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Abstract

We characterize preference relations over bounded below Anscombe
and Aumann�s acts and give necessary and su¢ cient conditions that guar-
antee the existence of a utility function u on consequences, a con�dence
function ' on the set of all probabilities over states of nature and a posi-
tive threshold level of con�dence �0 such that our preference relation has
a functional representation J , where given an act f

J(f) = min
p2L�0'

1

'(p)

Z
S

u(f)dp

The level set L�0' := fp : ' (p) � �0g re�ects the priors held by the
decision maker and the value '(p) captures the relevance of prior p for his
decision. The combination of ' and �0 may describe the decision-maker�s
subjective assessment of available information. An important feature of
our representation is the characterization of the maximal con�dence func-
tion which allows us to obtain results on comparative ambiguity aversion
and on special cases, namely the subjective expected utility, the Choquet
expected utility with convex capacity, and the maxmin expected utility.
Journal of Economic Literature Classi�cation Number : D81.

Key words: con�dence functions; ambiguity aversion; Knightian un-
certainty; ambiguity attitudes; multiple prior model.

1 Introduction

The presence of vagueness in probability judgements is an important issue in
decision making, as Frank Knight (1921, page 227) commented: The action
which follows upon an opinion depends as much upon the amount of con�dence
in that opinion as it does upon the favorableness of the opinion itself. Here,
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we may understand an opinion as some probability judgement and following
Knight�s argument a decision maker may have di¤erent degrees of con�dence on
probability assignments which is a crucial factor in the decision making process.
In order to make the preceding discussion more concrete we consider the

Ellsberg�s seminal article (1961) that presented the following mind experiments:
there are two urns A and B, each containing one hundred balls. Each ball is
either red or black. In urn A there are �fty balls of each color and there is no
additional information about urn B. One ball is chosen at random from each
urn. There are four states of nature, denoted by S = f(r; r); (r; b); (b; r); (b; b)g
where (r; r) denotes the event that the ball chosen from urn A is red and the
ball chosen from urn B is red, etc. We can construct four bets denoted by
Ar; Ab; Br; Bb, where the bet Ar yields $100 if the state (r; r) or (r; b) occurs
and zero if it does not, i.e., Ar is a bet on a red ball in urn A. According to
Ellsberg, most decision makers are indi¤erent between betting on a red ball in
urn A and betting on a black ball in urn A, and are similary indi¤erent between
bets on a red ball in urn B or a black ball in urn B. However, there is a
nonnegligible proportion of decision makers who prefer every bet from urn A
(red or black) to every bet from urn B (red or black).
By a con�dence function we mean a mapping from the set of priors to the

unity interval [0; 1] describing the degree of con�dence on the alternative prob-
abilistic model governing the relevant phenomenon. For instance, if we assume
the existence of a con�dence function 'A over probabilities concerning urn A,
it is plausible to take 'A such that

'A (�) := 'A((�; 1� �)) = 0 if � 6= 1=2 and 'A(1=2) = 1,

where (�; 1 � �) denotes the distribution that assign weight � for a red ball
and 1 � � for a black ball. On the other hand, in urn B the situation is less
simple due to the lack of information about the proportion of balls. Clearly,
such an example exhibits symmetries a la Laplace´s principle of insu¢ cient
reason, however, as it is well known the Ellsberg paradox refuses the possibility
of 50%-50% distribution on urn B. But, in some sense we can preserve such
symmetrical information by considering a symmetric con�dence function about
the likelihoods on urn B, for example, consider a con�dence function 'B such
that 'B(�) = 4(���2) is the degree of con�dence in the distribution (�; 1��):
Such con�dence function illustrates a situation where a decision maker has a
subjective judgement that re�ects a better amount of con�dence in distributions
closer to the symmetrical case ( 12 ;

1
2 )
1 . So, the notion of con�dence function can

capture the essence of the Knigthian argument about the vagueness on the
process of probabilistic judgment.
Contrary to the notion of vague probabilities, as nicely discussed by Gilboa

et. al. (2007), the �rst tenet of widely adopted Bayesian approach says that

1This problem can be reformulated using a single con�dence function ' on the set of all
probability measures over S. For instance, consider a probability p, the marginals pA and pB
such that p(sA; sB) = pA(sA)pB (sB) and suppose that ' satis�es ' (p) = 'A (pA)'B (pB),
hence ' (p) = 4(� � �2) if pA(r) = 1=2 and pB(r) = � (i.e., if p(r; r) = p(b; r) = �=2 and
p(r; b) = p(b; b) = (1� �) =2) for some � 2 [0; 1] and ' (p) = 0 otherwise.
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whenever a fact is not known, the decision maker should have probabilistic be-
liefs about it and such beliefs should be given by a single probability measure
de�ned over a state space in which every state resolves all relevant uncertainty.
Inspired by Ramsey and de Finetti´s works, Savage (1954) proposed a theory
for choice under uncertainty that relies solely upon behavioral data and gave
a set of axioms upon preferences amongst acts (i.e., maps from states to con-
sequences) under which choice under uncertainty reduces to choice under risk,
i.e., the decision maker�s preference can be represented by a pair u and p, where
u is a utility function over the consequences and p is a probability measure
over the states of nature as in the Bayesian theory2 . So, if we assume the
axiomatizations of subjective expected utility (SEU) as basis for the Bayesian
behavior pattern and consider the Ellsberg�s preceding experiment, the decision
maker�s con�dence function in urn B would have assigned full con�dence in a
unique probability pB while di¤erents believes are dismissed3 . However, a de-
cision maker consistent with the observations from Ellsberg�s experiment is not
consistent with the SEU characterization: in situations where some events come
with probabilistic information and some events do not, subjective probabilities
do not always su¢ ce to fully encode all aspects of an individual�s uncertain
beliefs.
Ellsberg Paradox and some normative failures of SEU4 have inspired the

development of non-probabilistic models of preferences over subjectively un-
certain acts. One important line of research replaces the subjective expected
utility function with a more general functional, such as the Choquet expected
utility (CEU) of Schmeidler (1989) or the maxmin expected utility (MEU) of
Gilboa and Schmeidler (1989). Decision makers with MEU preferences evaluate
an act using the minimun expected utility over a given nonempty, convex and
(weakly�) compact subset C of the set � of all probabilities on states, while
decision makers with CEU preferences evaluate an act using its expected utility
computed according to a capacity (a non additive probability). Although these
models are not the same in general, they coincide in the case of ambiguity aver-
sion, that is, CEU with a convex capacity. In this case, the Choquet expected
utility with respect to a capacity v reduces to the minimum expected value over
the set of probability distribution given by the core of the capacity v (de�ni-

2 In a setting where objective probabilities are embedded in the consequence space,
Anscombe and Aumann (1963) gave an alternative and simpler axiomatic treatment. This
treatment is especially apparent in Fishburn�s (1970) well-known reformulation and extension
of Anscombe and Aumann�s approach which employs usual linear-space arguments and derives
the same representation. Ghirardato et al. (2003) provide a simple de�nition of subjective
mixture of acts that makes it possible to exploit all the advantages of the set-up pioneered by
Anscombe and Aumann and Fishburn relying solely on behavioral data, and hence retaining
the conceptual appeal of Savage�s approach.

3One stronger example of such extreme binary assignment of con�dence degree over proba-
bility assigments in economics is the rational expectation hypothesis : under this assumption all
agents share the same probability on some relevant economic phenomenon. But it is important
to highlight that the axioms from Savage or Anscombe and Aumann imply no restrictions on
the form of the probabilistic expectations, in particular, they do not imply that expectations
are rational.

4For a stimulant discussion see Gilboa et al. (2007, section 3).
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tions can be found in the section 6.2). Formally, a decision maker with MEU
preferences ranks acts according to the following criterion

J(f) = min
p2C

Z
u(f)dp:

An ambiguity aversion decision maker a la CEU or MEU exibits a behavior
compatible with the Ellsberg Paradox. In this case, we may think that the
decision-maker�s con�dence function satis�es the following rule: if the prior p
belongs to C the (normalized) con�dence is one, otherwise the con�dence is null.
Hence, the MEU criterion can be written as follows

J(f) = min
fp:1C(p)��g

1

1C(p)

Z
u(f)dp

for any level � 2 (0; 1], where 1C : �! [0; 1] is the characteristic function of C
given by

1C(p) =

�
1; p 2 C;
0; p =2 C:

However, it seems unreasonable that the decision-maker presents a uniform
degree of con�dence on the priors relevant to his decision. Also, is necessary, for
instance, that a multiple prior decision maker puts null weights on priors that
do not belong to the set of multiple priors?
In order to capture this intuition, we want to characterize the preferences of

an agent that ranks (bounded below Anscombe-Aumann) acts f according to
the following criterion

J(f) = min
p2fq2�:'(q)��0g

1

'(p)

Z
u(f)dp:

where ' : �! [0; 1] is a function representing the agent´s degree of con�dence
on the possible models p in�, �0 is the threshold level of con�dence below which
a model is discarded, u is a utility index. So, in general, vagueness about the
true probability law in our model are captured by a fully subjective fuzzy set of
priors ' (a con�dence function), which appeared to us as a meaningful way for
modeling a decision maker who has a relative assesment of probability measures
over states of natures. Also, our preference is ambiguity averse (see, for instance,
Proposition 7) and it turns out that a decision maker with a con�dence function
' and con�dence level �0 is less ambiguity averse than a MEU decision maker
with set of multiple priors given by C := fq 2 � : ' (q) � �0g (see, for details,
Proposition 8).
An interesting feature of our representation is the characterization of the

maximal con�dence function, which speci�es the upper bound on the con�dence
level held by the decision maker in order to be consistent with our main repre-
sentation result. In particular, we obtain that a multiple prior decision maker
with maximal con�dence function assign positive con�dence levels to almost
irrelevant priors, but the corresponding behavior is very sensible to arbitrary
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pertubations in his con�dence, as we obtain in Example 15. Otherwise, a de-
cision maker with con�dence function 1C still behaves as a MEU agent even
through small changes in his con�dence about irrelevant priors.
We axiomatize the representation above by showing how it rests on a simple

set of axioms that generalizes the MEU axiomatization of Gilboa and Schmeidler
(1989).
The rest of the paper is organized as follows. After introducing the setup in

Section 2 and the set of axioms in Section 3, we present the main representation
result in Section 4. In Section 5, we discuss the ambiguity attitudes, in the
sense of Ghirardato and Marinacci (2002), featured by the class of preferences
characterized in the main result. In Section 6, we study some special cases,
namely the multiple priors preferences of Gilboa and Schmeidler (1989) and
its special case given by the Choquet expected utility with convex capacity
proposed by Schmeidler (1989). Proofs and related material are collected in the
Appendix.

