
Convergence of iterated Aluthge transform
sequence for diagonalizable matrices

Jorge Antezana∗ Enrique R. Pujals † Demetrio Stojanoff ‡

April 22, 2006

Jorge Antezana and Demetrio Stojanoff
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C∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set
of r × r matrices with r different eigenvalues.

Keywords: Aluthge transform, Stable manifold theorem, similarity orbit, polar decompo-
sition.

AMS Subject Classifications: Primary 37D10. Secondary 15A60.

∗Partially supported by CONICET (PIP 4463/96), Universidad de La PLata (UNLP 11 X350) and
ANPCYT (PICT03-09521).

†Partially supported by CNPq
‡Partially supported by CONICET (PIP 4463/96), Universidad de La PLata (UNLP 11 X350) and

ANPCYT (PICT03-09521).

1



1 Introduction

Let H be a Hilbert space and T a bounded operator defined on H whose polar decomposition
is T = U |T |. The Aluthge transform of T is the operator ∆ (T ) = |T |1/2U |T |1/2. This was
first studied in [1] in relation with the so-called p-hyponormal and log-hyponormal operators.
Roughly speaking, the Aluthge transform of an operator is closer to being normal.

The Aluthge transform has received much attention in recent years. One reason is the
connection of Aluthge transform with the invariant subspace problem. Jung, Ko and Pearcy
proved in [8] that T has a nontrivial invariant subspace if an only if ∆ (T ) does. On the
other hand, Dykema and Schultz proved in [6] that the Brown measures is unchanged by the
Aluthge transform.

Another reason is related with the iterated Aluthge transform. Let ∆0 (T ) = T and
∆n (T ) = ∆ (∆n−1 (T )) for every n ∈ N. It was conjectured in [8] that the sequence
{∆n (T )}n∈N converge in the norm topology. Although this conjecture was stated for opera-
tors on an arbitrary Hilbert space, it was corrected and restated for matrices in [9] by Jung
Ko and Pearcy and receantly extended to finite factors in [6] by Dykema and Schultz. In
these spaces, it still remains open and there only exist some partial results. For instance,
Ando and Yamazaki proved in [3] that the conjecture is true for 2× 2 matrices and Dykema
and Schultz in [6] proved that the conjecture is true for an operator T in a finite factor
such that the unitary part of its polar decomposition normalizes an abelian subalgebra that
contains |T |. (see [2], [14] and [15] for other results that support the conjecture in finite
factors).

A result proved independently by Jung, Ko and Pearcy in [9], and by Ando in [2],
states that, given an r × r matrix T , the limit points of the sequence {∆n (T )}n∈N are
normal matrices with the same characteristic polynomial as T . In particular, if the sequence
of iterated Aluthge transforms converge, the limit function, defined by T 7→ lim

n→∞
∆n (T ),

whould be a retraction from the space of matrices onto the set of normal operators.

Another important result, concerning the finite dimensional case, states that it is enough
to prove the conjecture for invertible matrices (see for example [4]). Note that, for an
invertible matrix T

∆ (T ) = |T |1/2 T |T |−1/2.

So the Aluthge transform of T belongs to the similarity orbit of T . This suggest that we can
study the Aluthge transform restricted to the similarity orbit of some invertible operator.

From that point of view, the diagonalizable case has some advantages. First of all, note
that the similarity orbit of a diagonalizable operator contains a compact submanifold of fixed
points, and the sequence {∆n (T )}n∈N goes to this submanifold as n → ∞. In fact, since T is
diagonalizable, the similarity orbit of T coincides with the similarity orbit of some diagonal
operator D, which we denote S (D). The unitary orbit of D, denoted by U (D), is a compact
submanifold of S (D) that consists of all normal matrices in S (D). Hence U (D) is fixed by
the Aluthge transform and the limits points of the sequence {∆n (T )}n∈N belongs to U (D).
In contrast, for non-diagonalizable operators, the similarity orbit does not have fixed points,
and the sequence of iterated Aluthge transforms goes to points that do not belong to the
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similarity orbit.
On the other hand, numerical computations, as well as Ando-Yamazaki’s 2 × 2 com-

putations (see [3]), suggest that the rate of convergence of the sequence {∆n (T )}n∈N, for
diagonalizable operators T , becomes exponential after some iterations. However, it seems
that this behavior is not shared by the non-diagonalizable case.

For these reasons, we decided to study the diagonalizable case. Note that if we restrict
the Aluthge transform to the similarity orbit of an invertible diagonalizable matrix T , a
dynamical system approach can be performed.

In fact, we show that for any N ∈ U (D) there is a local submanifold W s
N transversal

to U (D) characterized by the matrices that converges with a exponential rate to N by the
iteration of the Aluthge transform. Moreover, the union of these submanifolds form an open
neighbourhood of U (D) (see Corollary 3.1.2). Thus, since the sequence {∆n (T )}n∈N goes
towards U (D), for some n0 large enough the sequence of iterated Aluthge tranforms enters
this open neighborhood and converge exponentially.

These results follow from the classical arguments of stable manifolds (first introduced
independently by Hadamard and Perron, see theorem 2.1.3; for details and general results
about the stable manifold theorem see [7] or the Appendix at the end of this work). To
conclude that, it is shown that the derivative of the Aluthge transform in any N ∈ U (D)
has two invariant complementary directions, one tangent to U (D), and other transversal to
it, where the derivative is a contraction (see Theorem 3.1.1). Using these results, we prove
that the sequence {∆n(T )}n∈N converges for every r× r diagonalizable matrix T . We also
show that the limit ∆∞(·) is a map of class C∞ on the similarity orbit of a diagonalizable
matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues.

This paper is organized as follows: in section 2, we collect several preliminary definitions
and results about the the stable manifold theorem, about the geometry of similarity and
unitary orbits, and about known results on Aluthge transform. In section 3, we prove the
convergence results and we study the smoothness of the limit map T 7→ ∆∞ (T ), mainly
for r × r matrices with r different eigenvalues. The basic tool, to apply the stable manifold
theorem to the similarity orbit of a diagonal matrix, is the mentioned Theorem 3.1.1, whose
proof, somewhat technical, is done in section 4. In the Appendix, we sketch the proof of
the classical version of the stable manifold theorem in order to show how it can be modified
in our context, where the invariant set is a smooth submanifold consisting of fixed points,
getting stronger results on the regularity conditions of the prelamination {W s

N}N∈U(D).
We would like to aknowledge Prof. M. Shub for comments and suggestion about the

stable manifold theorems, and Prof. G. Corach who told us about the Aluthge transform,
and shared with us fruitful discussions concerning these matters.

2 Preliminaries.

In this paper Mr(C) denotes the algebra of complex r × r matrices, Gl r(C) the group of
all invertible elements of Mr(C), U(r) the group of unitary operators, and Mh

r (C) (resp.
Mah

r (C)) denotes the real algebra of hermitian (resp. antihermitian) matrices. Given T ∈
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Mr(C), R(T ) denotes the range or image of T , ker(T ) the null space of T , σ(T ) the spectrum
of T , tr(T ) the trace of T , and T ∗ the adjoint of T . If v ∈ Cr, we debote by diag(v) ∈ Mr(C)
the diagonal matrix with v in its diagonal. We shall consider the space of matrices Mr(C)
as a real Hilbert space with the inner product defined by

〈A, B〉 = Re
(

tr(B∗A)
)

.

The norm induced by this inner product is the so-called Frobenius norm, that is denoted
by ‖ · ‖2. Along this note we also use the fact that every orthogonal projection P onto a
subspace S of Cn induces a representation of elements of Mr(C) by 2 × 2 block matrices,
that is, we shall identify each A ∈ Mr(C) with a 2 × 2-block matrix

(

A11 A12

A21 A22

)

P

1 − P
or

(

A11 A12

A21 A22

)

S
S⊥ ,

where A11 = PAP |S,S , A12 = PA(1 − P )|S⊥,S , A21 = (1 − P )AP |S,S⊥ and A22 =
(1 − P )A(1 − P )|S⊥,S⊥ .

