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Abstract. The concept of antipodality relative to a closed convex cone K ⊂ Rd has been
explored in detail in a recent work of ours. The antipodality problem consists of finding a pair
of unit vectors in K achieving the maximal angle of the cone. Our attention now is focused not
just in the maximal angle, but in the angular spectrum of the cone. By definition, the angular
spectrum of a cone is the set of angles satisfying the stationarity (or criticality) condition
associated to the maximization problem involved in the determination of the maximal angle.
In the case of a polyhedral cone, the angular spectrum turns out to be a finite set. Among
other results, we obtain an upper bound for the cardinality of this set. We also discuss the link
between the critical angles of a cone K and the critical angles of its dual cone.

1. Introduction

The present paper is self-contained except for a few results taken from our pre-
vious work [4]. The concept of antipodality relative to a closed convex cone is
at the core of many interesting questions concerning the geometry of a cone,
specially in relation with its angular structure.

For the sake of convenience, we start by introducing some basic terminology
and notation. First of all, we write

K ∈ Ξ(Rd)⇔
{

K ⊂ Rd is a closed convex cone
different from {0} and different from Rd.

The underlying space Rd is equipped with the usual inner product 〈u, v〉 = utv
and the associated norm ‖ · ‖. The symbol Sd refers to the unit sphere in Rd.
The dimension d is assumed to be greater than or equal to 2.

Recall that the maximal angle of a cone K is given by

θmax(K) = sup
u,v∈K∩Sd

arccos〈u, v〉, (1)

a number which lies obviously between 0 and π.
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The geometric meaning of θmax(K) is important and justifies by itself the
study of the variational problem (1). There are also application-oriented motiva-
tions. For instance, Peña and Renegar [6] show that the number θmax(K) plays
a role in estimating the efficiency of certain interior point methods for solving
feasibility systems with inequalities described by K. On the other hand, as we
explain in [5], the number θmax(K) can be used as tool for measuring the degree
of pointedness of the cone K. We will come back to this point later in Section 5.

Definition 1. Let K ∈ Ξ(Rd). One says that (u, v) ∈ Rd×Rd is an antipodal
pair of K if u, v ∈ K ∩ Sd and arccos〈u, v〉 = θmax(K).

So, antipodality is a matter of achieving the maximal angle of the cone. Observe
that (1) is a nonconvex optimization problem, and so is the equivalent problem

cos[θmax(K)] = inf
u,v∈K∩Sd

〈u, v〉. (2)

A first-order necessary condition for antipodality is recalled in the next theorem.
The notation

K+ = {y ∈ Rd : 〈y, x〉 ≥ 0 ∀x ∈ K}
stands for the dual cone of K.

Theorem 1. If (u, v) is an antipodal pair of K ∈ Ξ(Rd), then

u, v ∈ K ∩ Sd, v − 〈u, v〉u ∈ K+, u− 〈u, v〉v ∈ K+. (3)

Proof. This result is obtained by writing the Karush-Kuhn-Tucker optimality
conditions for the problem (2). Only the constraints ‖u‖ = 1, ‖v‖ = 1 are dual-
ized and therefore one considers the Lagrangian function L : Rd×Rd×R×R→ R
given by

L(u, v, λ1, λ2) = 〈u, v〉 −
λ1
2

(

‖u‖2 − 1
)

− λ2
2

(

‖u‖2 − 1
)

.

After working out the variational inequality
〈

∇uL(u, v, λ1, λ2), u′ − u
〉

+
〈

∇vL(u, v, λ1, λ2), v′ − v
〉

≥ 0 ∀u′, v′ ∈ K,

and getting rid of the Lagrange multipliers λ1, λ2 ∈ R, one ends up with the
system (3). The details can be consulted in [4]. ut

Due to the lack of convexity in (2), the stationarity condition (3) is necessary for
antipodality, but not sufficient. The following definition captures the idea that
a cone may admit critical pairs that are not antipodal.

Definition 2. By a critical pair of K ∈ Ξ(Rd) we understand any pair (u, v)
of vectors satisfying the stationarity condition (3). The angle

θ(u, v) = arccos〈u, v〉

formed by a critical pair is called a critical angle. The adjective proper is
added when u and v are not collinear, that is to say, |〈u, v〉| 6= 1. The set
of all proper critical angles of K, denoted by Ω(K), is called the angular
spectrum of K.
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The purpose of our work is exploring in detail the concept of criticality (or sta-
tionarity) as defined above. The reason for doing so is that the angular spectrum
of a cone provides a very useful information on the geometric structure of the
cone itself. To the best of our knowledge, this kind of angular analysis has not
been undertaken before.

The paper is organized as follows. In Section 2 we state the basic ingredients
of the theory of critical angles. Except for Propositions 2 and 3, this long section
is entirely new. Special attention is paid to the relationship existing between the
critical angles of a cone and those of its dual cone. Section 3 is devoted to the
angular analysis of elliptic cones. This is a nontrivial class of convex cones for
which it is possible to compute explicitly the full set of critical angles. A different
class of convex cones is considered in Section 4. In this section the objects under
discussion are polyhedral cones. From an angular point of view, polyhedral cones
don’t behave as nicely as elliptic cones, but they do enjoy a series of noteworthy
properties.

2. Critical angles and duality

2.1. Preliminary results

The next proposition can be proven in a straightforward manner, but it deserves
to be recorded properly. The notation

Mu,v = {(α, β) ∈ R2 : α+ β〈u, v〉 ≥ 0, α〈u, v〉+ β ≥ 0}

is introduced for convenience.

Proposition 1. Suppose that u, v ∈ K ∩ SH are not collinear. Then, the
following three conditions are equivalent:

(a) (u, v) is a critical pair of K,
(b) (γ − δ〈u, v〉)u+ (δ − γ〈u, v〉)v ∈ K+ ∀γ, δ ≥ 0,
(c) αu+ βv ∈ K+ ∀(α, β) ∈Mu,v.

In particular, if (u, v) is critical pair of K, then the sum u+ v is in K+.

