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This work concerns the development and calibration of several classes of mathematical
models describing ecological and bio-geochemical aspects of aquatic systems. We focus
our experimental analysis on the Serra da Mesa lake in Brazil, from which the biological
information is extracted by real online measurements provided by the SIMA monitoring
program of the Brazilian Institute for Space Research (INPE).

A preliminary analysis is carried out so as to define the input-output data to be ac-
counted for by the models. Furthermore, several classes of mathematical models are
considered for fitting real data of biological processes. In order to do that, a two-step
parameter identification/validation procedure is applied: the first step uses the integrals
of the differential equations to reduce the nonlinear estimation problem to a linear least
squares one. The parameter vector resulting from the first step is used for initializing a
nonlinear minimization procedure. The results are discussed to assess the fitting perfor-
mances of the physical and black-box models proposed in the paper. Several simulations
are presented that could be used for developing scenario analysis and managing the real
system. 1
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INTRODUCTION

Mathematical modelling of ecosystems plays a crucial role in the study and management
of natural resources (see [1,3–5] for engineering and ecological aspects of environmental
modelling and [16,21,22] for applications of the models and resource management in the
Mediterranean Sea). In the particular case of the Amazon region, due to its size and
peculiarities, one needs to develop models using the available observed satellite data as
much as possible (for the modelling aspects of Amazon region see [26]). The research
reported herein concerns the mathematical modelling of large basins, such as the Serra

1The research reported here is part of an international cooperation among the Instituto Nacional de
Matemática Pura e Aplicada (Br), the Laboratório Nacional de Computação Cient́ıfica (Br), and the
Centro per lo Studio dei Sistemi Complessi of the University of Siena (It).
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da Mesa lake (see the models of this watershed developed by the authors in [15,27]) that
is located in the Brazilian Amazon region. The goal is to model, calibrate, and simulate
some of the relevant ecological processes, forecast the future evolution and derive the
critical components of the systems. In order to accomplish this task, we have to build
simplified models of complex systems and match them with noisy/incomplete data.

The long term objective of the research described here is to understand, describe and
predict qualitatively as well as quantitatively the dynamics of complex aquatic systems
of the Amazon region. We start with concentrated and relatively simple models. A wide
literature is available on ecological models of complex ecosystems: see for example [6]
for simple microalgae dynamical models, [10,11] for nutrient related models and [25,13]
for complex bio-geochemical models of lagoons. Concerning the mathematical analysis
of ecological nonlinear models and qualitative analysis of complex systems refer to [9,14]
More specifically, in this work we present the results obtained by means of parameter
identification of physical models , which are based on the most relevant biochemical and
physical processes, as well as on black-box models. For identification theory, refer to [2],
and for applications of identification procedure to physical models, see [7–9]

The resulting models may thus be used for prediction of the relevant variables in dif-
ferent time scales so as to support management, protection and control of ecosystems.
The models under consideration could also be used for environment modelling since they
represent a compromise between the simplicity of population models and the complexity
of bio-geochemical ones.

We also confront some of the mathematical issues related to parameter estimation
(calibration) in the context of noisy data and model mismatch. Our approach is a two-
step identification process which might be of interest in other situations too.

Besides the afore-mentioned performances in terms of simulation and prediction, the
models would be useful for managing and, if necessary, controlling the ecosystems. In fact,
due to their simple formulation, they could be easily integrated into scenario analysis and
decision support systems tools.

The paper is organized as follows: Section 1 describes the site under consideration
and the monitoring program providing the measured data. Section 2 is focused on the
description of the mathematical models used in the work. In Section 3 the identification
procedure is explained. Section 4 presents the results in terms of the fitting performance,
sensitivity to parameters and model comparison analysis. We close in Section 5 with some
final remarks and suggestions for further research.