On the other hand, let M be a manifold. By means of TM we denote the tangent bundle
of M and by means of TxM we denote the tangent space at the point x ∈ M . Given a
function f ∈ Cr(M), where r = 1, . . . ,∞, Txf (v) denotes the derivative of f at the point x

applied to the vector v.

2.1 Stable manifold theorem

In this section we state the stable manifold theorem for an invariant set of a smooth en-
domorphism (see 2.1.4 below). The stable set is naturally defined for a fixed point of an
endomorphism, as the set of points with positive trajectories heading directly towards the
fixed point. This notion is the natural extension of the stable eigenspaces of a linear trans-
formation (the ones associated to the eigenvectors with modulus smaller than one) into the
nonlinear regimen. In fact, a natural intuitive approach to the idea of the stable manifold is
to consider a fixed point of a smooth differentiable map such that the derivative of the map
at the fixed point has absolute value smaller than one. In this case, the linear map induced
by the derivative is a map that share the same fixed point and such that any trajectory
converges by forward iterate to the fixed point with a exponential rate of contraction. Using
that the linear map is a “good approximation of the map in a small neighborhood of the
fixed point”, it follows that the map has the same dynamical behavior of its linear part.

A more general approach is based in the techniques known as graph transform operator.
This approach can be naturally extended for invariant sets, being almost straightforward
when the set consists of fixed points. An sketched version of the proof of Theorem 2.1.4,
using these techniques, is done in the Appendix at the end of this work (see also [7, Thm
5.5]).

Let M be a smooth Riemann manifold and N ⊆ M a submanifold (not necessarily compact).
Throughout this subsection TNM denotes the tangent bundle of M restricted to N .
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Definition 2.1.1. A Cr pre-lamination indexed by N is a continuous choice of a Cr em-
bedded disc Bx through each x ∈ N . Continuity means that N is covered by open sets U in
which x → Bx is given by

Bx = σ(x)((−ε, ε)k)

where σ : U ∩N → Embr((−ε, ε)k, M) is a continuous section. Note that Embr((−ε, ε)k, M)
is a Cr fiber bundle over M whose projection is β → β(0). Thus σ(x)(0) = x. If the sections
mentioned above are Cs, 1 ≤ s ≤ r, we say that the Cr pre-lamination is of class Cs. N

Definition 2.1.2. A prelamination is self coherent if the interiors of each pair of its discs
meet in a relatively open subset of each.

Definition 2.1.3. Let f be a smooth endomorphism of M , ρ > 0, and suppose that f |N is a
homeomorphism. Then, N is ρ-pseudo hyperbolic for f if there exist two smooth subbundles
of TNM , denoted by Es and F , such that

1. TNM = Es ⊕F ;

2. TN = F ;

3. Both, Es and F , are Tf -invariant;

4. T f restricted to F is an automorphism, which expand it by a factor greater than ρ.

5. Txf : Es
x → Es

f(x) has norm lower than ρ. N

Observe that if N is ρ-pseudo hyperbolic then there exists a positive constant λ = λ(ρ) < 1
such that

||DfEs||

m(Df|F)
< λ , (1)

where m(.) means the minimum norm. If N consists of fixed points then, for example, N is
ρ-pseudo hyperbolic (also called normally hyperbolic) if there is a Tf−invariant subbundle
Es (of TNM) complement to TN , such that Tf contracts more sharply than any contraction
in TN . In the case that Es is uniformly contracted, it follows that for any point x ∈ N it is
possible to find an f−invariant submanifold transversal to N tangent to E s and characterized
as the set of points with trajectories asymptotic to the trajectory of x.

Theorem 2.1.4 (Stable manifold theorem). Let f be a Cr endomorphism of M with a
ρ-pseudo hyperbolic submanifold N with ρ < 1. Then, there is a f -invariant and self coherent
Cr-pre-lamination of class C0, Ws : N → Embr((−1, 1)k, M) such that, for every x ∈ N ,

1. Ws(x)(0) = x,

2. Ws
x = Ws(x)((−1, 1)k) is tangent to Es

x at every x ∈ N ,

3. Ws
x ⊆

{

y ∈ M : dist(fn(x), fn(y)) < dist(x, y)ρn
}

.
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Proof. See the proof in subsection A.1 of the Appendix. �

Corollary 2.1.5 (Smoothness of the stable lamination for a submanifold of fixed
points). Let f , M and N as in Theorem 2.1.4. Let us assume that any point p in N is a
fixed point. Then the Cr-pre-lamination Ws : N → Embr((−1, 1)k, M) is of class Cr.

Proof. See Corollary A.4.1 in the Appendix. �

Remark 2.1.6. Observe that, from Theorem 2.1.4, it holds that, for every x ∈ N

TxW
s
x = Es

x .

If N consists on fixed pionts, from the regularity conditions of the pre-lamination {W s
x}x∈N

assured by Corollary 2.1.5, we get that, for any x ∈ N , there exists γ > 0 such that

B(x, γ) ⊂
⋃

x∈N

Ws
x .

In other words, it means that
⋃

x∈N Ws
x contains an open neighborhood W(N) of N in M .

Therefore, condition 3 of Theorem 2.1.4 implies that, for every x ∈ N , there exists an open
neighborhood U of x (open relative to M) such that

Ws
x ∩ U =

{

y ∈ U : dist(x, fn(y)) < dist(x, y) ρn
}

. (2)

In particular, Ws
x ∩Ws

y = ∅ if x 6= y. Moreover, we can assure that the (well defined) map

p : W(N) → N given by p(a) = x if a ∈ Ws
x(x) (3)

is of class Cr. N

2.2 Similarity orbit of a diagonal matrix

In this subsection we recall some facts about the similarity orbit of a diagonal matrix.

Definition 2.2.1. Let D ∈ Mr(C). By means of S (D) we denote the similarity orbit of D:

S (D) = { SDS−1 : S ∈ Gl r(C) } .

On the other hand, U (D) = { UDU ∗ : U ∈ U(r) } denotes the unitary orbit of D. We
donote by πD : Gl r(C) → S (D) ⊆ Mr(C) the C∞ map defined by πD(S) = SDS−1. With
the same name we note its resrtiction to the unitary group: πD : U(r) → U (D). N

Proposition 2.2.2. The similarity orbit S (D) is a C∞ submanifold of Mr(C), and the
projection πD : Gl r(C) → S (D) becomes a submersion. Moreover, U (D) is a compact
submanifold of S (D), which consists of the normal elements of S (D), and πD : U(r) →
U (D) is a submersion. �
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For every N = UDU ∗ ∈ U (D), it is well known (and easy to see) that

TN S (D) = TI(πN)(Mr(C) ) = {[A, N ] = AN − NA : A ∈ Mr(C)}.

In particular

TD S (D) = {AD − DA : A ∈ Mr(C)}

= {X ∈ Mr(C) : Xij = 0 for every (i, j) such that di = dj}. (4)

Note that,

TN S (D) = {[A, N ] = AN − NA : A ∈ Mr(C)}

= {(UBU∗)UDU∗ − UDU∗(UBU∗) : B ∈ Mr(C)}

= {U [B, D]U∗ = BD − DB : B ∈ Mr(C)} = U
(

TD S (D)
)

U∗ . (5)

On the other hand, since TI U(r) = Mah
r (C) = {A ∈ Mr(C) : A∗ = −A} , we obtain

TD U (D) = TI(πD)(Mah
r (C) ) = {[A, D] = AD − DA : A ∈ Mah

r (C)} and ,

TN U (D) = {[A, N ] = AN − NA : A ∈ Mah
r (C)} = U

(

TD U (D)
)

U∗ . (6)

Finally, along this paper we shall consider on S (D) (and in U (D)) the Riemannian struc-
ture inherited from Mr(C) (using the usual inner product on their tangent spaces). For
S, T ∈ S (D), we denote by dist(S, T ) the Riemannian distance between S and T (in S (D) ).
Observe that, for every U ∈ U(r), one has that US (D)U ∗ = S (D) and the map T 7→ UTU ∗

is isometric, on S (D), with respect to the Riemannian metric as well as with respect to the
‖ · ‖2 metric of Mr(C).