Proof. This is essentially a matter of solving the linear system

γ − δ〈u, v〉 = α

δ − γ〈u, v〉 = β

and recalling the definition of a critical pair. The invertibility of such system
is guaranteed by the non-collinearity assumption. For the second part of the
proposition, it is enough to observe that (1, 1) ∈Mu,v. ut

The relative interior of K, denoted by ri(K), is not the right place for finding
the components of a proper critical pair. They are to be found in the relative
boundary of K, which is defined as the set difference K\ri(K) (cf. [7]).
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Proposition 2. If (u, v) is a proper critical pair of K ∈ Ξ(Rd), then u and
v belong to the relative boundary of K.

Proof. This result has been established already in [4], but we give here a shorter
proof. We show that if either u or v belong to the relative interior of K, then
the critical pair (u, v) fails to be proper. Assume, for instance, that u ∈ ri(K).
Hence, there exists an ε > 0 such that

u+ εz ∈ K ∀z ∈ Bd ∩ span(K),

where Bd denotes the closed unit ball in Rd. If one sets λ = 〈u, v〉, then

0 ≤ 〈u+ εz, v − λu〉 = 〈u, v〉 − λ+ ε〈z, v − λu〉 = ε〈z, v − λu〉. (4)

If λu = v, then (u, v) isn’t proper and we are done. Assume then that λu 6= v.
Since λu − v belongs to span(K), we can take z = ‖λu − v‖−1(λu − v) in (4),
getting 0 ≤ −ε‖v − λu‖, which implies that v = λu, a contradiction with our
last assumption. A similar argument applies if we assume that v ∈ ri(K). ut

Proposition 3. If (u, v) is a proper critical pair of K ∈ Ξ(Rd), then the
vectors v − 〈u, v〉u and u− 〈u, v〉v are in the relative boundary of K+.

This result was stated in [4]. It can be proven in a straightforward manner by
combining Proposition 2 and the next duality theorem.

2.2. Duality

If K belongs to Ξ(Rd), then so does the dual cone K+. The following result is
at the core of the forthcoming discussion.

Theorem 2. If (u, v) is a proper critical pair of K ∈ Ξ(Rd), then the vectors

y =
u− 〈u, v〉v
√

1− 〈u, v〉2
, z =

v − 〈u, v〉u
√

1− 〈u, v〉2
(5)

form a proper critical pair of K+.

Proof. One can check that y, z ∈ K+ are unit vectors satisfying 〈y, z〉 = −〈u, v〉.
Hence y and z are not collinear. Observe that the vectors

y − 〈y, z〉z =
√

1− 〈u, v〉2 u , z − 〈y, z〉y =
√

1− 〈u, v〉2 v

belong to K. It follows that (y, z) is a proper critical pair of K+. ut

The proof of Theorem 2 is quite simple, but some thinking was needed before
recognizing the expressions (5) as being of particular interest. A striking feature
of the relations (5) is that they can be inverted in order to produce

u =
y − 〈y, z〉z
√

1− 〈y, z〉2
, v =

z − 〈y, z〉y
√

1− 〈y, z〉2
.
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This means that we have found a bijection

(u, v) 7→ Φ(u, v) =

(

u− 〈u, v〉v
√

1− 〈u, v〉2
,
v − 〈u, v〉u
√

1− 〈u, v〉2

)

between the proper critical pairs of K and the proper critical pairs of K+. In
fact, Φ is not just a bijection, but also an involution.

Theorem 3. Let K ∈ Ξ(Rd). For θ ∈]0, π[, the following two statements are
equivalent:

(a) θ is a critical angle of K,
(b) π − θ is a critical angle of K+.

Proof. Let θ ∈]0, π[ be a critical angle of K formed with the pair (u, v) and let
λ = 〈u, v〉. By Theorem 2, we know that the vectors

u− λv√
1− λ2

,
v − λu√
1− λ2

form a proper critical pair of K+. These vectors produce the angle

arccos 〈 u− λv√
1− λ2

,
v − λu√
1− λ2

〉 = arccos

[

λ3 − λ
1− λ2

]

= arccos(−λ) = arccos(− cos θ) = π − θ.

We have shown in this way that (a) implies (b). The reverse implication follows
by applying the same argument starting from K+. ut

As a by-product of the Theorem 3, we see that the angular spectra Ω(K) and
Ω(K+) have the same cardinality. In fact,

Ω(K+) = {π − θ : θ ∈ Ω(K)}.

For a better understanding of the next corollary, it is helpful to keep in mind
the general relationship

θmax(K) + θmax(K
+) ≥ π ∀K ∈ Ξ(Rd). (6)

This inequality was established in [5] by using a rather cumbersome argument,
but, in fact, it is implicit in the proof of Theorem 3.

Corollary 1. For any K ∈ Ξ(Rd), one has

Ω(K) ⊂ [π − θmax(K+), θmax(K)]. (7)

Furthermore,

(a) θmax(K) is in Ω(K) iff K is pointed and not a ray,
(b) π − θmax(K+) is in Ω(K) iff K is solid and not a half-space.

Proof. It is a matter of exploiting Theorem 3 and the general inequality (6).
Everything is more or less straightforward, so the details are omitted. ut
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2.3. Purity

Besides the angle 0 (which is an improper critical angle) and the maximal angle
θmax(K) (which may be proper or not), the cone K may posses other critical
angles. As a general rule, cones with few critical angles have a simpler geometric
structure.

Definition 3. A cone K ∈ Ξ(Rd) is declared pure if Ω(K) contains at most
one element, namely, the maximal angle θmax(K).

The question of characterizing the purity of a cone can be answered in an elegant
manner with the help of the following theorem.

Theorem 4. Let K ∈ Ξ(Rd) be solid and pointed. Satisfying the equality

θmax(K) + θmax(K
+) = π (8)

is necessary and sufficient for K to be pure.

Proof. If the reflection law (8) holds, then the interval [π−θmax(K+), θmax(K)]
reduces to a singleton, and therefore K is pure. Conversely, suppose that K is
pure. Since K is assumed to be solid and pointed, π − θmax(K+) and θmax(K)
are both in Ω(K). Since Ω(K) contains exactly one element, one necessarily has
has π − θmax(K+) = θmax(K). ut

If the cone fails to be pointed or solid, then the reflection law (8) is sufficient for
purity but it is no longer necessary. To see this, just consider a two-dimensional
subspace in R4.

Corollary 2. Examples of cones that are pure include:

(a) every linear subspace,
(b) every half-space,
(c) every revolution cone,
(d) every self-dual cone.

