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Abstract

The EM (Expectation-Maximization) algorithm is a convenient tool
for approximating maximum likelihood estimators in situations when avail-
able data are incomplete, as it is the case for many inverse problems. Our
focus here is on the continuous version of the EM algorithm for a Pois-
son model, which is known to perform unstably when applied to ill-posed
integral equations. We interpret and analyse the EM algorithm as a reg-
ularization procedure: We show weak convergence of the iterates to a
solution of the equation when exact data are considered. In the case of
perturbed data, similar results are established by employing a stopping
rule of discrepancy type under boundedness assumptions on the problem
data.

1 Introduction

There is a large body of literature concerning the Expectation-Maximization
(EM) algorithm, as introduced by Dempster, Laird and Rubin [5] in 1977, for ap-
proximating maximum likelihood estimators in problems with incomplete data.
The importance of the methodolody resides in the (usually) simple form of the
complete likelihood function that is to be maximized via EM, which sometimes
even leads to explicit iterative formulas. The book [15] offers a comprehensive
treatment for the finite dimensional case and points out that EM algorithms
have a ”tremendous potential for applications”, being ”the subject of numerous
extensions” and ”thousands of publications”. In this paper, we refer only to a
few of those publications, which are directly related to our work.

In the sequel, we briefly describe the EM methodology. Let Y be a random
vector with a probability density function pY(y; θ) depending on a parameter
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θ. The associated log-likelihood function is

LY(θ) = log pY(y; θ),

where y is a given realization of Y. EM is an iterative method which provides
approximations of a maximum log-likelihood estimator (MLE) for the param-
eter, given a realization y of Y. By a MLE for θ given y, one understands a
parameter θ̂ such that

lY(θ̂) = max lY(θ).

The basic idea of the EM technique is to associate to the given incomplete-
data problem, a complete-data problem for which the MLE problem can be
conveniently solved. Denote by X the random vector corresponding to the
complete data. The expectation (E) step consists of averaging the complete-
data log likelihood over its conditional distribution, given the observed data
(by using the current iterate for the unknown parameter). That is, given a
realization y of Y and an initial guess θ0, compute

Q(θ, θk) = E[log pX(x; θ)|y; θk], k ≥ 0.

In the maximization (M) step, one maximizes the conditional expectation:

θk+1 ∈ argmaxQ(θ, θk).

In the particular situation when the algorithm involves only independently dis-
tributed Poisson variables, the algorithm reduces to a simple closed formula.
More precisely, this EM has the following expression:

xj
k+1 = xj

k

n∑

i=1

aijyi∑m
l=1 ailxl

k

, j = 1,m, (1)

where all the involved variables are nonnegative. An important application of
this algorithm is in processing images by Positron Emission Tomography (PET)
- see [22], [13], [25]. PET works by first introducing a radioactive substance
into the region of interest of the body; following some reactions, positrons are
emitted and recorded by means of a ring of detectors placed around the body.
This process is frequently used in medical diagnosis to identify tumors and
various diseases. The notation in (1) has the following meaning in this context:
The vector x provides information about the number of positron emissions from
the body section whose structure is to be recovered, the matrix A = (aij)
contains the probabilities with which the emissions are detected, while y counts
the detected emissions. The log-likelihood function is, in this case, the so-called
”Kullback-Leibler divergence”, namely

d(y, Ax) :=
n∑

i=1

[
yi log

yi

(Ax)i
− yi + (Ax)i

]
.

The reader is refered to [10] for more details.
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Convergence of algorithm (1) to a maximum likelihood estimator was shown
in [4], [25], [11] in various situations. However, it has been observed through
numerical experiments that the algorithm may be unstable (see, [25], [23]); e.g.,
as noticed in [23], the EM (1) outlines the shape and intensity of the objects in
early iterations, while the later iterations roughen the image. This has been the
motivation for several authors (see, e.g., [26], [2]) to propose stopping rules for
this procedure, mostly in statistical settings. The main cause for the unstable
behaviour of the algorithm is the inverse nature and hence, ill-posedness of the
considered problems. Since ill-posedness is an infinite dimensional phenomenon,
an analysis of the algorithm in infinite dimensional spaces in the framework of
regularization can be a good starting point for dealing with the instability.

