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Reduction of Courant algebroids and generalized

complex structures

Henrique Bursztyn∗ Gil R. Cavalcanti† Marco Gualtieri‡

Abstract

We present a theory of reduction for Courant algebroids as well as Dirac structures, generalized
complex, and generalized Kähler structures which interpolates between holomorphic reduction of com-
plex manifolds and symplectic reduction. The enhanced symmetry group of a Courant algebroid leads
us to define extended actions and a generalized notion of moment map. Key examples of generalized
Kähler reduced spaces include new explicit bi-Hermitian metrics on CP 2.
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1 Introduction

In the presence of a symmetry, a given geometrical structure may, under suitable conditions, pass to
the quotient. Often, however, the quotient does not inherit the same type of geometry as the original
space; it may be necessary to pass to a further reduction for this to occur. For example, a complex
manifold M admitting a holomorphic S1 action certainly does not induce a complex structure on
M/S1; rather, one considers the complexification of this action to a C

∗ action, whose quotient, under
suitable conditions, inherits a complex structure. Similarly, the quotient of a symplectic manifold by a
symplectic S1 action is never symplectic; rather it is endowed with a natural Poisson structure, whose
leaves are the symplectic reduced spaces one desires.

In this paper we consider the reduction of generalized geometrical structures such as Dirac struc-
tures and generalized complex structures. These are geometrical structures defined not on the tangent
bundle of a manifold but on the sum T ⊕T ∗ of the tangent and cotangent bundles (or, more generally,
on an exact Courant algebroid). These structures interpolate between many of the classical geome-
tries such as symplectic and Poisson geometry, the geometry of foliations, and complex geometry. As
a result the quotient procedure described in this paper interpolates between the known methods of
reduction in these cases.

The main conceptual advance required to understand the reduction of generalized geometries is the
fact that one must extend the notion of action of a Lie group on a manifold. Traditional geometries
are defined in terms of the Lie bracket of vector fields, whose symmetries are given precisely by
diffeomorphisms. As a result, one considers reduction in the presence of a group homomorphism
from a Lie group into the group of diffeomorphisms. The Courant bracket, on the other hand, has
an enhanced symmetry group which is an abelian extension of a diffeomorphism group by the group
of closed 2-forms. For this reason one must consider actions which may have components acting
nontrivially on the Courant algebroid while leaving the underlying manifold fixed. To formalize this
insight, we introduce the notion of a Courant algebra, and explain how it acts on a Courant algebroid
in a way which extends the usual action of a Lie algebra by tangent vector fields.

A surprising benefit of this point of view is that the concept of moment map in symplectic geometry
obtains a new interpretation as an object which controls the extended part of the action mentioned
above, that is, the part of the action trivially represented in the diffeomorphism group.

In preparing this article, the authors drew from a wide variety of sources, all of which provided
hints toward the proper framework for generalized reduction. First, the literature on holomorphic
reduction of complex manifolds as well as the field of Hamiltonian reduction of symplectic manifolds
in the style of Marsden-Weinstein [18]. Also, in the original work of Courant and Weinstein ([3], [4])
where the Courant bracket is introduced, some preliminary remarks about quotients can be found.
Most influential, however, has been the work of physicists on the problem of finding gauged sigma
models describing supersymmetric sigma models with isometries. The reason this is relevant is that
the geometry of a general N = (2, 2) supersymmetric sigma model is equivalent to generalized Kähler
geometry [7], and so any insight into how to “gauge” or quotient such a model provides us with
guidance for the geometrical reduction problem. Our sources for this material have been the work
of Hull, Roček, de Wit, and Spence ([12],[13]), Witten [25], and Figueroa-O’Farill and Stanciu [6].
More recently in the physics literature, the gauging conditions have been re-interpreted in terms of
the Courant bracket [5], a point of view which we develop and expand upon in this paper as well.
Finally, in recent work of Hitchin [9], a natural generalized Kähler structure on the moduli space
of instantons on a generalized Kähler 4-manifold is constructed by a method which amounts to an
infinite-dimensional generalized Kähler quotient. This example as well as the questions it engenders
was one of the guiding examples for this research.

The paper is organized as follows. In Section 2 we review the definition of Courant algebroid,
describe its group of symmetries, and define the concept of extended action. This involves the definition
of a Courant algebra, a particular kind of Lie 2-algebra. In this section we also define a moment
map for an extended action. In Section 3 we describe how an extended action on an exact Courant
algebroid gives rise to reduced spaces equipped with induced exact Courant algebroids. It turns out
that, even if the original Courant algebroid has trivial 3-form curvature, its reduced spaces may have
nontrivial curvature. In Section 4 we arrive at the reduction procedure for generalized geometries,
introducing an operation which transports Dirac structures from a Courant algebroid to its reduced
spaces. This operation generalizes both the operation of Dirac push-forward and pull-back outlined
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in [2]. In Section 5 we apply this procedure to reduce generalized complex structures and provide
several examples, including some with interesting type change. Finally in Section 6 we study a way
to transport a generalized Kähler structure to the reduced spaces. This is very much in the spirit
of the usual Kähler reduction procedure of Hitchin, Karlhede, Lindstrom and Roček [10]. Finally we
present two examples of generalized Kähler reduction: we produce generalized Kähler structures on
CP 2 with type change, first along a triple line (an example of which has been found in [9] using a
different method) and second, along three distinct lines in the plane. These examples are particularly
significant since they provide explicit bi-Hermitian metrics on CP 2.

Recently there has been a great deal of interest in porting the techniques of Hamiltonian reduction
to the setting of generalized geometry. The authors are aware of four other groups who have worked
independently on this topic: Lin and Tolman [16], Stienon and Xu [21], Hu [11], and Vaisman [22].

Acknowledgements: The authors wish to thank M. Crainic, R. Fernandes, N. Hitchin, K. Hori,
C. Hull, L. Jeffrey, A. Kapustin, Y. Karshon, F. Kirwan, Y. Li, E. Meinrenken, A. Weinstein, and E.
Witten for many helpful conversations along the way. The authors thank the Fields Institute, Oxford’s
Mathematical Institute, IMPA, NSERC and EPSRC for supporting this project.

2 Symmetries of the Courant bracket

In this section we introduce an extended notion of group action on a manifold preserving twisted
Courant brackets. We start by recalling the definition and basic properties of Courant algebroids.

2.1 Courant algebroids

The notion of Courant algebroid was introduced in [17] in order to axiomatize the properties of the
Courant bracket, an operation on sections of TM ⊕ T ∗M extending the Lie bracket of vector fields.
The failure of this bracket to satisfy the Jacobi identity as well as the Leibniz rule is measured by a
symmetric bilinear form, in a way which was generalized as follows.

A Courant algebroid over a manifold M is a vector bundle E −→ M equipped with a skew-
symmetric bracket [[·, ·]] on C∞(E), a nondegenerate symmetric bilinear form 〈·, ·〉, and a bundle map
π : E −→ TM called the anchor, which satisfy the following conditions for all e1, e2, e3 ∈ C∞(E) and
f, g ∈ C∞(M):

C1) π([[e1, e2]]) = [π(e1), π(e2)],

C2) [[[[e1, e2]], e3]] + [[[[e2, e3]], e1]] + [[[[e3, e1]], e2]] = DT (e1, e2, e3),

C3) [[e1, fe2]] = f [[e1, e2]] + (π(e1)f)e2 − 〈e1, e2〉Df ,

C4) π ◦ D = 0, i.e. 〈Df,Dg〉 = 0,

C5) π(e1)〈e2, e3〉 = 〈e1 • e2, e3〉 + 〈e2, e1 • e3〉,
where D = 1

2
π∗ ◦ d : C∞(M) −→ C∞(E) (using 〈·, ·〉 to identify E with E∗), T is given by

T (e1, e2, e3) = 1
3
(〈[[e1, e2]], e3〉 + 〈[[e2, e3]], e1〉 + 〈[[e3, e1]], e2〉),

and • denotes the combination
e1 • e2 = [[e1, e2]] + D〈e1, e2〉. (1)

We see from axiom C1) that the Jacobi identity is “satisfied up to an exact term”; indeed as was
shown in [19], a Courant algebroid is an example of an L∞ algebra. We now briefly describe Ševera’s
classification of exact Courant algebroids.

Definition 2.1. A Courant algebroid is exact if the following sequence is exact:

0 −→ T ∗M
π∗

−→ E
π−→ TM −→ 0 (2)

Given an exact Courant algebroid, we may always choose a right splitting ∇ : TM −→ E which
is isotropic, i.e. whose image in E is isotropic with respect to 〈·, ·〉. Such a splitting has a curvature
3-form H ∈ Ω3

cl(M) defined as follows, for X,Y ∈ C∞(TM):

iY iXH = 1
2
s[[∇(X),∇(Y )]], (3)
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where s : E −→ T ∗M is the induced left splitting. Using the bundle isomorphism ∇ + 1
2
π∗ : TM ⊕

T ∗M −→ E, we transport the Courant algebroid structure onto TM ⊕ T ∗M . Given X + ξ, Y + η ∈
C∞(TM ⊕ TM∗), we obtain for the bilinear pairing

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y )), (4)

and the bracket becomes

[[X + ξ, Y + η]] = [X,Y ] + LXη − LY ξ − 1
2
d(iXη − iY ξ) + iY iXH, (5)

which is the H-twisted Courant bracket on TM ⊕ T ∗M [20]. Isotropic splittings of (2) differ by 2-
forms b ∈ Ω2(M), and a change of splitting modifies the curvature H by the exact form db. Hence
the cohomology class [H ] ∈ H3(M,R), called the Ševera class, is independent of the splitting and
determines the exact Courant algebroid structure on E completely. When this class is integral, the
exact Courant algebroid may be viewed as a generalized Atiyah sequence associated to a connection
on an S1 gerbe. In this sense, exact Courant algebroids arise naturally from the study of gerbes.

The symmetry group C of an exact Courant algebroid, that is, the group of orthogonal bundle
automorphisms preserving the Courant bracket, can be easily described once an isotropic splitting is
chosen [7]: it consists of the group of ordered pairs (ϕ,B) ∈ Diff(M)×Ω2(M) such that ϕ∗H−H = dB.
Diffeomorphisms act in the usual way on TM ⊕ T ∗M , and 2-forms B act via X + ξ 7→ X + ξ + iXB.
As a result we see that C is an extension

0 // Ω2
cl(M) // C // Diff[H](M) // 0 ,

where Diff[H](M) is the group of diffeomorphisms preserving the cohomology class [H ].
The Lie algebra c of symmetries consists of pairs (X,B) ∈ C∞(TM)⊕Ω2(M) such that LXH = dB.

For this reason, it is an extension of the form

0 // Ω2
cl(M) // c // C∞(TM) // 0 .

Since H is closed, LXH = d(iXH) for any vector field X, and so we have a right splitting of the above
sequence given by Y 7→ (Y, iYH). However, this is not a splitting that preserves the Lie bracket.

There is an adjoint, or interior, action of C∞(E) as infinitesimal symmetries defined by adv(w) :=
v • w. We have the following consequences of (1):

π(e1)〈e2, e3〉 = 〈e1 • e2, e3〉 + 〈e2, e1 • e3〉 (6)

e1 • [[e2, e3]] = [[e1 • e2, e3]] + [[e2, e1 • e3]], (7)

showing that this adjoint action is an infinitesimal symmetry of the Courant algebroid. Unlike, how-
ever, the usual adjoint action of vector fields on the tangent bundle, the map ad : C∞(E) −→ c is
neither surjective nor injective; indeed the Lie algebra c fits into the following exact sequence:

0 // Ω1
cl(M) // C∞(E) // c // H2(M,R) // 0 ,

where the map to cohomology can be written as (X,B) 7→ [iXH −B] in a given splitting.

2.2 Extended actions

Let a Lie group G act on a manifold M , so that we have the Lie algebra homomorphism ψ : g −→
C∞(TM). We wish to extend this action to a Courant algebroid E, making E into a G-equivariant
vector bundle, in such a way that the Courant algebroid structure is preserved. In this section we
show how this can be done by choosing an extension of g equipped with a Courant algebra structure,
and choosing a homomorphism from this extension to the Courant algebroid E.

We begin by introducing the concept of a Courant algebra.

Definition 2.2. A Courant algebra over the Lie algebra g is a vector space a equipped with a skew-
symmetric bracket [·, ·] : a × a −→ a, a symmetric bilinear operation θ : a × a −→ a, and a map
π : a −→ g, which satisfy the following conditions for all a1, a2, a3 ∈ a:
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c1) π([a1, a2]) = [π(a1), π(a2)],

c2) [[a1, a2], a3] + [[a2, a3], a1] + [[a3, a1], a2] = T (a1, a2, a3),

c3) θ(a1, a2) • a3 = 0,

c4) π ◦ θ = 0,

c5) a1 • θ(a2, a3) = θ(a1 • a2, a3) + θ(a2, a1 • a3),

where T is given by

T (a1, a2, a3) = 1
3
(θ([a1, a2], a3) + θ([a2, a3], a1) + θ([a3, a1], a2))

and • denotes the combination
a1 • a2 = [a1, a2] + θ(a1, a2).