1. THE SERRA DA MESA LAKE AND MONITORING DATA

Handling aquatic ecosystems requires systematic monitoring of physical, chemical, and
biological parameters. To this purpose the development of monitoring programs and
analysis techniques for water quality management plays a crucial role. INPE keeps eight
sites in the north of Brazil constantly under control: Corumbá, Curuáı, Itumbiara, Manso,
Serra Da Mesa and Tucurúı. Thanks to an online data collection system we can monitor
the main variables for the water quality analysis. In particular, this work is focused on two
sets of data containing measurements collected during summer and winter seasons into
Serra da Mesa lake, which is one of the biggest artificial lakes in Brasil. It is formed by the
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Tocantins river in the Minaçu(GO) plateau (460 m over the see level), North of Brasilia.
It has a water volume of 54,4 billion cubic meters and an area of 1.784 squared kilometers.
Besides representing a tourist and fishing attraction, it gives power to waterwheels of an
important hydroelectric plant generating 1275 MW. In 2001 the water level decreased by
9 meters causing an energetic crisis and the failure of several companies.

The exogenous measured data and the state variables used in the models are reported
in Table 12.

Table 1
Exogenous inputs and state variables.

Name Var. Units
Wind velocity u1 [m/s]
Water temperature u2 [◦C]
Solar Radiation u3 [W/m2]
Percentage of oxygen saturation u4 [%]
Chlorophyll-a concentration v1 [µg/l]
Oxygen concentration v2 [mg/l]
Nutrient Concentration v3 [mg/l]

Both sets of data (summer and winter) consist of 144 samples and show missing data
due to satellite transmission problems. Moreover, the shallow water causes some errors
in chlorophyll-a measurements. These include outliers and negative values during the
summer period. For those reasons a preliminary data recovering procedure was applied.
The i -th missing measurement is thus replaced by the estimate v̂(i):

v̂(i) =
1

2N

N∑
j=1

(v(i + j) + v(i − j)) (1)

where N = 12.
Furthermore, during the winter period we do not have nutrient measurements; for this

reason the relative set of data is used only for phytoplankton identification.
A preliminary correlation analysis shows a significant daily periodicity in the measure-

ments of oxygen concentration, solar radiation and water temperature.

2. THE MODELS

In this section the models of the phytoplankton dynamics used in the work are pre-
sented. In particular, two different dynamical models are described by a set of ordinary
differential equations: The first one, the PZ model, is the extended version of a model
previously developed by two of the authors [9,14]. The second one, the Wampum model,
is taken from the literature as a benchmark [6]. The last one is a stochastic transfer

2In this work, we use the Chlorophyll-a data as a representative estimation of the phytoplankton biomass
[3].
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function model derived by the structure of the previous ones.
A set of equations developed for water quality dynamics is also proposed and coupled
with phytoplankton models.

2.1. MODELLING MICROALGAE DYNAMICS
The phytoplankton variable is a population of microalgae representing the producers,

i.e., the set of vegetable species performing carbon fixation, measured in terms of biomass.
In this work, the constants and equations reflect the behavior of “prototypical” entities
(in forms of Diatoms, Peridenes and Microflagelates).

Composition and abundance of phytoplankton are both related to the physical and
chemical properties of the ecosystem, so normally microalgae are considered a reliable
indicator for the trophic status of the ecosystem.

In the sequel, the dynamical models of phytoplankton are introduced.

The PZ model
The PZ model is an extension of a simple model for the phytoplankton dynamics (see

[9,14] for details on the equations and applications of the model, and [23] for simple models
of phytoplankton):

v̇1 = k1,1f2(u2)f3(u3)v1 − k1,2v
2
1 , (2)

where

f2(u2) = 1.09
u2−TOPT

TW , (3)

and

f3(u3) = 0.9u3e
−Ez. (4)

The function f2(u2) represents the temperature effect on photosynthesis [12] and the
function f3(u3) represents the light attenuation [19]. The constants of the environmental
exogenous inputs are reported in the first four rows of the Table 2.