The continuous version of procedure (1), that is,

xk+1(t) = xk(t)
∫

Σ

a(s, t)y(s)
(Axk)(s)

ds, (2)

was proposed as early as 1983 in [12] as a method for solving Fredholm integral
equations of the first kind:

Ax = y, (3)

with
(Ax)(s) =

∫

Ω

a(s, t)x(t) dt. (4)

However, it was [17] that indicated the connection between (2) and its famous
discrete counterpart, and analysed the former along the same lines as in the
finite dimensional case. One could think of the function

f(x) :=
∫

Σ

[
y(s) log

y(s)
Ax(s)

− y(s) + Ax(s)
]

ds (5)

as of the log-likelihood function for infinitely many samples. The existing results
concerning algorithm (2) mainly state that the fixed points of the algorithm are
minimizers of the function f (in particular, solutions of the operator equation),
that the function f decreases along the iterations and that the Kullback-Leibler
distance between the solution and the iterates decreases, too (cf. [17], [18], [19])
- see Section 3 for details.

To the best of our knowledge, there is no result in the EM literature showing
convergence of the algorithm for PET in infinite dimensional spaces, but only the
partial results mentioned above. There is no hope that the algorithm converges
strongly in Lebesgue spaces if the function f does not have minimizers (cf. [19]).
Algorithm stabilization has been attempted by means of, e.g., smoothing steps
(see [23], [14], [6]) or penalized maximum likelihood ([7]). Both approaches have
drawbacks, as they depend on smoothing operators and penalty functions plus
the right choice of the penalization parameter, respectively. An early termina-
tion of the iterative procedure, according to an appropriate stopping rule, will
be the key to overcome the instability issue. The reader may consult [8] for an
overview over stopping rules for iterative regularization methods.
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We emphasize that the EM algorithm is considered here in a deterministic
framework, rather than in a statistical (stochastic) one.

The paper is organized as follows: Section 2 presents notation, main as-
sumptions and recalls several useful results. A brief review of the existing work
regarding algorithm (2) will be presented in Section 3. Then we prove strong
convergence (in Lebesgue spaces) of the images of the iterates to the exact
data; moreover, under the additional assumptions that the initial point x0 is
a bounded function and the equation has a bounded solution, we show weak
convergence of the iterates to the solution, in Section 4. Also, we consider in
(2) perturbed data yδ instead of exact data y, with

‖yδ − y‖1 ≤ δ, δ > 0. (6)

In Section 5 we establish several intermediate results for noisy data, prove mono-
tonicity of the residual and show that the iterates get closer to the solution with
respect to the Kullback-Leibler divergence until the residual reaches a certain
threshold. Based on these, we show in Section 6 that the perturbed EM algo-
rithm with a rule for stopping at a certain iteration is indeed a regularization
procedure for the ill-posed equation (3). That is, the images of the iterates
corresponding to the stopping index (depending on δ and yδ) converge strongly
to the exact data, and the iterates converge weakly to the solution as the noise
level δ tends to zero. The assumptions under which these results have been ob-
tained are not as restrictive as they might seem at first sight - see the discussion
at Remark 6.1.

2 Notation and assumptions

The sets Ω, Σ ⊂ Rd, d ≥ 1, are compact. Let ∆ stand for the set

∆ = {u ∈ L1(Σ) : u ≥ 0,

∫

Σ

u(s) ds = 1}. (7)

For a function g defined on a space X, we denote the domain of g by domg =
{x ∈ X : g(x) < +∞}. Throughout this paper we assume that the kernel a is
a positive and measurable function such that the operator A : L1(Ω) → L1(Σ)
defined by (4) is continuous.

The main assumptions of the present work are:

(A1) The kernel a satisfies the following normalization condition:
For almost any t ∈ Ω, ∫

Σ

a(s, t) ds = 1; (8)

(A2) The kernel a is bounded and bounded away from zero, in the following
sense:

There exist m,M > 0 such that

m ≤ a(s, t) ≤ M, a.e. on Σ× Ω. (9)
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(A3) The exact data y in (3) belong to the set ∆.
(A4) There is a nonnegative solution z of equation (3), and it does not vanish
a.e.