A Courant algebroid gives an example of a Courant algebra over g = C∞(TM), taking a = C∞(E)
and θ(e1, e2) = D〈e1, e2〉. Following Roytenberg-Weinstein [19], we now indicate that any Courant
algebra is an example of a L∞-algebra [15, 1].

Proposition 2.3. Let (a, π, [·, ·], θ) be a Courant algebra, and let h = kerπ. Then the following is a
L∞ algebra (V•, l•): take V1 = h, V0 = a, Vi = 0 ∀i > 1, and let l1 be the inclusion of V1 into V0.
Then define l2, l3 by

l2(a1, a2) = [a1, a2], l2(a1, h1) = [a1, h], l2(h1, h2) = 0,

l3(a1, a2, a3) = −T (a1, a2, a3), l3(h1, ·, ·) = 0,

for all ai ∈ a, hi ∈ h, and set all higher brackets li, ∀i > 3 to zero.

Proof. We must check the higher Jacobi identities
∑
i+j=n+1(−1)i(j−1)lj li = 0, where li are extended

as coderivations on ∧V•. The identities for n 6= 4 are trivially verified from the definitions, whereas
the identity l3l2 = l2l3 follows from the following identity: define

J = θ(J(a1, a2, a3), a4) − θ(J(a1, a2, a4), a3) + θ(J(a1, a3, a4), a2) − θ(J(a2, a3, a4), a1)

K = θ([a1, a2], [a3, a4]) − θ([a1, a3], [a2, a4]) + θ([a1, a4], [a2, a3]),

where J(a1, a2, a3) = [[a1, a2], a3]+ [[a2, a3], a1]+ [[a3, a1], a2] is the Jacobiator. Then using axioms c2)
and c5) one can prove K + 2J = 0, which together with the identity [a1, θ(a2, a3)] = θ(a1, θ(a2, a3))
coming from c3), implies the result.

It is easily seen that the image g̃ = π(a) of the Courant algebra anchor is itself a Lie subalgebra
g̃ ⊂ g. Indeed the projection map π : a −→ g̃ defines a L∞ isomorphism between a and the usual
Lie algebra g̃. In this sense a Courant algebra is nothing but a particular 2-term L∞ representative
of the Lie algebra g̃. It will be useful to consider the notion of an exact Courant algebra, where π is
surjective onto g and h is abelian and isotropic:

Definition 2.4. An exact Courant algebra is one for which

0 // h // a
π // g // 0

is an exact sequence and such that [h1, h2] = θ(h1, h2) = 0 for all hi ∈ h = kerπ.

For an exact Courant algebra, one obtains immediately an action of g on h: g ∈ g acts on h ∈ h via
g · h = a • h, for any a such that π(a) = g. This is well defined, and it determines an action because
of the Leibniz property of •: for all ai ∈ a,

a1 • (a2 • a3) = (a1 • a2) • a3 + a2 • (a1 • a3),

which implies that, given gi ∈ g and ai ∈ a such that π(ai) = gi,

g1 · (g2 · h) − g2 · (g1 · h) = a1 • (a2 • h) − a2 • (a1 • h)
= ([a1, a2] + θ(a1, a2)) • h
= [a1, a2] • h = [g1, g2] · h,

for all h ∈ h, proving that g acts on h as required. In fact there is a natural nontrivial exact Courant
algebra associated with any g-module, as we now explain.
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Example 2.5 (Demisemidirect product). Let g be a Lie algebra acting on the vector space h.
Then a = g ⊕ h becomes a Courant algebra over g via the bracket

[(g1, h1), (g2, h2)] = ([g1, g2],
1
2
(g1 · h2 − g2 · h1)), (8)

and the bilinear operation

θ((g1, h1), (g2, h2)) = (0, 1
2
(g1 · h2 + g2 · h1)), (9)

where here g · h denotes the g-action. This bracket has appeared before in the context of Leibniz
algebras [14], where it was called the demisemidirect product, due to the factor of 1

2
. Note that

in [24], Weinstein studied the case where g = gl(V ) and h = V , and called it an omni-Lie algebra due
to the fact that, when dimV = n, any n-dimensional Lie algebra can be embedded inside g ⊕ h as an
involutive subspace.

Morphisms between Courant algebras are simply structure-preserving chain homomorphisms, as
we now describe.

Definition 2.6. A morphism of Courant algebras from ( a
π // g , [·, ·], θ) to ( a′ π′

// g′ , [·, ·]′, θ′)
is a commutative square

a
π //

ρ

��

g

ψ

��

a′ π′

// g′

where ψ is a Lie algebra homomorphism, ρ([a1, a2]) = [ρ(a1), ρ(a2)]
′ and ρ(θ(a1, a2)) = θ′(ρ(a1), ρ(a2))

for all ai ∈ a. Note that a morphism of Courant algebras induces a chain homomorphism of associated

chain complexes h // a
π // g .

Example 2.7 (The adjoint action). The adjoint action ada(b) = a• b defines a morphism a 7→ ada
of Courant algebras from any Courant algebra a over g to its Lie algebra Der a of symmetries, the latter
viewed as a Courant algebra over Der g with θ = 0. The following diagram describes the morphism:

a
π //

ad

��

g

ad

��

Der a
π∗ // Der g

We now have all we need to define the extension of a G-action to a Courant algebroid E.

Definition 2.8 (Extended action). Let G be a connected Lie group acting on a manifold M with
infinitesimal action ψ : g −→ C∞(TM). An extension of this action to a Courant algebroid E over M
is an exact Courant algebra a over g together with a Courant morphism ρ : a −→ C∞(E):

0 // h // a //

ρ

��

g

ψ

��

// 0

C∞(E) // C∞(TM)

which is such that h acts trivially, i.e. (ad ◦ ρ)(h) = 0, and the induced action of g = a/h on C∞(E)
integrates to a G-action on the total space of E.

Suppose now that the Courant algebroid in question is exact, as it will be in many cases of interest.
Then an extended action is a chain homomorphism

0 // h //

ν

��

a //

ρ

��

g

ψ

��

// 0

0 // C∞(T ∗M) // C∞(E) // C∞(TM) // 0
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such that h acts trivially, which occurs precisely when it acts via closed 1-forms, i.e. ν(h) ⊂ Ω1
cl(M).

Furthermore the induced g-action on E must integrate to a G-action (a priori, one has only the action
of the universal cover of G). In order to make this condition more concrete, we observe that since we
already know that the g-action on TM integrates to a G-action, one needs only to find a g-invariant
splitting of E to guarantee that it is a G-bundle, as the splitting E = TM ⊕ T ∗M carries a canonical
G-equivariant structure.

Proposition 2.9. Let the Lie group G act on the manifold M , and let a
π // g be an exact Courant

algebra with a morphism ρ to an exact Courant algebroid E over M such that ν(h) ⊂ Ω1
cl(M).

If E has a g-invariant splitting, then the g-action on E integrates to an action of G, and hence ρ
is an extended action of G on E. Conversely, if G is compact and ρ is an extended action, then by
averaging splittings one can always find a g-invariant splitting of E.

The condition that a splitting is g-invariant can be expressed more concretely as follows. As
shown in Section 2.1, a split exact Courant algebroid is isomorphic to the direct sum TM ⊕ T ∗M ,
equipped with the H-twisted Courant bracket for a closed 3-form H . In this splitting, therefore, for
each a ∈ a the section ρ(a) decomposes as ρ(a) = Xa + ξa, and it acts via (Xa + ξa) • (Y + η) =
[Xa, Y ] + LXaη − iY dξa + iY iXaH , or as a matrix,

adρ(a) =

(
LXa 0

iXaH − dξa LXa

)

We see immediately from this that the splitting is preserved by this action if and only if for each a ∈ a,

iXaH − dξa = 0. (10)

Example 2.10. Let G be compact, and consider the question of trivially extending a G-action, so
that the extending Courant algebra is simply g itself:

g
id //

ρ

��

g

ψ

��

0 // C∞(T ∗) // C∞(E) // C∞(TM) // 0

By Proposition 2.9, we can always express such an extension in terms of a g-invariant splitting, so
finding such a morphism ρ is equivalent to finding 1-forms ξa such that ρ : a 7→ Xa + ξa, where
Xa = ψ(a), preserves the Courant algebra structure: preserving the bracket yields

ξ[a,b] = LXaξb − LXb
ξa − 1

2
d(iXaξb − iXb

ξa) + iXb
iXaH, (11)

whereas preserving the symmetric form θ yields

d〈Xa + ξa,Xb + ξb〉 = 0. (12)

Also, by (10), we must have iXaH − dξa = 0. These conditions can be phrased in terms of the Cartan
model for G-equivariant cohomology. Recall that the Cartan complex of equivariant forms is the
algebra of equivariant polynomial functions Φ : g −→ Ω•(M):

ΩkG(M) =
⊕

2p+q=k

(Spg∗ ⊗ Ωq(M))G,

and the equivariant derivative dG is defined by

(dGΦ)(a) = d(Φ(a)) − iXaΦ(a) ∀a ∈ g.

Now consider the form Φ = H+ ξa, where the subscript in ξa is viewed as a variable so that ξa ∈ g∗ ⊗
Ω1(M). Since the splitting isG-invariant, we have LXaH = 0, and from (11) we see that ξ[a,b] = LXaξb.
Therefore Φ is an equivariant 3-form. Furthermore, equation (12) shows that cab = 〈Xa + ξa,Xb + ξb〉
is constant, i.e. a closed equivariant 4-form. Finally, computing dGΦ, we obtain

dGΦ = −cab = −〈Xa + ξa,Xb + ξb〉.
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That is, cab is exact. Note that this implies cab is an invariant symmetric form on the Lie algebra g.
Let ρ, ρ′ be two trivially extended actions on the same exact Courant algebroid, with identical

symmetric forms 〈ρ(a), ρ(b)〉 = 〈ρ′(a), ρ′(b)〉. We call them equivalent if the closed form ρ′(a)− ρ(a) is
exact; more precisely, if (ρ′ − ρ)(a) = dfa, for an equivariant map f : M −→ g∗. If ρ, ρ′ are described
by the forms Φ,Φ′ in G-invariant splittings, then dG(Φ′ − Φ) = 0. If furthermore Φ′ − Φ = dGβ for
β = b+fa ∈ Ω2

G(M), then the G-invariant 2-form b describes the difference between the splittings and
the equivariant map fa satisfies ρ′(a)− ρ(a) = d(fa). Hence we see that trivially extended actions are
equivalent when their representative forms differ by exact forms.

In the case of trivially extended actions, we obtain conditions similar to those considered by
physicists studying the gauging of sigma models with Wess-Zumino term [13], except that we do not
require Φ to be equivariantly closed at this stage.

We summarize the results of the previous example in the following theorem.

Theorem 2.11. Let G be a compact Lie group. Then trivially extended G-actions on a fixed exact
Courant algebroid with prescribed symmetric form cab = 〈ρ(a), ρ(b)〉 are, up to equivalence, in bijection
with solutions to dG(H + ξa) = cab modulo dG-exact forms, where [H ] ∈ H3(M,R) is the Ševera class
of the Courant algebroid.

To obtain similar conditions for more general extended actions where h 6= 0, we would need an
extension of the Cartan model for equivariant cohomology, something which we leave for future work.
In the remainder of this section we describe the notion of moment map for an extended action.

2.3 Moment maps for extended actions

Suppose that we have an extended G-action on an exact Courant algebroid as in the previous section,
so that we have the map ν : h −→ Ω1

cl(M). Because the action is a Courant algebra morphism, this
map is g-equivariant in the sense

ν(g · h) = Lψ(g)ν(h). (13)

Therefore we are led naturally to the definition of a moment map for this extended action, as an
equivariant factorization of µ through the smooth functions.

Definition 2.12. A moment map for an extended g-action on an exact Courant algebroid is a g-
equivariant map µ : h −→ C∞(M,R) satisfying D ◦ µ = ν, i.e. such that the following diagram
commutes:

h

µ

xxqq
q
q
q
q
q
q
q
q
q
q

ν

��

C∞(M)
D // C∞(T ∗M)

Note that µ may be alternatively viewed as an equivariant map µ : M −→ h∗.

A moment map can be found only if two obstructions vanish. The first one is the induced map to
cohomology ν∗ : h −→ H1(M,R). Since (13) implies that ν∗ always vanishes on g · h ⊂ h, the first
obstruction may be defined as an element

o1 ∈ H0(g, h∗) ⊗H1(M,R),

where the first term denotes Lie algebra cohomology with values in the module h∗. When this obstruc-
tion vanishes we may choose a lift µ̃ : h −→ C∞(M). The second obstruction results from the failure
of this lift to be equivariant: consider the quantity c(g, h) = µ̃(g · h) − Lψ(g)µ̃(h) for g ∈ g, h ∈ h.
From (13) we conclude that c is a constant function along M . It is easily shown that this discrepancy,
modulo changes of lift, defines an obstruction class

o2 ∈ H1(g, h∗).

