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Abstract. For a closed Riemannian manifold (Mm, g) of constant positive scalar
curvature and any other closed Riemannian manifold (Nn, h), we show that the
limit of the Yamabe constants of the Riemannian products (M × N, g + rh) as
r goes to infinity is equal to the Yamabe constant of (Mm × Rn, [g + g

E
]) and is

strictly less than the Yamabe invariant of Sm+n provided n ≥ 2. We then consider
the minimum of the Yamabe functional restricted to functions of the second variable
and we compute the limit in terms of the best constants of the Gagliardo-Nirenberg
inequalities.

1. Introduction

Let Mm be a closed smooth manifold of dimension m and denote by [g] the con-
formal class of a Riemannian metric g on M . The Yamabe constant Y (M, [g]) of [g]
is the infimum of the normalized total scalar curvature functional restricted to [g]:

Y (M, [g]) = inf
h∈[g]

∫

M
shdµh

Vol(M,h)
m−2

m

,

where sh is the scalar curvature of h and dµh its volume element. Of course, the
Yamabe constant can be expressed in terms of functions in the Sobolev spaceW 1,2(M)

(by writing h = f
4

m−2 g if f ∈ C∞
+ (M)):

Y (M, [g]) = inf
f∈W1,2(M)

f 6≡0

Qg(f) := inf
f∈W1,2(M)

f 6≡0

∫

M

(

am|∇f |2g + sgf
2
)

dµg

‖f‖2pm

,

where am = 4(m−1)
m−2

and pm = 2m
m−2

.
Functions realizing the infimum are called Yamabe minimizers and the correspond-

ing metrics are called Yamabe metrics (and have constant scalar curvature). They
always exist by a fundamental theorem obtained in several steps by H. Yamabe, N.
Trudinger, T. Aubin and R. Schoen [29, 27, 3, 21]. Then one defines the Yamabe
invariant of M , Y (M), as the supremum of the Yamabe constants of all conformal
classes of metrics on M [22, 12] (cf. [11]). This invariant is always finite since for any
conformal class [g], Y (Mm, [g]) ≤ Y (Sm, [g

Sm ]) = m(m − 1)Vol(Sm, g
Sm )2/m, where

g
Sm is the round metric on Sm of constant sectional curvature 1. We will denote

Ym := Y (Sm) = Y (Sm, [g
Sm ]).
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The nature of the problem of computing or estimating the Yamabe constant of a
conformal class, and therefore the Yamabe invariant of the manifold, depends strongly
on whether the constant is positive or non-positive. If Y (M, [g]) ≤ 0 then Y (M, [g]) ≥
(infM sg)Vol(M, g)

2
m , as was first pointed out by O. Kobayashi in [12]. This allows for

instance to study the behavior of the Yamabe invariant under surgery ([18]) and so to
obtain some understanding of the invariant in the non-positive case; [19, 20, 6]. Such
an estimate does not exist in the positive case. In particular there might exist unit
volume Riemannian metrics on Mm of constant scalar curvature greater than Ym.
A typical example of this situation comes from Riemannian products: if (Mm, g)
and (Nn, h) are unit volume Riemannian manifolds of constant scalar curvature and
sg > 0 then, for small δ > 0, δng+ δ−mh has volume one and scalar curvature greater
than Ym+n. It is the main purpose of this article to study the Yamabe constants of
such Riemannian products.

There is one well understood example in this direction worked out by R. Schoen [22]
and O. Kobayashi [11, 12]: for any r > 0 all solutions of the Yamabe equation on
(Sn−1×S1, g

Sn−1
+ rg

S1
) depend only on the S1-variable and one can understand the

solutions of the resulting ordinary differential equation. Following this lead, we will
consider Riemannian products δng + δ−mh on M × N and look for solutions of the
Yamabe equations which depend only on the second variable.

Let

YN(M ×N, g + h) := inf
f∈W1,2(N)

f 6≡0

Qg+h(f).

One can see that the infimum is realized and that if f is such a minimizer then

f
4

m+n−2 (g + h) has constant scalar curvature (we will go over this on Section 2). We
remark that, contrarily to the Yamabe constant Y (M × N, [g + h]), this constant
YN(M ×N, g + h) is not a conformal invariant, but merely a scale invariant.

Our first result says in particular that the limit of the Yamabe constant of the
products above exists:

Theorem 1.1. Let (Mm, g) be a closed Riemannian m-manifold (m ≥ 2) of positive

scalar curvature (not necessarily constant) and (Nn, h) any closed Riemannian n-
manifold. Then,

lim
rր∞

Y (M ×N, [g + rh]) = Y (M × R
n, [g + g

E
]) := inf

f∈C∞
c (M×Rn)

f 6≡0

Qg+g
E
(f) > 0,

and

lim
rր∞

YN(M ×N, g + rh) = YRn(M × R
n, g + g

E
) := inf

f∈C∞
c (Rn)

f 6≡0

Qg+g
E
(f) > 0,

where, g
E

stands for the Euclidean metric on Rn.