2 Notation and Framework

Consider a set S of states of nature (world), endowed with a �-algebra � of
subsets called events, and a non-empty set X of consequences. We denote by
F the set of all (simple) acts: �nite-valued functions f : S ! X which are
�-measurable5 . Moreover, we denote by B0(S;�) the set of all real-valued �-
measurable simple functions a : S ! R. The norm in B0(S;�) is given by
kak1 = sups2S ja(s)j (called sup norm) and we can de�ne the space of all
bounded and �-measurable functions by B(S;�) := B0(S;�)

k�k1 , i.e., B(S;�)
consists of all uniform limits of �nite linear combinations of characteristic func-
tions of sets in � (see Dunford and Schwartz, 1988, page 240).
Clearly, note that u(f) 2 B0(S;�) whenever u : X ! R and f belongs

to F , where the function u(f) : S ! R is the mapping de�ned by u(f)(s) =
u(f(s)); for all s 2 S.
Let x belong to X, de�ne x 2 F to be the constant act such that x(s) = x

for all s 2 S: Hence, we can identify X with the set Fc of constant acts in F .
Given f; g 2 F and E 2 �, we denote by fEg 2 F the act that yields the
consequence f(s) if s 2 E and the consequence g(s); otherwise.
Additionally, we assume that X is a convex subset of a vector space. For

instance, this is the case if X is the set of all �nite-support lotteries on a set of
prizes Z, as it happens in the classic setting of Anscombe and Aumann (1963).
Using the linear structure of X we can de�ne as usual for every f; g 2 F and

� 2 [0; 1] the act:

�f + (1� �)g : S ! X

(�f + (1� �)g)(s) = �f(s) + (1� �)g(s)
5Let %0 be a binary relation on X, we say that a function f : S ! X is �-measurable if,

for all x 2 X, the sets fs 2 S : f(s) %0 xg and fs 2 S : f(s) �0 xg belong to � .
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The decision maker�s preferences are given by a binary relation % on F ,
whose usual symmetric and asymmetric components are denoted by s and �.
Finally, for any f 2 F , an element cf 2 X is a certainty equivalent of f if
cf 2 fx 2 X : x s fg:

3 Axioms

We assume there exists x� 2 X such that f % x� for every f belonging to F ;
x� is called the worst consequence.
(Axiom 1) Weak order non-degenerate. If f; g; h 2 F :

(completeness) either f % g or g % f

(transitivity) f % g and g % h imply f % h

there exists (f; g) 2 F2 such that (f; g) 2�

(Axiom 2) Continuity. For all f; g; h 2 F the sets:

f� 2 [0; 1] : �f + (1� �)g % hg, f� 2 [0; 1] : h % �f + (1� �)gg are closed.

(Axiom 3) Monotonicity. For all f; g 2 F :

if f(s) % g(s) for all s 2 S then f % g:

(Axiom 4) Uncertainty aversion. If f; g 2 F and � 2 (0; 1) :

f s g ) �f + (1� �)g % f

(Axiom 5) Worst independence. For all f; g 2 F and � 2 (0; 1) :

f s g ) �f + (1� �)x� s �g + (1� �)x�:

(Axiom 6) Independence on X. For all x; y; z 2 X :

x s y ) 1
2x+

1
2z s

1
2y +

1
2z:

(Axiom 7) Bounded attraction for certainty. There exists � � 1 such that
for all f 2 F and x; y 2 X :

x s f ) 1
2x+

1
2y %

1
2f +

1
2 (
1
� y + (1�

1
� )x�):

Axioms 1; 2; 3 and 6 are standard and well understood6 . We note that these
axioms imply that the restriction of %� F � F to X �X, denoted by %jX�X ,
has a von Neumann-Morgenstern representation (Lemma 19). Moreover, it is
well known that if a preference relation % satis�es axioms 1; 2 and 3 then each
act f 2 F admits a certainty equivalent cf 2 X.

6Axiom 3 says that the preference is monotone and is essentially a state-independent con-
dition saying that the decision maker always weakly prefers acts delivering statewise weakly
better payo¤s, regardless of the state where better payo¤s occur.
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Axiom 4 is due to Schmeidler (1989) and it says that the decision maker
will, in general, prefer the mixture to its components.
The classical independence axiom among acts used in the Anscombe and

Aumann´s derivation of subjective probabilities says that if f; g; h 2 F and
� 2 (0; 1] then

f s g ) �f + (1� �)h s �g + (1� �)h;

and it says that the preference among mixtures �f +(1��)h and �g+(1��)h
is completely determined by the preference between f and g. An important
weakening of this axiom, called certainty independence axiom, was introduced
by Gilboa and Schmeidler (1989) in their characterization of MEU preferences:
it imposes that hmust belong to the set of constant actsX:Our Axiom 5 requires
that independence holds whenever acts are mixed with the worst consequence
x�.
Our motivation for relaxing the certainty independence axiom to Axiom 5

of worst independence, while maintaining Axiom 6 of independence on X, and
simultaneously introducing Axiom 7 of bounded attraction for certainty can be
illustrated in the simple case where consequences are "monetary payo¤s" (or
degenerated lotteries).
We aim at taking into account the fact that if f � x where f is uncertain

and x is a constant act, then mixing f with a positive constant act y could
be preferred to mixing both constant acts x and y, i.e., 12f +

1
2y �

1
2x +

1
2y,

indi¤erence being retained if y is null, thus retaining the certainty independence
in case of mixing with the worst consequence. So, our Axiom 7 allows to model
such an "attraction for smoothing an uncertain act with the help of a positive
constant act", a pattern which would be inconsistent with the MEU model.
Moreover our axioms will impose some boundedness for this kind of attraction
for mixing with a constant act, namely 1

2f +
1
2y -

1
2x+

1
2�y; indeed consistency

will impose here that � > 1.
Let us illustrate this �exibility of our model when compared to the MEU

model in the simple following situation where there are two states of nature s1
and s2, f := (1; 4) � (2; 2) =: x and y is merely chosen to be x. Note that the
preference

1

2
(2; 2) +

1

2
(1; 4) = (3=2; 3) � (2; 2) = x,

that we would like to model is inconsistent with the certainty independence
axiom of Gilboa and Schmeidler which requires that (3=2; 3) � (2; 2). Assume
now that Axiom 7 is satis�ed with � > 1, and consider the constant act z :=
(2�; 2�), since here x� = (0; 0) it comes that

(1 + �; 1 + �)

=
1

2
(2; 2) +

1

2
(2�; 2�)

Axiom 7| {z }
% 1

2
(1; 4) +

1

2
(
1

�
(2�; 2�) + (1� 1

�
) (0; 0))

= (3=2; 3) :
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This jointly with Axiom 4 of uncertainty aversion gives

(1 + �; 1 + �)

Axiom 7| {z }
% (3=2; 3) =

1

2
(2; 2) +

1

2
(1; 4)

Axiom 4| {z }
% (2; 2) ;

and allows (3=2; 3) to be strictly prefered to (2; 2) but in a "bounded way". Note
also that clearly such a strict preference would not be possible if � = 1. In fact
we will prove later in the main theorem 3 that if � = 1, then Axiom 1 to Axiom
7 imply certainty independence, and thus that we recover in this particular case
the MEU model, in our framework.

4 Main Theorem

We can now state our main theorem, which characterizes preferences satisfying
axioms A.1-A7.
Let X be an arbitrary set, a fuzzy set in X is any function ' : X ! [0; 1].