Proposition 2.13. A moment map for an extended g-action exists if and only if the obstructions
o1 ∈ H0(g, h∗)⊗H1(M,R) and o2 ∈ H1(g, h∗) vanish. When it exists, a moment map is unique up to
the addition of an element λ ∈ Ann(g · h) ⊂ h∗.
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We now show how the usual notions of symplectic and Hamiltonian actions fit into the framework
of extended actions of Courant algebras.

Example 2.14 (Symplectic actions). Let G be a Lie group acting on a symplectic manifold (M,ω)
preserving the symplectic form, and let ψ : g −→ C∞(TM) denote the infinitesimal action. We now
show that there is a natural extended action of the Courant algebra associated to the adjoint action
on the standard Courant algebroid TM ⊕ T ∗M with zero twist H = 0. As described in Example 2.5,
the Courant algebra is described by the sequence

0 // g // g ⊕ g
π // g // 0

and is equipped with the bracket

[(g1, h1), (g2, h2)] = ([g1, g2],
1
2
([g1, h2] − [g2, h1])), (14)

and the bilinear operation

θ((g1, h1), (g2, h2)) = (0, 1
2
([g1, h2] + [g2, h1])). (15)

We now claim that this Courant algebra acts naturally on TM ⊕ T ∗M . Let Xg = ψ(g), for g ∈ g,
denote the symplectic vector fields. Then we define the action ρ : g ⊕ g −→ C∞(TM ⊕ T ∗M) by

ρ(g, h) = Xg + iXh
ω,

where ω is the symplectic form. It is enough to verify that the pairing • is preserved; on the Courant
algebra it is simply

(g1, h1) • (g2, h2) = ([g1, g2], [g1, h2]),

whereas in TM ⊕ T ∗M we have

(Xg1 + iXh1
ω) • (Xg2 + iXh2

ω) = [Xg1 ,Xg2 ] + LXg1
iXh2

ω = X[g1,g2] + iX[g1,h2]
ω,

showing that ρ is a Courant morphism.
The question of finding a moment map for this extended action then becomes one of finding an

equivariant map µ : g −→ C∞(M) such that

d(µg) = iXgω.

Hence we recover the usual notion of moment map for a Hamiltonian action on a symplectic manifold.

Note that in this formalism, the notion of moment map is no longer tied to the geometrical structure
in question, such as the symplectic form. Instead, it is a constituent of the extended action. In fact,
given an equivariant map µ : M −→ h∗ for a g-module h, one can naturally construct an extended
action for which µ is a moment map, as we now indicate.

Proposition 2.15. Given a g-equivariant map µ : M −→ h∗ where M is a G-space and h a g-module,
there is an induced extended action of the Courant algebra g ⊕ h with bracket (8) and symmetric
product (9) on the exact Courant algebroid TM ⊕ T ∗M with H = 0, given by

ρ : (g, h) 7→ Xg + d(µh),

where as before Xg = ψ(g) is the infinitesimal g-action.

More generally, given a trivially extended action ρ : g −→ C∞(E) on an exact Courant algebroid,
it can be extended to an action of g ⊕ h as above by any equivariant map µ : M −→ h∗ via the same
formula

ρ̃ : (g, h) 7→ ρ(g) + d(µh).
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3 Reduction of Courant algebroids

In this section we develop a reduction procedure for Courant algebroids which is analogous to the
usual notion of symplectic reduction due to Marsden and Weinstein [18]. In fact the procedure we
describe may be interpreted as an “odd” symplectic reduction, since an exact Courant algebroid, with
its split-signature symmetric inner product, may be viewed as an odd symplectic bundle.

A characteristic feature of the reduction procedure is that an extended G-action on an exact
Courant algebroid E over a manifold M does not necessarily induce an exact Courant algebroid on
M/G, but rather one may need to pass to a submanifold P ⊂ M which is suitably chosen. Then
P/G = Mred, the reduced space, obtains naturally an exact Courant algebroid. This is directly
analogous to the well-known fact that, for a symplectic manifold M , M/G inherits a Poisson structure
whose leaves are the symplectic reduced spaces.

Also, we shall see that the reduction procedure is quite straightforward when the image of the
extended action ρ : a −→ C∞(E) is isotropic; if this is not the case, the procedure is more subtle and
requires an additional condition to be satisfied by the action.

3.1 Reduction procedure

In the previous section we showed how a G-action on a manifold M could be extended to a Courant
algebroid E, making it an equivariant G-bundle in such a way that the Courant structure is preserved
by the G-action. Therefore, assuming the G-action on the base were appropriately well-behaved, E
would descend to the quotient, yielding a Courant algebroid E/G −→ M/G. However, E/G would
certainly not be an exact Courant algebroid, since its rank would be too large. We will show that the
image of the extended action itself determines an equivariant sub-bundle whose quotient becomes an
exact Courant algebroid when restricted to certain submanifolds of M/G, called the reduced manifolds.
In this way we obtain a reduction of exact Courant algebroids.

The basic idea is to consider the two natural distributions in E determined by the extended action,
which may be viewed as a bundle map ρ : a ×M −→ E. The image of this map is a distribution
K ⊂ E, and its orthogonal complement is a second distribution K⊥ ⊂ E. These distributions are
G-invariant, since the action of g ∈ g on any generating section ρ(a) of K is simply ρ(g̃) • ρ(a), for
any lift g̃ ∈ a, π(g̃) = g, and we have

g · ρ(a) = ρ(g̃) • ρ(a) = ρ(g̃ • a) ∈ K.

The other crucial observation is that the space of G-invariant sections of K⊥ is closed under the
Courant bracket, since for any sections v1, v2 ∈ C∞(K⊥)G, we have, for all a ∈ a,

〈ρ(a), [[v1, v2]]〉 = 1
2
〈ρ(a), v1 • v2 − v2 • v1〉

= 1
2
(π(v1)〈ρ(a), v2〉 − 〈v1 • ρ(a), v2〉 − π(v2)〈ρ(a), v1〉 + 〈v2 • ρ(a), v1〉)

= 〈d〈ρ(a), v2〉, v1〉 − 〈d〈ρ(a), v1〉, v2〉 = 0.

(16)

While the G-invariant sections of K⊥ inherit a Courant bracket, the induced inner product may be
degenerate, with kernel consisting of C∞(K ∩K⊥)G. The latter space actually forms a Courant ideal
as a result of the following fact: for any w =

∑
fiρ(ai) ∈ C∞(K) and v ∈ C∞(K⊥)G, we have

[[w, v]] = (
∑

fiρ(ai)) • v − d〈w, v〉

=
∑

fi(ρ(ai) • v) + (π(v)fi)ρ(ai)

=
∑

(π(v)fi)ρ(ai)

(17)

which clearly is in C∞(K). Hence the quotient space

C∞(K⊥)G

C∞(K ∩K⊥)G
(18)

inherits both a bracket and a nondegenerate inner product with values in the G-invariant functions.
Assuming that K as well as K ∩ K⊥ were of constant rank, (18) would define a Courant algebroid
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structure on K⊥

K∩K⊥
over M/G. However the anchor would not be surjective since K⊥ does not

necessarily project surjectively to T (M/G). Hence we are led to consider restricting to G-invariant
submanifolds P ⊂M for which K⊥ does project surjectively to T (P/G). For this purpose we introduce
two natural distributions in TM induced by the extended action.

Definition 3.1. Given an extended action with image distribution ρ(a) = K ⊂ E, define the big
distribution ∆b = π(K + K⊥) ⊂ TM and the small distribution ∆s = π(K⊥) ⊂ TM . These are
G-invariant distributions.

In the presence of a moment map µ : M −→ h∗, ∆s is the distribution tangent to the level sets,
whereas ∆b is the distribution tangent to the G-orbits of the level sets.

Note that π(K) is the distribution tangent to the G-orbits in M , and we wish to consider (18)
restricted to submanifolds P ⊂M such that TP = π(K +K⊥), i.e., leaves of the big distribution ∆b.
We now describe the leaves of ∆b. Observe first that the small distribution ∆s = π(K⊥) is such that

Ann(∆s) = K ∩ T ∗ = ρ(h). (19)

Therefore, wherever ρ(h) has locally constant rank, ∆s is an integrable distribution. The G-orbit of
any leaf of ∆s (if smooth) is then a leaf of ∆b. This observation allows us to prove the following useful
lemma. Note that a leaf of a distribution is taken to mean a maximal connected integral submanifold.

Lemma 3.2. Let P ⊂M be a leaf of the big distribution ∆b on which G acts freely and properly, and
suppose ρ(h) has constant rank along P . Then K and K ∩K⊥ both have constant rank along P .

Proof. Since G acts freely on P , ψ(g) has constant rank along P . Since ρ(h) also has constant rank
along P , it follows that ρ(a) = K has constant rank along P . Furthermore, by (19), the small
distribution ∆s ⊂ TP is integrable, and P is the G-orbit of a leaf S of ∆s. However, because ρ is a
Courant morphism, we have for all a, b ∈ a,

ρ(θ(a, b)) = d〈ρ(a), ρ(b)〉, (20)

and since θ(a, b) ∈ h, we see that 〈ρ(a), ρ(b)〉 is constant along S. Hence over this leaf we obtain an
induced inner product on a whose null space, modulo ker ρ|h , maps injectively to K ∩ K⊥. Hence
K ∩K⊥ has constant rank along S. But K ∩K⊥ is G-invariant and hence it must have constant rank
over the entire big leaf P .

These arguments suggest that along a big leaf P over which ρ(h) has constant rank, and on which
G acts freely and properly, the space

Ered :=
C∞(K⊥|P )G

C∞(K ∩K⊥|P )G
(21)

could be identified with the space of sections C∞(Ered) of a reduced Courant algebroid defined over
P/G. However we must explain why the Courant bracket remains well-defined for sections which are
supported only along P .

Theorem 3.3. Let P ⊂ M be a leaf of ∆b on which G acts freely and properly, and over which
ρ(h) has constant rank. Then Ered defines a reduced Courant algebroid Ered over Mred = P/G with
surjective anchor. If K is isotropic then Ered is an exact Courant algebroid; in general, it is exact if
and only if the following holds along P :

π(K) ∩ π(K⊥) = π(K ∩K⊥). (22)

Proof. By Lemma 3.2, K and K ∩K⊥ are G-invariant bundles over P , and hence Ered = C∞(Ered)
for the vector bundle

Ered =
K⊥|P

K ∩K⊥|P

/
G,

defined over Mred = P/G. The bracket on sections v1, v2 ∈ C∞(Ered) is defined by choosing rep-
resentative G-invariant sections of K⊥ over P , choosing extensions ṽ1, ṽ2 ∈ C∞(M,E) of these, and
restricting [[ṽ1, ṽ2]] to P . This is a section of K⊥ along P by a similar calculation to that in equa-
tion (16):

〈ρ(a), [[ṽ1, ṽ2]]〉|P = 1
2
(〈ρ(a) • ṽ1, ṽ2〉 − 〈ρ(a) • ṽ2, ṽ1〉),
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which vanishes along P since ṽi are invariant sections of K⊥ there. To describe the dependence of
[[ṽ1, ṽ2]] with respect to the extensions chosen, note that if (ṽ′2 − ṽ2)|P = 0, we can write ṽ′2 − ṽ2 = fs
for f ∈ C∞(M,R) with f(P ) = 0 and s ∈ C∞(M,E). Then the change in the bracket is

[[ṽ1, fs]] = f [[ṽ1, s]] + (π(ṽ1)f)s− 〈ṽ1, s〉df.

The first two terms vanish upon restriction to P , since f(P ) = 0 and π(ṽ1) is tangent to P there. Since
df ∈ Ann(TP ) and Ann(TP ) = Ann(π(K+K⊥)) = K∩K⊥∩T ∗, the third term is an invariant section
of K∩K⊥ along P . On the other hand, a calculation just as in (17) shows that if w ∈ C∞(K∩K⊥|P )G

and v ∈ C∞(K⊥|P )G, then
[[w̃, ṽ]]|P ∈ C∞(K ∩K⊥|P )G,

where w̃, ṽ are arbitrary extensions. As a result, the bracket on Ered is well-defined, and we obtain a
Courant algebroid Ered over Mred = P/G whose anchor is surjective by construction.

The Courant algebroid Ered is exact if and only if the kernel of its anchor is isotropic. Along P
this can be expressed as the condition that {v ∈ K⊥ : π(v) ∈ π(K)} be isotropic in E. This happens
if and only if π(K ∩K⊥) = π(K)∩ π(K⊥) in TP . If K itself was isotropic, then K < K⊥, and hence
the condition would be automatically satisfied.

Since the tangent bundle of the reduced manifold Mred is identified with (∆b/ψ(g))/G, we see that
Ered, as constructed in the preceding theorem, can be expressed in the following sequence, assuming
that condition (22) is satisfied:

0 // T ∗Mred
// Ered // TMred

// 0

0 // K⊥∩T∗

K∩K⊥∩T∗

/
G // K⊥

K∩K⊥

/
G // π(K+K⊥)

π(K)

/
G // 0

(23)

An important special case of the reduction procedure is that of a trivially extended action, as
described in Example 2.10. We show that in this case, condition (22) is precisely the requirement that
the action is isotropic, i.e. K ⊂ K⊥.