Remark 1.2. The fact that Y (Sn−1 × S1) = Y (Sn) (for n ≥ 3) was first proved by
O. Kobayashi [11] and R. Schoen [22], by analysis of the behavior of constant scalar
curvature metrics on (Rn−{0}, g

E
). Another proof was given by also O. Kobayashi [12],
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by using an argument in the proof of the celebrated Kobayashi’s inequality [12, The-
orem 2]. The above theorem gives the third proof since

Y (Sn−1 × S1) ≥ Y (Sn−1 ×R
1, [g

Sn−1
+ g

E
]) = Y (Sn, [g

Sn ])
(

= Y (Sn)
)

.

On the constant Y (M ×R
n, [g + g

E
]), we also obtain:

Theorem 1.3. Let (Mm, g) be a closed Riemannian m-manifold (m ≥ 2) of positive

scalar curvature (not necessarily constant). Assume that n ≥ 2. Then,

Y (M × R
n, [g + g

E
]) < Ym+n.

Recall that the best n-dimensional Sobolev constant is the smallest positive num-
ber σn such that for any smooth compactly supported function f on Rn, ‖f‖2pn

≤
σn‖∇f‖22. Due to the conformal invariance of the Yamabe constant, one can use the
stereographic projection to translate the Yamabe functional from the round sphere
to the Euclidean space to obtain:

σn =
an

Yn
.

In a similar fashion we will see that when studying the limits above a fundamental
role is played by the best constant in the Gagliardo-Nirenberg inequalities: namely,
we will call σm,n the smallest positive number such that for any f ∈W 1,2(Rn),

‖f‖2pm+n
≤ σm,n ‖∇f‖

2n
m+n

2 ‖f‖
2m

m+n

2 .

Or what is equivalent:

σm,n =



 inf
f∈W1,2(Rn)

f 6≡0

‖∇f‖
2n

m+n

2 ‖f‖
2m

m+n

2

‖f‖2pm+n





−1

.

The constant σm,n is of classical interest in the study of partial differential equations
and has been computed numerically, although it is not known any explicit expression
for the constant or for the minimizing function (which is known to be radial and
decreasing); [8, 9, 17, 13, 16, 28].

We will prove:

Theorem 1.4. Let (Mm, g) be a closed smooth unit volume Riemannian manifold of

constant positive scalar curvature sg. Then

YRn(M × R
n, g + g

E
) =

C(m,n) s
m

m+n
g

σm,n

,

where C(m,n) = (am+n)
n

m+n (m+ n)n
−n

m+nm
−m

m+n .

It is clear that

Y (M × R
n, [g + g

E
]) ≤ YRn(M × R

n, g + g
E
)

and it seems that equality should hold under certain hypothesis. It certainly cannot
always be the case since YRn(M × R

n, g + g
E
) > Ym+n if sg is big enough.
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It is then natural to ask the following

Question: Is it true that YRn(M ×Rn, g+ g
E
) = Y (M ×Rn, [g+ g

E
]) if g is a Yamabe

metric?

As we mentioned before, the constants σm,n can be explicitly computed numeri-
cally. Using these computations, we apply Theorem 1.4 to the case when (M, g) and
(N, h) are round spheres. These are particularly interesting cases because of Schoen
and Kobayashi’s argument mentioned above and because Sn × Sm is obtained by
performing surgery on Sm+n, and therefore if the surgery theorem in [18] were true
in the positive case we should have Y (Sm × Sn) = Ym+n. Set

Y ∞
Sn(Sm × Sn) := lim

rր∞
YSn(Sm × Sn, g

Sm + rg
Sn ) = YRn(Sm ×R

n, g
Sm + g

E
).

We give the corresponding values for all m,n ≥ 2 with m+ n ≤ 9.

m n σ−1
m,n Y ∞

Sn(Sm×Sn) Ym+n

2 2 2.41877 59.40481 61.56239

2 3 3.87947 75.39687 78.99686
3 2 2.11360 78.18644 78.99686

2 4 5.66408 91.68339 96.29728
3 3 3.19925 94.71444 96.29728
4 2 1.90282 95.87367 96.29728

2 5 7.71937 108.1625 113.5272
3 4 4.53960 111.2934 113.5272
4 3 2.75810 112.6214 113.5272
5 2 1.75469 113.2670 113.5272

2 6 10.0021 124.7747 130.7157
3 5 6.10843 127.9414 130.7157
4 4 3.81586 129.3551 130.7157
5 3 2.45567 130.1272 130.7157
6 2 1.64650 130.5398 130.7157

2 7 12.4764 141.4740 147.8778
3 6 7.88171 144.6521 147.8778
4 5 5.06274 146.1089 147.8778
5 4 3.32083 146.9519 147.8778
6 3 2.23778 147.4615 147.8778
7 2 1.56455 147.7507 147.8778

It should be the case that Y ∞
Sn(Sm×Sn) < Yn+m for all values m,n ≥ 2. Hence, this

gives a proof of Theorem 1.3 for (Mm, g) = (Sm, g
Sm), namely that of

Y (Sm ×R
n, [g

Sm + g
E
]) < Ym+n
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when m,n ≥ 2, m+ n ≤ 9. Moreover, the above method gives a numerical estimate
from above for the constant Y (Sm ×Rn, [g

Sm + g
E
]).