Table 2
Constants of the models.
Parameter Biological Meaning Value Units
TOPT Optimal temperature 29 ◦C
TW Temperature width 1 ◦C
E Albedo coefficient 3 m−1

z Water depth 1 m
µ Amplitude of the photoperiod forcing function 1.47 -
Kl Light intensity (71% max value of algae growth rate) 200 W m−2

λm Algae mineral compounds coefficient 0.2 -
λs Algae self shading coefficient 0.02 -

The first term in Equation (2) accounts for the photosynthetic activity, which produces
oxygen leading to an increase of phytoplankton biomass. The process is influenced by the
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temperature (3) and the light intensity (4). The second term on the RHS of the equa-
tion represents the natural mortality that is assumed to be proportional to the square
of phytoplankton biomass itself. The formulation of this structure is based on the logis-
tic equation [4], which is one of the best known model of population dynamics for the
vegetation microorganisms. The first two rows of Table 3 report the parameters of the
model.

Table 3
Parameters of the PZ-model.
Par. Biological Meaning Units
k1,1 Phytoplankton growth rate [ Wm−2]−1[t]−1

k1,2 Phytoplankton natural mortality [t]−1

k1,3 Phytoplankton losses for grazing [mg l−1]−1[t]−1

k1,4 External phytoplankton input/output [µg l−1][t]−1

k4,1 Zooplankton grow rate [µg l−1][t]−1

k4,2 Zooplankton natural mortality [t]−1

A more complex model is proposed in this paper for the phytoplankton dynamics as
follows:

v̇1 = k1,1f2(u2)f3(u3)v1 − k1,2v
2
1 − k1,3v1v4 + k1,4fs(t) (5)

v̇4 = k4,1v1v4 − k4,2v4 (6)

where f2(u2) and f3(u3) are given in (3), (4) and

fs(t) =
(
1 + µ sin

(
π

12
t
))

. (7)

The function fs(t) reproduces the effects of periodic forcing related to the photoperiod.
The constants of the environmental exogenous inputs are reported in the fifth and sixth
row of the Table 2, while the parameters of the model are reported in Table 3.

The variable v4 introduced in Equation (5) is the biomass of herbivore zooplankton
consumers. These are mainly copepods as some species of Acartia. The dynamics of this
variable is regulated by a growth due to grazing on phytoplankton and by the losses for
natural mortality. The phytoplankton-zooplankton model is based on a logistic predator-
prey system with Holling II type response [4], with linear mortality in the zooplankton
equation [3].

THE WAMPUM MODEL
The Wampum model has been developed by Romanowicz et al. [6,17] for the control

of the phytoplankton biomass in the Elbe River (Germany). The equations of the model
are:

v̇1 = k1,1q1(u2)fl(u3, v1)v1 − k1,2q2(u2)v1, (8)
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where

q1(u2) = 1.014u2−TOPT , (9)

q2(u2) = 1.02u2−TOPT . (10)

The functions q1(u2) and q2(u2) describe the effect of the temperature in the algal
growth and mortality, respectively, whereas

fl(u3, v1) =
u3e

−λ(v1)z√
K2

l + u2
3e

−2λ(v1)z
(11)

represents the light limitation factor resulting from vertically averaging the so-called
“Smith formula” [18]. According to the well known Beer’s law on the light attenuation
(see [23] for a description of the mathematical formulation of the law), the light intensity
at depth z below the water surface is Ie−λz, with I denoting the radiation intensity at the
water surface and λ(v1) = λm+λsv1 the total light attenuation due to mineral compounds
(λm) and algal self shading (λs). The constants of the environmental exogenous inputs
are described in Table 2.

The first term of equation (8) accounts for the phytoplankton growth. The light climate
is one of the most important factors influencing the evolution of algae populations, as
pointed out in [17]. The second term of the equation represents the natural mortality due
to loss and respiration. Table 4 reports the parameters of the model.

Table 4
Parameters of the Wampum-model.