Example 3.4. Let ρ : g −→ C∞(E) be a trivially extended action of the free and proper action of
G on the manifold M , so that h = {0}. Then by equation (19), we obtain π(K⊥) = TM , and in
particular, ∆s = ∆b = TM . Hence by Theorem 3.3, we obtain an exact reduced Courant algebroid
Ered over Mred = M/G if and only if π(K) = π(K ∩K⊥), which occurs if and only if K ⊂ K⊥, since
K ∩ T ∗ = {0}. This provides an alternate motivation for the requirement in [13] that K be isotropic.

It is possible to use this last example to clarify condition (22) in the general case, essentially by
restricting first to a small leaf S ⊂ M where one obtains a restricted action of a smaller group, such
that h = {0}. We now explain how this is done.

Exact Courant algebroids may always be pulled back to submanifolds; for any submanifold f : S →֒
M of a manifold with exact Courant algebroid E, we have the isotropic subbundle Ann(TS) ⊂ T ∗ ⊂ E.
We may then form the quotient

f∗E =
(Ann(TS))⊥

Ann(TS)
=
π−1(TS)

Ann(TS)
, (24)

which becomes an exact Courant algebroid over S, inheriting a bracket by restriction just as in the
proof of Theorem 3.3.

As we saw from (20), 〈ρ(a), ρ(b)〉 is constant along the small leaf S and induces a symmetric
bilinear form on the Courant algebra a, for which h is isotropic. Therefore we may define as = h⊥ and
gs = π(as), noting that as is closed under the Courant bracket. This implies that gs is a Lie subalgebra
of g, which we call the isotropy subalgebra, and it inherits a symmetric bilinear form cs ∈ S2(g∗

s) by
construction. Therefore we obtain the sub-Courant algebra

0 // h // as
π // gs // 0 ,
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which is mapped via the extended action ρ into π−1(TS). Quotienting by h, we obtain a trivially
extended action ρs of the isotropy subalgebra on the pullback Courant algebra f∗E over S,

0 // gs
π //

ρs

��

gs

ψ

��

// 0

0 // C∞(T ∗S) // C∞(f∗E) // C∞(TS) // 0

which satisfies 〈ρs(a), ρs(b)〉 = cs(a, b) by construction. Note that the underlying group action on
S is by the subgroup Gs ⊂ G stabilizing S, which we call the isotropy subgroup. Also there is a
natural isomorphism S/Gs −→ P/G if P is a leaf of ∆b containing S and satisfying the conditions of
Theorem 3.3.

These arguments show that after pullback to S, we obtain a trivially extended action as in Ex-
ample 3.4. We now show that the quotient of this pullback is naturally isomorphic to the quotient
Courant algebroid Ered constructed in Theorem 3.3. We may then conclude that Ered is exact if and
only if the action ρs is isotropic, i.e. ρs(gs) ⊂ ρs(gs)

⊥.

Proposition 3.5. Let P be as in Theorem 3.3, and let f : S →֒ P be a leaf of ∆s. Then the reduced
Courant algebroid Ered over P/G is naturally isomorphic to the quotient of the pullback f∗E by the
isotropy action ρs. In particular, Ered is exact if and only if ρs is isotropic, i.e. cs ∈ S2(g∗

s) vanishes.

Proof. The image of the isotropy action ρs in f∗E is given by

Ks =
K ∩ (K⊥ + T ∗)

K ∩ T ∗
⊂ f∗E =

K⊥ + T ∗

K ∩ T ∗
.

Then the reduced Courant algebroid over S/Gs is the Gs quotient of the bundle

K⊥
s

Ks ∩K⊥
s

=
(K⊥ +K ∩ T ∗)/K ∩ T ∗

(K ∩K⊥ +K ∩ T ∗)/K ∩ T ∗
,

which is canonically isomorphic to Ered = (K⊥/K ∩ K⊥)/G as a Courant algebroid. Since ρs is a
trivially extended action, we conclude from Example 3.4 that Ered is exact if and only if Ks is isotropic
in f∗E, a condition equivalent to the requirement that K̃ ⊂ E is isotropic along P , where

K̃ = K ∩ (K⊥ + T ∗). (25)

In the presence of a moment map µ : M −→ h∗ for the generalized action, the moment map
condition d(µh) = ν(h) implies that

ker(dµ) = Ann(ν(h)) = ∆s,

so that the leaves of the small distribution ∆s are precisely the level sets µ−1(λ) of the moment map.
Similarly the leaves of the big distribution are inverse images µ−1(Oλ) of orbits Oλ ⊂ h∗ of the action
of G. The small leaf S = µ−1(λ) then has isotropy Lie algebra gs = gλ, which is the Lie algebra of
Gλ, the subgroup stabilizing λ under the action of G on h∗. Applying Theorem 3.3 together with
Proposition 3.5, we obtain the following formulation of the reduction procedure:

Proposition 3.6 (Moment map reduction). Let the extended action ρ on the Courant algebroid
E have moment map µ. Then the reduced Courant algebroid associated to the regular value λ ∈ h∗ is
obtained via pullback f∗E along f : µ−1(λ) →֒ M , followed by reduction by the isotropy action ρλ of
Gλ on the level set, which we assume is free and proper. The result is an exact Courant algebroid if
and only if ρλ is isotropic, i.e. the induced symmetric form cλ ∈ S2(g∗

λ) vanishes.

The reduced Courant algebroid Ered constructed in this section depends upon a choice of leaf
P ⊂M of ∆b or equivalently a leaf S of ∆s. We remark here that if G acts freely and properly on the
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entire manifold M and ρ(h) has constant rank on M , then by (23), M/G has a singular foliation by
smooth reduced manifolds Mred, given by the generalized distribution

π(K +K⊥)

π(K)

/
G ⊂ T (M/G). (26)

One sees that (26) is integrable since the leaves P of the big distribution are simply the G-orbits of
the leaves S of ∆s, and since TS ∩ ψ(g) = ψ(gs) has constant rank along S, both P and its quotient
Mred = P/G are smooth manifolds. Therefore we obtain the singular foliation of the quotient M/G
by submanifolds which support the reduced Courant algebroids.

3.2 Examples

In this section we will provide some examples of Courant algebroid reduction. Since Courant algebroids
are often given together with a splitting, we describe the behaviour of splittings under reduction. This
is then related to the way in which the Ševera class [H ] of an exact Courant algebroid is transported
to the reduced space.

Example 3.7. Even a trivial group action may be extended by 1-forms; consider the extended action
ρ : R −→ C∞(E) given by ρ(1) = ξ for some closed 1-form ξ. Then K = 〈ξ〉 and K⊥ = {v ∈
E : π(v) ∈ Ann(ξ)} which induces the distribution ∆b = ∆s = Ann(ξ) ⊂ TM , which is integrable
wherever ξ is nonzero. Since the group action is trivial, a reduced Courant algebroid is simply a
choice of integral submanifold f : S →֒ M for ξ together with the pullback exact Courant algebroid
Ered = f∗E = K⊥/K, as in Equation (24).

Note that if a splitting s : TM −→ E were chosen, renderingE isomorphic to (TM⊕T ∗M, 〈·, ·〉, [[·, ·]]H )
with H ∈ Ω3

cl(M), then we would obtain a natural splitting

Ered = Ann(ξ) ⊕ T ∗M/〈ξ〉 = TS ⊕ T ∗S

for the reduced algebroid. With this identification, the 3-form twisting the Courant algebroid structure
on TS ⊕ T ∗S is simply the pull-back f∗H .

Example 3.8. At another extreme, consider a free and proper action of G on M , with infinites-
imal action ψ : g −→ C∞(TM), and extend trivially by inclusion to a split Courant algebroid
(TM ⊕ T ∗M, 〈·, ·〉, [[·, ·]]H) such that the splitting is preserved by the action. By Equation (10), this is
equivalent to the requirement that H is an invariant basic form.

Then K = ψ(g) and K⊥ = TM ⊕ Ann(K), so that ∆s = ∆b = TM and the reduced Courant
algebroid is

TM/K ⊕ AnnK = TB ⊕ T ∗B,

where B = M/G is the quotient and the 3-form twisting the Courant bracket on B is the push-down
of the basic form H .

In the preceding examples, the reduced Courant algebroid inherited a natural splitting; this is not
always possible. The next example demonstrates this as well as the phenomenon by which a trivial
twisting [H ] = 0 may give rise to a cohomologically nontrivial reduced Courant algebroid.

Example 3.9. Let M
q−→ B be a principal S1-bundle over B, and let ρ : s1 −→ C∞(E) be a trivial

extension (h = 0) of this action such that ρ(s1) = K is isotropic, so that Ered will be exact. By
Proposition 2.9, we may choose an invariant splitting so that E = (TM ⊕ T ∗M, 〈·, ·〉, [[·, ·]]H ), with
ρ(1) = ∂θ + ξ and i∂θ

H = dξ. As in Example 2.10, H + ξa determines an equivariant closed 3-form,
i.e.

[H + ξa] ∈ H3
S1(M,R).

Now choose a connection θ ∈ Ω1(M) for the circle bundle, so that we obtain an identification

TB ⊕ TB∗ −→ (K⊥/K)/S1,

X + η 7→ Xh + iXh(θ ∧ ξ) + q∗η +K,

where the superscript of Xh denotes horizontal lift. To compute the reduced Courant bracket in this
splitting, we use the decomposition H = α ∧ θ + h, where α and h are basic and invariant forms such
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that α = dξ. Also, let F = dθ be the curvature of the connection. Then we obtain the following
expression for the curvature 3-form H̃ associated to the splitting of Ered:

H̃(X,Y,Z) = 2〈[[Xh + iXh(θ ∧ ξ), Y h + iY h(θ ∧ ξ)]]H , Zh + iZh (θ ∧ ξ)〉
= 2〈[[Xh, Y h]]H+d(θ∧ξ), Z

h〉
= (h+ F ∧ ξ)(X,Y,Z).

The mapping obtained here, which sends H + ξa to the closed form h+F ∧ ξ ∈ Ω3(B,R) on the base,
is exactly the pushdown isomorphism in equivariant cohomology:

H3
S1(M,R)

q∗ // H3(B,R) .

Therefore we have shown that the curvature of the reduced exact Courant algebroid is precisely the
pushforward of the equivariant extension of the original curvature induced by the extended action.

Note also that the splitting of Ered used to calculate H̃ depends on the choice of connection unless
ξ = 0, in which case it is naturally induced from the original splitting of E.

The previous example can be carried out in the same way for a trivially extended, isotropic action
of any Lie group G, as long as E admits invariant splitting. For example, for compact Lie groups we
obtain the following result, which appeared in [6] in the context of gauging the Wess-Zumino term:

Proposition 3.10. Let G be a compact Lie group acting freely and properly on M , and ρ be a trivially
extended, isotropic action on the exact Courant algebroid E over M . Then if [H ] ∈ H3(M,R) is the
Ševera class of E, the reduced Courant algebroid has Ševera class q∗[Φ], where Φ = H + ξa is the
equivariant extension induced by ρ, and q∗ is the natural isomorphism

H3
G(M,R)

q∗ // H3(B,R) .

Furthermore, a splitting ∇ : T −→ E induces a splitting of Ered if and only if ρ(g) ⊂ ∇(T ).

Combined with Example 3.7, this result indicates how to obtain the Ševera class of any exact
reduced Courant algebroid: simply pull back to the leaf S of ∆s and apply the previous result for the
isotropy action ρs.

Example 3.11. One situation where Ered always inherits a splitting is when E is equipped with a
G-invariant splitting ∇ and the action ρ is split, in the sense that there is a splitting s for π : a −→ g

making the diagram commutative:

a

ρ

��

g
s

oo

ψ

��

C∞(E) C∞(TM)
∇

oo

(27)

In this case, the image distribution ρ(a) = K decomposes as K = KT ⊕ KT∗ , with KT ⊂ TM and
KT∗ ⊂ T ∗M , and the reduced Courant algebroid decomposes as

K⊥

K ∩K⊥
=

(
Ann(KT )

Ann(KT ) ∩KT∗

)
⊕

(
Ann(KT∗)

Ann(KT∗) ∩KT

)
= TM∗

red ⊕ TMred, (28)

where the final equality is obtained since Ann(KT∗)/(Ann(KT∗ ) ∩ KT ) = ∆s/ρ(gs). The curvature
H of the given splitting for E is then basic, and the curvature for Ered is simply the pullback to S
followed by pushdown to S/Gs.

If we are in the situation above, where the action is split, one has a natural trivially extended G-
action on M coming from ρ◦s. Assuming that G acts freely and properly on all of M , we may form the
quotient Courant algebroid E1

red over M/G, which is exact since ρ ◦ s is isotropic. Assuming that ρ(h)
had constant rank on M , then as we saw in the previous section, M/G inherits a generalized foliation;
the pullback of E1

red to a leaf of this foliation would then recover the reduced Courant algebroid Ered
over Mred constructed as before.
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An example of such a split action, where the reduced Courant algebroid may be obtained in two
equivalent ways, is the case of a symplectic action, as introduced in Example 2.14.