Note also that in the 4–dimensional case the Yamabe invariant of CP
2 is realized

by the conformal class of the Fubini-Study metric gFS ([14, 10]), giving

Y (CP
2) = Y (CP, [gFS]) = 12

√
2π = 53.31459 · · ·

and since Einstein metrics are always Yamabe metrics we have that

Y (S2 × S2, [g
S2 + g

S2 ]) = 16π = 50.26548 · · · .
In the next section, we will review some known results on Yamabe constants, point

out a few observations and fix some notation. In Section 3, we will recall Schoen and
Kobayashi’s discussion of the solutions of the Yamabe equation on (Sn−1×S1, g

Sn−1
×

rg
S1). We will prove Theorem 1.1 and Theorem 1.3 in Section 4 and Theorem 1.4 in

Section 5. Finally, a procedure to compute numerically these Yamabe constants is
given in the last section.

Acknowledgements: The authors would like to thank Professors Manuel del Pino
and Jean Dolbeault for valuable observations on the Gagliardo-Niremberg inequalities
and Fernando Coda for numerous conversations on the subject. The first author would
like to express his gratitude to Professors Boris Botvinnik and Osamu Kobayashi for
many helpful discussions. The third author would like to express his gratitude to
IMPA where this work was carried on.

2. Preliminaries

Let (Xk, g) be a closed smooth k-dimensional Riemannian manifold. Recall that
sg is the scalar curvature of g, dµg its volume element and

p = pk =
2k

k − 2
and a = ak =

4(k − 1)

k − 2
.

Consider the Sobolev space W 1,2(X) and the Yamabe functional defined by

f 7→ Qg(f) :=

∫

X

(

ak|∇f |2gdµg + sgf
2
)

dµg

‖f‖2p
.

We say that f is a Yamabe minimizer (for g) if it realizes the minimum of the Yamabe
functional. In this case f 4/(k−2)g has constant scalar curvature and the Yamabe
constant of the conformal class of g is then equal to Qg(f).

In this paper we consider a unit volume Riemannian product (Mm×Nn, g+h). We
assume that the scalar curvature of both g and h are constant and try to understand
the Yamabe constant of the conformal class of the product metric. This is of no
interest if sg + sh is negative, since in this case we have uniqueness of the Yamabe
metric. The situation we want to address is when sg + sh is positive and bigger than
Ym+n, the Yamabe invariant of the round sphere Sm+n. In this case there must exist
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a non-constant Yamabe function, and so another metric of constant scalar curvature
in the same conformal class.

To compute the Yamabe constant is a very difficult problem and so it is to un-
derstand the Yamabe minimizer. We will then restrict ourselves to functions which
depend only on one of the variables, that is, positive smooth functions f : Nn → R

of one of the factors in the Riemannian product Mm × Nn. The scalar curvature of

f
4

m+n−2 (g + h) is given by

sg+h = f 1−pm+n (− am+n∆hf + sg+hf).

We then introduce the following definition:

Definition 2.1. Given a Riemannian product (M × N, g + h) of constant scalar
curvature manifolds, the N–Yamabe constant of (M × N, g + h) is the infimum of
the (g + h)–Yamabe functional restricted to W 1,2(N). We will denote this constant
by YN(M ×N, g + h).

To study critical points of the (g + h)–Yamabe functional restricted to W 1,2(N),
let ϕ, f : N → R be smooth functions. A well-known computation gives that

d
(

Q(f + tϕ)
)

dt
(0) =

2Vol(M, g)

‖f‖2p

∫

N

(

− am+n∆hf+sg+hf−‖f‖−p+2
p Q(f)f p−1

)

ϕ dµh,

where p = pm+n and Q(·) = Qg+h(·). Therefore the critical points of the Yamabe
functional restricted to W 1,2(N) are precisely the functions f such that the conformal
metric f 4/(m+n−2)(g + h) has constant scalar curvature s̃ = ‖f‖−p+2

p Q(f). The next

point is that the infimum of the Yamabe functional restricted to W 1,2(N) is always
achieved. This is a simple fact, it is essentially the subcritical case of the Yamabe
problem, but we sketch its proof since we have not seen it in the literature.

Proposition 2.2. Let (Mm, g) and (Nn, h) be closed Riemannian manifolds of con-

stant scalar curvature. Then, there exists a positive smooth function f on Nn which

minimizes the Yamabe quotient among all functions on Nn.

Proof. Without loss of generality, we may assume that Vol(M, g) = 1. Let {ui} be a
sequence of non-negative functions on N such that Qg+h(ui) → YN(M × N, g + h).
We can assume that ‖ui‖pk

= 1, where k = m+ n. Then,

‖ui‖22,1 =

∫

N

(

|∇ui|2h + u2
i

)

dµh

=
1

ak
Qg+h(ui) +

∫

N

(

1− sg+h

ak

)

u2
i dµh

≤ YN(M ×N, g + h) + 1

ak

+K‖ui‖22 ,
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for someK > 0, that is bounded independently of i since ‖ui‖22 ≤ ‖ui‖2pk
Vol(N, h)2/k =

Vol(N, h)2/k by Hölder’s inequality. Since

1

pk

>
1

2
− 1

n
,

by the Rellich-Kondrakov Theorem the inclusion W 1,2(N) ⊂ Lpk(N) is a compact
operator. Therefore, there exists a subsequence of the {ui} which converges weakly
in W 1,2(N) and strongly in Lpk(N) to a function u ∈W 1,2(N) with ‖u‖pk

= 1.