Moreover, we assume that there exists M ′ > 0 such that

y(s) ≤ M ′, a.e. on Σ. (10)

Note that the right hand-side inequality in (9) ensures that A is a compact
operator at least from L1(Ω) to L1(Σ) and therefore, it is also continuous in
this setting.

The Kullback-Leibler (KL) divergence or distance, denoted below by d, is
the functional defined by

d(v, u) =
∫ [

v(t) ln
v(t)
u(t)

− v(t) + u(t)
]

dt, (11)

whenever it is finite∗. The domain of integration will be either Ω or Σ, depending
on the context. Note that d(u, v) ≥ 0, for any (u, v) in domd, and

d(u, v) = 0 if and only if u = v. (12)

The KL-functional will play a crucial role in the ensuing analysis. Therefore,
we recall some of its algebraic and topological properties (see, e.g., [21]):

Lemma 2.1 i) For any (u, v) ∈ domd, it holds that

‖v − u‖21 ≤
(

2
3
‖v‖1 +

4
3
‖u‖1

)
d(v, u). (13)

ii) The function (v, u) 7→ d(v, u) is convex and thus, the same holds for the
function (v, x) 7→ d(v,Ax).

Corollary 2.2 If {uλ}λ, {vλ}λ are sequences in L1(Ω) such that one of them
is bounded, then

lim
λ

d(vλ, uλ) = 0 =⇒ lim
λ
‖vλ − uλ‖1 = 0. (14)

3 A brief review of the properties of the EM
algorithm

From now on, we refer to the EM algorithm in infinite dimensional spaces only.
Let x0 ∈ ∆ such that x0 > 0, a.e. Denote by

P (x) := x

∫

Σ

a(s, ·)y(s)
(Ax)(s)

ds (15)

∗We use the convention 0 log 0 = 0.
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and let

λx(s, t) :=
a(s, t)x(t)
(Ax)(s)

.

Thus, we have, for any t ∈ Ω,

P (x)(t) =
∫

Σ

y(s)λx(s, t) ds

and then (2) can be written as

xk+1 = P (xk). (16)

Observe that ∫

Ω

λx(s, t) dt = 1, ∀s ∈ Σ. (17)

When solutions exist for equation (3), one approach to find them is, due to
(12), minimizing the convex function f defined by (5). It has been proven that
the minimizers of the function f are fixed points of the corresponding operator
P . This and other properties described below have been shown in [18] under
continuity and positivity assumptions on the kernel a and the data y, as well as
in [6] for a slightly different algorithm.

Proposition 3.1 Let (A1) and (A3) be satisfied and consider x ∈ ∆ ∩ domf .
Then the following assertions hold:

i) P (x) ∈ ∆ ∩ domf and

d(P (x), x) ≤ f(x)− f(P (x)). (18)

ii) If z is a minimizer of the function f such that d(z, x) < ∞, then one has
d(z, P (x)) < ∞ and

f(x)− f(z) ≤ d(z, x)− d(z, P (x)). (19)

Proof: See [18] or [6]. For a different proof technique, see the forthcoming
proof of Proposition 5.2, with yδ = y.

Corollary 3.2 Every minimizer of the function f is a fixed point of the operator
P defined by (15).

Proof: It follows immediately from Proposition 3.1(i) and (12).

Proposition 3.3 Let (A1) and (A3) be satisfied and consider a minimizer z
of the function f . Then the EM algorithm (2) has the following properties, for
any k ∈ N:

d(xk+1, xk) ≤ f(xk)− f(xk+1), (20)

f(xk)− f(z) ≤ d(z, xk)− d(z, xk+1). (21)

Therefore, the sequences {d(z, xk)}k∈N, {f(xk)}k∈N are nonincreasing and, more-
over, limk→∞ f(xk) = f(z) and limk→∞ d(xk+1, xk) = 0. If, in addition,
d(z, x0) < ∞, then d(z, xk) < ∞, ∀k ∈ N.
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Proof: Inequalities (20) and (21) result by taking x = xk in the inequalities
shown in Proposition 3.1. If d(z, x0) < ∞, then inequality (21) ensures that
d(z, xk) < ∞, ∀k ∈ N.

