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SUMMARY

Injectivity loss occurs when sea water is injected in offshore fields or during reinjection of produced
water that contains solid particles, oil drops and bacteria, each one with its own capability of reducing
the permeability in the neighborhood of the well. Knowledge regarding the causes of injectivity decline
and its time scale is important for the prevention and remediation of this problem. We present a
numerical model for water injection with retention of solid particles in a vertically stratified reservoir in
a cylindrical axisymmetric geometry. The process of migration and retention of solid particles in porous
media is studied through computer simulations. To do so, we apply a hydrodynamical formulation
for the flow of water containing suspension particles. The numerical tools used in this work are the
modified method of characteristics proposed by Douglas and Russell for the concentration of particles
(suspended and retained) coupled with the mixed finite element method proposed by Raviart and
Thomas for velocity and pressure. We briefly describe the method and show the numerical results.
There is a strong tendency for the flow to remain confined in each layer. Copyright c© 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In oil recovery, usually water is injected in some wells, while oil and water are produced
at others. The injection of water containing organic and inorganic particles in suspension
causes retention of these particles in the neighborhood of the well. Consequently reduction
of permeability is observed and the well can become useless. On the other hand, removing
these particles before injection is an expensive process that consumes a considerable amount
of energy and requires large equipment, which is critical in offshore exploitation. So, the study
of injectivity loss is of great importance for offshore oil recovery to maintain rates of injection
and therefore the oil production.
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Mathematical models for this phenomenon constitute an important tool to understand
mechanisms for permeability loss. The knowledge of conditions that cause injectivity loss,
when and where it occurs, help in the prevention and correction of problems of this nature.

In this context, this work discusses damage formation due to deep filtration during injection
of water containing solid particles. The new feature is that we take into account the rock strata.
A numerical model for water injection with retention of particles is developed in a vertically
stratified reservoir for 3D-axisymmetric flows, coupling the mixed finite elements method for
pressure and velocity with a modified method of characteristics for the water and particle
motion and retention. We study the effect of particle retention in the presence of a stratified
subsurface.

2. MATHEMATICAL MODEL

Consider a flow of water with suspended particles entering in a vertically stratified porous
medium, as shown in figure 1. As time evolves, the suspended particles are retained in the
pores, reducing the permeability of this medium. The porosity φ remains constant.

Figure 1. Neighborhood of the well, in an stratified porous media.

According with [7], diffusion can be neglected for particles larger than 1 µm and it has little
importance for small particles. Having this in mind and considering incompressible flow, the
mass conservation equation for suspended (c̃) and retained (σ̃) particles, if particle density is
equal to water density, can be written as

∂

∂t̃
(φc̃+ σ̃) + ũ · ∇c̃ = 0, (1)

where ũ is the flow velocity, and the incompressibility of the suspension is written as

∇ · ũ = 0. (2)

Permeability is a decreasing function of retained concentration. So, Darcy’s law relating flow
velocity (ũ) and pressure gradient (p) becomes

ũ = −
K

µ
k(σ̃)∇p̃ (3)

where µ is the viscosity of the fluid, K is the absolute permeability of the porous medium and
k(σ̃) is called the formation damage function. In general, viscosity depends on the concentration
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INJECTIVITY LOSS IN STRATIFIED RESERVOIRS 3

of the particles but we will neglect this effect for small concentrations. Prediction of the
formation damage function is a problem of choosing a model expressing k(σ) in accordance
with other properties of the rock.

The particle retention rate is

∂σ̃

∂t̃
∝ λ̃(c̃, σ̃, ũ). (4)

A specific form for λ̃ will be given below. This formula tells us that the probability of retention
of particles in the medium depends on the velocity of the fluid as well as on the concentration
of suspended and retained particles. See the proportionality relation proposed below.

System (1)-(4) gives the evolution of the velocity (ũ), pressure (p̃) and concentration of
suspended (c̃) and retained (σ̃) particles.

We are considering an axisymmetric geometry so our system is written in cylindrical
coordinates. Because of that, the operators ∇ and ∇· mean

∇p̃ =

(

∂p̃

∂r̃
,
∂p̃

∂z̃

)

,

∇ · ũ =

(

1

r̃

∂

∂r̃
(r̃ũ) +

∂ṽ

∂z̃

)

.