Now, by the weak convergence in W 1,2(N), we have

∣

∣

∣

∣|∇u|
∣

∣

∣

∣

2

2
= lim

i→∞

∫

N

〈∇u,∇ui〉 dµh,

and therefore
∣

∣

∣

∣|∇u|
∣

∣

∣

∣

2

2
≤ lim sup

i→∞

∣

∣

∣

∣|∇ui|
∣

∣

∣

∣

2

2
.

And since by strong convergence in L2

∫

N

sg+hu
2dµh = lim

i→∞

∫

N

sg+hu
2
idµh,

we have that Qg+h(u) ≤ limi→∞Qg+h(ui), and hence Qg+h(u) = YN(M×N, g+h). It
then follows from elliptic regularity that u has to be strictly positive and smooth. �

Remark 2.3. Note that, for a given Riemannian product of constant scalar curva-
ture, we have three associated Yamabe constants each producing a constant scalar
curvature metric. The three are equal if the original product is a Yamabe metric.

3. Reviewing the circle

Schoen [22] (cf. Kobayashi [11]) gave a fairly complete study of the solutions of
the Yamabe equation for the manifolds (Sn−1 × S1, g

Sn−1 + rg
S1), where n ≥ 2 and

r is a positive constant. He points out that due to the conformal invariance and a
theorem of Caffarelli–Gidas–Spruck [7] all solutions are functions of S1. Moreover, he
writes down the Yamabe equation for a function of S1. Moving to the Riemannian
universal covering (Sn−1×R, g

Sn−1 +dt2), one has to deal with the ordinary differential
equation:

d2u

dt2
− 1

4
(n− 2)2u+

n(n− 2)

4
u(n+2)/(n−2) = 0,

and look for solutions which are 2πr–periodic. Note that exactly the same equation
shows up if we consider a Riemannian product (M×S1, g+rg

S1), where M is (n−1)-
dimensional and the scalar curvature of g is (n − 1)(n − 2). In this way, one can
understand all constant scalar curvature metrics which are conformal by a function
of S1 to (M×S1, g+rg

S1); the solutions are the same as those for Sn−1 discussed in [22]
and [11]. So for r close to 1 there is going to be only one solution, and as r increases
the number of solutions will increase. If Vol(M, g) = Vn−1 := Vol(Sn−1, g

Sn−1
), then
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the S1-Yamabe constant of the product will be less than Yn for all r and will approach
Yn as r goes to infinity.

Example 3.1. If Vol(M, g) > Vn−1 in the discussion above, the number of solutions
will still be the same, but as r becomes big the S1–Yamabe constants of the product
will be bigger than Yn. In particular, the S1–Yamabe constant will be greater than
the Yamabe constant.

4. Proofs of Theorem 1.1 and Theorem 1.3

Proof of Theorem 1.1. To simplify the notation, we set gr := g+rh on Mm×Nn and
ḡ := g + g

E
on Mm ×Rn. We may also assume that Vol(M, g) = 1.

First, we show the following

Y (M ×R
n, [ḡ]) > 0.

Note that (M × Rn, ḡ) is a complete Riemannian manifold with strictly positive
injective radius and bounded sectional curvature. Under these conditions, the Sobolev
embedding W 1,2(M ×Rn) →֒ Lp(M ×Rn) holds (cf. [4, Theorem 2.21]), that is, there
exists constant K1 > 0 such that

‖f‖2p ≤ K1‖f‖22,1 for f ∈W 1,2(M × R
n),

where p = pm+n := 2(m+n)
m+n−2

. This and the positivity of the scalar curvature of (M, g)
imply that

(

∫

M×Rn

|f |pdµḡ

)2/p

≤ K1

α

∫

M×Rn

(

am+n|∇f |2ḡ + sgf
2
)

dµḡ

for f ∈W 1,2(M × Rn), where α := min
{

am+n, min
M

sg

}

> 0, and hence

Y (M × R
n, [ḡ]) ≥ α

K1
> 0.

We also have
YRn(M ×R

n, ḡ) ≥ Y (M × R
n, [ḡ]) > 0.

Second, we prove the following

(1) lim inf
rր∞

Y (M ×N, [gr]) ≥ Y (M × R
n, [ḡ])

and

(2) lim inf
rր∞

YN(M ×N, gr) ≥ YRn(M ×R
n, ḡ) .

Pick any ε > 0. There exist a small constant δ > 0 and finite points {q1, · · · , qℓ} ⊂ N
such that

• {Uk := exph
qk

(

Bh
δ (0)

)

}ℓk=1 is an open covering of N

and that, on each Uk with respect to h-normal coordinates x = (x1, · · · , xn) at qk,

• (1+ε)−1δijdx
idxj ≤ hijdx

idxj ≤ (1+ε)δijdx
idxj ,

• (1+ε)−1dx ≤ dµh ≤ (1+ε)dx.
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Here, exph
qk

: Bh
δ (0) := {v ∈ Tqk

N
∣

∣ |v|h < δ} → Uk and dx := dx1 ∧ · · · ∧ dxn

denote respectively the h-exponential map at qk and the Euclidean volume form.
Then note that, for any r > 1, on each Ui with respect to (r2h)-normal coordinates
y = (y1, · · · , yn) at qk,

(1 + ε)−1δijdy
idyj ≤ (r2h)ijdy

idyj ≤ (1 + ε)δijdy
idyj,

(1 + ε)−1dy ≤ dµr2h ≤ (1 + ε)dy.