This further yields limk→∞ ‖Axk − y‖1 = 0 and limk→∞ ‖xk+1 − xk‖1 = 0
(cf. Corollary 2.2). Consequently, the sequence {d(z, xk)}k∈N converges to some
nonnegative number. In the finite dimensional case it has been proven, based on
the boundedness of {‖xk‖1}k∈N, that this number is zero, implying convergence
of {xk}k∈N to z (see, e.g., [11]). However, this has not been the case in infinite
dimensional spaces.

4 Convergence of the EM algorithm for exact
data

We show in the sequel that the iterates xk produced by (2) converge to a solution
z of equation (3) with respect to weak topologies on Lebesgue spaces.

Let us start with a consequence of the assumptions described in Section 2.

Proposition 4.1 If (A2) holds, then for any x ∈ ∆,

m ≤ (Ax)(s) ≤ M, a.e. on Σ. (22)

Proof: Multiply (9) by x(t) for any t ∈ Ω, then integrate over Ω.
We shall also need the following results:

Lemma 4.2 If {hn}n∈N is a sequence of Lebesgue integrable functions on a
space of finite measure, which is uniformly bounded and such that

lim
n→∞

‖hn − h‖1 = 0,

then for any p ∈ [1,+∞),

lim
n→∞

‖hn − h‖p = 0.

Proof: Let c > 0 be such that ‖hn‖∞ ≤ c, for any n ∈ N. Since hn
L1

−→ h

as n →∞, we have that hn
a.e.−→ h. This and the hypotheses imply that h is a

bounded function. Fix p > 1. Then the following inequality holds for every t:

|hn(t)− h(t)|p ≤ 2p−1|hn(t)− h(t)| · (|hn(t)|+ |h(t)|)p−1
.

By integrating over the set of t, we obtain the result.

Proposition 4.3 For 0 ≤ x, u ∈ L∞(S, dµ) and 2 ≤ p < +∞,

d(x, u) ≥ 1
p(p− 1)

(max{‖x‖∞, ‖u‖∞})1−p‖x− u‖p
p. (23)
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Proof: See Proposition 2.3 in [3].
Now we state the convergence result for the EM algorithm.

Theorem 4.4 Let assumptions (A1)-(A4) and inequality (10) be satisfied. If
the initial point x0 ∈ ∆ is such that d(z, x0) < ∞, then

i)
lim

k→∞
‖Axk − y‖p = 0, (24)

for any p ∈ [1, +∞).

ii) If the initial point x0 is a bounded function and equation (3) has a bounded
solution z, then the iterates xk produced by (2) have a subsequence that
converges to a solution of the equation in the weak∗ topology of L∞(Ω)
and therefore, in the weak topology of Lp(Ω) for any p ∈ [1,+∞). If, in
addition, the solution is unique, then the whole sequence converges to the
solution z in the same topologies.

Proof:

i) Equality (24) with p = 1 follows immediately - see the discussion following
Proposition 3.3. Then Proposition 4.1 and Lemma 4.2 imply (24), for any
1 ≤ p < +∞.

ii) We show by induction that any xk, k ∈ N, is a bounded function. Let
k = 0. Inequalities (10) and (22) imply λx0(s, t) ≤ M ′M

m µ(Σ), a.e. on Ω,
and then boundedness of x1 a.e. is ensured. One can similarly deal with
the k-th induction step, showing that xk(t) ≤ ck a.e., where ck are pos-
itive numbers. Consequently, {xk}k∈N is contained in L∞(Ω). We claim
that {xk}k∈N is bounded with respect to the L∞(Ω) norm. To this end,
suppose by contradiction that there exists a subsequence {xn}n∈N such
that ‖xn‖∞ → +∞. Then max{‖xn‖∞, ‖z‖∞} = ‖xn‖∞ for n sufficiently
large, which together with Proposition 4.3 yields

d(z, xn) ≥ 1
p(p− 1)