Description Units
k1,1 Phytoplankton grow rate [◦C]−1[t]−1

k1,2 Phytoplankton natural mortality [◦C]−1[t]−1

THE OUTPUT ERROR (OE) MODEL
OE model is a Black-Box Multiple Input Single Output (MISO) Stochastic Transfer

Function (STF) model. The structure of the model is derived from the Wampum one [6].
The mathematical formulation of the model is

v1(t) =
i=M∑
i=1

Bi(z
−1)

Ai(z−1)
ui(t − δi) + ξ(t) , (12)

where v1(t) is the algae concentration; ui(t− δi) is the vector of input variables at sample
time t; δi denotes the time delay for the i-th input; and ξ(t) represents a Gaussian white
noise.

The polynomials Ai(z
−1) and Bi(z

−1) are defined as Ai(z
−1) = 1+ai,1z

−1 + . . .+ai,nz
−n

and Bi(z
−1) = bi,0 + bi,1z

−1 + . . .+ bi,mz−m, where ai and bj are the model parameters and
the operator z−i denotes an i-step backward shift in time.
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2.2. MODELLING WATER QUALITY
This section concerns the water quality modelling process. For this purpose the oxygen

and nutrient dynamics need be taken into account and their dynamic models will be de-
scribed in the sequel. In fact, these two components are the most important indicators for
eutrophication and pollution from external sources, being involved in the photosynthesis
and mineralization of organic carbon in water and sediment layers.

The Oxy-model. Oxygen is an ecological variable of extreme importance for the over-
all functionality of the system. It is produced by the photosynthetic activity, integrated
by physical re-aeration due to wind regime, consumed for respiration by all species of the
living community and for biochemical reactions attending organic matter degradation.
The oxygen quantity in water and sediments is an important indicator of anoxic crises
due to excessive growth of microalgae (leading to important release of nutrients from the
sediments by bacterial mineralization activity), high temperature and scarce re-aeration.

For these reasons the oxygen concentration represents the link between population
ecological processes (related to phytoplankton) and biophysical phenomena (related to
exogenous inputs and nutrient dynamics). In this paper the oxygen dynamics is firstly
analyzed as a single kinetic equation and then coupled with the phytoplankton and nu-
trient equations. For the coupling of ecological models with physico-chemical aspects, see
[13,14,24], while for the effects of nutrients on phytoplankton growth refer to [20].

In the present work, the oxygen dynamics will be modelled by the following equation:

v̇2 = k2,1f2(u2)f3(u3)v1v3 + k2,2fW (u1)(
v2

u4
− v2) − k2,3fM(u2)fα(v2) − k2,4v1v2, (13)

where

fW (u1) = 0.641 + 0.0256
(

u1

0.0447

)2

, (14)

fα(v2) =
v2

kAE + v2

, (15)

and

fM(u2) = e0.07u2 . (16)

The functions f2(u2) and f3(u3) are given in (3), (4); the functions fW (u1) and fα(v2)
represent the re-aeration rate and aerobic oxygen consumption (with the limiting factor
KAE = 0.5[mg l−1]2), respectively, and the function fM(u2) describes the organic matter
degradation as function of temperature.

The first production term in Equation (13) represents the primary production performed
by phytoplankton photosynthetic process. The second one, represents the equilibrium
physico-chemical reaction between gaseous oxygen and dissolved oxygen. The third one,
accounts for aerobic bacterial respiration consumption, while the fourth term represents
phytoplankton respiration losses. Table 5 reports the parameters of the model.

The Nutrient Model. The nutrient variable refers to the nitrogen compounds in
water and sediments. There is evidence from field experiments [25] that often in shallow
water systems the main source of nutrients for phytoplankton growth must come from
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Table 5
Parameters of the Oxy-model.

Description Units
k2,1 Oxygen produced by photosynthesis [Wm−2]−1[µg l−1]−1[t]−1

k2,2 Oxygen exchange with atmosphere [m s−1]−1[t]−1

k2,3 Oxygen consumption by aerobic activity [◦C]−1[mg l−1][t]−1

k2,4 Oxygen consumption by phytoplankton [µg l−1]−1[t]−1

recycling due to bacterial activity and sediment release, while the losses are due to the
photosynthetic activity, outgoing flows of water and material and retaining from sediment.