Example 3.12. Let (M,ω) be a symplectic manifold and consider the extended G-action ρ : g⊕g −→
C∞(TM ⊕ T ∗M) with curvature H = 0 defined in Example 2.14. This is clearly a split action in the
above sense.

Let ψ : g −→ C∞(TM) be the infinitesimal action and ψ(g)ω denote the symplectic orthogonal of
the image distribution ψ(g). Then the extended action has image

K = ψ(g) ⊕ ω(ψ(g)),

so that the orthogonal complement is

K⊥ = ψ(g)ω ⊕ Ann(ψ(g)).

Then the big and small distributions on M are

∆s = ψ(g)ω,

∆b = ψ(g)ω + ψ(g).

If the action is Hamiltonian, with moment map µ : M −→ g∗, then ∆s is the tangent distribution
to the level sets µ−1(λ) while ∆b is the tangent distribution to the sets µ−1(Oλ), for Oλ a coadjoint
orbit containing λ. Therefore we see that the reduced Courant algebroid is simply TMred ⊕ T ∗Mred

with H = 0, for the usual symplectic reduced space Mred = µ−1(Oλ)/G = µ−1(λ)/Gλ.
Since the action is split, we may also observe, assuming that G acts freely and properly on M , that

the quotient M/G is foliated via (26) by the possible reduced spaces. This generalized distribution is
given in this case by

ψ(g)ω + ψ(g)

ψ(g)

/
G = dq(ψ(g)ω) ⊂ T (M/G),

where q : M −→ M/G is the quotient map. This is precisely the distribution defined by the image
of the Poisson tensor Π : T ∗(M/G) −→ T (M/G) induced by ω (recall that Π(df) = dq(Xq∗f ), where
Xq∗f is the Hamiltonian vector field for q∗f). So a reduced manifold for the extended action is just a
symplectic leaf of M/G.

Finally, we present an example of a reduced Courant algebroid which is not exact.

Example 3.13. Let ρ : s1 −→ E be a trivially extended S1 action which is not isotropic, i.e.
〈ρ(1), ρ(1)〉 6= 0. Hence the reduced manifold for this action is just M/S1 and the reduced algebroid
is Ered = (K⊥/(K ∩K⊥))/S1. However, K ∩K⊥ = {0} and so Ered is odd dimensional; hence it is
not an exact Courant algebroid.

4 Reduction of Dirac structures

A Dirac structure [3, 17] on a manifold M equipped with exact Courant algebroid E is a maximal
isotropic subbundleD ⊂ E whose sections are closed under the Courant bracket. This last requirement
is referred to as the integrability condition for D. When the Courant algebroid is split, with curvature
H ∈ Ω3

cl(M), these are usually referred to as H-twisted Dirac structures [20].
For H = 0, examples of Dirac structures on M include closed 2-forms and Poisson bivector fields

(in these cases D is simply the graph of the defining tensor, viewed either as a map ω : T −→ T ∗ or
Π : T ∗ −→ T ) as well as involutive regular distributions F ⊂ T , in which case D = F ⊕ Ann(F ).

In the presence of an extended action of a Lie group G on the Courant algebroid E, one may consider
Dirac structures which are G-invariant subbundles of E, a condition equivalent to the following.

Definition 4.1. A Dirac structure D ⊂ E is preserved by an extended action ρ if and only if
ρ(a) • C∞(D) ⊂ C∞(D).

In this section we explain how a Dirac structure which is preserved by an extended action may be
transported from a Courant algebroid E to its reduction Ered.
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4.1 Odd symplectic category

Let E,F be real vector spaces with nondegenerate, symmetric bilinear forms of split signature. Lin-
ear Dirac structures on these are simply maximal isotropic subspaces, and they may be transported
between E and F if there is a morphism between them in the sense of the odd symplectic cate-
gory [2],[23]. Here “odd” indicates a parity reversal, whereby the symmetric inner product is viewed
as an odd symplectic form and maximal isotropic subspaces are odd Lagrangians. Therefore, a mor-
phism Q : E −→ F is a maximal isotropic subspace

Q ⊂ E × F,

where E is obtained from E by multiplying the inner product by −1. This means that a Dirac structure
D ⊂ E may itself be viewed as a morphism D : {0} −→ E, which may then be composed as a relation
with Q to yield Q ◦ D : {0} −→ F , a Dirac structure in F . In this way, we obtain a map of linear
Dirac structures:

Q : Dir(E) → Dir(F ).

An isotropic subspace K ⊂ E determines not only another split-signature space K⊥/K, but also a
morphism

ϕK : E −→ K⊥/K,

given by the following maximal isotropic:

ϕK =
{
(x, [x]) ∈ E ×K⊥/K : x ∈ K⊥

}

Given a Dirac structure D ⊂ E, one obtains by composition with ϕK the Dirac structure

ϕK ◦D =
D ∩K⊥ +K

K
⊂ K⊥/K.

4.2 Reduction procedure

We now show how to use the morphism just described to transport an invariant Dirac structure in a
Courant algebroid E to the reduced Courant algebroid Ered on P/G, in the notation of the previous
section. We always assume that Ered is exact, and we use its expression in terms of the bundle
ρ(a) = K:

Ered =
K⊥

K ∩K⊥

/
G =

K⊥ +K

K

/
G.

If the G-invariant bundle K is isotropic along P , then it defines a fibrewise morphism

ϕK : E −→ K⊥/K (29)

along P , as described above. Composition of relations then transports any G-invariant Dirac structure
D to the following reduced Dirac structure, assuming the result is a smooth bundle:

Dred =
D ∩K⊥ +K

K

/
G ⊂ Ered. (30)

Note that Dred is smooth if D ∩K⊥ has constant rank over P . For the proof that Dred is integrable,
see Theorem 4.2.

If K is not isotropic, the procedure just described must be modified. In this case we use the
result of Proposition 3.5 that Ered can be constructed by first pulling E back to a leaf f : S →֒ M
of ∆s and then taking the quotient by the isotropy action. Over the leaf S, the isotropic subbundle
ρ(h) = K ∩ T ∗ determines a morphism from E|S to the pullback Courant algebroid f∗E. This is a
generalization of the pullback of Dirac structures discussed in [2]. After pullback, the isotropy action
ρs(gs) ⊂ f∗E determines a morphism from f∗E to Ered. This morphism is a generalization of the
Dirac pushforward [2]. Composing these morphisms yields a morphism

ϕK̃ : E −→ Ered,

determined by the isotropic subbundle K̃ = K ∩ (K⊥ + T ∗) ⊂ E, as defined in (25). As a result,

the reduced Dirac structure is obtained by the same procedure as in the isotropic case, applied to K̃
instead of K:
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Theorem 4.2. Let ρ : a −→ C∞(E) be an extended action preserving a Dirac structure D ⊂ E, and

such that Ered is exact over Mred = P/G, i.e. the subbundle K̃ = K ∩ (K⊥ + T ∗) is isotropic along
P . Then if

Dred =
D ∩ K̃⊥ + K̃

K̃

/
G ⊂ Ered (31)

is a smooth subbundle, it defines a Dirac structure on the reduction Mred.

Proof. The only property of Dred that remains to be checked is integrability. To do so, we first observe
that the Courant bracket on Ered = (K̃⊥/K̃)/G admits the following description, equivalent to the one

given in Theorem 3.3. Given sections v1, v2 of Ered, let us consider representatives in C∞(K̃⊥|P )G, still
denoted by v1, v2. Then extend them to sections ṽ1, ṽ2 of E over M , and define [[v1, v2]] as [[ṽ1, ṽ2]]|P .

Similarly to Theorem 3.3, one can show that [[ṽ1, ṽ2]]|P ∈ C∞(K̃⊥|P )G, and that different choices of

extensions change the bracket by invariant sections of K̃ over P . Also, the bracket between elements
in C∞(K̃|P )G and C∞(K̃⊥|P )G remains in C∞(K̃|P )G, so there is an induced bracket on Ered. This
bracket agrees with the one defined in Theorem 3.3.

Let v1, v2 ∈ C∞((D ∩ K̃⊥ + K̃)|P )G, thought of as representing sections of Dred. We note that,

around points of P where D ∩ K̃⊥|P has locally constant rank, we can write vi = v′i + v′′i , where v′i is

an invariant local section of D ∩ K̃⊥|P , and v′′i is an invariant local section of K̃|P . Then the bracket
of v1, v2 is

[[v′1 + v′′1 , v
′
2 + v′′2 ]] = [[v′1, v

′
2]] + [[v′′1 , v

′
2]] + [[v′1, v

′′
2 ]] + [[v′′1 , v

′′
2 ]].

Note that the last three terms on the right-hand side are in C∞(K̃|P )G. As for the first term, we know

that it lies in K̃⊥|P . But since D is a vector bundle over M , we can locally extend v′i to sections of D
away of P and, using these extensions to compute the bracket, we see that [[v′1, v

′
2]] ∈ C∞(D|P ), since

D is closed under the bracket. As a result, we conclude that [[v1, v2]] is in (D ∩ K̃⊥ + K̃)|P around

points where D ∩ K̃⊥|P is locally a bundle.

Since the points of P where D∩K̃⊥|P has locally constant rank is an open dense set, the argument
above shows that for v1, v2 ∈ C∞(Dred), [[v1, v2]] lies in Dred over all points in an open dense subset of
P/G. But since Dred is smooth, this implies that [[v1, v2]] ∈ C∞(Dred), hence Dred is integrable.

The reduction of Dirac structures works in the same way for complex Dirac structures, provided
one replaces K by its complexification KC = K ⊗ C.

Remark: As discussed in Example 3.11, the presence of a split action ρ(a) = KT ⊕KT∗ provides an
alternative route in obtaining the reduced algebroid Ered; assuming that G acts freely and properly on
all of M , we may first form the quotient by G and then restrict to a leaf of the generalized foliation on
M/G. We note here that if this alternative route is used to reduce Dirac structures, one may obtain

a different result D̃red. A useful criterion for the equality of Dred and D̃red is obtained by observing
that the isotropic space

D′ =
D ∩K⊥ +K ∩K⊥

K ∩K⊥

is contained in the intersection, i.e. D′ ⊂ Dred ∩ D̃red. As a result, Dred = D̃red whenever D′ is
maximal isotropic, a condition equivalent to the equality

D ∩K⊥ +K ∩K⊥ = (D +K) ∩K⊥. (32)

5 Reduction of generalized complex structures

A generalized complex structure [8, 7] on a manifold M equipped with exact Courant algebroid E is a
complex structure on the vector bundle E which is orthogonal with respect to the bilinear pairing and
whose +i-eigenbundle is closed under the bracket. If the Courant algebroid is split, with curvature
H ∈ Ω3

cl(M), a generalized complex structure on E is called anH-twisted generalized complex structure
on M .
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Since a generalized complex structure is orthogonal, its +i-eigenbundle L ⊂ E ⊗ C = EC is a
maximal isotropic subbundle. Therefore a generalized complex structure on E is equivalent to a
complex Dirac structure L satisfying

L ∩ L = {0}. (33)

The type of a generalized complex structure at a point p ∈ M is the complex dimension of the
kernel of the projection π : L −→ TCM at p. Two basic examples of generalized complex structures
on a manifold M (with H = 0) arise as follows:

• Let I : TM −→ TM be a complex structure on M . Then it induces a generalized complex
structure on M by

J I =

(
−I 0
0 I∗

)
.

The associated Dirac structure is L = T1,0 ⊕ T ∗
0,1, which has type n.

• Let ω : TM −→ T ∗M be a symplectic structure. The induced generalized complex structure is

J ω =

(
0 −ω−1

ω 0

)
.

The associated Dirac structure is L = {X − iω(X) : X ∈ TCM}, and the type is zero.

A structure on M2n is of complex type if it has type n at all points, and it is of symplectic type if it has
type zero at all points. The reader is referred to [7] for more details concerning generalized complex
structures.

5.1 Reduction procedure

Throughout this section, ρ : a −→ C∞(E) denotes an extendedG-action on an exact Courant algebroid
E over a manifold M . Let K = ρ(a), and let KC = K ⊗ C. We fix a leaf P →֒ M of the distribution
∆b and assume that the reduced Courant algebroid Ered over P/G is exact, which amounts to the
assumption that K̃ = K ∩ (K⊥ + T ∗) is isotropic along P .

Suppose that the extended action ρ preserves a generalized complex structure J on E, i.e., that
the associated Dirac structure L ⊂ EC is invariant. We consider its reduction to Ered:

Lred =
L ∩ K̃⊥

C + K̃C

K̃C

/
G (34)

If Lred is smooth, then it determines a generalized complex structure on Ered if and only if it satisfies
Lred ∩ Lred = {0}.
Lemma 5.1. The distribution Lred satisfies Lred ∩ Lred = {0} if and only if

J K̃ ∩ K̃⊥ ⊂ K̃ over P. (35)

Proof. It is clear from (34) that Lred ∩ Lred = {0} over the reduced manifold if and only if

(L ∩ K̃⊥
C + K̃C) ∩ (L ∩ K̃⊥

C + K̃C) ⊂ K̃C over P. (36)

Hence, we must prove that conditions (35) and (36) are equivalent.