(max{‖xn‖∞, ‖z‖∞})1−p‖xn − z‖p
p (25)

=
1

p(p− 1)
‖xn − z‖p

p

‖xn‖p−1
∞

=
‖xn‖∞
p(p− 1)

‖xn − z‖p
p

‖xn‖p
∞

for some p ∈ [2,+∞). Observe that the quantity ‖xn−z‖p

‖xn‖∞ is bounded since

‖xn − z‖p

‖xn‖∞ ≤ ‖xn‖p

‖xn‖∞ +
‖z‖p

‖xn‖∞
≤ µ(Ω)1/p +

‖z‖p

‖xn‖∞ .
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This and the observation that d(z, xn) ≤ d(z, x0) for any n ∈ N imply that
the last inequality in (25) cannot hold. Thus, our claim is proved. Hence,
by Alaoglu-Bourbaki Theorem, [9, p. 70], there is a subsequence {xj}j∈N
which converges in the weak∗ topology of L∞(Ω) to some u ∈ L∞(Ω).
This means that 〈xj − u, ϕ〉 → 0 for any ϕ ∈ L1(Ω), as j → ∞. In
particular, this holds also for any ϕ ∈ L∞(Ω). That is, the sequence
{xj}j∈N converges weakly in L1(Ω) to u. Since A is continuous and linear,
it is weakly continuous. Hence, it follows that {Axj}j∈N converges weakly
in L1(Σ) to Au as j → ∞. This sequence converges also strongly, and
then, weakly to y in L1(Σ) (see (24)). Thus, it follows that Au = y. Note
that weak∗ convergence in L∞(Ω) implies weak convergence in Lp(Ω),
for any p ∈ [1, +∞) (this follows immediately from the definition, since
µ(Ω) < +∞). Thus, the subsequence {xj}j∈N converges weakly in these
spaces. If the solution z is unique, then the whole sequence converges to
z with respect to the above mentioned topologies since, otherwise, every
divergent subsequence would have a subsequence which would converge to
z.

Remarks.

• The assumption regarding d(z, x0) is reasonable from a practical point
of view. Indeed, the initial point can be chosen as a positive constant
function (this is usually the case in PET - see [23]), while the solution z
should be such that

∫
Ω

z(t) log z(t) dt < ∞.

• Although {Axk}k∈N converges to y in any Lp(Ω) with p ∈ [1,+∞) (see
(24)), this does not necessarily imply strong convergence in L∞(Ω); one
would have this if (24) held uniformly with respect to p.

• We would like to point out implications of the weak∗ convergence of the
algorithm in L∞(Ω), which has been shown above: In case of unique
solution and exact data, we obtain that

∫

Ω

xkϕdµ →
∫

Ω

zϕ dµ, as k →∞,

for any ϕ ∈ L1(Ω). This is useful, e.g., in situations when one is interested
not in the solution z, but rather in some linear functional of the solution
〈ϕ, z〉 (see [1]). Another consequence is that z belongs to ∆, which is not
surprising.

5 The case of noisy data

We assume that only noisy data yδ is available for the considered ill-posed
equation. More precisely,

(A5) The perturbed data yδ belong to ∆ ∩ L∞(Σ) and satify (6).
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Our aim is to show several properties of the following

Iterative procedure:

Choose x0 ∈ ∆ to be positive a.e. and let, for any integer k ≥ 0,

xδ
k+1 = P δ(xδ

k), (26)

where xδ
0 := x0 and

P δ(x) := x

∫

Σ

a(s, ·)yδ(s)
(Ax)(s)

ds. (27)

To this end, we point out several inequalities related to the operators P and
P δ. We shall need the following version of Jensen’s inequality (see [20]):

Lemma 5.1 Let µ̃ be a positive measure on a σ-algebra in the set Σ with
µ̃(Σ) = 1. If f1, f2 are real functions in L1(Σ, µ̃), a < fi(x) < b for all x ∈ Σ,
with a, b ∈ R̄, i = 1, 2, and if ϕ is convex on (a, b)× (a, b), then

ϕ

(∫

Σ

f1dµ̃,

∫

Σ

f2dµ̃

)
≤

∫

Σ

ϕ ◦ (f1, f2)dµ̃. (28)

In fact, we shall use the case when ϕ : (0, +∞)× (0,+∞) → (0, +∞) is the
following function of two variables, which is jointly convex (see Lemma 2.1):

ϕ(s1, s2) = s1 ln
s1

s2
− s1 + s2.