This notion due to Zadeh (1965) extends that of characteristic function 1A :
X ! [0; 1] where A � X, 1A(x) = 1 if x 2 A and 1A(x) = 0 if x =2 A. Here we
take X = ba1+(S;�), the set of all �nitely additive probabilities on � endowed
with the natural restriction of the weak� topology on ba(S;�)7 .
Let Cc(�) denote the collection of all nonempty convex weak� closed subsets

of � := ba1+(S;�). As an extension of Cc(�) we de�ne:

De�nition 1 The set FR�(�) of regular� fuzzy sets consists of all mappings
' : �! [0; 1] with the properties8 :
(a) ' is normal;

fp 2 � : '(p) = 1g 6= ;

(b) ' is weakly� upper semicontinuous;

fp 2 � : '(p) � �g is weakly� closed for any � 2 [0; 1]

(c) ' is quasi-concave;

'(�p1 + (1� �)p2) � minf' (p1) ; ' (p2)g for any � 2 [0; 1].
7The Banach space ba(S;�) is the family of all bounded �nitely additive set functions with

domain � and range R endowed with the norm k�kba := supE2� j�(E)j. A well-known result
says that (ba(S;�); k�kba) is isometrically isomorphic to the norm dual of the Banach space
(B(S;�); k�k1) (see Dunford and Schwartz (1958)). Hence, given a subset M of ba(S;�), the
weak� topology is the weakest topology for which all functionals � 7! h�; ai =

R
S a(s)�(ds) are

continuous, where a 2 B(S;�) and � 2M .
8For an exposition of the concept of regular fuzzy sets over Rn see Puri and Ralescu (1985,

page 1374). We note that the weak� support of ', denoted by supp�' := fp 2 � : '(p) > 0g�,
is weak� compact by Banach-Alaoglu-Bourbaki�s theorem [see Dunford and Schwartz (1958,
page 424)].
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Remark 2 We can embed Cc(�) into FR�(�) by the natural mapping P 7! 1P .
We will use the notation for level sets

L�' = fp 2 � : '(p) � �g for any � 2 (0; 1]:

Moreover, we note that ' 2 FR�(�) if and only if the correspondence

� 7! L�'

takes values only on Cc(�). Because of this previous result, a quasi-concave fuzzy
set ' is called fuzzy convex (all level sets L�' are convex)9 . Hence, FR�(�)
denotes the set of all weak� closed and convex fuzzy sets while Cc(�) denotes its
sub-family of all classical weak� closed and convex sets.

In the setting of all bounded below Anscombe and Aumann�s acts, our rep-
resentation has as its main component a mapping ' from the set � into the
unit interval [0; 1], a positive threshold level of con�dence �0 2 (0; 1], and a
real-valued a¢ ne function u on X. Following our initial discussion on this pa-
per, a mapping ' 2 FR�(�) is called a con�dence function, and this class of
functions models the ambiguity concerning the true probability law on the state
space S. Hence, the term ambiguity refers purely to the vague perception of
the likelihood subjectively associated with an event by a decision maker and it
is captured by a set of probabilities with di¤erent degrees of con�dence. The
number �0 2 (0; 1] is a threshold level of con�dence below which a model is
discarted and if '(p1) � '(p2) � �0 then the decision maker presents a greater
con�dence on p1 than p2. The main theorem follows as:

Theorem 3 Let % be a binary relation on F , the following conditions are equiv-
alent:
(i) The preference relation % satis�es Axioms A.1-A.7
(ii) There exist a unique non-constant a¢ ne function u : X ! R+, such that

u (x�) = 0, de�ned up to a positive multiplication, a minimal con�dence level
�0 2 (0; 1], and a regular� fuzzy set ' : �! [0; 1] such that, for all f; g 2 F

f % g , min
p2L�0'

1

'(p)

Z
u(f)dp � min

p2L�0'

1

'(p)

Z
u(g)dp

Moreover, � in (i) and �0 in (ii) are linked by the relation �0 = ��1. Also
importantly it turns out that our model reduces to the MEU model as soon as
� = 110 .

Remark 4 As soon as � > 1 (�0 < 1) our preference is not invariant, i.e.,
the utility function u can not be dropped by a positive a¢ ne transformation
v := �u + � for � 6= 0. In fact, it is not a surprise because Ghirardato et al.
(2005) proved that invariance is equivalent to the certainty independence axiom
of Gilboa and Schmeidler(1989).

9We recall that C � � is weak� compact i¤ 1C is weak� upper semicontinous.
10For more details, see Remark 23.
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Note also that if ' = 1P , where P 2 Cc(�); we obtain the representation of
Gilboa and Schmeidler (1989) under the existence of a worst consequence. A
very useful result follows as:

Corollary 5 Under the conditions of Theorem 3, there exists a unique maximal
con�dence function '� given by

'�(p) = inf
f2F

�R
u(f)dp

u(cf )

�
such that, for all f; g 2 F

f % g , min
p2L�0'�

1

'�(p)

Z
u(f)dp � min

p2L�0'�
1

'�(p)

Z
u(g)dp:

Futhermore, under the maximal con�dence function �0 is not relevant11 , i.e.,
for all f; g 2 F

f % g , min
p2�

1

'�(p)

Z
u(f)dp � min

p2�

1

'�(p)

Z
u(g)dp:

Next we give the immediate uniqueness properties of our representation.

Corollary 6 Two pairs (u1; '�1) and (u2; '
�
2) represent the same preference %

on F as in Corollary 5 if and only if there exists � > 0 such that u1 = �u2 and
'�1 = '�2.

Corollary 5 states that a preference % on F that satis�es Axioms A.1-A.7
can be represented by a pair (u; '�). The function '� should be viewed as the
upper con�dence function, specifying maximal con�dence among priors that the
decision maker may face in order to be consistent with our main representation.
Note that a natural candidate for being a lower (minimal) con�dence func-

tion is '�(�) = 1L1'� . It turns out that '� �ts our model if only if � = 1, i.e., if
and only if our model reduces to the MEU model. Accordingly we will mainly
focus in the sequel on the upper con�dence function '�, without elaborating
more on '�.
In contrast with the MEU model, a decision maker that presents a behavior

consistent with our set of axioms, in general, does not evaluate the acts by
their minimal expected utility on the set of priors L�0'

� which matters to him.
Hence, our representation is coherent with a non-extremely pessimistic behavior
(with respect to L�0'

�). For instance, we may observe two decision makers who
share the same sets of priors but one is more cautious than the other. This can
occur when they have di¤erent personal con�dence functions12 .

11 In fact, the role of �0 is implicit in the determination of the maximal con�dence function.
12Another model of decision making under ambiguity that has a similar non-extremely

pessimistic behavior interpretation is the smooth model proposed by Klibano¤ et al. (2005). In
their representation the doubt about the right probability is given by a subjective probability
over � while in our case this vagueness is given by a subjective fuzzy set of priors.
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Another preference representation that presents the multiple prior model as
particular case is the variational preferences13 model proposed by Maccheroni
et al. (2006): variational preferences have the following representation

V (f) = min
p2�

�Z
u(f)dp+ c�(p)

�
where c� : � ! R [ f+1g is a convex, weak� lower semicontinuous function,
such that fp 2 � : c�(p) = 0g is nonempty.
We note that function c� generalizes the indicator functions from Convex

Analysis14 , and if c� = �C then we obtain the multiple prior model with set of
priors C. Function c� can be interpreted as the index of ambiguity aversion and
has a nice expression for the minimal index of ambiguity aversion:

c�(p) = sup
f2F

�
u(cf )�

Z
u(f)dp

�
:

Moreover, if u(X) is unbounded then the index of ambiguity aversion c� is
unique.
Our preference and the variational preference captures di¤erent designs of

behavior under uncertainty. Note that variational preferences is represented by
the inf of a¢ ne functionals (a niveloid which is always Lipschitz-continuous
with constant one) whereas our preferences are represented by the inf of linear
functionals (which is, in general, Lipschitz-continuous with a constant greater
than one (see Lemma 22 in the Appendix)).
An alternative interpretation of variational preferences, where the function

c� : �! R[f+1g could be viewed as a cost function of a malevolent Nature15 ,
can be translated for our preference in considering the function '� : �! [0; 1]
as a plausibility function of a malevolent nature. Each number '�(p) captures
the decision maker�s perception of the relative plausibility of the di¤erent models
p that Nature can choose in order to make the decision maker the most possible
worst o¤; if '�(p1) � '�(p2) then model p1 is weakly more plausible than model
p2. Hence, the decision maker�s play follows the rule

max
f2F

min
p2L�0'�

�
1

'�(p)

Z
u(f)dp

�
where the strategies are pairs (f; p) 2 F �L�0'�, and F is the decision maker�s
set of pure strategies and L�0'

� is the Nature�s set of pure strategies.

13The multiplier preferences of Hansen and Sargent (2001) and the mean-variance preference
of Markovitz (1952) and Tobin (1958) are also special cases. The worst consequence is not
required in the axiomatization of the variational preferences.
14The indicator function is the mapping �P : �! R[f+1g where �P (p) = 0 if p 2 P and

�P (p) = +1 if p =2 P . In our representation, we saw that '� generalizes the characteristic
function from Measure Theory.
15As brie�y discussed by Maccheroni et. al. (2006), in this interpretation an agent must to

make choices under limited information and without a full knowledgement of what is going
on. In this case the agent envisions a malevolent nature that represents an opponent who
might take advantage of his relative ignorance.

11



5 Ambiguity Attitudes

We now analyse ambiguity attitude featured by the class of preferences charac-
terized in this paper. By Corollary 5, our class of preference relation is repre-
sented by a utility functional J on F ; such that:

J(f) = min
p2�

1

'�(p)

Z
u(f)dp

where u : X ! R+ is an a¢ ne utility function such that u(x�) = 0 and '� is the
maximal con�dence function:

'�(p) = inf
f2F

�R
u(f)dp

u(cf )

�
We follow the approach proposed by Ghirardato and Marinacci (2002). They

proposed a notion of absolute ambiguity aversion by building on a notion of
comparative ambiguity. The comparative ambiguity attitude says that, given
two preferences %1 and %2, the preference relation %1 is more ambiguity averse
than %2, if for all x 2 X and f 2 F ,

f %1 x) f %2 x

Note that two preference relations %1 and %2 satisfying the comparative
ambiguity attitude above induces preferences relation on X that can be rep-
resentated by the same utility index u on consequences16 . Hence, ambiguity
aversion is comparable across two decision makers only if their risk attitudes
coincide.
The absolute notion of ambiguity aversion de�ned by Ghirardato and Mari-

nacci (2002) consider SEU preferences as benchmarks for ambiguity neutrality:
We say that a preference relation % is ambiguity averse if it is more ambiguity
averse than an SEU preference.
Now, by considering the behavioral assumptions stipulated in our main re-

sult, which includes the preference for randomization of Schmeidler (1989) de-
scribed by the uncertainty aversion axiom, we obtain in a precise sense the next
result concerning a negative attitude toward ambiguity:

Proposition 7 The preference % as in our main theorem is ambiguity averse.