Nutrient dynamics is regulated by the following equation [10,11]:

v̇3 = k3,1fM(u2)fα(v2) − k3,2f2(u2)f3(u3)v1v3 + k3,3(f − v3) , (17)

where f2(u2), f3(u3), fM(u2) and fα(v2) are given in (3), (4), (16) and (15).
The first term of the RHS of Equation (17) accounts for the aerobic production of

nutrients by mineralization of organic matter. The second one, represents the consumption
due to the photosynthetic activity of phytoplankton species. The last one, shows the
nutrient quantity that is exchanged with external sources. Table 6 reports the parameter
of the model.

Table 6
Parameters of the Nut-model.

Description Units
k3,1 Nutrient production by abiotic processes [◦C]−1[t]−1

k3,2 Nutrient consumption by photosynthesis [µg l−1]−1[W m2]−1[t]−1

k3,3 External nutrient input/output [t]−1

f External nutrient input [mg l−1]

The two physical models PZ (5) and Wampum (8) describing the phytoplankton dy-
namics, have been coupled with the oxygen (13) and nutrient (17) models. Numerical
results of the identification of the coupled models are reported in Subsection 4.3.

3. MODEL IDENTIFICATION

The parameter identification for the physical models is based on the minimization of a
cost function (see [2] for identification theory and fundamentals), representing the mean
square error between simulated and experimental data. A two-step procedure to determine
an initial condition for a nonlinear minimization is applied to the phytoplankton equation
(see [7,8] for a detailed description and applications of the method), as described in the
sequel.
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SETTING THE INITIAL PARAMETER VECTOR FOR NONLINEAR ES-
TIMATION

Consider the simplified version of the phytoplankton dynamical model (2) described by
a nonlinear non autonomous ordinary differential equation. Rewrite it as

v̇1

v1
= k1,1M(t) − k1,2v1, (18)

where M(t) = f2(u2(t))f3(u3(t)). Then, integrating over a time interval [ti, ti+1], gives

ln(v1(ti+1))/v1(ti)) = k1,1

∫ ti+1

ti
M(τ) dτ − k1,2

∫ ti+1

ti
v1(τ) dτ. (19)

Considering Equation (19) for i = 1, . . . , N − 1, we obtain a linear system of equations
in the variable θ := (k1,1, k1,2)

′ of the form

Y = U θ, (20)

where

Y = (ln(v1(ti+1)/v1(ti)))i=1,...N−1 ,

and

U =
(∫ ti+1

ti
M(τ) dτ,

∫ ti+1

ti
v1(τ) dτ

)
i=1,...,N−1

.

If we replace v1(·), u2(·), u3(·) by measurements, and approximate the integrals in (19)
by numerical quadrature, then equation (3) becomes

Y = Û θ + e , (21)

where e is an error caused by noise and numerical quadrature, and Û is the approximate
value of U .

We now choose as initial parameter estimates for the model (21) a least squares estimate
of θ in (21) given by

θLS = (Û ′ Û)−1 Û ′Y. (22)

NONLINEAR ESTIMATION
The initial guess θLS obtained above would most likely not coincide with the correct

value even in the absence of noise and model imperfections in the measurements. In order
to improve on such estimate we now perform a nonlinear estimation as described in the
sequel.

We consider the cost function F (θ), representing the mean square error between simu-
lated and experimental data [2]

F (θ) =
1

N

N∑
i=1

e2(ti) =
1

N

N∑
i=1

(φ(θ, ti) − φ(ti))
T W (φ(θ, ti) − φ(ti)), (23)
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where φ(ti) is the measurement vector at time ti, φ(θ, ti) is the vector of corresponding
values provided by the model at time ti, θ is the vector of model parameters, and W is a
suitable weight matrix.

The parametric identification of the microalgae dynamical models (PZ, Wampum and
OE ) is performed using the phytoplankton data set (v1). The parametric identification
of the water quality model has been based alternatively on the oxygen (v2) and (v3)
concentrations.