If µ(Σ) does not equal one but it is still finite, inequality (28) above still holds
when the integral is taken with respect to µ since we can define µ̃(S) := µ(S)

µ(Σ)

for any S ⊂ Σ and take advantage of the fact that ϕ is positively homogeneous.

For fixed δ > 0, let fδ denote the function

fδ(x) := d(yδ, Ax). (29)

Proposition 5.2 Let assumptions (A1) and (A3) be satisfied. Then, for any
u, v, w ∈ ∆ ∩ domf , the following inequalities hold:

d(P (w), P δ(v)) ≤ d(y, yδ) + d(P (w), v)− d(P (w), w) + f(w)− f(v), (30)

d(P δ(u), P δ(v)) ≤ d(P δ(u), v)− d(P δ(u), u) + fδ(u)− fδ(v). (31)

Proof: We prove only the first inequality, since the second one results in
a similar manner. To this end, we adapt to our framework a proof idea used
in [11] for establishing a similar inequality for the exact data case in a finite
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dimensional setting. By Jensen’s inequality (28), Fubini’s Theorem and (17),
we have

d(P (w), P δ(v)) =
∫

Ω

ϕ

(∫

Σ

y(s)λw(s, t) ds,

∫

Σ

yδ(s)λv(s, t) ds

)
dt

≤
∫

Ω

∫

Σ

ϕ
(
y(s)λw(s, t), yδ(s)λv(s, t)

)
ds dt

=
∫

Ω

∫

Σ

y(s)λw(s, t) ln
y(s)λw(s, t)
yδ(s)λv(s, t)

ds dt

=
∫

Σ

y(s) ln
y(s)
yδ(s)

∫

Ω

λw(s, t) dt ds

+
∫

Ω

∫

Σ

y(s)λw(s, t) ln
w(t)
v(t)

ds dt

+
∫

Σ

y(s) ln
Av(s)
Aw(s)

∫

Ω

λw(s, t) dt ds

= d(y, yδ) + [d(P (w), v)− d(P (w), w)] + [f(w)− f(v)].

Proposition 5.3 Let assumptions (A1), (A3) and (A4) be satisfied. Then for
any δ > 0 and k ∈ N, it holds that

f(xδ
k)− d(y, yδ) ≤ d(z, xδ

k)− d(z, xδ
k+1), (32)

fδ(xδ
k) +

∫

Σ

[
y(s)− yδ(s)

]
ln

yδ(s)
(Axδ

k)(s)
ds ≤ d(z, xδ

k)− d(z, xδ
k+1), (33)

d(xδ
k+1, x

δ
k) + d(xδ

k+1, x
δ
k+2) ≤ fδ(xδ

k)− fδ(xδ
k+1). (34)

Proof: Since the solution z is a minimizer of the function f , it follows that
P (z) = z (cf. Corollary 3.2). Letting w = z and v = xδ

k in (30) proves inequality
(32). A simple calculation yields (33) from (32). Letting u = xδ

k and v = xδ
k+1

in (31) implies (34).
An immediate consequence of inequality (34) is that {fδ(xδ

k)}k∈N is non-
increasing in k for any fixed δ > 0. However, a similar property cannot be
expected to hold for d(z, xδ

k). As discussed, e.g., in [8, Chapter 6], an itera-
tive method for ill-posed problems shows the following typical behavior: The
(metric) distance between the iterates and the solution has an initial decay and
then increases. Thus, stopping the algorithm at a ”good” index would ensure
that the iterative method does regularize the problem, i.e., it provides stable
approximations of the true solution. A famous and widely used stopping rule is
Morozov’s ”discrepancy principle” ([16]).
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6 A stopping rule for the EM algorithm