2.1. Empirical Functions

In this work, we will follow the works of [2], [3], [8], [11] and consider loss of permeability as
a function of retained particle density given by

k(σ̃) = (1 + βσ̃)−1, (5)

where β is the damage coefficient, an empirical parameter related to change in tortuosity when
particles are retained in the pores.

The particle retention rate is written in the form proposed in [7], which is valid if σ̃ � φ:

∂σ̃

∂t̃
= λ̃(σ̃)|ũ|c̃. (6)

The proportionality coefficient λ̃, called the filtration coefficient, is a function of the retained
particle density σ̃. This function depends on the geometry of the porous space and on the
mineral content of the rock surface and it should be determined from laboratory coreflood
tests.

In the numerical method presented here more general functions can be used without any
difficulty.
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2.2. Nondimensionalization

Using the characteristic scales we define dimensionless variables (without tildes)

r0 = r̃0, (7a)

r =
1

r0
r̃, z =

1

r0
z̃, t =

1

T
t̃, (7b)

u =
T

r0
ũ, v =

T

r0
ṽ, (7c)

c = c̃, σ = σ̃, (7d)

λ = r0λ̃, (7e)

p =
K

µ

T

r20
p̃, K =

1

2πH((r̃0 + L)2 − r̃20)

∫ H

0

∫ r̃0+L

r̃0

K̃(r̃, z̃) r̃ dr̃ dz̃. (7f)

where r0 is the radius of the well, T is the typical time until a particle is captured by a pore
and L is a typical filtration distance. Also u and v are respectively the horizontal and vertical
components of the velocity u. The parameter K represents an average over the formation
height H .

Substituting this scaling in (1), (2), (3), (6), our final system takes the form

φ
∂c

∂t
+ u · ∇c = −λ(σ)c|u|, (8)

∂σ

∂t
= λ(σ)c|u|, (9)

u = −
K

K
k(σ)∇p, (10)

∇ · u = 0. (11)

2.3. Initial and Boundary Conditions

It is necessary to establish initial and boundary conditions for system (8) - (11). The initial
condition is the absence of particles in the medium before the injection

c(r, 0) = 0 and σ(r, 0) = 0 at t = 0. (12)

The boundary conditions correspond to fluid injection at the well, with prescribed suspended
particle concentration and flow rate, and zero vertical velocity at the top and the bottom of
the domain (that is, the rock is impermeable at these boundaries):

c(r0, z, t) = ci and (13)

q(r0, z, t) = qi (14)

v = 0 at z = 0 (15)

v = 0 at z = H/r0 (16)

where ci and qi are positive constants. We get the boundary condition for σ from equation (9).
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INJECTIVITY LOSS IN STRATIFIED RESERVOIRS 5

2.4. Overview of the Numerical Method

To solve the system we couple two numerical methods. First we write discrete equations for
pressure and velocity using mixed finite elements, specifically, lowest order Raviart-Thomas [9].
This method is very useful in our model because we can solve pressure and velocity together and
we do not need to take a numerical pressure gradient to find the velocity. Another advantage
is that we get a linear system with a symmetric positive definite (spd) matrix, so we can
use a conjugate gradient method to solve it. Once we know the velocity, we can advance the
equations for suspended and retained particles by one time step. To do that, we use the method
of characteristics [6] in both equations. The method of characteristics is very stable and we do
not need to use very small time steps. It is simple, computationally economic and we have a
large experience in such method. For this particular problem, we controled total mass and we
do not observed a significative loss of mass. Nevertheless the use of conservative methods like
[5] and [10] in the future are not discarded.

3. NUMERICAL METHOD

The numerical method to solve (8)-(15) is divided into two blocks. First, we solve the equations
for velocity and pressure using the mixed finite element method. Then, with the updated
velocity, we use the method of characteristics to advance in time the equations for the
suspended and retained particles. We will describe each step.