The identification of the coupled models is performed by minimizing the cost func-
tion (23), where θ is the vector of all the parameters related to the three equations in-
volved in the procedure, the data set is the vector φ(ti) = (v1(ti), v2(ti), v3(ti))

′, φ(θ, ti) =
(v1(ti), v2(ti), v3(ti))

′ is the vector of corresponding values provided by the model at time
ti and W = diag {σ−2(vj), j = 1, . . . , 3}, where σ−2(vj) is the sample variance of the data
vj .

The nonlinear minimization in this work makes use of a quasi-Newton algorithm with
simple bounds and was implemented using NAG foundation toolbox for Matlab subroutine
e04jaf.

IDENTIFICATION OF THE BLACK-BOX MODELS
The parameter estimation of the black-box models is performed by minimizing the

one-step ahead prediction error [2]:

J(θ) =
1

N

N∑
t=1

(y(t) − ŷ(t|t − 1; θ))2, (24)

where y(t) is the measurement value and ŷ(t|t − 1; θ) is the model predicted output at
time t.

4. RESULTS

In this section the numerical results of the parameter identification of the models are
presented. The results are organized similarly to those of Sections 2 and 3. Comparisons
and benchmark exercises between models are also interpreted

Here, the following fit indicator is used:

Fit =

(
1 − ||y(t) − ŷ(t|t − 1)||

||y(t) − mean(y(t))||
)
· 100 (25)

which represents the percentage of real data variance captured by the models. Moreover,
the mean square error (MSE ) and the sample mean (ēr) of the residual error signal will
be computed and displayed. See [2] for a detailed description.

4.1. MICROALGAE DYNAMICAL MODELS
As far as the PZ model is concerned, estimation of the parameters of these models has

been performed through a two-step identification procedure. In fact, the structure of this
model is such that it is possible to compute an initial estimate of the parameters by the
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integral minimization procedure described in Section 3. This fact allowed us to reduce
consistently uncertainty on the parameter vector initialization.

As it may be observed from the numerical results obtained, the model performs better
on the winter data than on the summer data. See MSE in Table 7.

Table 7
Identification results for the phytoplankton (v1) dynamical models.

Model Fit MSE ēr

PZ-Summer 23.1892 0.9666 0.074718
PZ-Winter -8.3209 0.33986 0.0919
WP-Summer 8.3049 1.3775 0.16589
WP-Winter 5.505 0.25864 0.12939
OE-Summer 57.0698 0.30195 3.99e-05
OE-Winter 32.1203 0.13346 0.06509

This fact can be at least partially explained by the fact that the summer database
has a larger amount of missing data. Further explanation is the presence of ecological or
physical processes affecting the system in summer that are not taken into account by the
adopted model. In fact, differences in water level and hydrodynamics conditions in the
two seasons are quite relevant to the ecosystem behavior.

Concerning the comparison between the models PZ and Wampum, the first one shows
better fitting results in summer and slightly worse in winter (see MSE in Table 7).

The values of the estimated parameters are reported in Tables 8 and 9 and simulation
results of the estimated models are reported in Figures 1, 2, 3 and 4.

Table 8
Estimated parameter values for the PZ model.

Parameter Initial Value Final Value Initial Value Final Value
(Winter) (Winter) (Summer) (Summer)

k1,1 3.868e-4 8.311e-4 -1.278e-2 2.668e-4
k1,2 2.201e-4 4.298e-4 -1.183e-2 4.056e-3
k1,3 1e-3 1.144e-4 1e-3 1.169e-6
k1,4 1e-3 1.387e-3 1e-3 4.646e-2
k4,1 1e-1 1.144e-4 1e-1 1.257e-1
k4,2 1e-1 1.053e-2 1e-1 1.876e-1

Comparing the numerical results of physical models with the stochastic OE model, it
turns out that OE provides better results than the PZ and the Wampum models. This
fact is more evident on the summer dataset (see Table 7 and Figures 5 and 6). Anyway, it
should be stressed that the OE model involves the estimation of 8 parameters, while PZ
and Wampum models require of 6 and 2 parameters respectively. The estimated values
of the parameters are reported in Table 10.
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Figure 1. Fitting results of PZ model: simu-
lation (solid line) and measurements (dashed
line). Summer data.
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Figure 2. Fitting results of PZ model:
simulation (solid line) and measurements
(dashed line). Winter data.