Any preference relations as in our main result can be identi�ed with a pair
(u; '�) of an a¢ ne utility index, such that u (x�) = 0, and maximal con�dence
function '�. The following result shows that comparative ambiguity attitudes
for preferences as in our main result are determined by the con�dence function
'�.

16 In fact, given y; x 2 X; y %1 x ) y %2 x, hence if u1 and u2 are the respectives
nonconstant a¢ ne functions that represents %1 and %2, we obtain that u1 (y) � u1 (x) )
u2 (y) � u2 (x) for every y; x 2 X. By Ghirardato et. al. (2004), Corollary B.3, we can
assume u1 = u2 = u.

12



Proposition 8 Given two preferences in accordance with our main theorem.
The following conditions are equivalent:
(1) %1 is more ambiguity averse than %2;
(2) There exist pairs (u; '�i ) that represents %i(i = 1; 2), where '�1 � '�2.

This proposition says that more ambiguity averse preference relations are
characterized, up to index normalization, by greater functions '�. In particular,
note that if the pair (u1; '�1) represents a more ambiguity averse preference than
the pair (u2; '�2) ; then there exists � > 0 where u2 = �u1 and '�1 � '�2. Also, we
may view a con�dence function as the ambiguity index because, by the previous
result, less con�dence among the priors is associated with a greater ambiguity
aversion.

Example 9 The maximal ambiguity aversion behavior is characterized by '�(p) =
1 for any p 2 �. In this case

J(f) = min
p2�

Ep(u(f)) = min
s2S

fu(f(s))g

is an expression that re�ects extreme ambiguity aversion.

Example 10 The minimal ambiguity aversion corresponds here to ambiguity
neutrality, as we know that our preferences are ambiguity averse. The least
ambiguity averse functions '� are associated with SEU preferences. In this case
we obtain that

'�(p) = inf
E2�

p(E)

q(E)

where q 2 � is the subjective probability of the decision maker. For details see
Corollary 18.

Example 11 Consider

Jv(f) =

Z
u(f)dv;

where v : � ! [0; 1] is a capacity (see Subsection 6.2) such that there exists
� 2 (0; 1) and q 2 �

v(E) = �q(E), if � 3 E 6= S;

v(S) = 1:

The functional J�q is the well known "-contaminated model. Denote by '�q
the maximal con�dence function of an SEU preference with subjective probability
q, and '��q the maximal con�dence function of "-contamined model for � = 1�".
We then obtain that,

'��q(p) = inf
fE2�:q(E)>0g

�
p(E)

�q(E)
^ 1
�
=
'�q(p)

�
^ 1:

13



So, '��q(p) = 1 i¤ '
�
q(p) � �, i.e.,

L1
�
'��q
�
= L�

�
'�q
�
.

Note that the previous equality of sets of priors clarify the interpretation of the
"-contaminated model: For a "-contaminated agent (w.r.t. q) the probabilities
that matter are the same as the set of priors with con�dence greater than 1� "
held by an SEU agent with subjective probability with con�dence function '�q .

The next two example present con�dence functions for which there exists
only one prior with full con�dence, and provides a preference relation consistent
with the Ellsberg type behavior.

Example 12 Consider the Ellsberg two color urn and a decision maker who
has a con�dence function ' as described in the Introduction and a minimal
con�dence level �0 2 (0; 1]: given a probability p and the marginals pA and pB
such that p(sA; sB) = pA(sA)pB (sB) we have that ' (p) = 'A (pA)'B (pB), so
' (p) = 4(� � �2) if pA(r) = 1=2 and pB(r) = � (i.e., if p(r; r) = p(b; r) = �=2
and p(r; b) = p(b; b) = (1� �) =2) for some � 2 [0; 1] and ' (p) = 0 otherwise.
Without loss of generality, set u(0) = 0 and u(100) = 1. Note that

L�0' =

(
p 2 � :

pA(r) = 1=2 and pB(r) = �

with � 2
h
1�(1��0)1=2

2 ; 1+(1��0)
1=2

2

i )
;

hence, denoting ��0 :=
h
1�(1��0)1=2

2 ; 1+(1��0)
1=2

2

i
J (Ar) = J

�
Ab
�
= min

�2��0

1=2

4(� � �2)
= 1=2;

J (Br) = min
�2��0

�=2 + �=2

4(� � �2)
=

2

4 + 4 (1� �0)1=2
;

J
�
Bb
�
= min

�2��0

(1� �) =2 + (1� �) =2
4(� � �2)

=
2

4 + 4 (1� �0)1=2
;

thus, for any �0 < 1, delivering the Ellsberg pattern

Ar � Ab � Br � Bb.

Example 13 Now, consider the Ellsberg three color urn, with 30 red balls and
60 balls either green or blue. The usual Ellsberg bets are given as

betsncolor red green blue
fr 100 0 0
fg 0 100 0
frg 100 100 0
fgb 0 100 100

14



where fr pays hundred dolars if a red ball is drawn and nothing otherwise, fg
pays hundred dolars if a green ball is drawn and nothing otherwise, and so on.
The well known Ellsberg argument says that most subjects rank these acts as

fr � fg and fgb � frg.

Consider a decision maker with con�dence function ' such that for each prob-
ability measure p = (�; �; 1� �� �) on S = fr; g; bg,

' (p) =

�
9�
�
2
3 � �

�
, � = 1=3

0, otherwise

Also, taking a utility index u as in the previous example and (for simplicity)
�0 2 (0; 0:9), we obtain that

L�0' =

(
p 2 � : � = 1=3 and � 2

"
1� (1� �0)1=2

3
;
1 + (1� �0)1=2

3

#)
;

hence, denoting ��0 :=
h
1�(1��0)1=2

3 ; 1+(1��0)
1=2

3

i
J (fr) = min

�2��0

1=3

9� (2=3� �) = 1=3;

J (fg) = min
�2��0

�

9� (2=3� �) = 1=
n
3
h
3�

�
1 + (1� �0)1=2

�io
< 1=3;

J (fgb) = min
�2��0

� +
�
1� 1

3 � �
�

9� (2=3� �) = 2=3;

J (frg) = min
�2��0

1
3 + �

9� (2=3� �) � 0:6220 < 2=3;

which is consistent with the Ellsberg argument above.

6 Special Cases

Choosing suitably the con�dence function, we can obtain well known cases in
the literature:

6.1 Maxmin Expected Utility

Gilboa and Schmeidler (1989) characterized maximin expected utility prefer-
ences (also known as multiple prior model), which has as numerical representa-
tion a functional J on F that satis�es the formula

J(f) = min
p2C

Z
u(f)dp
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where C � � is non empty, convex and weak� compact set. As we mentioned
in Section 3, the multiple prior model is characterized by the certainty inde-
pendence axiom. Assuming our bounded below assumption of the preference
relation we are able to study the consequences of certainty independence axiom
for the maximal con�dence function related to the multiple prior model. By
our main result, the maximal con�dence function '� : � ! R related to the
multiple prior model is given by

'�(p) = inf
f2F

R
u(f)dp

u(cf )
= inf

a2B+

R
adp

I (a)
;

where I is the functional on B+(S;�) given by I (a) = minp2C
R
adp.

Proposition 14 Let % be a bounded below preference that satis�es Axioms A1,
A2, A3, A4 and the certainty independence axiom then % is a maxmin expected
utility preference and its maximal con�dence function '� is such that '�(p) = 1
if and only if p 2 C, and

J (f) = min
p2L1'�

Z
u(f)dp = min

p2�

1

'�(p)

Z
u(f)dp.

An interesting fact is that a decision maker a la Gilboa and Schmeidler is
characterized by a maximal con�dence function which assigns positive con�-
dence levels among many priors out of C.

Example 15 Taking the Gilboa and Schmeidler´ s functional I on R2+ with C =
f(�; 1� �) : � 2 [0:4; 0:6]g, follows that:

'�(�) =

� 1, if � 2 [0:4; 0:6]
�=0:4, if � 2 [0; 0:4)

(1� �)=0:4, if � 2 (0:6; 1];
hence, '� 6= 1C .
It is worth noting that the con�dence function decreases while the probability

moves away from the full con�dence set of priors C and, in a su¢ ciently fast
way, in order to keep our decision maker a maxmin expected utility agent with
respect to C. We know that '� is maximal by Lemma 30. Consider, for example,
a distortion '�r of '

� given by

'�r(�) =

� 1, if � 2 [0:4; 0:6]
(1� �)=0:4, if � 2 (0:6; 1]�

0:5(��0:4)
0:2+r

�
+ 1, if � 2 [0:2� r; 0:4)�

0:5
0:2�r

�
�, if � 2 [0; 0:2� r)

where r 2 (0; 0:2) and note that lim
r&0

'�r (�) = '� (�) for any � 2 [0; 1]. De�ne

for any a 2 R2+
I�(a) = min

�2[0;1]

�
�a1 + (1� �) a2

'�r(�)

�
;

in this case we obtain that I�((1; 0)) = 0:4� 2r < 0:4 = I((1; 0)).
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6.2 Choquet Expected Utility

Choquet expected utility is a well known model proposed by Schmeidler (1989)
using the notion of capacities or non-additive probabilities. The key feature
of a preference % in the class of Choquet expected utility preferences is the
comonotonic independence axiom: We say that two acts f and g are comonotonic
if for no states s1; s2 2 S

f(s1) � g(s1) and g(s2) � f(s2).