We first prove that (35) implies (36). Let v ∈ (L ∩ K̃⊥
C + K̃C) ∩ (L ∩ K̃⊥

C + K̃C) over a given

point. Without loss of generality we can assume that v is real. Since v ∈ L ∩ K̃⊥
C + K̃C, we can find

vL ∈ L∩ K̃⊥
C and vK̃ ∈ K̃C such that v = vL+ vK̃ . Taking conjugates, we get that v = vL + vK̃ , hence

vL − vL = vK̃ − vK̃ .

Applying −iJ , we obtain
vL + vL = −iJ (vK̃ − vK̃).

The left hand side lies in K̃⊥ while the right hand side lies in J K̃. Therefore, according to (35),

2v − vK̃ − vK̃ = vL + vL ∈ K̃ and v ∈ K̃, as desired.

Conversely, if (35) does not hold, i.e., there is v ∈ J K̃ ∩ K̃⊥ with v 6∈ K̃, then v − iJ v ∈ L ∩ K̃⊥
C

and v+iJ v ∈ L∩K̃⊥
C . Since v ∈ J K̃ and J v ∈ K̃, it follows that v ∈ L∩K̃⊥

C +K̃ and v ∈ L∩K̃⊥
C +K̃,

showing that (L ∩ K̃⊥
C + K̃C) ∩ (L ∩ K̃⊥

C + K̃C) 6⊂ K̃C. This concludes the proof.
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If the Dirac reduction of the +i-eigenbundle of a generalized complex structure J on E defines a
generalized complex structure on Ered, then we denote it by J red. We now present a situation where
this occurs.

Theorem 5.2. Let ρ be an extended G-action on the exact Courant algebroid E. Let P be a leaf of
the distribution ∆b where G acts freely and properly with exact quotient Ered. If the action preserves
a generalized complex structure J on E and JK = K over P then J reduces to Ered.

Proof. We start with a general observation: given a Dirac structure D invariant under an extended
action, let us consider in the reduced Courant algebroid the isotropic distribution

D′ :=
D ∩K⊥ +K ∩K⊥

K ∩K⊥

/
G.

One can check that D′ ⊂ Dred, so, if D′ is maximal isotropic, then it agrees with Dred.
In our case, we have

L′ =
L ∩K⊥

C +KC ∩K⊥
C

KC ∩K⊥
C

. (37)

Since JK⊥ = K⊥, it follows that K⊥
C = L ∩K⊥

C + L ∩K⊥
C . Hence

L′ + L′ =
L ∩K⊥

C + L ∩K⊥
C +KC ∩K⊥

C

KC ∩K⊥
C

=
K⊥

C

KC ∩K⊥
C

= Ered ⊗ C,

showing that L′ is maximal and therefore agrees with Lred. The argument above also shows that
L ∩K⊥

C is a bundle and, since K ∩K⊥ is a bundle over P , this implies that L′ as defined in (37) is
smooth.

Finally, in order to conclude that Lred induces a generalized complex structure we must check that
condition (35) in Lemma 5.1 holds:

J K̃ ∩ K̃⊥ = K ∩ (K⊥ + J T ∗) ∩ (K⊥ +K ∩ T ∗) ⊂ K ∩ (K⊥ +K ∩ T ∗) = K̃,

as desired.

Corollary 5.3. If the hypotheses of the previous theorem hold and the extended action has a moment
map µ : M −→ h∗, then the reduced Courant algebroid over µ−1(Oλ)/G has a reduced generalized
complex structure.

It is easy to check that the reduced generalized complex structure J red constructed in Theorem 5.2
is characterized by the following commutative diagram:

K⊥

��

J
// K⊥

��

K⊥

K∩K⊥

J red

// K⊥

K∩K⊥

(38)

Theorem 5.2 uses the compatibility condition JK = K for the reduction of J . We now observe
that the reduction procedure also works in an extreme opposite situation.

Proposition 5.4. Consider an extended G-action ρ on an exact Courant algebroid E. Let P be a leaf
of the distribution ∆b where G acts freely and properly. If K is isotropic over P and 〈·, ·〉 : K×JK −→
R is nondegenerate then J reduces.

Proof. As K is isotropic over P , the reduced Courant algebroid is exact and K̃ = K. The nondegen-
eracy assumption implies that JK ∩K⊥ = {0}, and it follows that L∩K⊥

C is a bundle and the Dirac
reduction of L is smooth. Finally, (35) holds trivially.
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5.2 Symplectic structures

We now present two examples of reduction obtained from a symplectic manifold (M,ω): First, we
show that ordinary symplectic reduction is a particular case of our construction; the second example
illustrates how one can obtain a type 1 generalized complex structure as the reduction of an ordinary
symplectic structure. In both examples, the initial Courant algebroid is just TM ⊕ T ∗M with H = 0.

Example 5.5. (Ordinary symplectic reduction) Let (M,ω) be a symplectic manifold, and let J ω

be the generalized complex structure associated with ω. Following Example 2.14 and keeping the
same notation, consider a symplectic G-action on M , regarded as an extended action. It is clear that
J ωK = K, so we are in the situation of Theorem 5.2.

Following Example 3.12, let S be a leaf of the distribution ∆s = ψ(g)ω. Since K splits asKT⊕KT∗ ,
the reduction procedure of Theorem 4.2 in this case amounts to the usual pull-back of ω to S, followed
by a Dirac push-forward to S/Gs = Mred. If the symplectic action admits a moment map µ : M −→ g∗,
then the leaves of ∆s are level sets µ−1(λ), and Theorem 5.2 simply reproduces the usual Marsden-
Weinstein quotient µ−1(λ)/Gλ.

If the symplectic G-action on M is free and proper, then ω induces a Poisson structure Π on
M/G. We saw in Example 3.12 that the reduced manifolds fit into a singular foliation of M/G,
which coincides with the symplectic foliation of Π. Following the remark at the end of Section 4, the
reduction of J ω to each leaf can be obtained by the Dirac push-forward of ω to M/G, which is just
Π, followed by the Dirac pull-back of Π to the leaf, which is the symplectic structure induced by Π on
that leaf.

Next, we show that by allowing the projection π : K −→ TM to be injective, one can reduce a
symplectic structure (type 0) to a generalized complex structure with nonzero type.

Example 5.6. Assume that X and Y are linearly independent symplectic vector fields generating a
T 2-action on M . Assume further that ω(X,Y ) = 0 and consider the extended T 2-action on TM⊕T ∗M
defined by

ρ(α1) = X + ω(Y ); ρ(α2) = −Y + ω(X),

where {α1, α2} is the standard basis of t2 = R
2. It follows from ω(X,Y ) = 0 and the fact that the

vector fields X and Y are symplectic that this is an extended action with isotropic K.
Since J ωK = K, Theorem 5.2 implies that the quotient M/T 2 has an induced generalized complex

structure. Note that
L ∩K⊥

C = {Z − iω(Z) : Z ∈ Ann(ω(X) ∧ ω(Y ))},
and it is simple to check that X − iω(X) ∈ L ∩ K⊥

C represents a nonzero element in Lred =
((L ∩K⊥

C +KC)/KC)/G which lies in the kernel of the projection Lred −→ T (M/T 2). As a result,
this reduced generalized complex structure has type 1.

One can find concrete examples illustrating this construction by considering symplectic manifolds
which are T 2-principal bundles with lagrangian fibres, such as T 2 × T 2, or the Kodaira–Thurston
manifold. In these cases, the reduced generalized complex structure determines a complex structure
on the base 2-torus.

5.3 Complex structures

In this section we show how a complex manifold (M, I) may have different types of generalized complex
reductions.

Example 5.7. (Holomorphic quotient) Let G be a complex Lie group acting holomorphically on
(M, I), so that the induced infinitesimal map ρ : g −→ C∞(TM) is a holomorphic map. Since K =
ρ(g) < TM , it is clear that K is isotropic and the reduced Courant algebroid is exact. Furthermore,
as ρ is holomorphic, it follows that J IK = K. By Theorem 5.2, the complex structure descends
to a generalized complex structure in the reduced manifold M/G. The reduced generalized complex
structure is nothing but the quotient complex structure obtained from holomorphic quotient.

The previous example is a particular case of a more general fact: if (M, I) is a complex manifold,
then any reduction of J I by an extended action satisfying J IK = K results in a generalized complex
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structure of complex type. Indeed, T ∗Mred can be identified with

K⊥ ∩ T ∗ +K ∩K⊥

K ∩K⊥

/
G ⊂ Ered

and using that J I(T
∗M) = T ∗M , one sees that J red(T ∗Mred) = T ∗Mred, i.e., J red is of complex

type. However, using Proposition 5.4, one can produce reductions of complex structures which are
not of complex type.

Example 5.8. Consider C
2 equipped with its standard holomorphic coordinates (z1 = x1 + iy1, z2 =

x2 + iy2), and let ρ be the extended R
2-action on C

2 defined by

ρ(α1) = ∂x1 + dx2, ρ(α2) = ∂y2 + dy1,

where {α1, α2} is the standard basis for R
2. Note that K = ρ(R2) is isotropic, so the reduced Courant

algebroid over C/R2 is exact. Since the natural pairing between K and J IK is nondegenerate,
Proposition 5.4 implies that one can reduce J I by this extended action. In this example, one computes

K⊥
C ∩ L = span{∂x1 − i∂x2 − dy1 + idx1, ∂y1 − i∂y2 − dy2 + idx2}

and K⊥
C ∩L∩KC = {0}. As a result, Lred ∼= K⊥

C ∩L. So π : Lred −→ C
2/R2 is an injection, and J red

has zero type, i.e., it is of symplectic type.

5.4 Extended Hamiltonian actions

In order to reduce a generalized complex structure J preserved by an extended action, we saw in
Theorem 5.2 that a sufficient condition is the compatibility JK = K. Natural examples where this
condition holds arise as follows: one starts with an action generated by sections vi ∈ C∞(E), and then
enlarges it to a new extended action generated by sections

{vi,J vj}. (39)

Examples where this construction works are the extended actions associated with symplectic and
holomorphic actions: in the symplectic case (see Example 2.14), one starts with symplectic vector fields
Xi and defines an extended action of the demisemidirect Courant algebra, by adding new generators
J ω(Xj) = ω(Xj), which act as closed 1-forms; in the holomorphic case, one starts with an action
generated by Xi preserving a complex structure I , and then forms the (trivially) extended action of
the complexified Lie algebra, generated by {Xi,J IXj}, where now J IXj = IXj are new vector fields.

The “complexification” (39) does not always define an extended action, as we will show. However,
in the case of a Hamiltonian action we show that it does produce an example of an extended action
satisfying JK = K.

It is familiar in the case of a complex manifold that a real vector field X preserves the complex
structure I if and only if its (1, 0) component X1,0 ∈ T1,0M is a holomorphic vector field. Therefore
IX = iX1,0 − iX0,1 also preserves the complex structure. In paritcular, if X generates an S1 action
then {X, IX} defines a holomorphic C

∗ action on the complex manifold.
For generalized complex structures a similar phenomenon occurs, except that symmetries are gov-

erned by the differential complex (Ω•(L) = C∞(∧•L∗), dL) associated to the complex Lie algebroid L
defined by the +i–eigenbundle of J .

Lemma 5.9. A real section v ∈ C∞(E) preserves the generalized complex structure J under the
adjoint action if and only if dLv

0,1 = 0, where v = v1,0 + v0,1 ∈ L⊕ L = E ⊗ C and we use the inner
product to identify L = L∗.

Proof. A real section v ∈ C∞(E) preserves J if and only if v •C∞(L) ⊂ C∞(L). Since L is maximal
isotropic, it suffices to check that 〈v0,1 • w1, w2〉 = 0 for all w1, w2 ∈ C∞(L). By definition of the Lie
algebroid differential dL, and using the basic properties of •, we have

dLv
0,1(w1, w2) = π(w1)〈v0,1, w2〉 − π(w2)〈v0,1, w1〉 − 〈v0,1, w1 • w2〉

= 2〈v0,1 • w2, w1〉 + 〈v0,1, w1 • w2〉 + π(w2)〈v0,1, w1〉 − π(w1)〈v0,1, w2〉
= 2〈v0,1 • w2, w1〉 − dLv

0,1(w1, w2),

so dLv
0,1(w1, w2) = 〈v0,1 • w2, w1〉, which immediately implies the result.
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We obtain the following exact sequence describing infinitesimal symmetries of J [7]:

C∞(M,C)
D // sym(J ) // H1(L) // 0 ,

where D(f) = dLf + dLf ∈ C∞(E), and the final term denotes the first Lie algebroid cohomology
of L. Infinitesimal symmetries which lie in the image of D are called Hamiltonian symmetries [7], in
direct analogy with the symplectic case. Note that for f ∈ C∞(M,C) we have by definition

dLf = 1
2
(df + iJ df),

so that the operator D may be expressed as

Df = d(Ref) −J d(Imf).