2.3 Definition and basic facts about Aluthge transforms

Definition 2.3.1. Let T ∈ Mr(C), and suppose that T = U |T | is the polar decomposition
of T . Then, we define the Aluthge transform of T in the following way:

∆ (T ) = |T |1/2
U |T |1/2

On the other hand, ∆n (T ) denotes the n-times iterated Aluthge transform of T , i.e.

∆0 (T ) = T ; and ∆n (T ) = ∆
(

∆n−1 (T )
)

n ∈ N.

The following proposition contains some properties of Aluthge transforms which follows
easily from its definition.

Proposition 2.3.2. Let T ∈ Mr(C). Then:

1. ∆ (cT ) = c∆ (T ) for every c ∈ C.
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2. ∆ (V TV ∗) = V ∆ (T )V ∗ for every V ∈ U(r).

3. If T = T1 ⊕ T2 then ∆ (T ) = ∆ (T1) ⊕ ∆ (T2).

4. ‖∆ (T ) ‖2 6 ‖T‖2.

5. T and ∆ (T ) have the same characteristic polynomial, in particular, σ (∆ (T )) = σ (T ).

The following theorem states the regularity properties of Aluthge transforms (see [6]).

Theorem 2.3.3. The Aluthge transform is (‖ · ‖2 , ‖ · ‖2)-continuous in Mr(C) and it is of
class C∞ in Gl r(C).

Now, we recall a result proved independently by Jung, Ko and Pearcy in [9], and by Ando
in [2].

Proposition 2.3.4. If T ∈ Mr(C), the limit points of the sequence {∆n (T )}n∈N are normal.
Moreover, if L is a limit point, then σ (L) = σ (T ) with the same algebraic multiplicity.

Finally, we mention a result concerning the Jordan structure of Aluthge transforms proved
in [4]. We need the following definitions.

Definition 2.3.5. Let T ∈ Mr(C) and µ ∈ σ (T ). We denote

1. m(T, µ) the algebraic multiplicity of the eigenvalue µ for T .

2. m0(T, µ) = dim ker(T − µI), the geometric multiplicity of µ. N

Proposition 2.3.6. Let T ∈ Mr(C).

1. If 0 ∈ σ (T ), then, there exists n ∈ N such that

m(T, 0) = m0(∆
n (T ) , 0) = dim ker(∆n (T )).

2. For every µ ∈ σ(T ), m0(T, µ) 6m0(∆ (T ) , µ).

Observe that this implies that, if T is diagonalizable (i.e. m0(T, µ) = m(T, µ) for every µ),
then also ∆ (T ) is diagonalizable.

3 The iterated Aluthge transform

3.1 Convergence of iterated Aluthge transform sequence for diag-

onalizable matrices

In this section, we prove the convergence of iterated Aluthge transforms for diagonalizable
matrices. The key tool, which allows to use the stable manifold theorem 2.1.4, is the following
theorem, whose proof is rather long and technical. For this reason, we postpone it until
section 4, and we continue in this section with its consequences.
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Theorem 3.1.1. Let D = diag(d1, . . . , dr) ∈ Mr(C) be an invertible diagonal matrix. The
Aluthge transform ∆ (·) : S (D) → S (D) is a C∞ map. For every N ∈ U (D), there exists a
subspace Es

N
of the tangent space TNS (D) such that

1. TNS (D) = Es
N ⊕ TNU (D);

2. Both, Es
N

and TNU (D), are T ∆-invariant;

3.
∥

∥

∥
T ∆|Es

N

∥

∥

∥
≤ kD < 1, where kD = max

i, j : di 6=dj

|1 + ei(arg(dj)−arg(di))| |di|1/2|dj|1/2

|di| + |dj|
;

4. If U ∈ U(r) satisfies N = UDU ∗, then Es
N

= U(Es
D
)U∗.

In particular, the map U (D) 3 N 7→ E s
N

is smooth. This fact can be formulated in terms of
the projections PN onto Es

N parallel to TNU (D), N ∈ U (D). �

Corollary 3.1.2. Let D = diag(d1, . . . , dr) ∈ Mr(C) be an invertible diagonal matrix.
Let Es

N
and kD as in Theorem 3.1.1. Then, in S (D) there exists a ∆-invariant C∞-pre-

lamination {WN}N∈U(D) of class C∞ such that, for every N ∈ U (D),

1. WN is a C∞ submanifold of S (D).

2. TNWN = Es
N

.

3. If kD < ρ < 1, then dist(∆n (T ) − N) ≤ dist(T, N)ρn, for every T ∈ WN .

4. If N1 6= N2 then WN1 ∩WN2 = ∅.

5. There exists an open subset W(D) of S (D) such that

a. U (D) ⊆ W(D) ⊆
⋃

N∈U(D)

WN , and

b. The projection p : W(D) → U (D), defined by p(T ) = N if T ∈ WN , is of class
C∞.

Proof. By Theorem 3.1.1, for every kD < ρ < 1, U (D) is ρ-pseudo hyperbolic for ∆ (see
Definition 2.1.3), and it consists of fixed points. Thus, by Corollary 2.1.5 and Remark 2.1.6,
we get a C∞ and ∆-invariant prelamination of class C∞, {WN}N∈U(D) which satisfies all the
properties of our statement. �

In order to prove the convergence of iterated Aluthge transforms for diagonalizable matrices,
we first reduce the problem to the invertible case. In [4] it was proved that if the sequence of
iterated Aluthge transforms converge for every invertible matrix, then it converge for every
matrix. In our case, we need to prove that if the sequence of iterated Aluthge transforms
converge for every diagonalizable invertible matrix, then it does for every diagonalizable
matrix. The proof of the second statement is essentially the same as the previous one, but,
for a sake of completeness, we include its proof.
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Lemma 3.1.3. If the sequence {∆m (S)}m∈N converges for every diagonalizable invertible
matrix S ∈ Mr(C) and every r ∈ N, then the sequence {∆m (T )}m∈N converges for every
diagonalizable matrices T ∈ Mr(C) and every r ∈ N.

Proof. Let T ∈ Mr(C). As we have observed after Proposition 2.3.6, if T is diagonalizable,
then ∆ (T ) is also diagonalizable. So, if we begin with a diagonalizable matrix T , then
every element of the sequence {∆m (T )}m∈N is diagonalizable. By Proposition 2.3.6, we can
also assume that m(T, 0) = m0(T, 0). Note that, in this case, ker(∆ (T )) = ker(T ) because
ker(T ) ⊆ ker(∆ (T )) and m(∆ (T ) , 0) = m(T, 0). On the other hand, R(∆ (T )) ⊆ R(|T |) so
that R(∆ (T )) and ker(∆ (T )) are orthogonal subspaces. Thus, there exists a unitary matrix
U such that

U∆ (T )U∗ =

(

S 0
0 0

)

where S ∈ Ms(C) is invertible and diagonalizable (s = n − m(T, 0) ). Since for every m > 2

∆m (T ) = U∗

(

∆m−1 (S) 0
0 0

)

U ,

the sequence {∆m (T )} converges, because the sequence {∆m−1 (S)} converges by hypothesis.
�

Theorem 3.1.4. Let T ∈ Mr(C) be a diagonalizable matrix. Then {∆n (T )}n∈N con-
verges.

Proof. Using Lemma 3.1.3, we can assume that T is invertible. Then, T ∈ S (D) for some
invertible diagonal matrix D. By Corollary 3.1.2 and Remark 2.1.6, we get on S (D) a C∞

and ∆-invariant prelamination of class C∞, denoted by {WN}N∈U(D), such that

1. The set
⋃

N∈U(D) WN contains an open neighborhood W(D) of U (D) in S (D).