We also note that there exists a constant K2 > 0 such that

diam(Uk, r
2h) ≥ K2 r (k = 1, · · · , ℓ)

for any r ≥ 1. Let {ηk = χ2
k}ℓk=1 be a partition of unity subordinate to the covering

{Uk}ℓk=1 and K3 > 0 a positive constant independent of r ≥ 1 such that

|∇χk|h ≤ K3 (k = 1, · · · , ℓ),
and hence

|∇χk|r2h ≤
K3

r
(k = 1, · · · , ℓ).

With the above understandings, for any r > 1 and ϕ ∈ C∞(M × N), we estimate
the Lp-norm of ϕ with respect to gr as follows:

||ϕ||2p = ||ϕ2||p/2 = ||Σkχ
2
kϕ

2||p/2

≤ Σk

(

∫

M×Uk

|χkϕ|pdµgr)
)2/p

≤ (1 + ε)2/pΣk

(

∫

M×Uk

|χkϕ|pdµḡ

)2/p

.

Here, we identify Uk = expr2h
qk

(

Br2h
rδ (0)

)

(⊂ N) with Brδ(0) := {y ∈ R
n
∣

∣ |y| < rδ}
via the composition of the inverse

(

expr2h
qk

)−1
and the identification Br2h

rδ (0) ∼= Brδ(0).
Set Y0 := Y (M × Rn, [ḡ]) and Y 0

0 := YRn(M × Rn, ḡ). We also note that, on each
M × Uk (⊂M × Rn),

(

∫

M×Uk

|χkϕ|pdµḡ

)2/p

≤ 1

Y0

(

am+n

∫

M×Uk

|∇(χkϕ)|2ḡdµḡ +

∫

M×Uk

sgχ
2
ℓϕ

2dµḡ

)

≤ (1 + ε)2

Y0

(

am+n

∫

M×Uk

|∇(χkϕ)|2gr
dµgr +

∫

M×Uk

sgχ
2
kϕ

2dµgr

)

≤ (1 + ε)3

Y0

(

am+n

∫

M×Uk

χ2
k|∇ϕ|2gr

dµgr +

∫

M×Uk

sgχ
2
kϕ

2dµgr

+
am+nK

2
3(1 + ε−1)

r2

∫

M×Uk

ϕ2dµgr

)

.

Here, it is important to note for the proof of (2) that, if ϕ ∈ C∞(N), then we can
replace Y0 by Y 0

0 .
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Hence, we have

||ϕ||2p ≤
(1 + ε)3+(2/p)

Y0

(

∫

M×N

(

am+n|∇ϕ|2gr
+ sgϕ

2
)

dµgr +
ℓam+nK

2
3 (1 + ε−1)

r2

∫

M×N

ϕ2dµgr

)

.

From the positivity of the scalar curvature sg, there exists a large constant r0 =
r0(ε,min

M
sg, (N, h), m+ n) > 1 such that

ℓam+nK
2
3(1 + ε−1)

r2
0

≤
(

min
M

sg

)

ε.

Therefore, we obtain

||ϕ||2p ≤
(1 + ε)4+(2/p)

Y0

∫

M×N

(

am+n|∇ϕ|2gr
+ sgϕ

2
)

dµgr

for any r ≥ r0 and ϕ ∈ C∞(M ×N). Again, if ϕ ∈ C∞(N), we can replace Y0 by Y 0
0 .

Then, this implies that

Y (M ×N, [gr]) ≥
Y0

(1 + ε)4+(2/p)
, YN(M ×N, gr) ≥

Y 0
0

(1 + ε)4+(2/p)

for any r ≥ r0. And since ε > 0 is arbitrary,

lim inf
rր∞

Y (M ×N, [gr]) ≥ Y0

and

lim inf
rր∞

YN(M ×N, gr) ≥ Y 0
0 .

Finally, we prove

(3) lim sup
rր∞

Y (M ×N, [gr]) ≤ Y0

and

(4) lim sup
rր∞

YN(M ×N, gr) ≤ Y 0
0 .

Note that

(5) lim
ρր∞

Y (M × Bρ(0), [ḡ]) = Y0,

and

(6) lim
ρր∞

YBρ(0)(M × Bρ(0), [ḡ]) = Y 0
0 .
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Take any small ε > 0 and large ρ > 0. Fix a point q ∈ N and set an h-normal open
neighborhood U := exph

q

(

Bh
δ (0)

)

of q for δ > 0. Here, we choose δ = δ(ε, (N, h)) >
0 sufficiently small satisfying the same conditions on U as those in the preceding
argument. Let r1 > 0 be a positive constant such that r1δ ≥ ρ. For each r ≥ r1, we
also use the (r2h)-normal coordinates y = (y1, · · · , yn) at q on U and the identification

Brδ(0) (⊂ R
n)

∼=←→ U = expr2h
q

(

Br2h
rδ (0)

)

(⊂ N).