Proof. The first case can be handled directly and offers no difficulty. The last
three cases correspond to cones satisfying the reflection law (8). ut

We mention that both the nonnegative orthant and the cone of symmetric pos-
itive semidefinite matrices are self-dual, hence pure.

Remark 1. Denote by Cd the cone of symmetric copositive matrices of size d×d.
As pointed out by one of the referees, this cone deserves some attention because
of its extensive use in mathematical programming (see [1],[2], and the references
therein). Contrarily to the case of the cone of positive semidefinite matrices, Cd is
not self-dual, and even worst it does not satisfy the reflection law (8). In addition
to its maximal angle, the cone Cd exhibits then other critical angles that could
be interesting to identify. By applying Corollary 1(b) one can show that π/2 is a
proper critical angle of Cd, and also that it is the smallest one. Indeed, the dual
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cone C+d , which is formed by the so-called completely nonnegative matrices, has
a maximal angle equal to π/2. By-the-way, for seeing that the reflection law is
being violated, note that Cd has a maximal angle which is strictly greater than
π/2. Indeed, the copositive matrices

X =
1

2

[

1 −1
−1 1

]

, Y =

√
2

2

[

0 1
1 0

]

,

have unit length and arccos〈X,Y 〉 = arccos(−
√
2/2) = 3π/4 > π/2. For nota-

tional simplicity we are working with 2× 2 matrices but the same example can
be extended to matrices of higher size.

3. Angular spectra of elliptic cones

In this section we compute the angular spectrum of a nondegenerate elliptic
cone. By this term we understand a closed convex cone of the form

E(A) = {(x, r) ∈ Rn × R :
√
xtAx ≤ r}, (9)

with A ∈ Rn×n being a symmetric positive definite matrix. The inner product
in Rn × R is the usual one, to wit

〈(x, r), (y, s)〉 = xty + rs.

It is not difficult to check that E(A) is pointed and solid. It has been proved
elsewhere [3] that

[E(A)]+ = E(A−1). (10)

We will also use the following lemma, surely well known, whose proof we omit
since the result follows easily by applying a standard spectral decomposition
technique.

Lemma 1. Let A ∈ Rn×n be symmetric and positive definite. If x ∈ Rn is
a nonzero vector such that

(xtAx)(xtA−1x) ≤ ‖x‖4, (11)

then x is an eigenvector of A.

We now are ready to present our result on elliptic cones. As shown in the next
theorem, computing a critical angle of the elliptic cone E(A) is essentially the
same job as computing an eigenvalue of the matrix A. Critical pairs of E(A) are
constructed from the eigenvectors of A.

Theorem 5. Let A ∈ Rn×n be symmetric and positive definite. The vec-
tors (x, r) and (y, s) form a proper critical pair of E(A) if and only if the
following three conditions hold:

(a) y = −x,
(b) s = r =

√

1− ‖x‖2 =
√
xtAx,
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(c) x is an eigenvector of A.

In this case, the corresponding critical angle takes the value

θ = arccos

(

µ− 1

µ+ 1

)

, (12)

where µ is the eigenvalue of A associated to x.

Proof. Suppose that (a)–(c) are in force. Clearly u = (x, r) and v = (y, s) are
unit vectors belonging to E(A). Let λ = 〈u, v〉. We shall prove that

u− λv ∈ bd[E(A)]+ and v − λu ∈ bd[E(A)]+ . (13)

To avoid repetitions, we work out only the first condition in (13). Due to the
general identity (10), such condition takes the equivalent form

(1 + λ)
√
xtA−1x = (1− λ)r. (14)

Recall that x is assumed to be an eigenvector of A. Denote by µ the associated
eigenvalue. It follows that

√
xtA−1x = µ−1/2‖x‖ , r =

√
xtAx =

√
µ‖x‖.

After a short simplification, the equality (14) becomes

(1 + λ) = µ(1− λ). (15)

Since λ = −‖x‖2+r2 = 1−2‖x‖2, one has 1+λ = 2(1−‖x‖2) and 1−λ = 2‖x‖2.
But

1 = ‖x‖2 + r2 = ‖x‖2 + xtAx = ‖x‖2 + µ‖x‖2 = (1 + µ)‖x‖2,

so that ‖x‖2 = (1+µ)−1. One gets finally 1+λ = 2µ/(1+µ) and 1−λ = 2/(1+µ),
confirming in this way the validity of (15). The conclusion is that (u, v) is a
critical pair of E(A). Observe, incidentally, that (15) gives the formula (12) as
by-product.

We now prove the “only if” part. We assume that (x, r) and (y, s) form a
critical pair of E(A), and we must check that (a)–(c) hold. Let λ = 〈(x, r), (y, s)〉.
By criticality, we have

(x, r)− λ(y, s) ∈ [E(A)]+, (16)

(y, s)− λ(x, r) ∈ [E(A)]+. (17)

Note that, by definition of E(A), both (−x, r) and (−y, s) also belong to E(A).
Multiplying the left hand side of (16) by (−x, r), one gets

0 ≤
〈

(−x, r), (x, r)− λ(y, s)
〉

= −‖x‖2 + r2 − λ(−xty + rs)

Plugging λ = xty + rs and rearranging, one obtains

0 ≤ r2(1− s2)− ‖x‖2 + (xty)2. (18)
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Recall that (x, r) and (y, s) are vectors of unit length, that is to say,

‖x‖2 + r2 = 1, ‖y‖2 + s2 = 1. (19)

The combination of (18) and (19) produces

0 ≤ (1− ‖x‖2)‖y‖2 − ‖x‖2 + (xty)2,

that is to say
‖x‖2 − ‖y‖2 ≤ (xty)2 − ‖x‖2‖y‖2. (20)

By the same token, multiplying the left hand side of (17) by (−y, s), one arrives
at

‖y‖2 − ‖x‖2 ≤ (xty)2 − ‖x‖2‖y‖2. (21)

By combining (20), (21) and Cauchy- Schwarz inequality, one gets

0 = ‖x‖2 − ‖y‖2 = (xty)2 − ‖x‖2‖y‖2.