2. If kD < ρ < 1, then ‖∆n (A) − N‖2 ≤ dist(∆n (A) − N) ≤ dist(A, N)ρn, for every
A ∈ WN .

On the other hand, by Proposition 2.3.4, there exists m ∈ N such that A = ∆m (T ) ∈
⋃

N∈U(D) WN . Thus, for n > m, ∆n (T ) = ∆n−m (A) −−−→
n→∞

N , where N ∈ U (D) is the

unique element of U (D) such that A ∈ WN . �

Remark 3.1.5. From Theorem 3.1.4 it can be deduced Ando and Yamazaki’s result on
the convergence of the iterated Aluthge sequence for 2 × 2 matrices. Indeed, in M2(C),
the spectrum of matrices uncovered by Theorem 3.1.4 must be a singleton. Therefore, by
Proposition 2.3.4, the iterated Aluthge sequence for those matrices has only one limit point.
So, it converges. N

Proposition 3.1.6. Let D ∈ Mr(C) be diagonal and invertible. Then the sequence {∆n}n∈N,
resticted to the similarity orbit S (D), converges uniformly on compact sets to a C∞ limit
function ∆∞ : S (D) → U (D). In particular, ∆∞ is a C∞ retraction from S (D) onto U (D).
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Proof. Let ∆∞ be the limit function, which exists by Theorem 3.1.4. We can apply Corollary
3.1.2, and we shall use its notations. Fix T ∈ S (D). By Proposition 2.3.4 there exists k ∈ N

such that ∆k (T ) ∈ W(D). By the continuity of ∆ (·), there exists a neighborhood U of
T such that ∆k (U) ⊆ W(D). Hence, if p is the projection defined in Corollary 3.1.2,
∆∞|U = (p ◦ ∆k)

∣

∣

U
, which proves that the map ∆∞ is C∞ at T .

On the other hand, to prove that the convergence of {∆n (·)}n∈N is uniform on compact
sets, suppose that U has compact closure, and denote by

C = sup{dist(∆k (S) , ∆∞ (S)) : S ∈ U} .

Fix ε > 0 and take m0 > k such that Ckm0−k
D < ε. Then, using (4) of Corollary 3.1.2, for

every m ≥ m0 and every S ∈ U

dist(∆m (S) − ∆∞ (S)) = dist
(

∆m−k
(

∆k (S)
)

− ∆∞
(

∆k (S)
) )

≤ ε.

This proves that for every T ∈ S (D) there exists a neighborhood of T where the convergence
is uniform. Therefore, by standard arguments, it follows that the convergence is uniform on
compact sets. �

Remark 3.1.7. Let D ∈ Mr(C) be diagonal but not invertible. If T ∈ S (D), by arguments
similar to those used in the proofs of Lemma 3.1.3 and Proposition 3.1.6 it can be proved
that ∆ (T ) ∈ S (D), and the map ∆∞

∣

∣

S(D)
: S (D) → U (D) is a retraction of calss C∞.

3.2 Smoothness of the map T 7→ ∆∞ (T ) on D∗
r(C)

Let D∗
r(C) be the set of diagonalizable and invertible matrices in Mr(C) with r different

eigenvalues (i.e. every eigenvalue has algebraic multiplicity equal to one). Observe that
D∗

r(C) is an open dense subset of Mr(C) and it is invariant by the Aluthge transform. If
∆∞ (·) denotes the limit of the sequence of iterated Aluthge transforms, which is defined on
the set of diagonalizable matrices by Theorem 3.1.4, we shall show that T 7→ ∆∞ (T ) is of
class C∞ on D∗

r(C). The proof of this result essentially follows the same lines as Proposition
3.1.6. For this reason, we expose a sketched version of the proof, where we only point out
the main differences.

We already know that the map ∆∞ (·) is of class C∞ if it is restricted to the orbits S (T )
for any T ∈ D∗

r(C). In order to study the behavior of this map outside the orbit of T , we
need to define the following sets: let D ∈ D∗

r(C) be a diagonal matrix and let ε > 0; then

B(D, ε) =
{

D′ ∈ D∗
r(C) : D′ is diagonal and ‖D − D′‖2 < ε

}

;

S (D, ε) =
{

SD′S−1 : D′ ∈ B(D, ε) and S ∈ Gl r(C)
}

=
⋃

D′∈B(D, ε)

S (D′) ;

U (D, ε) =
{

UD′U∗ : D′ ∈ B(D, ε) and U ∈ U(r)
}

=
⋃

D′∈B(D, ε)

U (D′) .
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The set S (D, ε) is invariant for ∆ (·) and it is also open in Gl r(C) for ε small enough.
Since D ∈ D∗

r(C), it can be proved that U (D, ε) is a smooth submanifold of Mr(C), and
it consists on the fixed points of S (D, ε). For each N ∈ U (D, ε), if {N}′ denotes the
subspace {A ∈ Mr(C) : AN = NA}, the tangent space TNU (D, ε) can be decomposed as
TNU (D, ε) = TNU (D) ⊕ {N}′ . Then, TNS (D, ε) = Mr(C) can be decomposed as

TNS (D, ε) = TNS (D) ⊕ {N}′ =
(

Es
N
⊕ TNU (D)

)

⊕ {N}′ = Es
N
⊕ TNU (D, ε) , (7)

where the subspaces Es
N are the same as those constructed in Theorem 3.1.1. Since D ∈ D∗

r(C)
then, with the notations of Theorem 3.1.1, ρ = max

D′∈B(D, ε)
kD′ < 1 for ε small enought. Also,

for every N ∈ U (D, ε),

1. Both Es
N and TNU (D, ε), are TN ∆-invariant;

2.
∥

∥

∥
TN ∆|Es

N

∥

∥

∥
≤ ρ < 1, and TN ∆

∣

∣

∣

TNU(D, ε)
is the identity map of TNU (D, ε).

The distribution of the subspaces E s
N

is still smooth, since the (oblique) projection EN onto
Es

N
parallel to TNU (D, ε) moves smoothly on U (D, ε). A brief justification of these facts

can be found in the following Remark:

Remark 3.2.1. Let d = 1−ρ
3

. Consider the open discs U = {z ∈ C : |z| < ρ + d}
and V = {z ∈ C : |1 − z| < d}, which have disjoint closures. By Eq. (7), and items 1
and 2 of the previous discusion, one can deduce that the spectrum of TN ∆ is contained
in U ∪ V for every N ∈ U (D, ε). Moreover, if f : U ∪ V → C is the holomorphic map
f = ℵU (the charcateristic map of U), then EN = f(TN ∆) for every N ∈ U (D, ε). If
M(U ∪ V) = {T ∈ Mr2(C) : σ (T ) ⊆ U ∪ V}, which is an open subset of Mr2(C), then the
map

M(U ∪ V) 3 T 7→ f(T ) is of class C∞

(see Theorem 5.16 of Kato’s book [10]). Therefore, the distribution U (D, ε) 3 N 7→ EN =
f(TN ∆) is of class C∞. A similar type of argument can be used to show that U (D, ε) is a
smooth submanifold of Mr(C), for ε small enough. N

Proposition 3.2.2. The map ∆∞ (·) is of class C∞ on D∗
r(C), and the sequence {∆n (·)}n∈N ,

resticted to D∗
r(C), converges uniformly on compact sets to ∆∞(·).

Proof. Let T ∈ D∗
r(C), denote N = ∆∞ (T ) and let D ∈ D∗

r(C), a diagonal matrix such that
N ∈ U (D). We can apply Theorem 2.1.4 to the pair U (D, ε) ⊆ S (D, ε), for ε small. From
now on, the proof follows the same steps as the proofs of Corollary 3.1.2 and Proposition
3.1.6. �
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4 Proof of Theorem 3.1.1

4.1 Matricial characterization of TN∆

Throughout this section we fix an invertible diagonal matrix D ∈ Mr(C) whose diagonal
entries are denoted by (d1, . . . , dn). For every j ∈ {1, . . . , n}, let dj = e iθj |dj| be the polar
decomposition of dj, where θj ∈ [0, 2π]. Recall from Eq. (4) that the tangent space TDS (D)
consists on those matrices X ∈ Mr(C) such that Xij = 0 if di = dj .