With the above understandings, for any r ≥ r1 and f ∈ C∞
c (M × Bρ(0))

(

⊂ C∞
c (M × Brδ(0)) ∼= C∞

c (M × U)
)

, we obtain

||f ||2p =
(

∫

M×Bρ(0)

|f |pdµḡ

)2/p

≤ (1 + ε)2/p
(

∫

M×U

|f |pdµgr

)2/p

≤ (1 + ε)2/p

Y (M ×N, [gr])

∫

M×U

(

am+n|∇f |2gr
+ shrf

2
)

dµgr

≤ (1 + ε)2+(2/p)

Y (M ×N, [gr])

∫

M×Bρ(0)

(

am+n|∇f |2ḡ +

(

sg +
K4

r

)

f 2

)

dµḡ,

where K4 > 0 is a constant independent of r. Here, we also use the fact that Y (M ×
N, [gr]) > 0 for any large r > 0.

In order to prove (4) it is important to note that for f ∈ C∞
c (Bρ(0)), we obtain:

||f ||2p ≤
(1 + ε)2+(2/p)

YN(M ×N, gr)

∫

M×Bρ(0)

(

am+n|∇f |2ḡ +

(

sg +
K4

r

)

f 2

)

dµḡ.

From the positivity of sg, there exists r2 = r2(ε,min
M

sg) > 0 such that

sg +
K4

r
≤ (1 + ε)sg on M

for any r ≥ r2. Hence, for any r ≥ max{r1, r2} and f ∈ C∞
c (M × Bρ(0)), we have

||f ||2p ≤
(1 + ε)3+(2/p)

Y (M ×N, [gr])

∫

M×Bρ(0)

(

am+n|∇f |2ḡ + sgf
2
)

dµḡ .

Therefore,

Y (M ×N, [gr]) ≤ (1 + ε)3+(2/p)Y (M × Bρ(0), [ḡ]).

Letting r ր∞, we then obtain

lim sup
rր∞

Y (M ×N, [gr]) ≤ (1 + ε)3+(2/p)Y (M × Bρ(0), [ḡ]).

Letting also ρր∞ and εց 0,

lim sup
rր∞

Y (M ×N, [gr]) ≤ Y0.

And following the same steps we also prove (4). This completes the proof of Theo-
rem 1.1. �
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We shall prove Theorem 1.3 by a series of lemmas. Throughout the rest of this
section, we always assume the same conditions as in Theorem 1.3, that is, m,n ≥ 2
and sg > 0 on Mm. To simplify the notation, we set ḡ := g + g

E
on Mm × Rn.

By the positivity of the scalar curvature sg > 0 of g and the condition that n ≥ 2,
one can obtain the following.

Lemma 4.1. (Mm × R
n, ḡ) is not locally conformally flat. Moreover, for any open

set U of Mm × Rn, the Weyl curvature Wḡ of ḡ never vanishes identically on U .

When m+n ≥ 6, similarly to Aubin’s argument in [3], [15, Theorem B], Lemma 4.1
implies the existence of a family of nice test functions {ψε}ε>0 withQḡ(ψε) < Ym+n for
sufficiently small ε > 0. Then we obtain the following (see the proof of Proposition 6.6
in [2] for details).

Lemma 4.2. Assume that m+ n ≥ 6. Then, the assertion of Theorem 1.3 holds.

Now we consider the remaining case when m+n = 4, 5 in Theorem 1.3. Let T n
k :=

Rn/(2kZ)n denote the quotient of Rn for k = 0, 1, 2, · · · . Let (Rn, g
E
)→ (T n

k , hk) also
denote the natural infinite Riemannian covering and

Pk : (Mm × R
n, ḡ)→ (Mm × T n

k , ḡk)

the induced Riemannian covering, where ḡk := g + hk. Here note that each natural
map

(Mm × T n
k+1, ḡk+1)→ (Mm × T n

k , ḡk)

is also a finite Riemannian covering. Take any point q ∈ Mm and fix it. Set p =
(q, 0) ∈ Mm × R

n and pk := Pk(p) ∈ Mm × T n
k . Then, for each k, there exists a

unique normalized positive Green’s function Gk (with pole at pk) for the conformal
Laplacian Lḡk

on Mm × T n
k , that is, Gk ∈ C∞

+

(

(Mm × T n
k )− {pk}

)

with

Lḡk
Gk = cm+n δpk

on Mm × T n
k and lim

x→pk

Gk(x)(dist(pk, x))
m+n−2 = 1.

Here, cm+n > 0 and δpk
stand respectively for a specific universal constant and the

Dirac δ-function at pk. The condition sg > 0 implies that the first eigenvalue λ(Lḡ0) >
0 on Mm×T n

0 . By the condition λ(Lḡ0) > 0, there exists a unique normalized minimal
positive Green’s function G for Lḡ with pole at p ∈Mm × Rn. Moreover, there exist
positive constants a, b,K with a < b,K ≥ 1 such that

K−1e−b|z| ≤ G(x) ≤ Ke−a|z| for x = (y, z) ∈Mm × {z ∈ R
n
∣

∣ |z| ≥ 1}.