Hence, y = ±x and r = s. The case y = x must be ruled out because we are
assuming properness of the critical pair {(x, r), (y, s)}. We conclude that y = −x,
establishing (a). The first equality in (b) has also been proved. The second one
is contained in (19), and the third one follows from the fact that (x, r) lies in
the boundary of E(A). Next we prove (c). From (16), and the fact that y = −x,
r = s, and ‖x‖2 + s2 = 1, we get, as in the proof of the “if” part,

(1 + λ)
√
xtA−1x ≤ (1− λ)r = (1− λ)

√

1− ‖x‖2. (22)

As before, we get 1 + λ = 2(1− ‖x‖2), 1− λ = 2‖x‖2, so that (22) becomes

4(1− ‖x‖2)2(xtA−1x) ≤ 4‖x‖4(1− ‖x‖2).

Since 1 − ‖x‖2 = r2 = xtAx > 0, one arrives at (xtAx)(xtA−1x) ≤ ‖x‖4. We
invoke now Lemma 1 to conclude that x is an eigenvector of A. ut

We have learned from Theorem 5 how to compute explicitly the angular spectrum
of an elliptic cone. It is interesting to observe that the angular spectrum of an
elliptic cones in Rn × R has at most n elements. This upper bound is attained,
of course, by choosing a matrix A whose eigenvalues are all different.

4. Angular spectra of polyhedral cones

4.1. Preliminary results

We now look at the particular case of a polyhedral cone, that is to say, a set
which can be expressed as the intersection of a finite collection of half-spaces.
Recall that a polyhedral cone can always be represented in the form

K = cone{g1, · · · , gp} =
{

p
∑

i=1

xig
i : x ∈ Rp+

}

. (23)
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Following a standard practice, we say that {g1, · · · , gp} ⊂ Rd is a set of genera-
tors forK. There is no loss of generality in assuming that all generators have unit
length and that no generator is a positive linear combination of the remaining
ones.

Is the angular spectrum of a polyhedral cone necessarily discrete, or, on the
contrary, is it possible to find a whole interval of critical angles? The answer to
this question agrees with our geometric intuition:

Proposition 4. The angular spectrum Ω(K) of a polyhedral cone K ⊂ Rd
is finite.

Proposition 4 has been established in our previous work [4], so we don’t need
to write here a proof. What we shall do instead is going far beyond this rough
description of the angular spectrum of a polyhedral cone. In fact, saying that the
angular spectrum is finite doesn’t provide any relevant indication on its actual
size. How does the cardinality of Ω(K) depend on the number p of generators of
the cone K, or on the dimension d of the underlying Euclidean space? Answering
to these questions is not a trivial matter. In order to obtain sharp bounds for
the cardinality of the angular spectrum, we need first to prepare the ground by
establishing a few preliminary results, some of them having an interest by their
own.

To start with, we will rewrite the stationarity condition (3) in a more explicit
way for the case of polyhedral cones. We will use the Gramian matrixM ∈ Rp×p
associated to K, whose entries are defined as Mij = 〈gi, gj〉 (1 ≤ i, j ≤ p).

Proposition 5. Let K ⊂ Rd be a polyhedral cone with generators g1, . . . , gp

and M the associated Gramian matrix. A pair (u, v) ∈ Rd × Rd is critical
if and only if there exist x, y ∈ Rp such that

u =

p
∑

i=1

xig
i, v =

p
∑

i=1

yig
i, (24)

and the following relations hold:

Mx− (xtMy)My ≥ 0, (25)

My − (xtMy)Mx ≥ 0, (26)

xtMx = 1, (27)

ytMy = 1, (28)

x ≥ 0, y ≥ 0, (29)

yi
[

Mx− (xtMy)My
]

i
= 0 (1 ≤ i ≤ p), (30)

xi
[

My − (xtMy)Mx
]

i
= 0 (1 ≤ i ≤ p). (31)
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Proof. Observe that the dual cone of (23) is given by

K+ = {z ∈ Rd : 〈g1, z〉 ≥ 0, . . . , 〈gp, z〉 ≥ 0},

so the criticality conditions u − 〈u, v〉v ∈ K+ and v − 〈u, v〉u ∈ K+ can be
rewritten as

〈gi, u〉 − 〈u, v〉〈gi, v〉 ≥ 0 (1 ≤ i ≤ p), (32)

〈gi, v〉 − 〈u, v〉〈gi, u〉 ≥ 0 (1 ≤ i ≤ p). (33)

If we replace now (24) in (32) and (33), taking into account the definition of
the Gramian matrix M , we obtain precisely (25) and (26). Now we look at the
remaining condition in the definition of a critical pair, i.e. u, v ∈ K ∩ Sd. In
view of (24), the fact that u, v belong to K is equivalent to (29), while the
fact that u, v belong to Sd is equivalent to (27)-(28). Regarding (30) and (31),
which are indeed the complementarity conditions associated with the problem
of minimizing 〈u, v〉 subject to u, v ∈ K ∩ Sd when we write u, v in terms of x, y
using (24), for this particular optimization problem they are a consequence of
the remaining conditions (25)–(29), as we show next. Note that

p
∑

i=1

yi
[

Mx− (xtMy)My
]

i
= ytMx− (xtMy)ytMy = ytMx−xtMy = 0, (34)

using (28) in the second equality and symmetry ofM in the third one. In view of
(25), (29), each term in the leftmost expression of (34) is nonnegative. Since their
sum is 0, all of them vanish, i.e. (30) holds. For (31) we use a similar argument,
with (27) and (26) instead of (28) and (25). ut

Remark 2. Observe that in the notation of Proposition 5, the critical angle
associated to the critical pair (u, v) is equal to arccos(xtMy).

As it is customary in complementarity theory, we can use the complementarity
conditions (30), (31) to transform some of the inequalities in (25), (26) into
equalities, by identifying the appropriate sets of indices. We proceed to do so.
For a vector x ∈ Rp, let I(x) = {i : xi 6= 0}.

Corollary 3. Under the assumptions of Proposition 5 the following rela-
tions hold

(Mx)i − (xtMy)(My)i = 0 (i ∈ I(y)), (35)

(My)i − (xtMy)(Mx)i = 0 (i ∈ I(x)). (36)

Proof. These equations follow directly from (30), (31). ut

Now we state one of the main results of this section. Theorem 6 will be com-
mented in detail after its proof has been completed.