3.1. Mixed Finite Element Method

For the first part of the method we focus on

∇ · u = 0 (17)

u = −α(σ)∇p (18)

on the domain Ω = [1, 1 + L/r0] × [0, H/r0], where α(σ) = Kk(σ)/K . To solve this part of
the system, we follow [9], [12]. Multiplying equation (18) by α−1 and integrating with a test
function v, we get

∫

Ω

α−1
u · v dΩ +

∫

Ω

∇p · v dΩ = 0, ∀v ∈ H(div,Ω), (19)

where H(div,Ω) := {τ ∈ L2(Ω)|∇ · τ ∈ L2(Ω)} [4]. Using the Divergence Theorem,

∫

Ω

α−1
u · v dΩ −

∫

Ω

p∇ · v dΩ = −

∫

∂Ω

pv · n ds (20)

∀v ∈ H(div,Ω). Equation (17) can also be integrated with a test function q to obtain

∫

Ω

∇ · uq dΩ = 0, ∀q ∈ L2(Ω).
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6 J.S. WROBEL, A. NACHBIN, D. MARCHESIN

So, the variational problem related to system (17), (18) is to find (u, p) ∈ (H(div,Ω), L2(Ω))
such that

∫

Ω

α−1
u · v dΩ −

∫

Ω

p∇ · v dΩ = −

∫

∂Ω

pv · n ds, (21)

∫

Ω

∇ · uq dΩ = 0, (22)

∀v ∈ H(div,Ω), ∀q ∈ L2(Ω).

Considering ri = r0 + i∆r e zi = z0 + i∆z, with i ∈ Z
+ for each element E of our

discretization, we have the subspaces Vh(E) e Qh(E) given by their respectives bases:

Vh(E) =























ξ1 =

(

1 − (r − ri)/∆r

0

)

, ξ2 =

(

(r − ri)/∆r

0

)

,

ξ3 =

(

0

1 − (z − zi)/∆z

)

, ξ4 =

(

0

(z − zi)/∆z

)

.

Qh(E) = ψ =

{

1 in E,

0 out of E.

The functions uh and ph we are looking for can be written as a linear combination of basis
elements. Within a given finite element the four global indices are identified with local indices
as for example ka ⇔ 1, kb ⇔ 2, kc ⇔ 3, kd ⇔ 4, where ka, .., kd are the global indices runninmg
from 1 to (m + 1)n in the horizontal coordinate and m(n + 1) in the vertical one. With this
dual notation one easily has the corresponding local basis functions (the polynomials ξ in r
and z).

uh(r, z) =





(m+1)n
∑

k=1

ukξk(r, z),

m(n+1)
∑

k=1

vkξk(r, z)



 (23)

ph(r, z) =
mn
∑

k=1

pkψk(r, z). (24)

It is important to notice that, since the normal component of u is constant on the faces of
the elements, we can construct a vector space of finite dimension in Ω with continuous normal
component at the interface of two elements that are in a subspace of H(div,Ω), where the
velocity is defined.

The mixed finite element problem is to find (uh, ph) ∈ Vh ×Qh such that

∫

Ω

α−1
uhvh dΩ−

∫

Ω

ph∇ · vh dΩ = −

∫

∂Ω

phvh · n ds (25)

∫

Ω

qh∇ · uh dΩ = 0 (26)

∀vh ∈ Vh(Ω), ∀qh ∈ Qh(Ω).

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
Prepared using cnmauth.cls



INJECTIVITY LOSS IN STRATIFIED RESERVOIRS 7

Utilizing the expressions (23) and (24) for uh e ph, our discretized system (25)-(26) takes
the form

Auh +BT ph = f

Buh = 0.

We used Usawa accelerator [4] to solve our system. First, we eliminate u and then we solve
the system in p. From the first equation,

u = A−1(f −BT p).

Substituting in the second equation, we get

BA−1BT p = BA−1f,

or, in a simplified form

Cp = d, (27)

with C = BA−1BT and d = BA−1f . The matrix A is tridiagonal and easily invertible and we
can show that the matrix C is symmetric positive definite (spd). To solve the new system (27),
we will use the conjugate gradient method. This method is extremely efficient to solve systems
with spd sparse matrices because at each iteration we just need to store a small number of
vectors.

Since we know u we can put it in equations (8) and (9) to solve for c and σ, namely to
advance them by one time step. To do so, we will use the method of characteristics, shown in
next subsection.

3.2. Method of Characteristics

In each of the procedures to be treated below, we shall consider a time step ∆t > 0 and
approximate solutions at times tn = n∆t.