The comonotonic independence axiom says that: For all pairwise comonotonic
acts f; g and h and � 2 [0; 1];

f s g ) �f + (1� �)h s �g + (1� �)h.

The main concept used in the Schmeidler´s representation theorem is the
Choquet integral. This kind of integral is related to the notion of a set-function
v : �! [0; 1] which is a capacity, i.e.,
(i) v(;) = 0; v(S) = 1
(ii) E;F 2 � such that E � F ) v(E) � v(F ).
Now, consider a non-negative, bounded and �-measurable function a : S !

R. The Choquet integral of a with respect to v is given byZ
adv =

Z +1

0

v (fa � �g) d�

Choquet expected utility preferences has as numerical representation a func-
tional J on F that satis�es

J(f) =

Z
u(f)dv;

where u is a utility index and v is a capacity.
A su�cient condition for ambiguity aversion attitudes in the Choquet ex-

pected utility theory is the convexity of the capacity v :
(iii) Capacity v is convex if for all events E;F 2 � :

v(E [ F ) + v(E \ F ) � v(E) + v(F ):

When v is convex, the well known result of Schmeidler (1986) says that the
core of v

C(v) = fp 2 � : p(E) � v(E); 8E 2 �g

is nonempty (convex and weak� compact). Moreover,Z
u(f)dv = min

p2C(v)

Z
u(f)dp:

This explains why the Choquet expected utility is a subclass of the maxmin
expected utility when the capacity is convex.
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Proposition 16 Let % be a bounded below preference that satis�es Axioms A1,
A2, A3, A4 and the comonotonic independence axiom then % is a Choquet
expected utility preference and its maximal con�dence function '� satis�es

'�(p) = inf
E2�

p(E)

v(E)
:

Removing the restriction of non-negativity, one obtains in the general case
the following result:

Proposition 17 If we de�ne the con�dence function ' for any p 2 � by:

'(p) = inf
E2�

�
p(E)

v(E)
^ 1� v(E)
1� p(E)

�
then, for every function a 2 B(S;�), we have that

(2)

Z
adv = min

p2La0'

�R
a+dp

'(p)
+ '(p)

Z
a�dp

�
;

for any level �0 2 (0; 1]; where a+ = a_ 0, a� = a^ 0, and the Choquet integral
of a with respect to v is given byZ

adv =

Z 0

�1
[v (fa � �g)� 1]d�+

Z +1

0

v (fa � �g) d�.

It is immediately obvious that comonotonic independence axiom is weaker
than the classical independence axiom and an immediate consequence of the
Proposition 16 is the following corollary:

Corollary 18 Let % be a bounded below preference that satis�es Axioms A1,
A2, A3, A4 and the independence axiom, then % is a expected utility preference
and its maximal con�dence function '� := '�q satis�es

'�q(p) = inf
E2�

p(E)

q(E)
;8p 2 �

for some subjective probability q.

We note that a decision maker a la SEU not necessarily presents non-null
con�dence only in a unique prior q, but the con�dence among priors di¤erent
from q implies that such priors are negligible. However, small pertubations in
the decision maker´s con�dence level may destroy the subjective expected utility
pattern of behavior.
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7 Concluding Remarks

Proposition 17 suggests a more general functional that de�nes a preference
without the bounded below assumption: There exists a referential consequence
x 2 X in such way that the functional J on F is determined by a con�dence
function ' : � ! [0; 1], a unique non-constant a¢ ne function u : X ! R, such
that u (x) = 0, de�ned up to a positive multiplication, and a minimal con�dence
level �0 2 (0; 1], such that for all f 2 F ,

J(f) = min
p2La0'

Z
S

u(f)'(p)�sgnfu(f)gdp:

This extension of our model is the subject of future research.
We also intend, following a nice suggestion of Castagnoli (2006), to investi-

gate applications of our functional to insurance pricing; such a functional being
intended through an admission fee proportional to the pure price to cover ex-
penses and to eliminate or reduce the probability of ruin.
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8 APPENDIX

PROOF OF THEOREM 3:
Part (ii))(i) is straightforward. (i))(ii) will result from Lemma 19 to

Lemma 28.

Lemma 19 There exists an a¢ ne u : X ! R non-constant function such that
for all x; y 2 X : x % y i¤ u(x) � u(y). Moreover, we can choose u such that
u(x�) = 0.

Proof: By axioms 1,2 and 6 the premises of the von Neumann-Morgenstern
theorem are satis�ed [see Schmeidler (1989, page 577) or Herstein and Milnor
(1953)] and there exists an a¢ ne function u : X ! R such that for all x; y 2 X :
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x % y i¤ u(x) � u(y). Therefore, we can choose u(x�) = 0. By axiom 1, there
exist f; g 2 F s.t. f � g; given x; y 2 X such that x % f(s) and g(s) % y for all
s 2 S, then by monotonicity (axiom 3) we have that x � y; then u cannot be
constant. Finally, we can suppose that there exists x 2 X s.t. u(x) = 1.

Lemma 20 For any u : X ! R satisfying Lemma 19 there exists a unique
J : F ! R such that
(i) f � g i¤ J(f) � J(g) for all f; g 2 F :
(ii) If f = x1S 2 Fc � X (the set of constant functions) then J(f) = u(x):
Proof: On Fc the functional J is uniquely determined by (ii). Since for all

f 2 F there exists a cf 2 Fc such that f s cf , we set J(f) = u(cf ) and by
construction J satis�es (i), hence it is also unique.

We denote by B0(S;�;K) the functions in B0(S;�) that assume �nitely
many values in an interval K � R and by B+0 (S;�) = B0(S;�;R+). For k 2 R,
let k1S 2 B0(S;�) be the constant function on S such that k1S(S) = fkg.

Lemma 21 Let u and J be de�ned as in Lemmas 19 and 20, then there exists
a functional

I : B+0 (S;�)! R

where for every f 2 F J (f) = I (uof) such that:
(i) I is superadditive, i.e., for a; b 2 B+0 (S;�) : I(a+ b) � I(a) + I(b);
(ii) I is positively homogeneous,i.e., for a 2 B+0 (S;�); � � 0 : I(�a) = �I(a);
(iii) I is monotonic, i.e., for a; b 2 B+0 (S;�) : a � b) I(a) � I(b);
(iv) I is normalized, i.e., I(1S) = 1;
(v) For every a 2 B+0 (S;�) and � � 0

I(a+ �1S) � I(a) + ��:

Proof: We begin with B0(S;�; u(X)) and then extend I to all B
+
0 (S;�). If

f 2 F then u(f) 2 B0(S;�; u(X)): Now, if a 2 B0(S;�; u(X))we have that
there exists fEigni=1 � � a partition of S and fxigni=1 � X such that

a :=
nX
i=1

u(xi)1Ei ;

hence, we can choose f 2 F such that f(s) = xi when s 2 Ei and we conclude
that a = u(f):
From this, we can write B0(S;�; u(X)) = fu(f) : f 2 Fg; therefore, u(f) =

u(g) , u(f(s)) = u(g(s)), 8s 2 S , f(s) s g(s), 8s 2 S; and, by axiom 3
(monotonicity), f s g, i.e., u(f) = u(g), J(f) = J(g):
De�ne I(a) = J(f) whenever a = u(f):Hence, we have that I is well de�ned

over B0(S;�; u(X)):
Now, if a = u(f) and b = u(g) 2 B0(S;�; u(X)) and a � b; then u(f(s)) �

u(g(s)) for any s 2 S and, by axiom 3 (monotonicity), we have that f % g; i.e.,
J(f) � J(g) and I(a) = I(u(f)) = J(f) � J(g) = I(u(g)) = I(b); which proves
that I is monotonic.
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Set k 2 u(X), then there exists some x 2 X such that k = u(x) and
I(k1S) = I(u(x)1S) = J(x) = u(x) = k; i.e., I is normalized. In particular,
since 1 2 u(X), I(1S) = 1.
We now show that I is positively homogeneous. Assume a = �b; where

a; b 2 B0(S;�; u(X)) and 0 < � � 1. Let g 2 F satisfy u(g) = b and de�ne f =
�g+(1��)x�. Hence u(f) = �u(g)+(1��)u(x�) = �b = a, so I(a) = J(f):We
have J(cg) = J(g) = I(b): By axiom 5 (worst independence), �cg +(1��)x� s
�g+(1��)x� = f , hence J(f) = J(�cg+(1��)x�) = �J(cg)+(1��)J(x�) =
�J(cg) and we can write

I(�b) = I(a) = J(f) = �J(cg) = �I(b):

Furthermore, this implies positive homogeneity for � > 1 : a = �b ) b =
��1a) I(b) = ��1I(a)) I(a) = �I(b):
Now, by positive homogeneity we can extend I to all B+0 (S;�); since u(X)

is a non-empty interval of R+ containing 0.
Next, we show that (v) is satis�ed. Let there be given a 2 B+0 (S;�) and

� � 0: By homogeneity we may assume without loss of generality that 2a and
2��1S 2 B0(S;�; u(X)): Now we de�ne � = I(2a) = 2I(a). Let f 2 F such
that u(f) = 2a and y; z 2 X satisfy u(y) = � and u(z) = 2��, then J(f) =
I(u(f)) = 2I(a) = � = I(�1S) = I(u(y)) = J(y), i.e., f s y: By axiom 7
(bounded attraction for certainty), there exists � � 1 such that

1

2
y +

1

2
z � 1

2
f +

1

2
(
1

�
z + (1� 1

�
)x�)

hence
1

2
J(y) +

1

2
J(z) � J(

1

2
f +

1

2
(
1

�
z + (1� 1

�
)x�))

then
1

2
I(u(y)) +

1

2
I(u(z)) � I(

1

2
u(f) +

1

2
u(
1

�
z + (1� 1

�
)x�))

from the facts above

1

2
I(�1S) +

1

2
I(2��1S) � I(

1

2
2a+

1

2
(
1

�
u(z) + (1� 1

�
)u(x�)))

we obtain
I(a) + �� � I(a+

1

�
��1S) = I(a+ �1S)