(See [25], [2, Section 6] for details.)
Let us consider the family of the scalar-flat, asymptotically flat manifolds

(Xk, ḡk,AF ) :=
(

(Mm × T n
k )− {pk}, G

4
m+n−2

k ḡk

)

for k = 0, 1, 2, · · ·
and the one

(X, ḡAF ) :=
(

(Mm × R
n)− {p}, G 4

m+n−2 ḡ
)
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with a singularity arising from the end of Mm×Rn. We denote the mass of (X, ḡAF )
(resp. (Xk, ḡk,AF )) by m(ḡAF ) (resp. m(ḡk,AF )). Then, a similar argument to the
proof of [2, Theorem 6.13] implies

lim
k→∞

m(ḡk,AF ) = m(ḡAF ).

Hence, from the positive mass theorem [23, 24, 22], we obtain the following.

Lemma 4.3. Let (X, ḡAF ) be the scalar-flat, asymptotically flat manifolds with a

singularity and dim X = 4, 5, defined as above. Then, m(ḡAF ) ≥ 0.

Now we can complete the proof of Theorem 1.3.

Proof of Theorem 1.3. From Lemma 4.2, we consider the case when m+n = 4, 5. We
will prove that

m(ḡAF ) > 0.

Then, by a similar argument to the proofs of [21, Theorem 1] and [26, Chapter 5,
Theorem 4.1], the positivity of the mass m(ḡAF ) > 0 implies the desired assertion

Y (Mm ×R
n, [ḡ]) < Ym+n.

Choose any large constant L0 > 0 and fix it. Set

X0 :=
(

Mm × {z ∈ R
n
∣

∣ |z| ≤ L0}
)

− {p} ⊂ X.

Then, there exist harmonic coordinates near infinity x = (x1, · · · , xm+n) on (X0, ḡAF )
[5] (cf. [2, Lemma 6.17]). Namely, (xi) are smooth functions on X0 satisfying

∆ḡAF
xi = 0 on X0,

∂xi

∂ν
= 0 on ∂X0

and which give asymptotically flat coordinates near infinity of (X0, ḡAF ). Here, ν is
the outward unit normal vector field normal to ∂X0.

Now we suppose that m(ḡAF ) = 0. Note that, under this assumption, ḡAF is Ricci-
flat on X0. See [1, Lemma 3.1] for details (cf. [21, Lemma 3], [2, Proposition 6.14]).

We now apply the Bochner technique to complete the proof. The harmonicity of
(xi) implies that {dxi} are harmonic 1-forms on (X0, ḡAF ). From the Bochner formula

for 1-forms {dxi} combined with the conditions that ∂xi

∂ν
= 0 on ∂X0 and RicḡAF

= 0
on X, we have that (cf. [5, Theorem 4.4], [15, Proposition 10.2])

m(ḡAF ) =
1

Vol
(

Sm+n−1(1)
)

m+n
∑

i=1

∫

X0

|∇dxi|2dµḡAF
.

Then, by applying the mass zero condition m(ḡAF ) = 0 in the above, we obtain that
the 1-forms {dxi} are parallel on X0 with respect to ḡAF . Since the coframe {dxi} is
orthonormal at infinity, then {dxi} is a parallel orthonormal coframe everywhere on
(X0, ḡAF ). This implies that the map x = (x1, · · · , xm+n) : (X0, ḡAF ) → (Rm+n, g

E
)

is a local isometry, and hence ḡ is locally conformally flat on X0. This gives a
contradiction to Lemma 4.1. Therefore, m(ḡAF ) > 0. This completes the proof. �
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5. Gagliardo-Nirenberg inequalities and Yamabe constants

In this section we estimate the behavior of arbitrary N–Yamabe constants in terms
of the best constants in the Gagliardo-Nirenberg interpolation inequalities.

Let us define the (m,n)–Gagliardo–Nirenberg functional as

L(f) = Lm,n(f) :=
‖∇f‖

2n
m+n

2 ‖f‖
2m

m+n

2

‖f‖2pm+n

for f ∈W 1,2(Rn) with f 6≡ 0.

Remark 5.1. The map L is invariant under two operations. First, if c is any non-zero
constant then L(cf) = L(f). Second, if λ > 0 is a constant and fλ(x) = f(λx) then

‖fλ‖
2m

m+n

2 = λ
−mn
m+n‖f‖

2m
m+n

2 ,

‖fλ‖2pm+n
= λ

−2n
pn+m ‖f‖2pm+n

and

‖∇fλ‖
2n

m+n

2 = λ
(2−n)n
m+n ‖∇f‖

2n
m+n

2 .

Therefore, L(fλ) = L(f).

Let us recall the following definition from the introduction:

Definition 5.2. The (m,n)–Gagliardo–Nirenberg constant is given by

σm,n :=

(

inf
f∈W1,2(Rn)

f 6≡0

Lm,n(f)

)−1

.

Remark 5.3. The constant σm,n has already been studied in the literature. It is the
best constant for the classical interpolation inequality due to Gagliardo and Nirenberg
that says that Lm,n is bounded away from zero (cf [8], [9] and [17]). In [28], it is
shown that σm,n is closely related to the global existence of the nonlinear Schrödinger
equation. The author showed also that σm,n is always attained by a positive function
ψ ∈ W 1,2(Rn) ∩ C∞(Rn), called a ground state solution, that should then satisfy the
corresponding Euler–Lagrange equation

(7) ∆u− u+ uq = 0, q =
m+ n+ 2

m+ n− 2

(the Euler-Lagrange equation for L of course involves coefficients depending on ‖f‖2,
‖f‖p and ‖∇f‖2: one can use the previous remark to normalize the equation as

above). For any function f ∈ W 1,2(Rn) ∩ C∞(Rn), one can consider the spherical
symmetrization f ∗ of f , that is, the radial function f ∗ satisfying Volg

E
{f ∗ > t} =

Volg
E
{f > t} for any positive t. It is a classical result that L(f ∗) < L(f) if f ∗ 6≡ f .