Considering the velocity given at time tn−1, we want to solve equations (8) and (9), namely

φ
∂c

∂t
+ u · ∇c = −λ(σ)c|u| (28)

∂σ

∂t
= λ(σ)c|u|, (29)

in order to calculate c e σ at time tn. We will use the method of characteristics that we will
describe following [6], [12].

Defining

ψ(x) =
√

φ2 + |u(x)|2, (30)

the differentiation in the characteristic direction τ = τ(x), associated with the operator
φct + u · ∇c, is given by

∂

∂τ(x)
=

1

ψ(x)

(

φ
∂

∂t
+ u · ∇

)

. (31)

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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Then, the left side of equation (28) can be put in the form

φ
∂c

∂t
+ u · ∇c = ψ

∂c

∂τ
. (32)

The characteristic derivative will be approximated basically in the following manner:
consider a mesh point x at time tn. Follow the characteristic related to the derivative ∂/∂τ
that passes through (x, tn), back to the location (x, tn−1). Denote this departure point by x:

x = x −
u(x, tn)

φ
∆t. (33)

Notice that

ψ
∂u

∂τ
≈ ψ(x)

u(x, tn) − u(x, tn−1)

∆τ
.

But (∆τ)2 = (x − x)2 + (∆t)2, so

ψ
∂u

∂τ
≈ ψ(x)

u(x, tn) − u(x, tn−1)

[(x − x)2 + (∆t)2]1/2
. (34)

Substituting equation (30) and (33) in (34), we have

ψ
∂u

∂τ
≈ c(x)

u(x, tn) − u(x, tn−1)

∆t
.

The discretization of the left hand side of equation (28) considering cn
i = c(xi, t

n) and
cn−1
i = c(x, tn−1) is given by

φ
∂c

∂t
+ u · ∇c ≈ φ

cni − cn−1
i

∆t
.

The right hand side of equation (28) is approximated by the average between times tn−1 and
tn, since we are considering a centered difference at time tn+1/2, namely

φ
cni − cn−1

i

∆t
=

1

2

{

λ(σn
i )cni |u

n
i | + λ(σn−1

i )cn−1
i |un−1

i |
}

.

We can rewrite this evolution step in a more appropriate fashion:

cni =
φ− (∆t/2)λ(σn−1

i )|un−1
i |

φ+ (∆t/2)λ(σn
i )|un

i |
cn−1
i . (35)

Now, consider equation (29). The characteristics here are vertical and to go back in time
following characteristic lines is exactly the same as using finite differences. So, this equation
takes the discretized form

∂σ

∂t
≈
σn

i − σn−1
i

∆t
.

Taking again an average for the right hand side and rearranging, we get

σn
i = σn−1

i +
∆t

2

(

λ(σn
i )cni |u

n
i | + λ(σn−1

i )cn−1
i |un−1

i |
)

. (36)
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INJECTIVITY LOSS IN STRATIFIED RESERVOIRS 9

Now, we can substitute equation (35) in (36) to obtain an implicit formula in σ:

σn
i = σn−1

i +
∆t

2

(

λ(σn
i )
φ− (∆t/2)λ(σn−1

i )|un−1
i |

φ+ (∆t/2)λ(σn
i )|un

i |
cn−1
i |un

i | + λ(σn−1
i )cn−1

i |un−1
i |

)

. (37)

Once we know the values of σ, we can substitute them in equation (35) to update the values
of c. To do that, we procede as follows:

Let ch(x, tn), σh(x, tn) be the approximate solutions of (28), (29). Formula (37) tells us that
to calculate the approximate solution at time tn we only need to know the solution at points
(x, tn−1) and (x, tn−1). The problem is that usually the latter points are not mesh points. So,
to calculate the solutions ch(x, tn), σh(x, tn) we need to interpolate values uh(xi, t

n−1) using
the known values at the neighboring mesh points. To interpolate these points we will use cubic
Lagrange interpolation in the following manner (figure 2a): assume that we want to interpolate
a point at position X . We will use the horizontal component of this point and we will perform a
cubic Lagrange interpolation at each of the four horizontal lines, using the points marked with
a white ball. In this way, we can find interpolated values at black balls. Now, we can perform
a vertical cubic Lagrange interpolation using these black ball values in order to determine the
value at X . To interpolate points in boundary elements, we can use a bilinear interpolation
or we can shift the points used in the interpolation (figure 2b). We chose the second option.
This kind of interpolation is successfully used in Numerical Weather Prediction and has a
computational advantage of requiring just one calculation for the horizontal weights for each
interpolated point.