It remains to show that I is superadditive. Let there be given a; b 2 B+0 (S;�)
and, once again, by homogeneity we assume that a; b 2 B0(S;�; u(X)). First,
we note that axiom 4 (uncertainty aversion) implies that I is quasi-concave, in
fact:
Since a; b 2 B0(S;�; u(X))we can choose f; g 2 F such that a = u(f) and

b = u(g), since �a+(1��)b = �u(f)+(1��)u(g) = u(�f+(1��)g), we obtain
I(�a + (1 � �)b) = J(�f + (1 � �)g) and, by axiom 4 (uncertainty aversion),
�f + (1 � �)g % g if f % g, hence J(�f + (1 � �)g) � minfJ(f); J(g)g, i.e.,
I(�a+ (1� �)b) � minfI(a); I(b)g:
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Now, since I is positively homogeneous it follows that I is concave [see
Berge(1959)], then 1

2I(a+ b) = I( 12a+
1
2b) �

1
2I(a) +

1
2I(b), that is, I(a+ b) �

I(a) + I(b):

Lemma 22 There exists a unique continuous extension of I to B+(S;�). Clearly,
this extension satis�es on B+(S;�) properties (i) to (v) de�ned in Lemma 21.

Proof: Since a = b+ a� b � b+ ka� bk1, by monotonicity:

I(a) � I(b+ ka� bk1)

and by (v):
I(a) � I(b) + � ka� bk1

that is
I(a)� I(b) � � ka� bk1 ,

therefore
jI(a)� I(b)j � � ka� bk1

and by equality B+(S;�) = B+0 (S;�)
k�k1

, there exists a unique continuous
extension of I.

Remark 23 According to Lemma 22, note that I de�ned on B+(S;�) is such
that for any a 2 B+(S;�) and any � 2 R+:

I(a) + � = I(a) + I(�1S) � I(a+ �1S) � I(a) + ��.

So if � = 1, it comes that I(a+�1S) = I(a)+�, this clearly implies that if � = 1,
the Certainty Independence Axiom will be satis�ed. More precisely if � = 1, the
functional I is clearly a monotone, superlinear and C-independent functional on
B+(S;�) with I (1S) = 1, therefore (see for instance Lemma 3.5 in Gilboa and
Schmeidler (1989)) in this case one recovers the MEU model.

Building upon Fan�s Theorem 24 below, we give in the next Lemma 25, the
key result for our representation Theorem 3. This Lemma can be seen as a
generalization of the representation Theorem proposed by Chateauneuf (1991)
for Gilboa and Schmeidler�s model (1989). In fact, as mentioned previously
both models coincide if � = 1.
Consider a real Banach space E and denote by E� the dual space of E:

Theorem 24 [Fan, (1956, page 126)] Given an arbitrary set �, let the system

hf; xii � �i; i 2 � ($)

of linear inequalities; where fxigi2� be a family of elements, not all 0, in real
normed linear space E; and f�igi2� be a corresponding family of real numbers.
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Let � := sup
nP
j=1

rj�ij when n 2 N, and rj vary under conditions: rj � 0,

8j 2 f1; :::; ngand





 nP
j=1

rjxij







E

= 1. Then the system ($) has a solution

f 2 E� if and only if � is �nite. Moreover, if the system ($) has a solu-
tion f 2 E�, and if the zero-functional is not a solution of ($), then � =
min fkfkE� : f is a solution of ($)g.

Lemma 25 Let � be a �-algebra of subsets of a set S and let I be a functional
on the set B+(S;�).The following two assertions are equivalent:
Assertion 1: I satis�es the properties:
1) I is superadditive: for a; b 2 B+(S;�)

I(a+ b) � I(a) + I(b);

2) I is positively homogeneous: for a; b 2 B+(S;�); � � 0 :

I(�a) = �I(a);

3) I is monotonic: for a; b 2 B+(S;�) :

a � b) I(a) � I(b);

4) I is normalized:
I(1S) = 1;

5) There exists � � 1 such that for all a 2 B+(S;�) and k � 0:

I(a+ k1S) � I(a) + �k:

Assertion 2: there exists �0 2 (0; 1] and a normal fuzzy set ' : � ! [0; 1]
such that for any a 2 B+(S;�) :

I(a) = inf
p2L�0'

1

'(p)

Z
S

adp

Proof: In order to simplify the notation we set B+(S;�) = B+, and
R
adp =

Ep(a) for every (a; p) 2 B+ ��.
Assertion 2 implies Assertion 1 is straighforward.
In order to prove that Assertion 1 implies Assertion 2 we need the following

lemma:

Lemma 26 The mapping

'� : �! R

p 7! '�(p) = inf
a2B+

Ep(a)

I(a)
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is a normal fuzzy set17 . Moreover, the functional

I� : B+ ! R

a 7! I�(a) = inf
p2�

Ep(a)

'�(p)

satis�es I�(a) = I(a), for any a 2 B+.

Proof: Since for all a 2 B+, Ep(a) � 0 and I(a) � 0, clearly '�(p) � 0 and
Ep(1S)
I(1S)

= 1 implies that '�(p) 2 [0; 1] for all p 2 �.
Let us show that '� is normal, i.e., that there exists a p0 2 � such that

'�(p0) = 1, since '�(p0) � 1 it is enough to show that there exists p0 2 � such
that

Ep0(a) � I(a) 8a 2 B+

Setting E = B, we need to show that there exists f 2 E� such that f(1S) � 1,
f(�1S) � �1 and f(a) � I(a) for all a 2 B+. Then we have a system of linear
inequalities and can now use Fan�s theorem:
Let us consider �1; �2; :::; �n � 0 and 1S ; �1S ; aj 2 B+; 3 � j � n such

that: 





�11S + �2(�1S) +
nX
j=3

�j aj








1

= 1

it follows that

�11S � �21S +
nX
j=3

�j aj � 1S

hence

�11S +
nX
j=3

�j aj � (�2 + 1)1S

from (1),(3),(4) and (2) it comes that:

�1 +
nX
j=3

�jI( aj) � �2 + 1

therefore

�1 � �2 +
nX
j=3

�jI( aj) � 1

i.e.,
nP
j=1

�j�j
� 1; where �1 = 1, �2 = �1, and �j = I(aj), 3 � j � n. Hence

� is �nite and from Fan�s theorem there exists p0 2 � such that Ep0(a) � I(a)
for all a 2 B+.
17Note that we adopt the usual convention 0=0 = 1 and r=0+ = +1 if r > 0.
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Now, we have that for any a 2 B+, I�(a) = infp2� Ep(a)
'+(p)

2 R+. It remains
to prove that I�(a) = I(a), for any a 2 B+.
Let a0 be chosen in B+, and �rst prove that I�(a0) � I(a0) : If I(a0) = 0

this is immediate. Assume, now, I(a0) > 0. Note that it is enough to prove
I�(a0) � I(a0) if 1 � I(a0) > 0. Actually, let a0 be such that I(a0) > 1 and
choose � > 0 such that �I(a0) � 1, since I� and I are positively homogeneous,
one obtains:

�I(a0) = I(�a0) � I�(�a0) = �I�(a0)

hence I(a0) � I�(a0). Considering a0 2 B+ such that 1 � I(a0) > 0;we have
that

'�(p) = inf
a2B+

Ep(a)

I(a)
� Ep(a0)

I(a0)
; 8p 2 �;

hence,

I(a0) �
Ep(a0)

'�(p)
; 8p 2 �

and from the de�nition of I� : I�(a0) � I(a0).
Let us now prove that I�(a0) � I(a0) for any chosen a0 2 B+. Clearly, it is

enough to prove this inequality when I�(a0) > 0. Since I�(a0) is the greatest

lower bound of the set of real numbers given by
n
Eq(a0)
'�(q) : q 2 �

o
if we �nd

p 2 � such that Ep(a0)'�(p) � I(a0) then the result will be proved:
Let us �rst show that there exists f 2 E� such that � � f(1S) � 1, f(a0) =

I(a0) and f(a) � I(a) for all a 2 B+., i.e., f 2 E� such that

f(1S) � 1; f(�1S) � ��; f(a0) � I(a0)

f(�a0) � �I(a0) and f(a) � I(a) 8a 2 B+

Again, we use Fan�s theorem:
Let us consider �1; :::; �n � 0 and 1S ; �1S ; a0; �a0; aj 2 B+; 5 � j � n

such that: 





�11S + �2(�1S) + �3a0 + �4(�a0) +
nX
j=5

�j aj








1

= 1

it follows that

�11S � �21S + �3a0 � �4a0 +
nX
j=5

�j aj � 1S

hence

�11S + �3a0 +
nX
j=5

�j aj � �4a0 + (�2 + 1)1S

By properties of I in assertion 1 it comes that:

�1 + �3I(a0) +
nX
j=5

�jI( aj) � �4I(a0) + (�2 + 1)�
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therefore

�1 � �2� + �3I(a0)� �4I(a0) +
nX
j=5

�jI( aj) � �

By Fan�s theorem, it comes that there exists � 2 [1; �], p 2 � such that:

(1) �Ep(a0) = I(a0); and

(2) �Ep(a) � I(a) for all a 2 B+

From (2) it comes that Ep(a)=I(a) � ��1, for all a 2 B+: Actually, by the
initial convention, Ep(a) = 0 implies I(a) = 0 and then Ep(a)=I(a) = 1 � ��1.
Moreover, if Ep(a) > 0 and I(a) = 0 then Ep(a)=I(a) = +1 � ��1.
Consequentely, '�(p) � ��1, and therefore '�(p) > 0:
Let us show that this entails Ep(a0) > 0. In fact, 0 < I�(a0) � Ep(a0)='

�(p);
so we get Ep(a0) > 0. Hence, (1) entails I(a0) > 0. Consequently,

Ep(a0)

I(a0)
=
1

�
� '�(p);

that is,
Ep(a0)

'�(p)
� I(a0);

as desired.