Table 9
Estimated parameter values for the Wampum model.

Parameter Initial Value Final Value Initial Value Final Value
(Winter) (Winter) (Summer) (Summer)

k1,1 1.593e-2 1.614e-2 -2.365e-1 -2.338e-1
k1,2 4.845e-3 4.531e-3 -4.706e-2 -4.622e-2
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Figure 3. Fitting results of Wampum model:
simulation (solid line) and measurements
(dashed line). Summer data.
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Figure 4. Fitting results of Wampum
model: simulation (solid line) and mea-
surements (dashed line). Winter data.
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Table 10
Estimated parameter values for the OE-Model.

Parameter Final Value Final Value
Winter Summer

a1,1 - 1.952 -1.889
a1,2 9.629e-1 8.919e-1
a2,1 - 1.721 -1.909
a2,2 7.278e-1 9.316e-1
b1,1 4.946e-1 6.319e-1
b1,2 - 1.157 -6.316e-1
b1,3 6.691e-1 0
b2,1 7.603e-5 -3.753e-4
b2,2 9.773e-5 2.149e-4
b2,3 - 1.98e-4 0
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Figure 5. Fitting results of OE model: simu-
lation (solid line) and measurements (dashed
line). Summer data.
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Figure 6. Fitting results of OE model:
simulation (solid line) and measurements
(dashed line). Winter data.
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4.2. WATER QUALITY MODELS
Water quality models have been estimated on the summer dataset only, because of the

lack of nutrient data in the winter period. Numerical results obtained are reported in
Table 11 and Figures 7 and 8. Table 12 shows the values of the estimated parameters.
Notice that the dissolved oxygen model shows excellent performance on the real data.

Table 11
Identification results for the water quality models.

Model Fit MSE ēr

Oxy (v2) 90.1653 0.00142 0.00346
Nut (v3) 37.3527 0.03063 0.031663

Table 12
Estimated parameter values for the Oxy and Nut models. Summer data.

Parameter Initial Value Final Value
k2,1 1e-4 8.679e-5
k2,2 1e-4 4.450e-2
k2,3 1e-4 1e-9
k2,4 1e-4 3.341e-7
k3,1 1e-4 1.147e-3
k3,2 1e-4 7.054e-4
k3,3 1e-4 1.940e-3
f 1e-4 2.141e-4

0 50 100 150
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

T

m
g/

l

Figure 7. Fitting results of Oxygen model:
simulation (solid line) and measurements
(dashed line). Summer data.
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Figure 8. Fitting results of Nutrient
model: simulation (solid line) and mea-
surements (dashed line). Summer data.
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4.3. COUPLED MODELS
In this subsection the results of the identification of the coupled models are presented.
The microalgae physical models are coupled with the water quality ones and all the

parameters are estimated. The previously estimated parameters for the microalgae and
quality models are used for the initialization of the augmented parameter vector of the
coupled model.

The results of the identification procedure corresponding to all the models considered
are reported in Table 13. Plots of real and fitted data of nutrients are reported in Figures
9 (a), (b) and (c). As it can be observed from Table 13 and Figure 9, a remarkable
improvement of the performance of the coupled PZ model is obtained. In fact, in this
case the coupled PZ model provides the best results both in terms of the Fit and MSE
criteria.

Table 13
Identification results for the coupled models.

Model Fit MSE ēr

PZ-Coupled-phyto 22.8704 0.97464 0.12606
PZ-Coupled-oxy 90.3727 0.00136 0.00435
PZ-Coupled-nut 41.443 0.02676 0.02458
WP-Coupled-phyto 8.2382 1.3795 0.13521
WP-Coupled-oxy 90.4364 0.00134 0.00322
WP-Coupled-nut 26.5657 0.04209 -0.00367
OE-Coupled-oxy 90.507 0.00132 0.00579
OE-Coupled-nut 36.9703 0.0310 0.023278

4.4. SENSITIVITY ANALYSIS
In this subsection we discuss the sensitivity of PZ and Wampum models with respect

to the reconstructed parameters. In order to do that, we perform two studies:

1. The change of the cost function with respect to a variation of the parameters when
each parameter is varied in a range of ±10%.