Theorem 6. Given a polyhedral cone K with generators g1, . . . , gp, for each
pair of nonempty sets J, L ⊂ {1, . . . , p}, there exists at most one proper
critical angle formed by a pair (u, v), written in terms of vectors x, y ∈ Rp+
through (24), such that I(x) = J, I(y) = L.
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Proof. Let M be the Gramian matrix of K. Take nonempty subsets J, L of
{1, . . . , p}. Assume that q, r are the cardinality of J, L respectively. Define the
matrices A ∈ Rq×q, B ∈ Rr×r and C ∈ Rq×r as follows: the entries of A are the
entries Mik of M with i, k ∈ J , the entries of B are the entries Mik of M with
i, k ∈ L, and the entries of C are the entriesMik ofM with i ∈ J and k ∈ L. Now
consider two proper critical pairs (u, v), (u′, v′) of K with the following property:

u =

p
∑

i=1

xig
i, v =

p
∑

i=1

yig
i, u′ =

p
∑

i=1

x′ig
i, v′ =

p
∑

i=1

y′ig
i,

where both (x, y) and (x′, y′) satisfy (25)–(29), (35), (36), and

I(x) = I(x′) = J, I(y) = I(y′) = L. (37)

We must prove that 〈u, v〉 = 〈u′, v′〉, or equivalently that xtMy = (x′)tMy′. Let
ξ, ξ′ ∈ Rq be the vectors containing the nonnull components of x, x′ respectively,
and η, η′ ∈ Rr be the vectors containing the nonnull components of y, y′ respec-
tively. Since x, y, x′, y′ are nonnegative by (29), the vectors ξ, η, ξ′, η′ are strictly
positive, i.e.

ξ′ ∈ int(Rq+), η′ ∈ int(Rr+). (38)

Let σ = xtMy, σ′ = (x′)tMy′. We will rewrite (35), (36), (25) and (26) in terms
of A,B,C, ξ, η, ξ′, η′, σ and σ′. In the case of (35) and (36), this rewriting leads
to:

Ctξ = σBη, (39)

Cη = σAξ, (40)

Ctξ′ = σ′Bη′, (41)

Cη′ = σ′Aξ′. (42)

These equations result from (37) and the facts that xi = ξi, x
′
i = ξ′i for i ∈ J ,

xi = x′i = 0 for i /∈ J , yi = ηi, y
′
i = η′i for i ∈ L and yi = y′i = 0 for

i /∈ L. Now we look at (25) and (26). We consider them component-wise, i.e.
as (Mx)i ≥ σ(My)i, (My)i ≥ σ(Mx)i. They hold for all i ∈ {1, . . . , p}, but we
will be concerned only with indices i ∈ J for the first system of inequalities and
i ∈ L for the second one. The resulting inequalities are:

Aξ ≥ σCη, (43)

Bη ≥ σCtξ, (44)

Now we premultiply (39) by η′, (40) by ξ′, (41) by η and (42) by ξ, obtaining

(η′)tCtξ = σ(η′)tBη, (45)

(ξ′)tCη = σ(ξ′)tAξ, (46)

ηtCtξ′ = σ′ηtBη′, (47)

ξtCη′ = σ′ξtAξ′. (48)
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Adding (45) to (46), and then subtracting (47) and (48), we get, in view of the
symmetry of A, B,

0 = (σ − σ′)(ξtAξ′ + ηtBη′). (49)

Assume now that σ 6= σ′. We show next that this assumption leads to a contra-
diction. By (49), we have

0 = ξtAξ′ + ηtBη′. (50)

Replace (40) in (43), and (39) in (44), and get Aξ ≥ σ2Aξ, Bη ≥ σ2Bη, or
equivalently (1 − σ2)Aξ ≥ 0, (1 − σ2)Bη ≥ 0. Remember now that σ = 〈u, v〉.
Since ‖u‖ = ‖v‖ = 1, we have σ ∈ [−1, 1]. Properness of the pair (u, v) excludes
the case σ = ±1. Thus, 1− σ2 > 0, and we conclude that Aξ ≥ 0, Bη ≥ 0. Due
to (38), we get from (50) that Aξ = 0, Bη = 0. Premultiplication of the first of
these systems by ξ produces the obvious contradiction

0 = ξtAξ = xtMx = 1,

using (27) in the rightmost equality. Thus, σ = σ′, i.e. 〈u, v〉 = 〈u′, v′〉. ut

We make now a few remarks on Theorem 6. We need some additional notation.
Given a polyhedral cone K with generators {g1, . . . , gp} and a nonempty set
I ⊂ {1, . . . , p}, we define

K◦I =
{
∑

i∈I

xig
i : xi > 0, ∀ i ∈ I

}

.

For convenience, we will use the term configuration for referring to a pair (J, L)
of nonempty subsets of the set of indices of the generators of the given polyhedral
cone K.

We emphasize first that the expressions of u, v in terms of the generators,
as given in (24) are not unique, so that different configurations (J, L) can be
associated to the same critical pair (u, v). In other words, a vector z ∈ K can
belong to K◦I for several choices of the set of indices I. In such a case, it is
clear that the result of Proposition 5 for a given critical pair (u, v) holds for all
possible configurations (J, L) such that (u, v) ∈ K◦J ×K◦L.

We observe now that the result of Theorem 6 does not mean that for each
configuration (J, L) there exists at most one critical pair (u, v) with u ∈ K◦J and
v ∈ K◦L; the uniqueness refers to the value of 〈u, v〉, not the vectors which realize
the critical pair.

In this respect, it is useful to consider the coneK = Rd+, whose generators can
be taken as the canonical vectors ei ∈ Rd (1 ≤ i ≤ d). Since obviously 〈u, v〉 ≥ 0
for all u, v ∈ K, the maximal angle is π/2, and hence any orthogonal pair of unit
vectors in K is critical, because they achieve the maximal angle. Take now any
configuration (J, L) with J∩L = ∅. Clearly, any pair (u, v) ∈ (K◦J∩Sd)×(K◦L∩Sd)
is orthogonal, hence critical, with angle π/2. It follows from Theorem 6 that
the angle associated to any disjoint pair (J, L) is π/2, but whenever either J
or L has cardinality at least 2 such angle is achieved by an infinity of pairs
(u, v) associated to the configuration (J, L) (parenthetically, we mention that Rd+,
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being self-dual, is pure, in view of Corollary 2, so that π/2 is indeed its unique
critical angle). We conjecture, nonetheless, that multiplicity of pairs associated
to a given configuration with the same critical angle only can occur when the
critical angle is a right one, or, in other words, that given a configuration (J, L)
with an associated critical angle different from π/2, there exists only one critical
pair (u, v) ∈ K◦J ×K◦L.