Since we know the solution at time tn−1 in the mesh points (x, tn−1) we can calculate (x,
tn−1) using the numerical interpolation method described above. Then we use equation (37)
to update σ in time, that is, to find the values of σ(x, tn) using Newton’s Method, since this
equation is nonlinear. With these values of σ(x, tn) we use equation (35) to update c, that is,
to find c(x, tn).

X

r

z

a) Point in an interior element.

X

r

z

b) Point in a boundary element.

Figure 2. Interpolation scheme used in the characteristic method.

4. ANALYTICAL AND NUMERICAL BOUNDARY CONDITION

In our numerical scheme, we considered pressure given as a boundary condition. But in the
real world, for the petroleum industry, the significant parameter is the injection flow rate.
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There is a tendency to maintain constant injection flow rate to guarantee a regular production
of oil. Therefore we adjust our model so that we can specify the total flow rate as a boundary
condition, as shown in picture 3.

reservoirwell

injection of water with particles

Figure 3. Injection of particles in the reservoir.

To use the method as described above we have to be careful with the boundaries. The
difficulty is that knowing the injection flow rate is insufficient for solving the problem since
we do not know how it is distributed vertically. Once the flow rate is given and the deposition
mechanism begins, we have to adjust the pressure at each time step to maintain the specified
total flow rate.

Consider the neighborhood of the well (on a more general setup than we considered before)
with properties that change both in the horizontal and vertical directions. The horizontal
component of equation (10) is

u(r, z) = −
K1(r, z)

K
k1(σ(r, z))

∂p(r, z)

∂r
.

Here, u(r, z), σ(r, z), p(r, z), K1(r, z) and k1(σ(r, z)) mean respectively horizontal velocity,
concentration of retained particles, pressure and the horizontal component of K and k at time
tn−1. Rearranging and integrating in r, we get that the pressure differential is ∆p:

K

∫ 1+L/r0

1

u(r, z)

K1(r, z)k1(σ(r, z))
dr =

∫ 1+L/r0

1

−
∂p(r, z)

∂r
dr = p(1, z) − p(1 + L/r0, z) = ∆p.

Integrating in z and dividing by H , it becomes

∆p =
K

H

∫ H

0

∫ 1+L/r0

1

u(r, z)

K1(r, z)k1(σ(r, z))
dr dz. (38)

At the inlet, the flow rate through an infinitesimal layer dz is given by

dQ = u(1, z)2π dz.

Integrating in z, the total flow rate at the inlet is

Q = 2π

∫ H

0

u(1, z) dz. (39)
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INJECTIVITY LOSS IN STRATIFIED RESERVOIRS 11

Equations (38) and (39) allow us to adjust the pressure boundary conditions at each time
step for an anisotropic medium.

The calculation of the pressure as a function of flow rate is not straightforward but we will
see that it simplifies a lot for a layered medium.

Let us use the calculation above for the case of a medium with non-communicating horizontal
layers, meaning that there is no flow between layers. In each layer j, the horizontal component
of equation (10) is

uj(r) = −
Kj

K
k(σj)

∂pj

∂r
. (40)

If the flow rate in each layer is denoted by qj , then

uj(r) =
qj

2πrhj
, (41)

where hj is the height of layer j and the vertical component v will be zero. Substituting (41)
in (40) and integrating in r, we obtain

∆pj =
qj

2πhj

K

Kj

∫ 1+L/r0

1

1

rk(σj)
dr,

with ∆pj = pj(1) − pj(1 + L/r0). But ∆pj = ∆p. So, this equation tells us that the flow rate
in each layer is given by

qj = 2πhjK
j

K

(

∫ 1+L/r0

1

dr

rk(σj)

)

−1

∆p.