Definition 4.1.1. Given A, B ∈ Mr(C), A ◦B denotes their Hadamard product, that is, if
A = (Aij) and B = (Bij), then (A◦B)ij = AijBij. With respect to this product, each matrix
A ∈ Mr(C) induces an operator ΨA on Mr(C) defined by ΨA(B) = A ◦ B, B ∈ Mr(C).

Remark 4.1.2. Note that, by Eq. (4), the subspace TDS (D) reduces the operator ΨA , for
every A ∈ Mr(C). This is the reason why, from now on, we shall consider all these operators
as acting on TDS (D). Restricted in this way, it holds that

‖ΨA‖ = sup{‖A ◦ B‖2 : B ∈ TDS (D) and ‖B‖2 = 1} = max
di 6=dj

|Aij| .

N

Let PRe and PIm be the projections defined on TDS (D) by

PRe(B) =
B + B∗

2
and PIm(B) =

B − B∗

2
.

That is, PRe (resp. PIm) is the restriction to TDS (D) of the orthogonal projection onto the
subspace of hermitian (resp. anti-hermitian) matrices. Observe that, for every K ∈ Mah

r (C)
(i.e., such that K∗ = −K) and B ∈ Mr(C) it holds that

K ◦ PRe(B) = PIm(K ◦ B) and K ◦ PIm(B) = PRe(K ◦ B) . (8)

Denote by QD the orthogonal projection from TDS (D) onto (TDU (D))⊥.

Lemma 4.1.3. Let J, K ∈ Mr(C) be the matrices defined by

Kij =

{

|dj − di| sgn(j − i) if di 6= dj

0 if di = dj

and Jij =

{

(dj − di)K
−1
ij if di 6= dj

1 if di = dj

,

for 1 ≤ i, j ≤ r. Then

1. For every A ∈ Mr(C), AD − DA = J ◦ K ◦ A.

2. It holds that QD = ΨJPImΨ−1
J .

3. If H ∈ Mh
r (C) (i.e., if H∗ = H), then QDΨH = ΨHQD .

Proof.
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1. It is enough to note that (J ◦ K)ij = dj − di and (AD − DA)ij = (dj − di)Aij.

2. Since |Jij| = 1 for every 1 ≤ i, j ≤ r, the operator ΨJ is unitary in (Mr(C), ‖ · ‖2).
Hence, ΨJPImΨ−1

J is an orthogonal projection. Recall that

TDU (D) = {AD − DA : A ∈ Mah
r (C)}.

By Eq. (8), PImΨK = ΨKPRe . Then, given X = AD − DA ∈ TDU (D),

ΨJPImΨ−1
J (X) = ΨJPImΨ−1

J (ΨJΨKA) = ΨJPImΨK(A) = ΨJΨKPRe(A) = 0.

So, TDU (D) ⊆ ker(ΨJPImΨ−1
J ). But, dim TDU (D) = dim ker(ΨJPImΨ−1

J ). Therefore,
we have that QD = ΨJPImΨ−1

J .

3. It is clear that ΨHΨJ = ΨJΨH . On the other hand, since H is hermitian, ΨH also
commutes with the projection PIm . �

Remark 4.1.4. Let N ∈ U (D) and let QN be the orthogonal projection from TNS (D) onto
(

TNU (D)
)⊥

. Then TN∆ has the following 2 × 2 matrix decomposition

TN∆ =

(

A1N 0
A2N I

)

QN

I − QN

, (9)

because TN∆ behaves as the identity on TNU (D). The next Proposition gives a character-
ization of the significative parts A1N = QN

(

TN∆
)

QN and A2N = (I − QN)
(

TN∆
)

QN in the
case N = D. N

Proposition 4.1.5. Let QD be the orthogonal projection onto
(

TDU (D)
)⊥

. Then there
exists H ∈ Mr(C) such that, if H1 = PRe(H) and H2 = PIm(H),

QD

(

TD∆
)

QD = QD ΨH1 QD and (I − QD)
(

TD∆
)

QD = (I − QD) ΨH2 QD .

Moreover, the matrix H1 can be characterized as

(H1)ij =

(

1 + e i(θj−θi)
)

|di|1/2|dj|1/2

|di| + |dj|
for every 1 ≤ i, j ≤ r . (10)

Proof. Fix a tangent vector X = AD − DA ∈ TDS (D), for some A ∈ Mr(C). Then

TD∆ (X) =
d

dt
∆
(

etADe−tA
)

∣

∣

∣

∣

t=0

.

Let γ(t) =
(

etADe−tA
)∗(

etADe−tA
)

= e−tA∗
D∗etA∗

etADe−tA. In terms of γ, we can write the
curve ∆

(

etADe−tA
)

in the following way

∆
(

etADe−tA
)

= γ1/4(t)(etADe−tA)γ−1/4(t).
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So, using that (γ−1/4)′(0) = −γ−1/4(0) (γ1/4)′(0) γ−1/4(0) (which can be deduced from the
identity γ1/4γ−1/4 = I), we obtain

TD∆ (X) = (γ1/4)′(0) Dγ−1/4(0) + γ1/4(0)(AD − DA)γ−1/4(0)

− γ1/4(0) D γ−1/4(0) (γ1/4)′(0) γ−1/4(0)

= (γ1/4)′(0) D|D|−1/2 + |D|1/2(AD − DA)|D|−1/2

− |D|1/2 D |D|−1/2 (γ1/4)′(0) |D|−1/2

=
(

(γ1/4)′(0) D − D (γ1/4)′(0)
)

|D|−1/2 + |D|1/2(AD − DA)|D|−1/2.

If we define the matrices L, N ∈ Mr(C) by

Nij = |dj|
−1/2,

Lij = |di|
1/2|dj|

−1/2,

and take J, K ∈ Mr(C) as in Lemma 4.1.3. Then

TD∆ (X) = N ◦ (J ◦ K ◦ (γ1/4)′(0)) + L ◦ (J ◦ K ◦ A).

Now, we need to compute (γ1/4)′(0). Firstly, we shall compute (γ1/2)′(0), and then we shall
repeat the procedure to get (γ1/4)′(0). Using the identity γ1/2γ1/2 = γ, we get

γ1/2(γ1/2)′ + (γ1/2)′γ1/2 = γ′

If A = γ1/2(0), B = −γ1/2(0) and Y = γ′(0), we can rewrite the above identity in the
following way

A(γ1/2)′(0) − (γ1/2)′(0)B = Y.

Therefore, (γ1/2)′ is the solution of Sylvester’s equation AX − XB = Y . Using the well
known formula for this solution (see [5, Thm. VII.2.3]), it holds that

(γ1/2)′(0) =

∫ ∞

0

e−tAY etB dt =

∫ ∞

0

e−tγ1/2(0) γ′(0) e−tγ1/2(0) dt.

In the same way, we get

(γ1/4)′(0) =

∫ ∞

0

e−tγ1/4(0) (γ1/2)′(0) e−tγ1/4(0) dt

=

∫ ∞

0

e−tγ1/4(0)

(
∫ ∞

0

e−sγ1/2(0) γ′(0) e−sγ1/2(0) ds

)

e−tγ1/4(0) dt

=

∫ ∞

0

∫ ∞

0

e−
(

tγ1/4(0)+sγ1/2(0)
)

γ′(0) e−
(

tγ1/4(0)+sγ1/2(0)
)

ds dt.
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Finally, as γ(0) = |D|2, we obtain

(γ1/2)′(0) =

∫ ∞

0

∫ ∞

0

e−(t|D|1/2+s|D|) γ′(0) e−(t|D|1/2+s|D|) ds dt.