4.2. Cardinality estimates for angular spectra

Theorem 6 gives a first upper bound for the cardinality of the angular spectrum
of a polyhedral cone with p generators, namely 2p−1(2p−1), which is the number
of non-ordered pairs of nonempty subsets of {1, . . . , p}. Perhaps a more elaborate
explanation on the number 2p−1(2p−1) is welcome. Notice that a nonempty set of
{1, . . . , p} can be formed in 2p−1 different ways. Hence, there are (2p−1)×(2p−1)
ways of forming a configuration (J, L). However, once a configuration (J, L) has
been counted, it is unnecessary to count the symmetric configuration (L, J)
because it produces the same critical angle. Geometrically speaking, exchanging
the order of J and L corresponds to exchanging the order of u and v. By dropping
the superfluous configurations, one passes from (2p−1)× (2p−1) to the sharper
upper bound 2p−1(2p − 1). We will improve upon the later upper bound in the
sequel.

A configuration (J, L) will be said to be successful if there exists a proper
critical pair (u, v) inK◦J×K◦L. One could think that for a successful configuration
(J, L) it holds that J ∩ L = ∅. Albeit intuitive, this turns out to be false, as the
following example show.

Example 1. Fix α ∈]0, 1[ and take a cone K ⊂ R3 with generators g1 = (0, 0, 1),
g2 = (

√
1− α2, 0,−α) and g3 = (0,

√
1− α2,−α). The Gramian matrix is given

by

M =

[ 1 −α −α
−α 1 α2

−α α2 1

]

Consider the vectors u = (1, 0, 0), v = (0, 1, 0), which can be written in terms of
g1, g2 and g3, according to (24), with coefficients x = (1− α2)−1/2 (α, 1, 0) and
y = (1−α2)−1/2 (α, 0, 1) respectively. Note that u ∈ K◦J , v ∈ K◦L with J = {1, 2},
L = {1, 3}. It is easy to check that u, v are unit vectors, xtMy = 〈u, v〉 = 0, and

Mx =
√

1− α2 (0, 1, 0) ≥ 0, My =
√

1− α2 (0, 0, 1) ≥ 0,

in which case (25)–(29) hold. Since (30) and (31) are a consequence of (25)–
(29), it follows from Proposition 5 that (u, v) is critical, despite the fact that
J ∩ L = {1} 6= ∅.

Nevertheless the case of a successful configuration with J∩L 6= ∅ is somewhat
special. Note that in the previous example we have 〈u, v〉 = 0, and also 〈g1, u〉 =
〈g1, v〉 = 0. The first equality is specific of this example (one could get 〈u, v〉 6= 0
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by a suitable perturbation of u, v), but the remaining two are general for the
situation J ∩ L 6= ∅, as the following proposition shows.

Proposition 6. Consider a configuration (J, L) and let (u, v) ∈ K◦J × K◦L
be a proper critical pair of a polyhedral cone K with generators g1, . . . , gp.
Then,

i) 〈gi, u〉 ≥ 0 for all i ∈ J and 〈gi, v〉 ≥ 0 for all i ∈ L,
ii) 〈gi, u〉 = 〈gi, v〉 = 0 for all i ∈ J ∩ L.

Proof. Item (i) has been almost established along the proof of Theorem 6. We
repeat the argument: write u, v as in (24), so that I(x) = J , I(y) = L, and apply
Proposition 5 and Corollary 3. From (25) and (36), we get

(Mx)i ≥ (xtMy)2(Mx)i ∀ i ∈ J.

Since xtMy = 〈u, v〉 belongs to ]− 1, 1[ because (u, v) is proper, we get

〈gi, u〉 = (Mx)i ≥ 0 ∀ i ∈ J,

using (24) and the definition of the Gramian matrixM in the equality. A similar
argument starting from (26) and (35) establishes that

〈gi, v〉 = (My)i ≥ 0 ∀ i ∈ L.

For (ii), we use in an analogous way (35) and (36): take i ∈ J ∩L = I(x)∩ I(y),
so that both (35) and (36) hold for this index i. We get from these equations

(Mx)i = (xtMy)2(Mx)i,

(My)i = (xtMy)2(My)i,

and hence, since (xtMy)2 6= 1, we conclude that 〈gi, u〉 = (Mx)i = 0 = (My)i =
〈gi, v〉. ut

Proposition 6 has four interesting corollaries.

Corollary 4. Let K be a polyhedral cone with p generators, and (J, L) a
configuration. If (u, v) ∈ K◦J × K◦L is a proper critical pair, then neither
J ⊂ L nor L ⊂ J.

Proof. Assume that J ⊂ L, so that J = J ∩ L. Write u, v as in (24), with
I(x) = J , I(y) = L. By Proposition 6(ii), we have (Mx)i = 0 for all i ∈ J . Since
xi = 0 for i /∈ J we get, using (27), 0 = xtMx = 1, a contradiction. A similar
contradiction is arrived at if one assumes that L ⊂ J . ut

Corollary 5. The cardinality of the angular spectrum Ω(K) of a polyhedral
cone K with p generators is less than or equal to the integer

sp = 2p−1(2p + 1)− 3p.
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Proof. The result follows from Theorem 6 and Corollary 4: the number of proper
critical angles cannot exceed the number of non-ordered pairs of subsets J, L of
{1, . . . , p} such that neither J contains L nor L contains J . Such number is the
difference between the number of all non-ordered pairs of nonempty subsets,
namely 2p−1(2p− 1), and the number of pairs where one of the subsets contains
the remaining one, namely 3p − 2p. ut

A closed and convex cone K ⊂ Rd is said to be acute if 〈u, v〉 ≥ 0 for all
u, v ∈ K. A polyhedral cone K with generators g1, . . . , gp is acute if and only
if 〈gi, gj〉 ≥ 0 (1 ≤ i, j ≤ p), i.e. if all entries of the Gramian matrix M are
nonnegative. The following result shows that the presence of negative entries in
the Gramian matrix of the cone in Example 1 above was unavoidable.