Also note that the projection π(Df) ∈ C∞(TM) lies in the projection π(J (T ∗M)) of the Dirac
structure J (T ∗M) ⊂ E and hence is tangent to the symplectic leaves of the Poisson structure induced
by J . This places a strong constraint on Hamiltonian symmetries which is familiar from the situation
in Poisson geometry.

Example 5.10. In the symplectic case, a section X + ξ ∈ C∞(TM ⊕ T ∗M) is a symmetry precisely
when X is a symplectic vector field and dξ = 0, whereas it is Hamiltonian if and only if X is Hamil-
tonian in the usual sense and ξ is exact. In the complex case, X + ξ is a symmetry when X1,0 is
holomorphic and ∂ξ0,1 = 0, whereas it is Hamiltonian if and only if X = 0 and ξ = ∂f + ∂f for
f ∈ C∞(M,C).

We have the following immediate consequence of Lemma 5.9.

Corollary 5.11. If v ∈ C∞(E) preserves J then so does J v = iv1,0 − iv0,1.

However, if the infinitesimal action of v integrates to an extended action on E, then this does not
guarantee that J v also does, as we now show.

Example 5.12. Let h = a = R be a Courant algebra over the trivial Lie algebra g = {0} and consider
an action by covectors ρ : a −→ T ∗M ⊂ TM ⊕ T ∗M . In order that ρ define an extended action we
need ξ = ρ(1) ∈ Ω1

cl(M). If M is endowed with a complex structure I , then the complexification of ρ
satisfies ρC(i) = I∗ξ, which is closed only if dcξ = 0.

While the “complexification” proposed in (39) may be obstructed because of the fact that J v may
not define an extended action even if v does, we now show that if the given action is Hamiltonian, then
it is equivalent, in the sense of Example 2.10, to an action which can be extended so that JK = K.

Theorem 5.13. Let ρ : g −→ C∞(E) be a trivially extended, isotropic, Hamiltonian action on a
generalized complex manifold, i.e. ρ(a) = D(fa) for a g-equivariant function f : M −→ g∗

C. Then the
equivalent action ρ̃(a) = ρ(a) − d(Refa) may be extended to an action of the demisemidirect Courant
algebra g ⊕ g, with moment map Imf , and which satisfies the condition JK = K.

Proof. Since ρ(a) = D(fa) = d(Refa) − J d(Imfa), we see that

J ρ̃(a) = d(Imfa),

which shows that the map ρ′ : g ⊕ g −→ C∞(E) given by

ρ′ : (g, h) 7−→ ρ̃(g) + d(Imfh)

defines an extended action, as we saw in Proposition 2.15, and by construction satisfies JK = K.

Although this theorem concerns only Hamiltonian actions, which for generalized complex structures
is increasingly restrictive as the type grows, we will use it to construct new examples of generalized
Kähler structures (see Section 6). Also note that Examples 5.6, 5.7 and 5.8 are not Hamiltonian. We
remark that the actions which are independently described by Lin and Tolman [16], as well as Hu [11],
can be seen to be of this Hamiltonian type.

Finally, we provide a cohomological criterion which determines if a given action is Hamiltonian. If
a trivially extended, isotropic action ρ : g −→ C∞(E) preserving J is given, then we may decompose
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ρ(a) = Za+ ζa ∈ L⊕L for all a ∈ gC. Since this is a Courant morphism, we may then define an equiv-
ariant Cartan model for the differential complex (Ω•(L), dL), by considering equivariant polynomial
functions Φ : gC −→ Ω•(L), and equivariant derivative

(dgC
Φ)(a) = d(Φ(a)) − iZaΦ(a), ∀a ∈ gC.

Since ρ(a) preserves J , we see that ζa ∈ g∗
C ⊗ Ω1(L) defines an equivariant closed 3-form. Supposing

that [ζa] = 0 in H3
gC

(L), we then have

ζa = dgC
(ε+ ha),

for ε ∈ Ω2(L) an invariant dL-closed form and ha ∈ g∗
C ⊗ Ω0(L) an equivariant function. Supposing

further that [ε] = 0 in the invariant cohomology H2(L)gC , then ε = dLη for an invariant 1-form η, and

ζa = dgC
(ha + iZaη),

implying that ρ(a) = D(fa) ∀a ∈ g, where fa = ha + izaη. This provides the following result.

Proposition 5.14. Let ρ be a trivially extended, isotropic action preserving a generalized complex
structure. Then it is Hamiltonian if and only if the classes [ζa] ∈ H3

gC
(L) and [ε] ∈ H2(L)gC , defined

above, vanish.

6 Generalized Kähler reduction

A generalized Kähler structure [7] on an exact Courant algebroid E is a pair of commuting generalized
complex structures J 1 and J 2 such that

〈J 1J 2v, v〉 > 0 for all v ∈ E.

The symmetric endomorphism G = J 1J 2 therefore defines a positive-definite metric on E, called the
generalized Kähler metric. In this section we follow the original treatment [10] of Kähler reduction
and extend it to the generalized setting.

6.1 Reduction procedure

We consider an extended action ρ : a×M −→ E on an exact Courant algebroid E over a manifold M
with image distribution K = ρ(a).

Theorem 6.1. (Generalized Kähler reduction): Let (M,J 1,J 2) be a generalized Kähler structure
preserved by the extended action. Let P ⊂M be a leaf of ∆b on which G acts freely and properly, and
over which J 1K = K and K is isotropic. Then J 1 and J 2 can be reduced and define a generalized
Kähler structure on the reduced Courant algebroid.

Proof. Since K is isotropic, the reduced Courant algebroid is exact, and by Theorem 5.2, J 1 descends
to Ered. In order to show that J 2 also descends, we will find an identification of Ered with a subbundle
of K⊥ which is invariant by J 2.

Let KG denote the orthogonal of K with respect to the metric G. Since J 1K = K,

KG = (J 2J 1K)⊥ = (J 2K)⊥ = J 2K
⊥. (40)

Since K ⊂ K⊥ over P , we have the G-orthogonal decomposition of K⊥ over P as

K⊥ = K ⊕ (KG ∩K⊥).

It follows from (40) that KG ∩K⊥ is J 2-invariant. Using the natural identification

Ered = (K⊥/K)/G ∼= (KG ∩K⊥)/G

and the fact that J 2 is G-invariant, we obtain an induced orthogonal endomorphism J red
2 : Ered −→

Ered satisfying (J red
2 )2 = −1. It remains to check that J red

2 is integrable.
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In order to verify integrability, we first describe the +i-eigenbundle of J red
2 . Let L2 be the +i-

eigenbundle of J 2. The +i-eigenbundle of J red
2 is the image under the projection p : K⊥

C −→ Ered⊗C

of L2 ∩ (K⊥
C ∩KG

C
). But since

L2 ∩K⊥
C = J 2(L2 ∩K⊥

C ) = L2 ∩ J 2(K
⊥
C ) = L2 ∩KG

C ,

it follows that the +i-eigenbundle of J red
2 is

p(L ∩ (K⊥
C ∩KG

C )) = p(L ∩K⊥
C ) = (L2)red,

the reduction of the Dirac structure L2. It follows that (L2)red is a smooth and maximal isotropic
subbundle of Ered ⊗ C, and by Theorem 4.2 we know that it is integrable. So J red

2 is integrable.
Finally, we need to show that (J red

1 ,J red
2 ), where J red

1 is the reduction of L1, is a generalized
Kähler pair in Ered. For that, we note that KG ∩ K⊥ is J 1-invariant, since J 1(K

⊥) = K⊥ and
J 1(K

G) = KG . So J 1 induces an endomorphism of Ered, which coincides with the Dirac reduction
J red

1 since they have the same +i-eigenbundle:

(L1)red =
L1 ∩K⊥

C +KC

KC

=
(L1 ∩KC) ⊕ (L1 ∩KG

C
∩K⊥

C ) +KC

KC

= p(L1 ∩KG
C ∩K⊥

C ).

The fact that J red
1 and J red

2 form a generalized Kähler pair is now a direct consequence of the fact
that the restrictions of J 1 and J 2 to KG ∩K⊥ commute and their product is positive definite.

An important particular case of Theorem 6.1 is when the extended action admits a moment map.

Corollary 6.2. Let (M,J 1,J 2) be a generalized Kähler structure preserved by an extended action
admitting a moment map µ : M −→ h∗. Assume that the G-action on µ−1(0) is free and proper. If
J 1(K) = K over µ−1(0), and the induced symmetric form c0 ∈ S2g∗ vanishes, then J 1 and J 2 can
be reduced to Mred and define a generalized Kähler structure.

This corollary follows from the fact that if c0 vanishes, then both the isotropy action and the full
action along µ−1(0) are isotropic, i.e. K ⊂ K⊥ on the level set. Of course these hypotheses are all
fulfilled for a complexified Hamiltonian action as in Theorem 5.13. We now state the particular case
when J 1 is a symplectic structure since we use it in the next section.

Corollary 6.3. Let (J 1,J 2) be a generalized Kähler structure on E = TM ⊕T ∗M with H = 0, such
that J 1 is an ordinary symplectic structure. Assume that there is a Hamiltonian action on (M,J 1),
with moment map µ : M −→ g∗, and preserving J 2. If the action of G on µ−1(0) is free and proper,
then the symplectic reduced space Mred = µ−1(0)/G carries a generalized Kähler structure given by
(J red

1 ,J red
2 ).

We indicate that this result was independently obtained in [16]. Also, when J 2 is a complex
structure, then J red

2 is as well, and we recover the original Kähler reduction of [10].

Example 6.4. (Symplectic cut): Let (M,J 1,J 2) be a generalized Kahler manifold as in Corollary
6.3. Assume that there is a Hamiltonian S1-action on M preserving J 2, and let f : M −→ R be its
moment map. Consider C with its natural Kähler structure (ω, I), and equipped with the S1-action
θ · z := eiθz. Then N = M × C has a generalized Kähler structure (J ′

1,J ′
2), where J ′

1 is the product
symplectic structure and J ′

2 = J 2 × I , and

µ : N −→ R; µ(p, z) = f(p) + |z|2

is a moment map for the diagonal S1-action on N . This action preserves the generalized Kähler
structure so, by Corollary 6.3, the symplectic quotient of N inherits a generalized Kähler structure.

6.2 Examples of generalized Kähler structures on CP
2

Now we apply the results from the last section to produce new examples of generalized Kähler structure
on CP 2 with type change. The method consists of deforming the standard Kähler structure in C

3 so
that the deformed structure is still preserved by the circle action

eiθ : (z1, z2, z3) 7→ (eiθz1, e
iθz2, e

iθz3). (41)



6 GENERALIZED KÄHLER REDUCTION 26

Then Corollary 6.3 implies that CP 2, regarded as a symplectic reduction of C
3, inherits a reduced

generalized Kähler structure.
In the computations that follow, it will be convenient to use differential forms to describe a gener-

alized complex structure J on a manifold M . So we recall from [7] that J is completely determined
by its canonical line bundle, C ⊂ ∧•T ∗

CM . This bundle is defined as the Clifford annihilator of L, the
+i-eigenspace of J . The fact that L is a Dirac structure of real index zero (L ∩ L = {0}) translates
into properties for C: if ϕ is a nonvanishing local section of C, then

• At each point, ϕ = eB+iω ∧Ω, where B and ω are real 2-forms and Ω is a decomposable complex
k-form;

• There is a local section X + ξ ∈ C∞(TM ⊕ T ∗M) such that

dϕ = (X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ;

• If σ is the linear map which acts on k-forms by σ(a) = (−1)
k(k−1)

2 a, then the Mukai pairing
(ϕ,ϕ) must be nonzero, where

(ϕ,ϕ) := (ϕ ∧ σ(ϕ))top.

The subscript top indicates a projection to the volume form component.

We begin with the standard Kähler structure on (C3,J ω,J I), defined by the following differential
forms:

Ω = dz0 ∧ dz1 ∧ dz2
ω = i

2
(dz0 ∧ dz̄0 + dz1 ∧ dz̄1 + dz2 ∧ dz̄2)

As explained in [7], it is possible to deform this Kähler structure as a generalized Kähler structure
in such a way that ω is unchanged whereas the complex structure Ω becomes a generalized complex
structure of generic type 1. To achieve this, we must select a deformation ε ∈ C∞(L∗

+ ⊗ L∗
−), where

L∗
± = {X ± iω(X) : X ∈ T1,0},

which satisfies the Maurer-Cartan equation ∂ε+ 1
2
[ε, ε] = 0. Then in regions where ε does not invalidate

the open condition that eεΩ be of real index zero, (eεΩ, eiω) will be a generalized Kähler pair.

Example 6.5. In this example we deform the structure in C
3 so that the reduced structure in CP 2 has

type change along a triple line. A similar deformation and quotient has been considered independently
by Lin and Tolman [16], and a generalized Kähler structure on CP 2 with type change along a triple
line has recently been constructed by Hitchin [9] using a different method.