So, if M ∈ Mr(C) is the matrix defined by

Mij =

∫ ∞

0

∫ ∞

0

e−(t|di|1/2+s|di|) e−(t|dj |1/2+s|dj |) ds dt

=

∫ ∞

0

∫ ∞

0

e
−

(

t( |di|1/2+|dj |1/2) + s( |di|+|dj |)

)

ds dt

=

∫ ∞

0

e−s
(

|di|+|dj |
)

ds

∫ ∞

0

e−t
(

|di|1/2+|dj |1/2
)

dt

=
−e−s

(

|di|+|dj |
)

|di| + |dj|

∣

∣

∣

∣

∣

∣

∞

0

−e−t
(

|di|1/2+|dj |1/2
)

|di|1/2 + |dj|1/2

∣

∣

∣

∣

∣

∣

∞

0

=
1

|di| + |dj|

1

|di|1/2 + |dj|1/2
,

then (γ1/4)′(0) = M ◦ γ′(0). Our next step will be to compute γ ′(0).

γ′(0) = −A∗D∗D + D∗A∗D + D∗AD − D∗DA = 2D∗PRe(A)D − (D∗DA + A∗D∗D)

= 2D∗PRe(A)D − (D∗DPRe(A) + PRe(A)D∗D) − (D∗DPIm(A) − PIm(A)D∗D)

Let R, T +, T− ∈ Mr(C) be the matrices defined by

Rij = 2d̄idj , T+
ij = |di|

2 + |dj|
2 , and T−

ij = |dj|
2 − |di|

2 , 1 ≤ i, j ≤ r .

Then, γ′(0) can be rewritten in the following way

γ′(0) = R ◦ PRe(A) − T + ◦ PRe(A) + T− ◦ PIm(A).

In consequence, TD∆ (AD − DA) can be characterized (in terms of A) as

TD∆ (X) = N ◦ J ◦ K ◦ M ◦
[

(R − T +) ◦ PRe(A) + T− ◦ PIm(A)
]

+ L ◦ J ◦ K ◦ A.

Now, we shall express TD∆ (X) in terms of X = J ◦ K ◦ A. Recall that, since K∗ = −K,
then PImΨK = ΨKPRe , by Eq. (8). Therefore,

TD∆ (X) = M ◦ N ◦ (R − T +) ◦ J ◦ PIm(K ◦ A)

+ M ◦ N ◦ T− ◦ J ◦ PRe(K ◦ A) + L ◦ (J ◦ K ◦ A)

= M ◦ N ◦ (R − T +) ◦ (ΨJPImΨ−1
J )(X)

+ M ◦ N ◦ T− ◦ (ΨJPReΨ
−1
J )(X) + L ◦ (X)
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Then, since ΨJPImΨ−1
J = QD by Lemma 4.1.3,

TD∆ (X) =
(

M ◦ N ◦ (R − T +) + L
)

◦ QD(X)

+
(

M ◦ N ◦ T− + L
)

◦ (I − QD)(X).

Define H = M ◦ N ◦ (R − T +) + L. Then Hi,j =

= |di|
1/2|dj|

−1/2 + |dj|
−1/2 2d̄idj − (|di|2 + |dj|2)

(|di|1/2 + |dj|1/2)(|di| + |dj|)

=
|di|

1/2|dj|
−1/2(|di|

1/2 + |dj|
1/2)(|di| + |dj|) + 2d̄idj|dj|

−1/2 − |di|
2|dj|

−1/2 − |dj|
3/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)

=
|di||dj|1/2 + |di|3/2 + |di|1/2|dj| + 2d̄idj|dj|−1/2 − |dj|3/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)

=
|di||dj|1/2 + |di|3/2 + |di|1/2|dj| + |dj|3/2 + 2d̄idj|dj|−1/2 − 2|dj|3/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)

= 1 + 2
d̄idj|dj|−1/2 − |dj|3/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)
.

On the other hand

(M ◦ N ◦ T− + L) = |di|
1/2|dj|

−1/2 + |dj|
−1/2 |dj|

2 − |di|
2

(|di|1/2 + |dj|1/2)(|di| + |dj|)

= |dj|
−1/2

(

|di|
1/2 + |dj|

1/2 − |di|
1/2
)

= 1

Therefore, we get that TD∆ (X) =
(

HQD + (I − QD)
)

(X). Given Y ∈ R(QD),

QD

(

TD∆
)

QD(Y ) = QD(H ◦ Y ) = (ΨJPImΨ−1
J )(H ◦ Y )

= J ◦
(

PIm(H ◦ Ψ−1
J Y )

)

=
1

2
J ◦

(

H ◦ Ψ−1
J (Y ) −

(

H ◦ Ψ−1
J (Y )

)∗)

=
1

2
J ◦

(

H ◦ Ψ−1
J (Y ) + H∗ ◦ Ψ−1

J (Y )
)

= J ◦ PRe(H) ◦ Ψ−1
J (Y ) = PRe(H) ◦ Y = QDΨPRe(H)(Y ) .
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Analogously

(I − QD)
(

TD∆
)

QD(Y ) = (I − QD)(H ◦ Y ) = (ΨJPReΨ
−1
J )(H ◦ Y )

= J ◦
(

PRe(H ◦ Ψ−1
J Y )

)

=
1

2
J ◦

(

H ◦ Ψ−1
J (Y ) +

(

H ◦ Ψ−1
J (Y )

)∗)

=
1

2
J ◦

(

H ◦ Ψ−1
J (Y ) − H∗ ◦ Ψ−1

J (Y )
)

= J ◦ PIm(H) ◦ Ψ−1
J (Y ) = PIm(H) ◦ Y = (I − QD)ΨPIm(H)(Y ) .

So, Eq. (10) holds. Moreover,

(H1)ij =
1

2

(

1 + 2
d̄idj|dj|−1/2 − |dj|3/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)
+ 1 + 2

d̄idj|di|−1/2 − |di|3/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)

)

= 1 +
d̄idj|dj|−1/2 − |dj|3/2 + d̄idj|di|−1/2 − |di|3/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)

=
|di||dj|

1/2 + |dj||di|
1/2 + d̄idj|dj|

−1/2 + d̄idj|di|
−1/2

(|di|1/2 + |dj|1/2)(|di| + |dj|)

=
|di|1/2|dj|1/2

(

|di|1/2 + |dj|1/2 + e i(θj−θi)|di|1/2 + e i(θj−θi)|dj|1/2
)

(|di|1/2 + |dj|1/2)(|di| + |dj|)

=

(

1 + e i(θj−θi)
)

|di|1/2|dj|1/2

|di| + |dj|
,

which completes the proof. �

Corollary 4.1.6. Given N ∈ U (D), consider the matrix decomposition

TN∆ =

(

A1N 0
A2N I

)

QN

I − QN

,

as in Remark 4.1.4. Then ‖A1N‖ ≤ max
i, j : di 6=dj

|1 + ei(θj−θi)| |di|
1/2|dj|

1/2

|di| + |dj|
< 1.

Proof. Let N = UDU ∗ ∈ U (D), for some U ∈ U(r). Then,

TN∆ = AdU

(

TD∆
)

Ad−1
U and QN = AdU

(

QD

)

Ad−1
U .

Since AdU : TDS (D) → TNS (D) is an isometric isomorphism, it holds that

‖A1N‖ =
∥

∥QN

(

TN∆
)

QN

∥

∥ =
∥

∥

∥
AdU

(

QD

(

TD∆
)

QD

)

Ad−1
U

∥

∥

∥
=
∥

∥QD

(

TD∆
)

QD

∥

∥ = ‖A1D‖.

Take the selfadjoint matrix H1 given by Proposition 4.1.5. Hence,

‖A1D‖ ≤ ‖ΨH1‖ = max
i, j : di 6=dj

|1 + ei(θj−θi)| |di|1/2|dj|1/2

|di| + |dj|
.
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On the other hand, by the triangle inequality and the arithmetic-geometric inequality,

|1 + ei(θj−θi)| |di|1/2|dj|1/2

|di| + |dj|
≤

2 |di|1/2|dj|1/2

|di| + |dj|
≤ 1 .