Since the total flow rate is Q =
∑n

j=1 q
j , we can add the equations above for all layers to

obtain

Q =
2π

K

n
∑

j=1

hjKj

(

∫ 1+L/r0

1

dr

rk(σj)

)

−1

∆p.

We conclude that to maintain the total flow rate constant, we need to impose a time dependent
pressure differential:

∆p =
QK

2π





n
∑

j=1

hjKj

(

∫ 1+L/r0

1

dr

rk(σj)

)

−1




−1

. (42)

This is the adjustment in the pressure boundary layer needed at each time step in a medium
consisting of non-communicating layers, each one considered to be homogeneous.

In a medium with n communicating layers, the integrand of equation (38) remains piecewise
constant in the z direction and we obtain (42) again to adjust the pressure.

5. NUMERICAL EXPERIMENTS

For the numerical experiments, we consider porosity φ = 0.2, concentration of injected particles
ci = 10 ppm, β = 250 and a constant flow rate Q = 30m3/day. Our mesh is 120x100 and the
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12 J.S. WROBEL, A. NACHBIN, D. MARCHESIN

computational domain is [0.1, 0.6]x[0, 2.5]m, since we want to know what is happening near
the well. We use a time step ∆t = 1 day. Our goal is to verify whether there is particle flow
between layers and the importance it may have.

Two cases are studied. In the first case, we fix λ and consider a heterogeneous medium, with
layers of the same depth, with different absolute permeabilities Kj

0 . Then, in the second case
we fix K0 and consider λj different in each layer. In each case, we compare the models with
and without communication between layers.

5.1. Absolute Permeability

We fix a heterogeneous medium with constant parameter β = 250 and a filtration function
given as λ = 1−2σ m−1. The medium has two layers with absolute permeabilitiesK1 = 100mD
and K2 = 2000mD.

To illustrate how particles move in the medium, figure 4 shows the vertical velocity in 10,
100, 200 and 400 days. Notice that there exists a positive velocity, from the less permeable
to the more permeable layer and after some time this velocity becomes negative over part of
the interface. In this experiment, the maximum vertical velocity is 27.75% of the maximum
horizontal one.

Now, we consider the same situation in a six layer medium. In figure 5a, we compare
the pressure in a communicating layer model (solid line) and in a non-communicating layer
model (dashed line). It is surprising that the difference between them has little significance
pressurewise.

5.2. Filtration Function

Let us fix now a six layer heterogeneous medium, with alternated absolute permeability
K1 = K2 = 100mD and the data from the previous experiment, β = 250 and λ = 1−2σ m−1.
Now, we are going to consider that different layers have different filtration functions. In
figure 5b, we show the pressure of a non-communicating layers medium (dashed line) and
communicating layers (solid line) both with alternating filtration functions λ = 1 − 2σm−1

and λ = 20(1− 2σ)m−1.

In this experiment, the maximum vertical velocity is 43.40% of the horizontal one. This is a
higher number that in the previous section, (maximum of 27%). It was surprising that despite
these higher observed values, communication between layers has little significance pressurewise,
as we had seen in figure 5.

A possible answer to the relevance or irrelevance of communication between layers is
attempted in figure 6. It shows the concentration of retained particles in our second experiment,
with pressure shown in figure 5b. We observe that in fact there is no substantial transport of
particles from one layer to another.

6. CONCLUSIONS

We studied two different scenarios for the retention of particles in a layered porous media.
Although we observed that the vertical velocity is nontrivial, namely that there is flow between
layers, the impact of layer intercommunication was very small for the deposition models
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c) 200 days.
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d) 400 days.

Figure 4. Vertical velocity in distinct absolute permeability layers. The horizontal and vertical axes
are r and z. Particle are injected from left to right. The solid line shows the interface between the

more permeable layer (top) and the less permeable one (bottom)

considered here. There is a need to study these issues over a broader range of depositon
models and parameters.
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b) Alternate filtration function
λ = 1 − 2σm−1, λ = 20(1− 2σ)m−1.

Figure 5. Pressure for communicating layers (solid line) and non communicating layers (dashed line).
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Figure 6. Retained particle concentration in a 6 layers medium with alternate filtration function
λ1 = 1 − 2σ m

−1 and λ2 = 20(1 − 2σ) m
−1 after 200 days.
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