Lemma 27 The mapping '� : �! R is a regular fuzzy set.

Proof: We know that '� is a normal fuzzy set. Now, let us show that
'� is fuzzy convex. In fact, we have it that '� is concave: taking p1; p2 2 �
and r 2 [0; 1], denote by pr = rp1 + (1 � r)p2. Hence for every a 2 B+

Epr (a) = rEp1(a) + (1� r)Ep2(a) and

'�(pr) = inf
a2B+

rEp1(a) + (1� r)Ep2(a)
I(a)

� r inf
a2B+

Ep1(a)

I(a)
+ (1� r) inf

a2B+

Ep2(a)

I(a)

= r'�(p1) + (1� r)'�(p2):

in particular, '� is quasiconcave.
Finally, let us show that '� is weak� upper semicontinuous. For each a 2

fb 2 B+ : I(b) > 0g := fI > 0g, de�ne

 a : �! R
p 7!  a(p) = Ep(a)=I(a):

By the de�nition of weak� topology we have that  a is weak
� upper semi-

continuous for any a 2 fI > 0g. Note that

'�(p) = inf
a2B+

Ep(a)

I(a)
= inf

fI>0g

Ep(a)

I(a)
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Since the sets fp 2 � :  a(p) � �g are weak� closed for any a 2 fI > 0g and
for any � 2 [0; 1], we obtain that

fp 2 � : '�(p) � �g =
\

fI>0g

fp 2 � :  a(p) � �g

is weak� closed as desired (in fact, we have an in�mun over continuous functions
and it is well known that it is upper semicontinuous).
Finally the proof of Theorem 3 is completed through Lemma 28 below.

Lemma 28 Set �0 = 1=� and L�0'
� = fp 2 � : '�(p) � �0g, then for every

a 2 B+

I(a) = min
p2L�0'�

Ep(a)

'�(p)

Proof: Denoting by

I 0(a) := inf
p2L�0'�

Ep(a)

'�(p)
;

we claim that I (a) = I 0(a), 8a 2 B+: First, it is immediate that I 0(a) � I�(a) =
I(a) for any a 2 B+. In order to show that I 0(a) = I(a) for every a 2 B+, it is
enough to show that for a given a0 belonging to B+ such that I 0(a0) > 0, there
exists p0 2 L�0'� such that Ep0(a0)='�(p0) � I(a0). In fact, by Lemma 26 we
know that there exists p0 2 � such that Ep0(a)=I(a) � 1=� for every a 2 B+,
i.e., p0 2 L�0'

�. Since I 0(a) > 0; it follows that Ep0(a0) > 0 and, again by
Lemma 26, Ep0(a0)=I(a0) = '�(p0); and then I(a0) = Ep0(a0)='

�(p0).
Now it is enough to show that the inf given in the de�nition of I� is in fact

a "min " for any a 2 B+. The result is immediate for any
a 2

�
b 2 B+ : 9p1 2 L�0'� s.t. Ep1(b) = 0

	
because p! Ep(a)='

�(p) is non-negative on L�0'
�, so

I (a) = Ep1(a)='
�(p1) = 0:

Now suppose that Ep(a) > 0 for any p 2 L�0'�. Note that the mapping
L�0'

� � p! Ep(a)='
�(p);

is weak� lower semicontinuous: In fact, we need to show that for any real number
� the set �� := fp 2 L�0'� : Ep(a)='�(p) � �g is weak� closed. For � � 0 the
result is trivial because fp 2 L�0'� : Ep(a)='�(p) � �g = ;. Otherwise,

�� = fp 2 L�0'� : Ep(a) � �'�(p)g ;
since '�(p) = infb2B+ fEp (b) =I (b)g ; it comes that

�� =
�
p 2 L�0'� : ��1Ep(a) � Ep (b) =I (b) ; 8b 2 B+

	
=

�
p 2 L�0'� : ��1I (b) � Ep (b) =Ep(a); 8b 2 B+

	
=

\
b2B+

�
p 2 L�0'� : ��1I (b) � Ep (b) =Ep(a)

	
=

\
b2B+

n
��1a;b

�
[��1I (b) ;1)

�o
;
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where �a;b : L�0'
� � p ! �a;b (p) = Ep (b) =Ep(a). Since �a;b is weak� contin-

uous (for each c 2 fa; bg, p ! Ep (c) is weak� continuous and p ! Ep(a) is
stricly positive) we obtain that each set

�
p 2 L�0'� : ��1I (b) � Ep (b) =Ep(a)

	
is weak� closed, so �� is an intersection of weak� closed sets which is weak�

closed too.
By Banach-Alaoglu-Bourbaki�s theorem (see Dunford and Schwartz (1958,

page 424)) L�0'
� is weak* compact which together with the generalized Weier-

strass´s theorem (see, for instance Aliprantis and Border (1999), Theorem 2.40)
entails that the mapping L�0'

� � p ! Ep(a)='
�(p) attains a minimum value,

i.e., there exists q 2 L�0'� such that I (a) = Eq (a) ='
� (q) � Ep (a) ='

� (q) for
any p 2 L�0'�.

Lemma 29 Let ' be a regular fuzzy set satisfying the model, i.e.

I(a) = min
p2L�0'

1

'(p)

Z
adp for all a 2 B+;

and let '� be de�ned as previously by

'�(p) = inf
a2B+

Ep(a)

I(a)
or equally '�(p) = inf

f2F

Ep(u(f))

u (cf )
;

then for any p 2 L�0' one obtains '�(p) � '(p):

Proof: Let p 2 L�0' then for all a 2 B+; I(a) � Ep(a)='(p). Hence,
'(p)I(a) � Ep(a) for all a 2 B+. Since '(p) > 0, if Ep(a) = 0 then I(a) = 0
and in this case Ep(a)=I(a) = 1 � '(p). If Ep(a) > 0 in any case, due to the
convention r=0 = +1 if r > 0, one obtains that Ep(a)=I(a) � '(p). Hence,
'(p) � Ep(a)=I(a) for all a 2 B+ and, therefore, '�(p) � '(p):

Lemma 30 From Lemmas 26 and 27, there exists a regular fuzzy set ' such
that

I(a) = inf
p2�

Ep(a)

'(p)
for all a 2 B+:

In fact, for any such ', one obtains that '�(p) � '(p) for all p 2 �.

Proof: Take p 2 �, then for all a 2 B+, I(a) � Ep(a)='(p); if '(p) = 0;
clearly Ep(a)=I(a) � '(p) for all a 2 B+ and '�(p) � '(p). If '(p) > 0; the
same proof as for Lemma 29 applies.
PROOF OF COROLLARY 5:
The proof results from Lemmas 29, 30, and note that 8a 2 B+

I (a) = inf
p2�

Ep(a)

'�(p)
= min

p2L�0'�
Ep(a)

'�(p)
,

so 8a 2 B+, 9pa 2 L�0'� such that

Ep(a)

'�(p)
� Epa(a)

'�(pa)
; 8p 2 �,
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hence

I (a) = min
p2�

Ep(a)

'�(p)
.

PROOF OF COROLLARY 6:
Proof: Let (u1; '�1) represents % as in Corollary 5. If (u2; '�2) is another

representation of %, by the fundamental equivalence obtained in Corollary 5, u1
and u2 are nonconstant a¢ ne representations %jX�X , and by standard unique-
ness results there exists � > 0 and � 2 R such that u1 = �u2 + �. But, our
main result imposes that u1 (x�) = u2 (x�) = 0, so � = 0. Building on the
characterization of the maximal con�dence function and that u1 = �u2, for any
p 2 �

'�1(p) = inf
f2F

�R
u1(f)dp

u1 (cf )

�
= inf

f2F

�R
�u2(f)dp

�u2 (cf )

�
= '�2(p);

as desired. The converse is obvious.
PROOF OF PROPOSITION 7:
Proof: We have that J(f) = infp2�

n
1

'�(p)

R
u(f)dp

o
with '� 2 FR�(�),

in particular the normality of '� says that we can take some p0 2 � such that
'�(p0) = 1. Now, we de�ne V (f) =

R
(u(f))dp�which induces the SEU preference

%V . Furthermore, the inequality V (f) � J(f) implies that f %J x) f %V x.
PROOF OF PROPOSITION 8:
Proof: (1) ) (2): We saw that we can take u1 = u2 = u. Now, for any

f 2 F , if f s1 x then f %2 x, moreover:

J1(u(f)) = u(x) � J2(u(f))

i.e., J1 � J2. Hence,

'�1(p) = inf
f2F

R
u(f)dp

J1(u(f))
� inf

f2F

R
u(f)dp

J2(u(f))
= '�2(p)

as desired.
(2)) (1) : For any f 2 F and x 2 X, if f %1 x then

inf
p2�

�R
u(f)dp

'�1(p)

�
� u(x);

since '�1 � '�2 implies that

inf
p2�

�R
u(f)dp

'�2(p)

�
� inf

p2�

�R
u(f)dp

'�1(p)

�
we conclude that f %2 x.
PROOF OF PROPOSITION 14:
Proof: By Axioms A1, A2, A3, A4 and the certainty independence axiom

it is simple to see that the functional I : B+ ! R obtained in the Lemmas 21
and 22 satis�es properties (i) to (iv) of Lemma 21 and for any a 2 B+ and
� � 0 it is true that I (a+ �) = I (a) + �. So, we obtain the particular version
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of our Lemma 25 as proved in Chateauneuf (1991). Hence, there exists a weak�

compact and convex set C � � such that for any a 2 B+

I (a) = min
p2C

Z
adp.

