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Abstract. We generalize Frobenius singular theorem due to Malgrange, for a large class

of codimension one holomorphic foliations on singular analytic subsets of CN . As a con-
sequence we obtain the following : let M be a smooth complete intersection sub-variety of

PN , where dim(M) ≥ 3. Then the singular set of any codimension one foliation on M
has at least one component of codimension two.
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1. Introduction and Statement of Results

In 1976 B. Malgrange proved the following result (cf. [M]) :

Malgrange’s Theorem. Let ω be a germ at 0 ∈ CN of a holomorphic integrable

1-form. Suppose that the singular set of ω has complex codimension greater than

or equal to three. Then there exist germs of holomorphic functions f and g, where

g(0) = 0, such that ω = g.df .

In other words, if we take representatives of the germs ω and f in a neighborhood

U of 0 ∈ CN , then f is a first integral of the codimension one foliation on U defined
by the differential equation ω = 0. In this paper we generalize this result, in certain

cases, for germs of foliations in a germ of an analytic subset of CN . Before stating
our main result, we need a definition.

Let X be a germ at 0 ∈ CN of an irreducible analytic set of complex dimension

n ≥ 2, with singular set sing(X). Let X∗ = X \ sing(X). Consider an open
neighborhood B of 0 ∈ CN such that X , sing(X) and X∗ have representatives,
wich will be denoted by XB , sing(XB) and X

∗
B := XB \ sing(XB), respectively. If

B is small enough then X∗B is a smooth connected manifold of complex dimension
n. In this case, we define a singular complex codimension one foliation on X∗B as
usual (cf. [LN-BS]). The singular set of a foliation F on a complex manifold M

will be denoted by sing(F). We observe that it is always possible to suppose that
1This research was partially supported by Pronex.
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codM (sing(F)) ≥ 2, in the sense that there exists a foliation G on M such that

codM (sing(G)) ≥ 2 and G ≡ F on M \ sing(F) (cf. [LN-BS]).
Definition 1.0.1. A germ F , of codimension one holomorphic foliation on X∗, is
defined by the following data :

(a). There exists an open neighborhood B of 0 ∈ CN as above and a codimension
one foliation FB on X∗B.

(b). If 0 ⊂ U ⊂ B is an open set such that X∗U is connected then there exists a
codimension one foliation FU on X∗U such that FB |X∗U = FU .
The germ F is the collection {FU}0∈U⊂B. The singular set of F is the

germ of analytic subset of X∗ defined by the collection {sing(FU )}0∈U⊂B.
For example, let ω be a germ at 0 ∈ CN of holomorphic 1-form such that ω|X∗ ≡ 0

and ω∧dω|X∗ ≡ 0. If codX∗(sing(ω|X∗)) ≥ 2 then it defines a germ of codimension
one foliation on X∗. This germ will be denoted by Fω.
We would like to observe that when codX∗(sing(ω|X∗)) ≥ 1 then there exists

a germ of foliation F , with codX∗(sing(F)) ≥ 2, such that F|X∗\sing(ω) coincides
with the foliation induced by ω on X∗ \ sing(ω) (cf. [LN-BS]). This is the case of
example 1.1 after the statement of the main theorem.

Definition 1.0.2. Let X be an irreducible germ of analytic set at 0 ∈ CN with

dimension n < N . We say that X is k-regular, 0 ≤ k ≤ n, if there exists a neigh-
borhood U of 0 ∈ CN and representatives XU , sing(XU ) and X

∗
U of X, sing(X)

and X∗, respectively, such that : For any germ of holomorphic k-form η on X∗U
there exists a holomorphic k-form θ on U such that θ|X∗U ≡ η.

Main Theorem. Let X be a germ of irreducible analytic set at 0 ∈ CN , of
dimension n, 3 ≤ n ≤ N , and F be a germ of holomorphic codimension one

foliation on X∗. Suppose that :

(a) H1(X∗,O) = 0.
(b) X is k-regular for k = 0, 1.

