.08 0.59 0.98 3.35
1/16 0.30 9.66 13.19 117.86
1/32 1.48 170.51 211.23 12469.08
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Table 10 EOC for layered media (2d).

ε
∥

∥uε −u0
∥

∥

L2(Ω)
EOC

∥

∥uε −u0
∥

∥

H1(Ω)
EOC

1/2 0.0301482923 – 0.2790714535 –
1/4 0.0200507515 0.5884199752 0.2977509503 −0.0934715550
1/8 0.0109363794 0.8745211066 0.3083434409 −0.0504320450
1/16 0.0055957736 0.9667256927 0.3114974056 −0.0146819900
1/32 0.0028144330 0.9914932777 0.3123237718 −0.0038222334

ε
∥

∥uε −uε
1

∥

∥

L2(Ω)
EOC

∥

∥uε −uε
1

∥

∥

H1(Ω)
EOC

1/2 0.0333610942 – 0.2312360181 –
1/4 0.0182724957 0.8684929129 0.1192249442 0.9556800265
1/8 0.0095836605 0.9310249823 0.0601919623 0.9860433521
1/16 0.0048601412 0.9795785886 0.0302273055 0.9937184678
1/32 0.0024391302 0.9946314686 0.0151488619 0.9966429737

ε
∥

∥uε − ũε
1

∥

∥

L2(Ω)
EOC

∥

∥uε − ũε
1

∥

∥

H1(Ω)
EOC

1/2 0.0102038362 – 0.1044334018 –
1/4 0.0028560276 1.8370298092 0.0532558581 0.9715710809
1/8 0.0007309319 1.9662010154 0.0272786145 0.9651698590
1/16 0.0001846220 1.9851624713 0.0138590398 0.9769430634
1/32 0.0000464546 1.9906809929 0.0069990899 0.9855880614

The next example is the problem of (discontinuous) layered media.

a(y) =

{

1, y1 < 0.5,

2, y1 > 0.5.

a≡ 1 a≡ 2

Y

As proven in [5], Theorem 5.10, p. 99, one gets for the homogenized diffusion
coefficient

A0 =

(

4/3 0
0 3/2

)

.

According to Tabular 10 the first order approximationuε
1 has only the order

of convergence 1 with respect to theL2-norm, whereas the corrected approxima-
tion has the order of convergence 2 with respect to theL2-norm. The order of
convergence with respect to theH1-norm is not considerably influenced by the
correction.

As in the case of smooth coefficients, the additional expanses for the correction
problem are justifiable (Tabular 11).

If the problem is asymmetric for both directions, there exists examples for
which the correction does not enhance the order of convergence. A possible ex-
ample is the checkerboard, i.e.
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Table 11 Runtimes (s) for layered media (2d).

ε u0 uε
1 ũε

1 uε

1/2 0.02 0.02 0.03 0.01
1/4 0.01 0.04 0.08 0.04
1/8 0.05 0.55 0.93 1.79
1/16 0.19 9.31 12.77 88.50
1/32 1.00 169.62 209.55 6907.70

Table 12 EOC for checkerboard media (2d).

ε
∥

∥uε −u0
∥

∥

L2(Ω)
EOC

∥

∥uε −u0
∥

∥

H1(Ω)
EOC

1/2 0.0161774046 – 0.2268342841 –
1/4 0.0085648440 0.9174812869 0.2563242817 −0.1763314439
1/8 0.0046063517 0.8948024023 0.2891273304 −0.1737348370
1/16 0.0024018905 0.9394541991 0.3075452366 −0.0890936420
1/32 0.0012272049 0.9687942027 0.3170389096 −0.0438612794

ε
∥

∥uε −uε
1

∥

∥

L2(Ω)
EOC

∥

∥uε −uε
1

∥

∥

H1(Ω)
EOC

1/2 0.0200220247 – 0.3052071004 –
1/4 0.0080652016 1.3118053713 0.2196768661 0.4744055763
1/8 0.0036548677 1.1418914178 0.1594285293 0.4624731308
1/16 0.0017417208 1.0693057915 0.1135195716 0.4899687691
1/32 0.0008500261 1.0349343740 0.0804082929 0.4975248426