The deformation. We select the decomposable element

ε = 1
2
z2
0(∂1 + 1

2
dz1) ∧ (∂2 − 1

2
dz2),

whose bivector component 1
2
z2
0∂1∧∂2 is a quadratic holomorphic Poisson structure. The projectiviza-

tion of this structure is a Poisson structure on CP 2 vanishing to order 3 along the line z0 = 0. The
deformed complex structure in C

3 can be written explicitly (we omit the wedge symbol):

ϕ = eεdz0dz1dz2 = (1 + ε)dz0dz1dz2

= dz0dz1dz2 − 1
2
z2
0dz0 − 1

4
z2
0dz0dz2dz̄2 + 1

4
z2
0dz0dz1dz̄1 + 1

8
z2
0dz0dz1dz2dz̄2dz̄1

= − 1
2
z2
0dz0 exp(− 2

z20
dz1dz2 + 1

2
(dz2dz̄2 − dz1dz̄1)) (42)

Let ζ = − 1
2
z2
0dz0 and b+ iσ = − 2

z20
dz1dz2 + 1

2
(dz2dz̄2 − dz1dz̄1). Then the pure differential form ϕ is

of real index zero as long as the Mukai pairing of ϕ with its complex conjugate satisfies

(ϕ,ϕ) = σ2 ∧ ζ ∧ ζ 6= 0.

Calculating this quantity, we obtain:

σ2 ∧ ζ ∧ ζ = 1
2
(4 − |z0|4)dz0dz1dz2dz̄0dz̄1dz̄2,
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proving that (ϕ, eiω) defines a generalized Kähler structure in C
3 away from the cylinder |z0| =

√
2.

The reduction. Notice that the line generated by ϕ, and hence the generalized complex structure it
defines, is invariant by the S1-action given by (41). Hence, by Corollary 6.3, the symplectic reduction
of C

3 will have a reduced generalized Kähler structure induced by the deformed structure above. We
spend the rest of this example describing this structure. The particular reduction we wish to calculate
is the quotient of the unit sphere

∑
i ziz̄i = 1 by the S1-action give by (41).

We begin with the generalized complex structure ϕ given by equation (42). The induced Dirac
structure on the reduced Courant algebroid may be calculated by pulling back to the unit sphere in
C

3 and pushing forward to the quotient. The latter operation on differential forms may be expressed
simply as interior product with ∂θ, the generator of the circle action

∂θ = i(z0∂0 − z̄0∂0 + z1∂1 − z̄1∂1 + z2∂2 − z̄2∂2),

and this commutes with pull-back to the sphere. So let us first take interior product:

i∂θ
ϕ = (i∂θ

ζ) exp(
−ζ∧i∂θ

(b+iσ)

i∂θ
ζ

+ b+ iσ)

= − i
2
z3
0 exp(− dz0

z0
( 2(z2dz1−z1dz2)

z20
+ z2dz̄2+z̄2dz2−z1dz̄1−z̄1dz1

2
) − 2dz1dz2

z20
+ dz2dz̄2−dz1dz̄1

2
)

Now we pull back to S5 by imposing 1 = R2 =
∑
i ziz̄i and obtain a homogeneous differential form

after rescaling:

ϕ̃ = exp(− dz0
z0

( 2(z2dz1−z1dz2)

z20
+ z2dz̄2+z̄2dz2−z1dz̄1−z̄1dz1

2R2 ) − 2dz1dz2
z20

+ dz2dz̄2−dz1dz̄1
2R2 ).

The holomorphic Euler vector field is e =
∑
i zi∂i and ∂θ = i(e − ē). The radial vector field is

∂r = e + ē. In order to be the pull-back of a form on CP 2, a differential form α on C
3 must satisfy

Leα = Lēα = ieα = iēα = 0. We have already ensured that Leϕ̃ = Lēϕ̃ = 0 and ie−ēϕ̃ = 0, so now
we may add a multiple of dR to ensure ie+ēϕ̃ = 0. Since dR vanishes on the sphere, this is a trivial
modification.

Recall that ie+ē
dR
R

= 1, so we shall subtract

dR
R

∧ ie+ēϕ̃ = dR
R

( dz0
z0

( z2z̄2−z1z̄1
R2 ) + z̄1dz1−z̄2dz2

R2 )ϕ̃

Finally we get a manifestly projective representative for the generator of the canonical bundle:

ϕB = exp(− dz0
z0

( 2(z2dz1−z1dz2)

z20
+ z2dz̄2+z̄2dz2−z1dz̄1−z̄1dz1

2R2 ) − 2dz1dz2
z20

+ dz2dz̄2−dz1dz̄1
2R2

− dR
R

( dz0
z0

( z2z̄2−z1z̄1
R2 ) + z̄1dz1−z̄2dz2

R2 ))

This differential form is closed, but blows up along the type change locus, where one can see by
rescaling that it defines a complex structure. This generalized complex structure, together with the
Fubini-Study symplectic structure, forms a generalized Kähler structure on CP 2.

It may be of interest to express this generalized Kähler structure in affine coordinates (z1, z2) where
z0 = 1. Then the type change locus is the line at infinity. Define r2 = z1z̄1 + z2z̄2:

ϕB = exp(−2dz1dz2 + dz2dz̄2−dz1dz̄1
2(1+r2)

− 1
2
d(r2)(z̄1dz1−z̄2dz2)

(1+r2)2
))

The form defining the Fubini-Study symplectic form in these coordinates is, as usual:

ϕA = exp(− 1
2

(1+r2)(dz1dz̄1+dz2dz̄2)−(z̄1dz1+z̄2dz2)(z1dz̄1+z2dz̄2))

(1+r2)2
)

An important constituent of a generalized Kähler structure is its associated bi-Hermitian metric; this
can be derived from the above forms as follows. Define real 2-forms ω1, ω2, b such that ϕA = eiω1 and
ϕB = eb+iω2 . Then the bi-Hermitian metric g is simply

g = −ω2b
−1ω1.
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Example 6.6. To demonstrate the versatility of the quotient construction we now construct a gen-
eralized Kähler structure on CP 2 with type change along a slightly more general cubic: the union of
three distinct lines forming a triangle. We postpone the discussion of the general cubic curve to a
future paper.

The deformation. In this example we select a deformation ε given by the following decomposable
section of L∗

+ ⊗ L∗
−:

ε = 1
2
(z0(∂1 + 1

2
dz̄1)+z1(∂2 + 1

2
dz̄2)+z2(∂0 + 1

2
dz̄0))∧ (z0(∂2− 1

2
dz̄2)+z1(∂0− 1

2
dz̄0)+z2(∂1 − 1

2
dz̄1))

whose bivector component β = (z2
0 − z1z2)∂1∂2 + (z2

1 − z2z0)∂2∂0 + (z2
2 − z0z1)∂0∂1 is a quadratic

holomorphic Poisson structure on C
3. This induces a Poisson structure on CP 2 vanishing on the zero

set of the following cubic polynomial:

e ∧ β = (z3
0 + z3

1 + z3
2 − 3z0z1z2)∂0∂1∂2

= (z0 + z1 + z2)(z0 + λz1 + λ2z2)(z0 + λ2z1 + λz2)∂0∂1∂2,

where e =
∑
zi∂i is the holomorphic Euler vector field and λ is a third root of unity. We see that the

vanishing set of this Fermat cubic is the union of three distinct lines in the plane which intersect at
the points {[1 : 1 : 1], [1 : λ : λ2], [1 : λ2 : λ]}.

The deformed complex structure can be written explicitly:

ϕ = eεdz0dz1dz2 = (1 + ε)dz0dz1dz2

= ( 1
2
(−z2

0 + z1z2)dz0 + c.p.) exp(− 1
2

z21+z0z2
−z22+z0z1

dz1dz̄2 + 1
2

z20+z1z2
−z22+z0z1

dz0dz̄2 + c.p.),

where “c.p.” denotes cyclic permutations of {0, 1, 2}. The pure differential form ϕ is of real index zero
as long as it has nonvanishing Mukai pairing with its complex conjugate:

〈ϕ,ϕ〉 = (R
4

4
− 1)dz0dz1dz2dz̄0dz̄1dz̄2,

where R2 = |z0|2 + |z1|2 + |z2|2. The generalized almost complex structure determined by ϕ on the
ball of radius

√
2 is not integrable, however, since

dϕ = 1
2
(z0dz̄0 + z1dz̄1 + z2dz̄2)dz0dz1dz2.

Nonetheless, when pulled back to the unit sphere in C
3 this derivative vanishes, and hence we may

proceed as before, quotienting by the S1-action (41), as we do next.

The reduction. We begin with the generalized complex structure ϕ:

ϕ = ( 1
2
(−z2

0 + z1z2)dz0 + c.p.) exp(− 1
2

z21+z0z2
−z22+z0z1

dz1dz̄2 + 1
2

z20+z1z2
−z22+z0z1

dz0dz̄2 + c.p.).

As in Example 6.5, we calculate the interior product by ∂θ:

i∂θ
ϕ = − i(z30+z31+z32−3z0z1z2)

2
exp(

(z2|z0|
2+z2|z1|

2+z20 z̄1+2z0z1z̄2+z21 z̄0)dz0dz1+(z31−z
3
2)dz0dz̄0)

2(z30+z31+z32−3z0z1z2)

+
(z20z1−2z0z

2
2+z21z2)dz0dz̄1−(z20z2−2z0z

2
1+z1z

2
2)dz0dz̄2

2(z30+z31+z32−3z0z1z2)
+ c.p.)

Now we pull back to S5 by imposing 1 = R2 =
∑
i ziz̄i and obtain a homogeneous differential form

after rescaling:

ϕ̃ = exp(
(z2|z0|

2+z2|z1|
2+z20 z̄1+2z0z1z̄2+z21 z̄0)dz0dz1+(z31−z

3
2)dz0dz̄0

2R2(z30+z31+z32−3z0z1z2)

+
(z20z1−2z0z

2
2+z21z2)dz0dz̄1−(z20z2−2z0z

2
1+z1z

2
2)dz0dz̄2

2R2(z30+z31+z32−3z0z1z2)
+ c.p.)

As in the previous example, we subtract from this the quantity dR
R
∧ie+ēϕ̃, obtaining finally a manifestly

projective representative for the generator for the canonical bundle:
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ϕB = exp(
((z31−z

3
2−z

3
0−z0z1z2)|z1|

2−(z32−z
3
0−z

3
1−z0z1z2)|z2|

2+2z20(z22 z̄1−z
2
1 z̄2))dz0dz̄0

2R2(z30+z31+z32−3z0z1z2)

+
(z1z̄0(z30−z

3
1+z32+z0z1z2)−2z0 z̄2(z31+z32−z0z1z2)−2|z0|

2z0z
2
2+2|z2|

2z2z
2
1)dz0dz̄1

2R2(z30+z31+z32−3z0z1z2)

+
(z2z̄0(−z30−z

3
1+z32−z0z1z2)+2z0z̄1(z31+z32−z0z1z2)+2|z0|

2z0z
2
1−2|z1|

2z1z
2
2)dz0dz̄2

2R2(z30+z31+z32−3z0z1z2)

+
(z2(|z0|

2|z1|
2+z20 z̄1z̄2+z̄20z1z2+c.p.))dz0dz1

2R2(z30+z31+z32−3z0z1z2)

+ c.p.)

This differential form is closed, but blows up along the three distinct lines of the type change locus,
where one can verify by rescaling that it defines a complex structure. This generalized complex
structure, together with the Fubini-Study symplectic structure, forms a generalized Kähler structure
on CP 2.

In affine coordinates (z1, z2) for CP 2, the type change locus consists of three lines intersecting at
{(1, 1), (λ, λ2), (λ2, λ)}. Define r2 = z1z̄1 + z2z̄2. We may now write ϕB in these coordinates:

ϕB = exp(
((z32−1−z31−z1z2)|z2|

2−(1−z31−z
3
2−z1z2)+2z21(z̄2−z

2
2))dz1dz̄1

2(1+r2)(1+z31+z32−3z1z2)

+
((1−z31−z

3
2−z1z2)−(z31−z

3
2−1−z1z2)|z1|

2+2z22(z21−z̄1))dz2dz̄2
2(1+r2)(1+z31+z32−3z1z2)

+
(z2z̄1(z31−z

3
2+1+z1z2)−2z1(z32+1−z1z2)−2|z1|

2z1+2z22)dz1dz̄2
2(1+r2)(1+z31+z32−3z1z2)

+
(z1z̄2(−z32−1+z31−z1z2)+2z2(1+z31−z1z2)+2|z2|

2z2−2z21)dz2dz̄1
2(1+r2)(1+z31+z32−3z1z2)

+
(|z1|

2|z2|
2+z21 z̄2+z̄21z2+z1(|z2|

2+z22 z̄1+z̄22z1)+z2(|z1|
2+z̄1z̄2+z1z2))dz1dz2

2(1+r2)(1+z31+z32−3z1z2)
)

This form, together with the Fubini-Study symplectic structure

ϕA = exp(− 1
2

(1+r2)(dz1dz̄1+dz2dz̄2)−(z̄1dz1+z̄2dz2)(z1dz̄1+z2dz̄2))

(1+r2)2
),

defines explicitly a generalized Kähler structure on CP 2 with type change along a triangle as described
above.
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