Corollary 6. Let K be an acute polyhedral cone with p generators, and
(J, L) a configuration. If (u, v) ∈ K◦J × K◦L is a proper critical pair, then
J ∩ L = ∅.

Proof. Write u, v as in (24), with I(x) = J , I(y) = L. Assume that J ∩ L 6= ∅.
Take any i ∈ J ∩ L. By Proposition 6(ii), one has

0 = 〈gi, u〉 = (Mx)i =
∑

j∈J

Mijxj .

Since xj > 0 for j ∈ J and the entries of M are nonnegative by acuteness of K,
we get that 0 = Mij = 〈gi, gj〉 for all i ∈ J ∩ L and all j ∈ J . In particular, we
can take j = i, in which case we have 0 = Mii = ‖gi‖2, contradicting the fact
that gi is a unit vector. ut

Corollary 7. The cardinality of the angular spectrum Ω(K) of an acute
polyhedral cone K ⊂ Rd with p generators is bounded above by the integer

rp =
1

2
(3p + 1)− 2p.

Proof. The result follows from Theorem 6 and Corollary 6, because rp is the
cardinality of the family of non-ordered pairs of nonempty and pairwise disjoint
subsets of {1, . . . , p}. ut

4.3. Cardinality versus dimensionality

The upper bounds obtained up to now for the cardinality of Ω(K) can be im-
proved through the use of dimensional arguments, which provide bounds on the
cardinality of the sets J, L in a successful configuration. The first observation
arises from the known result that any point in a closed convex cone contained
in Rn can be written as a positive combination of points belonging to up to n
linearly independent extreme rays. Without loss of generality, one may take as
n the dimension of the vector subspace spanned by K, which becomes thus an
upper bound on the cardinality of J, L. Furthermore, such upper bound can be
reduced by one unit, as a consequence of Proposition 2. The next proposition
provides the details for this estimate.
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Proposition 7. Let K ⊂ Rd be a polyhedral cone with p generators, and n
the dimension of the linear subspace spanned by K. If (u, v) is a proper
critical pair of K, then there exist subsets J, L of {1, . . . , p} of cardinality
less than or equal to n− 1 such that (u, v) ∈ K◦J ×K◦L.

Proof. Recall that we are assuming that no generator of K is a positive combi-
nation of the remaining ones. The cone version of Caratheodory’s Theorem [8,
Section 1.6] implies that each point in K can be written as a combination of up
to n linearly independent generators of K. Thus, both u and v belong to sets
K◦J , K

◦
L, where the sets {gi : i ∈ J}, {gi : i ∈ L} are linearly independent and

max{card(J), card(L)} ≤ n.

We claim now that this bound can be reduced indeed to n − 1 rather than n.
Assume that u belongs to K◦J with card(J) = n. By using the very definition of
K◦J and the linear independence of {gi : i ∈ J}, one can show that K◦J is the
relative interior of the closed cone with generators {gi : i ∈ J} (consider e.g. the
linear map which takes the generators into the canonical basis of Rn. It is an
homeomorphism and maps K◦J into the strictly positive orthant of Rn, obviously
open relative to Rn). Thus K◦J is open relative to the linear subspace V spanned
by the cone generated by {gi : i ∈ J}. Since V has dimension n, the same as
the linear span of K, in which it is contained, both subspaces coincide, so that
K◦J ⊂ K is open relative to the linear span of K, and hence it is contained in
the relative interior of K. Since u ∈ K◦J , we have that u belongs to the relative
interior of K, which contradicts Proposition 2. It follows that card(J) ≤ n− 1.
The same reasoning applies to L. ut

Corollary 8. The cardinality of the angular spectrum Ω(K) of an acute
polyhedral cone K with p generators is less than or equal to the integer

Φ(p,m) =
1

2

∑

1≤j,`≤m
j+`≤p

p!

j!`!(p− j − `)!
, (51)

where m = dim(span(K))− 1.

Proof. The result follows from Proposition 7, because the announced upper
bound is equal the number of non-ordered pairs of nonempty and pairwise dis-
joint subsets of {1, . . . , p} with cardinality not exceeding m. Indeed,

card[Ω(K)] ≤ 1

2

∑

1≤j,`≤m
j+`≤p

Cpj,` , (52)

with

Cpj,` =

{

number of pairs (J, L) such that J, L ⊂ {1, . . . , p},
card(J) = j, card(L) = `, and J ∩ L = ∅.

In terms of the usual binomial coefficients
(

p
k

)

=
p!

k!(p− k)!
,
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one can write, of course,

Cpj,` =

(

p
j

)(

p− j
`

)

=
p!

j!`!(p− j − `)!
.

Notice, incidentally, that the coefficient 1/2 in (52) takes care of the fact that
the configurations (J, L) and (L, J) produce the same proper critical pair, and
therefore they should be counted only once. ut

A similar refinement is possible for the upper bound given in Corollary 5. Notice
that Φ(p,m) can be decomposed in the form

Φ(p,m) =
∑

1≤j<`≤m
j+`≤p

p!

j!`!(p− j − `)!
+

1

2

∑

1≤j≤m
2j≤p

p!

(j!)2(p− 2j)!
.

For the case of a cone that is not necessarily acute, one has:

Corollary 9. Let K be a polyhedral cone generated by p vectors, and let
m = dim(span(K))− 1. Then, the cardinality of Ω(K) is less than or equal
to

Γ (p,m) =
∑

1≤j<`≤m
j+`≤p

(

p
j

){(

p
`

)

−
(

p− j
`− j

)}

+
1

2

∑

1≤j≤m
2j≤p

(

p
j

){(

p
j

)

− 1

}

.

(53)

Proof. We use again (52), but now

Cpj,` =

{

number of pairs (J, L) such that J, L ⊂ {1, . . . , p},
card(J) = j, card(L) = `, J 6⊂ L and L 6⊂ J.

A simple combinatorial argument does the rest of the job. ut

4.4. Polynomial growth principle

Although the expression Γ (p,m) looks quite involved, it is easy to be evaluated
in practice. From a theoretical point of view, Corollary 9 allows us to derive the
following Polynomial Growth Principle:

Proposition 8. Consider a polyhedral cone K lying in a space of prescribed
dimension, say d. Then, the cardinality of Ω(K) grows at most polynomi-
ally with respect to the number p of generators of K.