In this section, we provide a discrepancy type stopping rule for the EM algorithm
(26) and establish existence of the corresponding stopping index k∗(δ). Also,
we prove strong convergence of the images {Axδ

k∗(δ)}δ>0 to the exact data y, as
δ → 0+, with respect to any Lp norm, with p ∈ [1, +∞), along with the property
that the iterates get closer to the solution with respect to the Kullback-Leibler
divergence until the stopping index k∗(δ) is reached. In addition, if the initial
point x0 is a bounded function and the equation has a bounded solution, then
weak convergence on subsequences of the iterates xδ

k∗(δ), as δ → 0+, to a solution
of the equation is obtained. This actually shows that the procedure (39) together
with the rule (40) is a regularization method.

In addition to assumptions (A1)-(A5), we consider the following:
The perturbed data yδ are bounded and bounded away from zero, i.e.,

m1 ≤ yδ(s) ≤ M1, a.e. on Σ, (35)

uniformly for δ > 0.

Remark 6.1 In most practical applications one can assume that yδ and a(s, t)
are bounded from above. We can also assume that yδ is bounded away from
zero. Indeed, if yδ(s) vanishes in Σ0 ⊂ Σ, then the solution z(t) vanishes in
Ω0 := {t ∈ Ω : µ({s ∈ Σ0 : a(s, t) > 0}) > 0}, and we redefine the problem with
the sets Ω \ Ω0, Σ \ Σ0, instead of Ω, Σ respectively, so that yδ(s) > 0 for all s
in the new domain. We can further suppose that there exists m1 > 0 such that
y(s) ≥ m1 for all s, if we have in mind practical situations where sufficient data
can be acquired.

The main problem lies in the assumption that a(s, t) > m for almost all s, t,
which fails in some real-world applications (e.g., positron emission tomography).
However, the ensuing analyis does not exclude the more realistic case when the
kernel fulfills simultaneously the following conditions:

i) a(s, t) satisfies (9) on a set Σ0 × Ω0 ⊆ Σ× Ω with µ(Σ0 × Ω0) > 0;
ii) a(s, t) = 0 on a set Σ1 × Ω1  Σ× Ω of positive Lebesgue measure.
iii) a is arbitrary on a set of measure zero.
It should be noted that conditions on the kernel and on the (exact) data

similar to (A2) and (10), (35) are frequently employed when analyzing the EM
in infinite dimensional spaces (see [17], [18], [19]), and might hold in other
applications (see e.g. [24]).

Lemma 6.2 If (A2) and (35) hold, then, for all δ > 0 and all k ∈ N, we have
that yδ and Axδ

k, as well as ln yδ and ln Axδ
k belong to L∞(Σ).

Proof: follows from (35) and Proposition 4.1.

We show below that the iterates keep approaching the solution so long as
the residual d(yδ, Axδ

k) exceeds a certain threshold.

12



Theorem 6.3 Fix δ > 0. If assumptions (A1)-(A5) and inequality (35) are
satisfied, then the iterate xδ

k+1 is a better approximation of z than xδ
k with

respect to the Kullback-Leibler divergence d, that is,

d(z, xδ
k+1) ≤ d(z, xδ

k), ∀k ∈ N, (36)

provided that k is such that

fδ(xδ
k) ≥ δ max

{
ln

∣∣∣∣
M1

m

∣∣∣∣ , ln
∣∣∣∣
M

m1

∣∣∣∣
}

. (37)

Proof: By applying the Cauchy-Schwarz inequality in (33), and using then
inequalities (6), (35) and (22), we get

d(z, xδ
k)− d(z, xδ

k+1) ≥ fδ(xδ
k)− ‖y − yδ‖1

∥∥∥∥ln
yδ

Axδ
k

∥∥∥∥
∞

(38)

≥ fδ(xδ
k)− δ max

{
ln

∣∣∣∣
M1

m

∣∣∣∣ , ln
∣∣∣∣
M

m1

∣∣∣∣
}

,

for any δ > 0 and k ∈ N.