Note that the equality holds only if θj = θi mod (2π) and |di| = |dj|, that is, if di = dj .
Hence, the maximum is strictly lower than one. �

Remark 4.1.7. It is easy to see, using Lemma 4.1.3 and Eq. (10), that TD∆ is invertible,
and therefore ∆ is a local diffeomorphism near D, if and only if ei(θj−θi) 6= −1 for every i, j.
The last condition means that there are not pairs di, dj such that di · dj ∈ R<0 . N

4.2 The proof

Now we rewrite the statement of Theorem 3.1.1 and conclude its proof:

Theorem. The Aluthge transform ∆ (·) : S (D) → S (D) is a C∞ map, and for every
N ∈ U (D), there exists a subspace E s

N
in the tangent space TNS (D) such that

1. TNS (D) = Es
N ⊕ TNU (D);

2. Both, Es
N

and TNU (D), are TN ∆-invariant;

3.
∥

∥

∥
TN ∆|Es

N

∥

∥

∥
≤ kD < 1, where kD = max

i, j : di 6=dj

∣

∣1 + ei(arg(dj )−arg(di))
∣

∣ |di|1/2|dj|1/2

|di| + |dj|
;

4. If U ∈ U(r) satisfies N = UDU ∗, then Es
N

= U(Es
D
)U∗.

In particular, the map U (D) 3 N 7→ E s
N is smooth. This fact can be formulated in terms of

the projections PN onto Es
N

parallel to TNU (D), N ∈ U (D).

Proof. Fix N = UDU ∗ ∈ U (D). By Corollary 4.1.6 ‖A1N‖ < 1, so the operator I − A1N

acting on R(QN) is invertible. Let Es
N be the subspace defined by

Es
N =

{(

y

−A2N(I − A1N)−1y

)

: y ∈ R(QN)

}

,

where QN , as in Corollary 4.1.6, is the orthogonal projection onto
(

TNU (D)
)⊥

. A straight-
forward computation shows that

PN =

(

I 0
−A2N(I − A1N)−1 0

)

QN

I − QN

is a projection onto Es
N parallel to TNU (D). Therefore

TNU (D) = Es
N ⊕ TNU (D) .
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Moreover, since TN∆ = AdU

(

TD∆
)

Ad−1
U

, QN = AdU

(

QD

)

Ad−1
U

, and PN can be written as

PN = QN − (I − QN)(TN∆)QN

(

I − QN(TN∆)QN

)−1
QN ,

it holds that
PN = AdU(PD)Ad−1

U .

This shows that Es
N = U(Es

D)U∗ as we desired. On the other hand

QN(TN∆) =

(

A1N 0
A2N I

)(

I 0
−A2N(I − A1N)−1 0

)

=

(

A1N 0

A2N

(

I − (I − A1N)−1
)

0

)

=

(

A1N 0

A2N

(

− A1N

)

(I − A1N)−1 0

)

=

(

A1N 0
−A2N(I − A1N)−1A1N 0

)

.

and

(TN∆)QN =

(

I 0
−A2N(I − A1N)−1 0

)(

A1N 0
A2N I

)

=

(

A1N 0
−A2N(I − A1N)−1A1N 0

)

.

So, QNTN∆ = TN∆QN . This implies that both subspaces, E s
N and TNU (D), are invariant for

TN∆. Clearly, TN∆ restricted to TNU (D) is the identity. Hence, it only remains to prove that
(

TN∆
)
∣

∣

Es
N

has norm lower or equal to kD. Observe that it is enough to make the estimation

at TDS (D). Indeed, for every X ∈ E s
N , it holds that TN∆(X) = AdU

(

TD∆
)

Ad−1
U (X),

Ad−1
U (X) ∈ Es

D, and AdU is an isometric isomorphism from TDS (D) onto TNS (D).

So, let Y =

(

y

−A2D(I − A1D)−1y

)

∈ Es
D. Then

‖(TD∆) (Y )‖2
2 =

∥

∥

∥

∥

(

A1D 0
A2D I

)(

y

−A2D(I − A1D)−1y

)
∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

(

A1D(y)
A2D(y) − A2D(I − A1D)−1(y)

)
∥

∥

∥

∥

2

2

= ‖A1D(y)‖2
2 +

∥

∥A2D(y) − A2D(I − A1D)−1(y)
∥

∥

2

2

≤ k2
D
‖y‖2

2 +
∥

∥−A2DA1D(I − A1D)−1(y)
∥

∥

2

2
.

where the inequality holds because, by Corollary 4.1.6, ‖A1D‖ ≤ kD. On the other hand, by
Lemma 4.1.3, we know that ΨH1QD = QDΨH1 . So, using Proposition 4.1.5, we obtain

∥

∥−A2DA1D(I − A1D)−1(y)
∥

∥

2

2
=
∥

∥

∥
−(I − QD) ΨH2 QD ΨH1 QD

(

(I − A1D)−1(y)
)
∥

∥

∥

2

2

=
∥

∥

∥
−ΨH1(I − QD) ΨH2 QD

(

(I − A1D)−1(y)
)
∥

∥

∥

2

2

≤ ‖ΨH1‖
2
∥

∥

∥
−(I − QD) ΨH2 QD

(

(I − A1D)−1(y)
)
∥

∥

∥

2

2

= k2
D

∥

∥−A2D(I − A1D)−1(y)
∥

∥

2

2
.

20



Therefore

‖(TD∆) (Y )‖2
2 ≤ k2

D ‖y‖2
2 + k2

D

∥

∥−A2D(I − A1D)−1(y)
∥

∥

2

2
= k2

D‖Y ‖2
2 .

The smoothness of the map U (D) 3 N 7→ E s
N

follows from item (4) and the existence of C∞

local cross sections for the map πD : U(r) → U (D), which exist by Proposition 2.2.2. For
example, if σD : U → U(r) is such a section near D, then by item (4) and Eq. (6)

PN = AdσD(N) PDAdσD(N)∗ , N ∈ U .

This completes the proof. �

A Appendix: Stable manifold Theorem

Let f be a smooth endomorphism of a Riemannian manifold and let N be an f-invariant
submanifold of M . Under the conditions of Theorem 2.1.4 we can suppose that the tangent
bundle at N can be splitted in two Df−invariant subbundles, one given by the tangent bun-
dle of N and the other being contracted by Df (see Definition 2.1.3). In this case, as it holds
for fixed points, it is proved that for each point x in N there is a transversal smooth sub-
manifold to N containing x and characterized by the points that converges assymptoticaly
to the orbit of x. The union of these submanifolds conforms a foliation in a neighborhood
of N (also called pre-lamination). This is the statement of theorem 2.1.4, which is obtained
using a classical technique in dynamical systems known as graph transform operator (see
definition (11)). This stable foliation has smooth leaves but in general is only continuous.
However, if certain conditions over the Df−invariant splitting are also satisfied, then it can
be proved that the foliation is smooth. This result, is consequences of the Cr−section the-
orem (stated here as theorem A.2.3 in subsection A.2). Moreover, the Cr−section theorem
can be reformulated in a suitable version useful for our goals. This version is stated in
theorem A.3.1; in particular, in the statement is explicite which condition should be satis-
fied by the Df−invariant splitting (see inequality (14)). To obtain this reformulation it is
necessary to show that the graph transform operator introduced as a tool in the proof of
the stable manifold theorem verifies certain properties. Therefore, and also for the sake of
understanding for the reader, we give a sketch of the proof of the stable manifold theorem.

In our context, we want to apply the previous result for the case that the invariant
submanifold is formed by fixed points. Therefore, we need to show that the hypothesis of
theorem A.3.1 are full filed when we deal with a submanifold of fixed points. This is done
in theorem A.4.1.