It follows that ψ should be radial and decreasing. Finally, in [13] it is proved the
uniqueness of the positive radial solution of (7) under the assumption that it vanishes
at infinity. The key point to our purposes is that these facts give a simple procedure
to compute numerically all Gagliardo–Nirenberg constants. We will continue this
discussion on Section 6.
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We now relate the Gagliardo–Nirenberg constants with the N–Yamabe constant of
limiting products.

Proof of Theorem 1.4. First fix a function f ∈ C∞
c (Rn) and consider the family of

functions fλ as in Remark 5.1. Let us consider the map

λ 7→ F (λ) :=

∫

Rn

(

am+n|∇fλ|2g
E

+ sgf
2
λ

)

dµg
E

||fλ||2pm+n

.

If we set

A :=

∫

Rn am+n|∇f |2g
E

dµg
E

||f ||2pm+n

and

B :=

∫

Rn sgf
2 dµg

E

||f ||2pm+n

,

then Remark 5.1 implies that F (λ) = λ
2m

m+nA+λ
−2n
m+nB. We see that this map achieves

its minimum at λ0 =
√

nB
mA

and that this minimum is

F (λ0) = A
n

m+nB
m

m+nm
−m

m+nn
−n

m+n (m+ n) = s
m

m+n
g C(m,n)L(f).

Recall that L(f) = L(fλ). Therefore,

lim
rր∞

YNn(Mm ×Nn, g + rh) = YRn(Mm ×R
n, g + g

E
)

= inf
f∈C∞

c (Rn)
f 6≡0

∫

Rn

(

am+n|∇f |2g
E

+ sgf
2
)

dµg
E

||f ||2pm+n

= inf
f∈C∞

c (Rn)
f 6≡0

s
m

m+n
g C(m,n)L(f) =

s
m

m+n
g C(m,n)

σm,n
.

�

6. Numerical computations

We describe now a procedure to determine all Gagliardo–Nirenberg constants σm,n

numerically, and how we obtained our table in the introduction.

Consider the solution h = hα : R≥0 → R of the initial value problem

(8) h′′(t) +
n− 1

t
h′(t)− h(t) + h(t)

m+n+2
m+n−2 = 0, h(0) = α > 0, h′(0) = 0.

This equation corresponds to the critical points of the (m,n)–Gagliardo–Nirenberg
functional Lm,n (see Remarks 5.1, 5.3), when restricted to radial functions u(x) =
h(|x|), which is enough to consider because of symmetrization. By the existence
result in [28] and its uniqueness finally proved in [13], there exists only one value
α = α0 = α0(m,n) that gives a positive solution hα0 that vanishes at infinity, called
the ground state. To find α0 numerically, we use [13] where it is shown that, for
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Figure 1: hα for α > α0.

Figure 2: hα for α < α0.

values α > α0, the solution hα vanishes exactly once and then oscillates about −1
(Figure 1), while, for values α < α0, it is positive and oscillatory about the value 1
(Figure 2).

A key point is the uniqueness of the solution of (8) when the initial value condition
h(0) = α is replaced by the boundary condition h(t0) = 0, for t0 ∈ (0,+∞], and the
fact that this solution has h′ < 0 in (0, t0]; see Lemmas 9, 11 and Theorem in [13].
Finally, by [28] we have that σ−1

m,n = Lm,n(hα0). For example, we can then compute

α0 = α0(2, 2) ≈ 2.2062 for the ground state initial value, and hence σ−1
2,2 = L2,2(hα0) ≈

2.41877. In fact, Figure 1 corresponds to m = n = 2 and α = 2.208, while Figure 2
to α = 2.205.

Of course, if one wants to avoid the numerical computation, one could give es-
timates for σm,n by carefully choosing functions. For instance we can show that

σ−1
2,2 < 2.427458 <

√
2π by considering the function h : R≥0 → R that linearly

interpolates the following data: h(0) = 1, h(0.1) = 0.9904132, h(0.2) = 0.9626,
h(0.3) = 0.91917, h(0.7) = 0.66607, h(0.9) = 0.5378, h(1.15) = 0.4023, h(1.3) =
0.34, h(1.5) = 0.2634, h(1.85) = 0.17201, h(2.2) = 0.11288, h(2.6) = 0.07031,
h(3) = 0.04416, h(3.5) = 0.02493, h(3.9) = 0.016, h(4.3) = 0.01016, h(5) = 0.0047,
h(6) = 0.00158, h(7) = 0.00054, h(8) = 0.00019, h(9) = 0.00006, and h(t) = 0, for
t ≥ 10. Now, define the radial function f : R2 → R given by f(x) = h(|x|). A
straightforward computation gives that σ−1

2,2 ≤ L2,2(f) < 2.427458. And then

Y ∞
S2 (S2 × S2) < 2.427458(8

√
3π) < 8

√
6 π = Y4.
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