Therefore, we are motivated to propose the following

Stopping rule:
Let x0 ∈ ∆ be positive and

xδ
k+1(t) := xδ

k(t)
∫

Σ

a(s, t)yδ(s)
(Axδ

k)(s)
ds, a.e. (39)

For this EM algorithm, choose the stopping index as

k∗(δ) = min
{

k ∈ N : fδ(xδ
k) ≤ τδ max

{
ln

∣∣∣∣
M1

m

∣∣∣∣ , ln
∣∣∣∣
M

m1

∣∣∣∣
}}

, (40)

for some fixed τ > 1, where M, m,M1, m1 are constants for which (A2) and
(35) hold.

We show next that the index k∗(δ) given by (40) does exist and prove that
the EM algorithm (39) is indeed a regularization method.

Theorem 6.4 Let assumptions (A1)-(A5) and inequality (35) hold, let x0 ∈ ∆
such that d(z, x0) < ∞ and choose k∗(δ) according to the stopping rule (40).
Then

i) The following inequality holds:

k∗(δ)τδγ ≤ k∗(δ)fδ(xδ
k∗(δ)−1) ≤ d(z, x0) + k∗(δ)δγ, ∀δ > 0, (41)

where

γ = max
{

ln
∣∣∣∣
M1

m

∣∣∣∣ , ln
∣∣∣∣
M

m1

∣∣∣∣
}

.
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ii) The stopping index k∗(δ) is finite with k∗(δ) = O
(
δ−1

)
and

lim
δ→0+

‖Axδ
k∗(δ) − y‖p = 0, (42)

for any p ∈ [1, +∞).

iii) If the initial point x0 is a bounded function and equation (3) has a bounded
solution z, then a subsequence of the iterates xδ

k∗(δ) converges to a solution
of the equation in the weak∗ topology of L∞(Ω), and therefore, in the weak
topology of Lp(Ω) for any p ∈ [1,+∞), when δ → 0+. If, in addition, the
solution is unique, then the whole sequence converges to the solution z in
the same topologies.

Proof:

i) Inequality (38) implies

fδ(xδ
j) + d(z, xδ

j+1) ≤ d(z, xδ
j) + δγ,

for any 0 ≤ j ≤ k∗(δ) − 1. By summing up these inequalities and taking
into account monotonicity of fδ(xδ

j) with respect to j (cf. (34)) and (40),
we obtain (41).

ii) From inequality (41) we deduce that the stopping index k∗(δ) is finite:

k∗(δ) ≤ d(z, x0)
δ(τ − 1)γ

. (43)

Since, by (40),
d(yδ, Axδ

k∗(δ)) ≤ τδγ, (44)

it results that
lim

δ→0+
d(yδ, Axδ

k∗(δ)) = 0.

Consequently, equality (42) with p = 1 follows immediately due to (6) and
Corollary 2.2. As of 1 ≤ p < +∞, Corollary 6.2 and Lemma 4.2 imply
limδ→0+ ‖Axδ

k∗(δ) − y‖p = 0.

iii) The proof can be done analogously to the one for the second part of
Theorem 4.4; the key fact is showing that {xδ

k∗(δ)}δ>0 is bounded with
respect to the L∞(Ω) norm, uniformly in δ. Also, one has to take into
account that the net {xδ

k∗(δ)}δ>0 is a relatively weak∗-sequentially compact
set in L∞(Ω) (cf. [27, p. 72]), since L∞(Ω) is the dual of the separable
Banach space L1(Ω).
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7 Conclusions

We have shown that the EM algorithm (39) converges weakly in Lebesgue spaces
and, together with the discrepancy type rule (6), regularizes the ill-posed equa-
tion (3). It seems that these are the first convergence and regularization results
to date for this procedure in infinite dimensional spaces.

So far, our theory allows only kernels which are bounded away from zero on
a set of nonzero Lebesgue measure. We hope to be able to relax the conditions
under which the results hold.

Strong convergence and convergence rates for the algorithm are certainly
further challenges. Moreover, we are interested in designing an EM algorithm
for nonlinear equations for which the analysis made in this work may be carried
out under suitable assumptions on the involved operators.
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