A.1 Proof of theorem 2.1.4.

Sketch of the proof: The proof consist in to use the graph transform operator. Basically
consists in the following: In a neighborhood of any points x ∈ N we consider the exponential
map expx : (TxM)r → M where (TxM)r is the ball of radius r in TxM , and we take the sets

Ês
x(r) = exp(Es

x ∩ (TxM)r), F̂x(r) = exp(Fx ∩ (TxM)r).
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Then it is taken r small and the space of pre-lamination σ such that for each x ∈ N follows
that σx is a smooth map σx : Ês

x(r) → F̂x(r) (in what follows, to avoid notation we simple
note these subbundles with Ês

x and F̂x). Then it is taken the operator which roughly
speaking transform one pre-lamination into another one such that its images are related in
the following way (see (11) for details):

σ → σ̃, such that image(σ̃x) = f−1(image(σf(x))) ∩ Br(x).

The goal is to prove that this operator is a contractive operator and so it has a fixed point.
Latter it is shown that this fixed point corresponds to the stable lamination. Coming back
to the sketch of the proof, first it is considered the maps

f 1
x = p1

x ◦ f : M → Ês
x and f 2

x = p2
x ◦ f : M → F̂x ,

where p1
x is the projection on Ês

x and p2
x is the projection on F̂x. We take

Cr(Ês
x, F̂x)

the set of Cr maps from Ês
x to F̂x and we consider the space

Cr,0(Ês, F̂) = {σ : N → Cr(Ês
x, F̂x)}

i.e.: for each x ∈ N we take σx ∈ Cr(Ês
x, F̂x) and we assume that x → σx moves

continuously with x. We can represent Cr,0(Ês, F̂) as a vector bundle over N given by
N × {Cr(Ês

x, F̂)}x∈X . Now we take the graph transform operator

Γf(σx) =
(

f 2
x ◦ (id, σf(x))

)−1
◦
(

f 1
x ◦ (id, σx)

)
∣

∣

Ês
x
. (11)

It is proved that the graph transform operator is a contractive map and therefore it has a
fixed point. In fact, to show that is contractive operator it is used the following remark

Remark A.1.1. The Lipschitz constant of the graph transform operator is smaller that λ

where λ is the constant that bounds ||DfEs ||
m(Df|F )

(see inequality (1) in Definition 2.1.3). In fact,

to prove that it is enough to show that graph transform operator associated to f is close
to the graph transform operator ΓDf associated to Dfand that λ is an upper bound for
Lip(ΓDf ). The graph transform operator associated to the derivative of f , acts on the space
L(Es,F) which is the bundle of linear maps from E s into F . Using the splitting Es ⊕F , we
can write Df in the following way:

Df =

[

A 0
0 D

]

,

where A = Df|Es and D = Df|F . Hence, if P ∈ L(Es,F) , then ΓDf(P ) is defined as

ΓDf(P ) = D−1 ◦ P ◦ A. (12)
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In particular, it follows that

Lip(ΓDf ) =
||A||

m(D)
=

||Df|Es||

m(Df|F)
< λ < 1.

Later, it is shown that the graph transform Γf is close to ΓDf and so the remark follows. To

see that “ Γf is close to ΓDf” observe that D−1 in x ∈ N is the derivative of f 2
x
−1

and A in
x ∈ N is the derivative of f 1

x . N

From the remark A.1.1, we conclude that Γf is a contractive operator with Lipschitz constant
bounded by λ.

A.2 Cr−section theorem.

The goal is to prove that the pre-lamination obtained in Theorem 2.1.4 is smooth. To do
that, it is a used the following general theorem and latter we show how to adapt to prove the
smoothness of the pre-lamination and we will address the particular case of a submanifold
of fixed points.

Definition A.2.1. Let Π : E → X be a vector bundle with a metric space base X. We say
that d is an admissible on E when:

1. it induces a norm on each fiber;

2. there is a Banach space A such that the product metric on X × A induced d on E;

3. the projection of X × A onto E is of norm 1.

Without loss of generality we can assume that E = X × A.

Definition A.2.2. Let Π : E → X be a vector bundle with a metric space base X, with an
admissible metric on E. Let X0 be a subset of X and D be the disc bundle of radius C in E,
where C > 0 is a finite constant. Let D0 be the restriction of D to X0; D0 = D ∩ Π−1(X0).
Let h be a continuous map of X0 into X. We say that F : D0 → D is a map which covers h,

if
Π ◦ F = h.

Theorem A.2.3 (Cr−section theorem.). Let Π : E → X be a vector bundle over the
metric space X, with an admissible metric on E. Let X0 be a subset of X and D be the
disc bundle of radius C in E, where C > 0 is a finite constant. Let D0 be the restriction
of D to X0; D0 = D ∩ Π−1(X0). Let h be an overflowing continuous map of X0 into X,
that is X0 ⊂ h(X0). Let F : D0 → D be a map which covers h. Suppose that there is a
constant k, 0 ≤ k0 < 1 such that for all x ∈ X0, the restriction of F to the fiber over X,
Fx : Dx → Dh(x), is Lipschitz with constant at most k. Then:

1. There is a unique section σ : X0 → D0 such that F (Image ofσ) ∩ D0 = Image of σ.
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2. If, X, X0 and E are Cr−manifolds with bounded derivatives, if µ = Lip(h−1) be the
Lipschitz constant of h−1 and it is satisfied

kµr < 1 (13)

then follows that σ is Cr. �

The previous theorem corresponds to theorem 5.18 of [12] (see page 58) and [13] (see page
44).

Remark A.2.4. Observe that in the previous Theorem, it is not assumed that the manifolds
have to be compact. N

A.3 Application to the smoothness of the stable lamination.

Theorem A.3.1 (Smoothness of the stable lamination). Let f be a Cr endomor-
phism of M with a ρ-pseudo hyperbolic submanifold N with ρ < 1. Let W s : N →
Embr((−1, 1)k, M) be the Cr-pre-lamination of class C0, introduced in Theorem 2.1.4. If
m(·) denotes the minimum norm, and

||Df/Es||

m(Df/F )
||Df/F ||

r < λ < 1, (14)

then Ws : U ∩ N → Embr((−1, 1)k, M) is a Cr-pre-lamination of class Cr.

Sketch of the proof: In the hypothesis of Theorem A.2.3 we consider X = M , X0 = N ,
E = M × {Cr(Ês

x, F̂x)}x∈N (i.e.: the pairs (x, σx) such that σx : Ês
x → F̂x), h = f−1,

D0 = N × {Cr(Ês
x, F̂)}x∈N and F (x, σ) = (f(x), Γf) where Γf is the graph transform

operator associated to f . From remark A.1.1 follows that Lip(F ) is close to
||Df/Es ||

m(Df/F )
and it

is immediate that Lip(h−1) = Lip(f) = ||Df ||. Therefore, if (14) holds, then

Lip(f)rLip(Γf ) < 1,

and therefore the inequality (13) holds and so we can apply Theorem A.2.3. �

A.4 Application to a compact submanifold of fixed points.

Now we shows that we can apply A.3.1 to the case of a submanifold of fixed points.

Corollary A.4.1 (Smoothness of the stable lamination for a submanifold of fixed
points). Let f , M and N as in Theorem 2.1.4. Let us assume that any point p in N is a
fixed point. Then Cr-pre-lamination Ws : N → Embr((−1, 1)k, M) is of class Cr.
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Proof. Observe that Df/F = Id. Therefore

||Df/Es||

m(Df/F)
||Df/F ||

k = ||Df/Es|| < λ < 1

and so it follows that Ws : U ∩ N → Embr((−1, 1)k, M) is a Cr-pre-lamination of class Cr,
by Theorem A.3.1.

Remark A.4.2. Similar results to the one obtained in theorem A.4.1 are obtained in [11].
In this paper, it is shown that the stable foliation is C1 assuming a similar condition to (14)
for the context of partial hyperbolic systems.
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