2. The logarithmic derivative of the simulated values given by the model with respect
to the parameters according to the formula

MSESENS =
1

N

N∑
i=1

(
∂v(ti)

∂k
/v(ti)

)2

, (26)

where k here denotes any of the parameters ki,j in the models.

In the case of the cost function, the corresponding results are reported in Figure 10.
We remark that the Wampum cost variations are smoother than the PZ ones. This calls
for nonsmooth optimization, which is a natural continuation of the research developed
here. In any case, the PZ model provides much better performances on the summer data
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Figure 9. Nutrient dynamics in summer. Identification results of PZ-coupled (a),
Wampum-coupled (b) and OE-coupled (c) models. Simulations are drawn with solid
lines and measurements with dashed lines.
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than in the winter. In fact, the minimum cost is consistently lower than that provided by
the Wampum model during the same period.

In the case of the sensitivity of the state variable v in equations (5) and (8) with
respect to the parameters: We computed ∂v/∂ki for each model. Table 14 shows the
squared relative averages of ∂v/∂ki for the winter and summer data. The improvement of
the PZ model performances, reported in Table 7, may be due to the introduction of the
predation term k1,3. This fact is confirmed by a higher sensitivity of the model output to
this parameter in the summer period. On the other hand, the higher complexity of the
model may increase the sensitivity respect to the initial conditions.

The above comments allow us to conclude that while the Wampum model is more robust
to initial conditions and parameter variations, it seems to be quite unable to capture
seasonal dynamics such as summer-winter climatic changes. Analogous considerations
hold when comparing the performances of the PZ and Wampum models coupled with the
water quality ones. See Table 13.

Table 14
Sensitivity analysis of PZ model. Mean square value of ∂v

∂ki
/v in the winter and summer.

Parameter MSESENS Value MSESENS Value
(Winter) (Summer)

k1,1 1.849e+8 1.831e+7
k1,2 1.077e+6 3.534e+4
k1,3 3.227 5.290e+9
k1,4 1.845e+2 1.984e+4

Table 15
Sensitivity analysis of the Wampum model. Mean square value of ∂v

∂ki
/v in the winter and

summer.
Parameter MSESENS Value MSESENS Value

(Winter) (Summer)
k1,1 6.692e+2 2.528e+2
k1,2 6.623e+3 7.919e+3

5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this article, physical and black-box models describing the microalgae and the water
quality dynamics in the Serra da Mesa basin in the Brazilian Amazon region are pro-
posed. The variables involved in the models are: phytoplankton, which is considered as a
population of microalgae, oxygen and nutrients, which are the most important indicators
for the water quality. Two different physical models and a stochastic transfer function
one are developed for the phytoplankton dynamics, while two physical models account
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Figure 10. Sensitivity analysis of PZ and Wampum models. MSE values for ±10%
parameter variations in winter and summer datasets.

for the oxygen and nutrient dynamics. The microalgae physical models are then coupled
with the water quality ones for integrating ecological and physico-chemical processes.

Using a nonlinear parametric optimization procedure the most important parameters of
the previously developed models have been selected and estimated on the basis of the real
data. A novel two-step parameter identification/validation procedure for identifying the
microalgae dynamic models has been applied. Several simulation are presented and the
results are discussed to evaluate the fitting performances and sensitivities of the models.

The analysis of sensitivity and the values shown in Tables 14 and 15 indicate a substan-
tial discrepancy in the orders of magnitude for the relative sensitivity of the parameters.
These values, together with numerical experiments we performed by varying the initial
guesses for the parameters, suggest that in further research one may want to use some
regularization terms on the cost function.
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