Proof. Let us examine more carefully the behavior of Γ (p,m) as function of p.
We consider m as an integer that has been fixed once and for all. In the worst
case, one can take m = d − 1 (because span(K) is at most d-dimensional). For
p large enough, namely p ≥ 2m, the constraints j + k ≤ p and 2j ≤ p in (53)
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are superfluous. It is not difficult to see that the function p 7→ Γ (p,m) is then a
polynomial of degree 2m. The terms of highest degree shows up in

1

2

∑

1≤j≤m

(

p
j

){(

p
j

)

− 1

}

when j = m. After a due simplification, one ends up, for p ≥ 2m, with a
polynomial expansion of the form

Γ (p,m) =
1

2(m!)2
p2m + terms of lower degree.

This expansion and Corollary 9 not only complete the proof of the proposition,
but also provides an additional insight on the growth of the polynomial that
serve to bound the cardinality of Ω(K). ut

Recall that Corollary 7 provides an upper bound that grows exponentially with
respect to p. This deficiency is due to the fact that Corollary 7 neglects the di-
mension of the underlying space. We conjecture, however, that the upper bound
given in Corollary 7 is tight, in the sense that

for any integer p ≥ 2, there exist a dimension d (depending on p) and
an acute polyhedral cone K ⊂ Rd with p generators and rp critical
angles.

Due to the Polynomial Growth Principle, the dimension d cannot be kept fixed,
but, on the contrary, it is forced to grow if p increases. We do have some partial
evidence supporting the above mentioned conjecture. In fact, we have been able
to construct a polyhedral cone with one critical pair for each pair of nonempty
and pairwise disjoint subsets of {1, . . . , p}. The corresponding critical angles,
however, are not pairwise different (in fact the value of the angle depends only
on the cardinality of the subsets), but it seems likely that a careful perturbation
of the generators of this cone produces an acute cone with precisely rp critical
angles. Discussing all the details would lead us too far away from the context
of this journal. These more elaborate combinatorial aspects of our work are still
under investigation and will be reported elsewhere.

Remark 3. We have also some additional results on the upper bounds for the
cardinality of Ω(K) as a function of the number p of generators of K, when the
dimension d is fixed. This cardinality might be unbounded as a function of p.
This is a consequence of the fact that it is possible to construct non-polyhedral
cones with infinite (and even noncountable) angular spectra in any space with
dimension d ≥ 3. The construction procedure, which is quite elaborate and space
consuming, will be presented in a forthcoming technical note.

5. By way of application

As mentioned in Section 1, the term θmax(K) can be used as tool for measuring
the degree of pointedness of the cone K. Recall that an index of pointedness
is a continuous function f : Ξ(Rd)→ R satisfying the following set of axioms:
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1. f(K) = 0 iff K is not pointed,
2. f(K) = 1 iff K is a ray,
3. f(U(K)) = f(K) for any orthonormal matrix U ,
4. K1 ⊂ K2 implies f(K1) ≥ f(K2)

Continuity of f refers to the usual bounded Pompeiu-Hausdorff metric on
Ξ(Rd), to wit

δ(K1,K2) = sup
‖x‖ ≤1

∣

∣dist[x,K1]− dist[x,K2]
∣

∣.

The theory of pointedness indices has been introduced and developed in the
paper [5], although the set Ξ(Rd) is there slightly larger (it includes the trivial
cone {0} and the whole space Rd).

As proven in our work [5], the function f̂ : Ξ(Rd)→ R defined by

f̂(K) = cos
(θmax(K)

2

)

fulfills all the requirements to qualify as an index of pointedness.
We stress the fact that θmax(K) is not the only critical angle of interest. As

explained next, the smallest nonzero proper critical angle plays also a relevant
role in the description of the cone, namely, it can be used as tool for measuring
its degree of solidity.

By an index of solidity we understand a continuous function g : Ξ(Rd)→ R
satisfying the axioms:

1. g(K) = 0 iff K is not solid,
2. g(K) = 1 iff K is a half-space,
3. g(U(K)) = g(K) for any orthonormal matrix U ,
4. K1 ⊂ K2 implies g(K1) ≤ g(K2)

In the last axiom, monotonicity occurs now in the upward sense: the bigger the
cone, the more solid it should be.

A nice example of index of solidity that one may consider is the function
ĝ : Ξ(Rd)→ R given by

ĝ(K) = cos
(θmax(K

+)

2

)

. (54)

What is bothering about the expression (54) is that it involves the dual cone
K+ and not the original cone K itself. However, this problem can be remediated
since it is possible to write ĝ in the equivalent form

ĝ(K) =

{

sin
( θmin(K)

2

)

if K is solid,
0 if K is not solid,

(55)

where the term

θmin(K) = smallest nonzero critical angle of K (56)
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is well defined for any solid cone K (the definition of θmin(·) can be extended to
nonsolid cones as well, but the pathological case of a ray must be settled in a
sui generis way; the natural convention is that θmin(·) vanishes at any ray).

The formulation (55) of ĝ is presented here for the first time. The passage
from the old definition (54) to the new characterization (55) is not straightfor-
ward since it relies on a clever use of Corollary 1.

Remark 4. The concept of angular width involves the functions θmax(·) and
θmin(·) at the same time. By definition, the angular width of a cone K ∈ Ξ(Rd)
is the nonnegative number

aw(K) = θmax(K)− θmin(K).

For instance, the cone Cd has an angular width greater or equal than π/4, i.e,
between the largest and the smallest critical angle of Cd there are at least 450 . By
constrast, the cone of symmetric positive semidefinite matrices has no angular
width. Although both cones yield the same value for θmin(·) (and therefore they
have the same degree of solidity with respect to the index ĝ), they do not have the
same maximal angle (and therefore they have a different measure of pointedness

with respect to f̂).

In classical spectral analysis of symmetric matrices, the largest and smallest
eigenvalues play the leading role. The intermediate eigenvalues are certainly less
relevant but they provide also a piece of information concerning the structure of
the matrix. The same remark applies to the intermediate critical angles, except
that now the computation and analysis of these objects are far more complicated.
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