ε
∥

∥uε − ũε
1

∥

∥

L2(Ω)
EOC

∥

∥uε − ũε
1

∥

∥

H1(Ω)
EOC

1/2 0.0105382132 – 0.1795852569 –
1/4 0.0053155046 0.9873517113 0.0626434086 1.5194342947
1/8 0.0029842713 0.8328279685 0.0461270740 0.4415489371
1/16 0.0015751167 0.9219199254 0.0325400238 0.5033984726
1/32 0.0008084339 0.9622569956 0.0228024854 0.5130242220

a(y) =











1, y1,y2 < 0.5,

1, y1,y2 > 0.5,

2, otherwise.
a≡ 1 a≡ 2

Y

The homogenized diffusion coefficient suffices ([9], p. 37)

A0 =

(√
2 0

0
√

2

)

.

Tabular 12 shows that the correction does not enhance the order of convergence
for this problem.

Besides the short runtimes another advantage of approximating the solution
by means of homogenization is the considerably smaller memory requirement,
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Table 13 Runtimes (s) for checkerboard media (2d).

ε u0 uε
1 ũε

1 uε

1/2 0.01 0.02 0.03 0.01
1/4 0.02 0.05 0.08 0.05
1/8 0.05 0.54 0.91 1.76
1/16 0.18 9.30 12.67 84.52
1/32 1.03 169.62 208.99 6461.73

because the original problem does not have to be assembled (not until the two-
grid method of the next section).

Ω is made up of(1/ε)n (n = 1,2) unit cells. Constructing the grid forΩ by
copying the grid of the unit cell increases the number of degrees of freedom by the
factor (1/ε)n (n = 1,2) (same choice of shape functions). Therefore assembling
the linear system of equations for the original problem produces a matrix which
has compared to the matrix for the cell-problems a by the factor (1/ε)n (n = 1,2)
increased amount of non-zero entries.

On the other hand using the corrected first order asymptotic expansion means
to solven+ 2 small linear systems of equations (homogenized problem +n cell-
problems + correction problem) and thereby only the memory capacity for three
small matrices has to be allocated. Therewith also problemscan be (approxi-
mately) solved even if the original problem can not be assembled due to lack
of memory.

6 Two-grid method

The numeric results of the last section show, that the correction does not always
enhance the order of convergence. Hence it is all the more important to construct
an effective algorithm for solving the original problem. The following numeric
analysis verifies, that this is possible using the finite elements used in order to
determine the corrected asymptotic expansion.

The error functions in Figure 2 show the the corrected first order asymptotic
expansion is well suited for a coarse-grid correction on a locally near the bound-
ary refined grid. Exactly such a grid was already used for solving the correction
problem. Therefore all components for the tow-grid method are at hand.

1. The already calculated interpolation fromTĤ to Kh is used as prolongation
for the coarse-grid correction.

2. The transposed interpolation matrix is used as restriction (Galerkin choice).
3. The discretised homogenized problem is used to determinethe coarse grid

correction.
4. The PCG-method also used for solving the original problemdirectly is applied

as smoother.
5. The method starts with the corrected first order asymptotic expansion.

The most interesting feature of this two-grid method is the fact, that it amends
compared to the pure PCG-method forε becoming smaller. This has the following
reason: For largeε the mainpart of the numerical expenses consists in calculat-
ing the restriction as well as the prolongation. On the otherhand for smallε the
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Fig. 2 Numeric solution and approximation error for checkerboardmedia (ε = 1/4).

smoothing steps are rather expensive. But exactly the number of smoothing steps
is substantially reduced by the coarse-grid correction.

The exact runtimes and rate of convergence of the two-grid method for the
the checkerboard media is listed in Tabular 14. Here therate of convergence qis
defined as the quotient of the Euclidean norms of the last two residuals before the
abort

qm =
‖rm‖2

‖rm−1‖2
.

The corresponding runtimes of the pure PCG-method can be found in Tabular 13.

Table 14 Runtimes (s) and rates of convergence for checkerboard media (2d).

ε Runtime(s) Iterations Rate of convergence

1/2 0.04 6 0.043
1/4 0.12 6 0.018
1/8 1.81 8 0.057
1/16 33.11 14 0.263
1/32 1003.48 36 0.621

The runtimes suggest to use the two-grid-method forε ≤ 1/16. Forε = 1/32
the the two-grid method reduces the runtime by the factor 6.4, so already forε =
1/64 one can expect that the runtime is reduced by one order.
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