Recall that for any p 2 �,

'�(p) = inf
a2B+

R
adp

I (a)
:

Now, we note that for all p 2 C, I(a) �
R
adp for any a 2 B+, since I(1S) =

p(S) = 1 we obtain that '�(p) = 1; 8p 2 C: If p =2 C by a separation theorem
for locally convex linear topological space [Dunford and Schwartz, (1988, page
418)] there exists a0 2 B+ such thatZ

a0dp < minf
Z
a0dp : p 2 Cg = I(a0)

therefore

'�(p) = inf
a2B+

R
adp

I(a)
�
R
a0dp

I(a0)
< 1

and we conclude that '�(p) = 1 if and only if p 2 C. In particular, for any
a 2 B+ (S;�; u (X)) (i.e., 9f 2 F s.t. a = u(f)),

J (f) = I (a) = min
p2C

Z
adp = min

p2L1'�

Z
adp

= min
p2L1'�

Z
u (f) dp = min

p2�

1

'� (p)

Z
u (f) dp.

PROOF OF PROPOSITION 16:
Proof: By Axioms A1, A2, A3, A4 and the comonotonic independence axiom

it is simple to see that the functional I : B+ ! R obtained in the Lemmas 21
and 22 satis�es properties (i) to (iv) of Lemma 21 and for any a; b 2 B+ such
that a and b are comonotonics it is true that I (a+ b) = I (a) + I (b). So, by
Schmeidler (1986, 1989) there exists a convex capacity v : � ! [0; 1] such that
for any a 2 B+

I (a) =

Z
adv.

Now, we de�ne the following mapping

e' : �! R

p 7! e'(p) = inf
E2�

p(E)

v(E)
:

We obtain the proof by the following next two lemmas.
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Lemma 31 The mapping e' is a normal fuzzy set and for every a 2 B(S;�);
(1) I(a) = inf

p2L�0'

R
adpe'(p) ;

for any level of minimal con�dence �0 2 (0; 1]:

Proof: Let us �rst prove that e' is a normal fuzzy set. Take p 2 �; clearlye'(p) 2 R+, and since p(S) = v(S) = 1 it turns out that e'(p) 2 [0; 1].
Finally e' is normal: since v is convex we know that C(v) is nonempty. Note

that e'(p) = 1 if and only if p 2 C(v).
Let us �rst prove equality (1), when a belongs to B+0 (S;�); the set of real-

valued �-measurable, non-negative simple functions. Then

a =
mX
i=1

xi1Ei

where fEigmi=1 � � is a partition of S where x1 > x2 > ::: > xm � 0 = xm+1.
First, let us prove that

I 0(a) := inf
p2L�0'

R
adpe'(p) � I(a):

It is enough to show that for any given p 2 L�0e'we have:
(2)

R
adpe'(p) �

Z
adv:

Set d1(p) =
R
adp � e'(p) R adv; hence (2) is equivalent to d1(p) � 0. We note

that

d1(p) =
mX
i=1

(xi � xi+1)

24p
0@ i[
j=1

Ei

1A� e'(p)v
0@ i[
j=1

Ei

1A35 ;
since for all i 2 f1; :::;mg

e'(p) � p

 
iS

j=1

Ei

!

v

 
iS

j=1

Ei

!
and (xi � xi+1) � 0, we obtain d1(p) � 0.
It remains to show that I 0(a) � I(a) : taking p0 2 C(v) such thatZ

adv = min
p2C(v)

Z
adp =

Z
adp0:

Since e'(p0) = 1; we obtain
I 0(a) �

Z
adp0 = I(a):
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Therefore, I 0(a) = I(a) for all a 2 B+0 .
Let us take now a belonging to B+: We know that there exists an 2 B+0 ,

an ! a uniformly. From the previous case, I 0(an) = I(an) for all n � 1. From
Lemma 22, I 0(an)! I 0(a), but I(an)! I(a). Hence, I 0(a) = I(a).
In fact, it is true that

Lemma 32 For any probability p 2 � we have that e'(p) = '�(p).

Proof: Note �rst that E 2 � implies that 1E 2 B, then 0 � '�(p) � e'(p);
so the proof has only to be done if e'(p) > 0.
In the previous proposition, when restricting to B+0 ; we obtain thatR

adpe'(p) �
Z
adv, for every a 2 B+0

so, by continuity, R
adpe'(p) �

Z
adv, for every a 2 B+:

Hence,
R
adp � e'(p)I(a) for any a 2 B+. If I(a) = 0 either

R
adp = 0 andR

adp=I(a) = 1 � e'(p); or R adp > 0 and R adp=I(a) = +1 � e'(p). Finally, if
I(a) > 0; clearly

R
adp=I(a) � e'(p) and therefore '�(p) � e'(p).

PROOF OF PROPOSITION 17
Proof: It is similar to the proof of Lemma 31: Take p 2 �, clearly '(p) 2

[0; 1].
In order to prove that ' is normal, note that since v is convex then C(v)

is non empty. Moreover, p 2 C(v) if and only if p(E) � v(E), or equivalently,
1� v(E) � 1� p(E) for every E 2 �, and then '(p) = 1.
Let us prove now equality (2), where a belongs to B0(S;�) the set of real-

valued �-measurable simple functions. Then

a =

mX
i=1

xi1Ei +

nX
k=m+1

yi1Ek = a� + a+

where fEigni=1 ;� � is a partition of S and x1 < x2 < ::: < xm < 0 � xm+1 <
xm+2 < ::: < xn.
First let us prove that

I 0(a) := inf
p2L�0'

�R
a+dp

'(p)
+ '(p)

Z
a�dp

�
� I(a) = I(a+) + I(a�)

It is enough to show that for a given p 2 L�0e'we have:
(2)

R
a+dpe'(p) �

Z
a+dv

(3)'(p)

Z
a�dp �

Z
a�dv
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Set d1(p) =
R
a+dp�'(p)

R
a+dv; hence (2) is equivalent to d1(p) � 0, which

we proved in Lemma 31.
Setting now d2(p) = '(p)

R
a�dp�

R
a�dv, (3) is equivalent to d2(p) � 0.

Note that

d2(p) = '(p)
mX
i=1

xi

0@p
0@ n[
j=i

Ej

1A� p
0@ n[
j=i+1

Ej

1A1A
�

mX
i=1

xi

0@v
0@ n[
j=i

Ej

1A� v
0@ n[
j=i+1

Ej

1A1A :

Since,

'(p) � 1� v (A)
1� p (A) ; 8A 2 �;

it follows that

'(p)

0@1� p
0@ n[
j=2

Ej

1A1A�
0@1� v

0@ n[
j=2

Ej

1A1A � 0;

therefore,

x1

24'(p)
0@1� p

0@ n[
j=2

Ej

1A1A�
0@1� v

0@ n[
j=2

Ej

1A1A35
� x2

24'(p)
0@1� p

0@ n[
j=2

Ej

1A1A�
0@1� v

0@ n[
j=2

Ej

1A1A35 ;
this entails that

'(p)
2X
i=1

xi

0@p
0@ n[
j=i

Ej

1A� p
0@ n[
j=i+1

Ej

1A1A
�

2X
i=1

xi

0@v
0@ n[
j=i

Ej

1A� v
0@ n[
j=i+1

Ej

1A1A
= x1

24'(p)
0@1� p

0@ n[
j=2

Ej

1A1A�
0@1� v

0@ n[
j=2

Ej

1A1A35
+x2

24'(p)
0@p
0@ n[
j=2

Ej

1A� p
0@ n[
j=3

Ej

1A1A�
0@v
0@ n[
j=2

Ej

1A1A35
� x2

24'(p)
0@1� p

0@ n[
j=3

Ej

1A1A�
0@1� v

0@ n[
j=3

Ej

1A1A35 :
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Since x2 < x3 and

'(p)

0@1� p
0@ n[
j=3

Ej

1A1A�
0@1� v

0@ n[
j=3

Ej

1A1A � 0;

we obtain also that,

'(p)
3X
i=1

xi

0@p
0@ n[
j=i

Ej

1A� p
0@ n[
j=i+1

Ej

1A1A
�

3X
i=1

xi

0@v
0@ n[
j=i

Ej

1A� v
0@ n[
j=i+1

Ej

1A1A
� x3

24'(p)
0@1� p

0@ n[
j=4

Ej

1A1A�
0@1� v

0@ n[
j=4

Ej

1A1A35 ;
in fact, we can iterate and obtain that

d2 (p) � xm

24'(p)
0@1� p

0@ n[
j=m+1

Ej

1A1A�
0@1� v

0@ n[
j=m+1

Ej

1A1A35 � 0.
It remains to show that I 0(a) � I(a) : taking p0 2 C(v) such thatZ

adv = min
p2C(v)

Z
adp =

Z
adp0.

Since '(p0) = 1, we obtain

I 0(a) �
Z
a+dp0 +

Z
a�dp0 = I(a).

Therefore, I 0(a) = I(a) for all a 2 B0(S;�).
Let us take now a belonging to B(S;�): We know that there exists an 2

B0(S;�), an ! a uniformly. From the previous case I 0(an) = I(an) for all n � 1.
From Lemma 22, I 0(an)! I 0(a), but I(an)! I(a). Hence, I 0(a) = I(a).
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