(c) F is defined by a holomorphic (germ of) 1-form ω on X∗ such that
codX∗(sing(ω)) ≥ 3.

(d) dim(sing(X)) ≤ dim(X)− 3.
Then there exist germs of analytic functions f and g at 0 ∈ CN such that g(0) = 0

and ω = g.df |X∗ . In other words, f |X∗ is a first integral of F .
In the appendix, we will see that hypothesis (a) and (b) of the main theorem

are fulfilled when X is a complete intersection and dimC(sing(X)) ≤ dimC(X)− 3.
This implies the following :

Corollary 1. Let X be a germ of irreducible analytic set at 0 ∈ CN , of dimension
3 ≤ n ≤ N , and F be a germ of holomorphic codimension one foliation on X∗.
Suppose that :

(a) X is a complete intersection.

(b) dimC(sing(X)) ≤ dim(X)− 3.
(c) F is defined by a holomorphic (germ of) 1-form ω on X∗ such that

codX∗(sing(ω)) ≥ 3.
Then F has a holomorphic first integral.
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Another fact that will proved in the appendix is that when X is a com-

plete intersection with an isolated singularity at 0 ∈ CN and dim(X) ≥ 4 then

H1(X∗,O∗) = 1. This implies hypothesis (c) of the main theorem and we get the

following consequence :

Corollary 2. Let X be a germ of irreducible analytic set at 0 ∈ CN , of dimension
4 ≤ n ≤ N , and F be a germ of holomorphic codimension one foliation on X∗.
Suppose that X is a complete intersection with an isolated singularity at 0 ∈ CN
and that codX∗(sing(F)) ≥ 3. Then F has a holomorphic first integral.

As an application, we obtain a generalization of a result due to F. Touzet (private

communication) : if n ≥ 3 and Mn is a smooth hypersurface of Pn+1 then there is
no non-singular holomorphic codimension one foliation on M .

Corollary 3. Let Mn be a smooth algebraic submanifold of PN with dimension

n ≥ 3 and G be a codimension one holomorphic foliation on M . If M is a complete

intersection then sing(G) has at least one component of codimension two in M .
The proof can be done as follows : let X ⊂ CN+1 be the cone over M and

π : CN+1 → PN be the natural projection. Note that X is a complete intersection

of dimension ≥ 4. Suppose by contradiction that M admits a foliation F such

that cod(sing(F)) ≥ 3. Consider the foliation G = π∗(F) on X∗. Its singular
set has codimension ≥ 3 and dim(X) ≥ 4, and so by corollary 2 it has a non-

constant holomorphic first integral. In particular, it has a finite number of leaves

accumulating at the origin. On the other hand, all leaves of G must accumulate at
the origin, because G = π∗(F), a contradicition.
We observe that corollary 3 was already known for M = Pn, n ≥ 3 (cf. [LN]).

It was used in [LN] to prove that codimension one foliations on Pn, n ≥ 3, have no
non trivial minimal sets.

Example 1.1. An example without holomorphic first integral. LetX be the quadric

in C4 given as
X = {(x, y, z, t) ; x y = z t} .

In this case, sing(X) = {0} and X∗ = X \{0}. Let Π : C4\{0}→ P3 be the natural
projection. It is known that Π(X∗) P1×P1. Moreover, π := Π|∗X : X∗ → P1×P1
is a submersion. Let G be the non-singular foliation on P1 × P1 whose leaves
are the rules P1 × {pt}. Then F := π∗(G) is a non-singular codimension one
foliation on X∗. Note that any leaf of F is a 2-plane passing through 0. This

implies that the germ of F at 0 ∈ X has no holomorphic first integral, because a

foliation with a holomorphic first integral has only a finite number of leaves through

0 ∈ X . We would like to remark that X satisfies hypothesis (a), (b) and (d) of

the main theorem (see the apendix), but F do not satisfy (c). In fact, F has the

merophorphic first integral z/x = y/t on X∗. In this way, F can be defined in the

set U1 = {(x, y, z, t) ∈ X∗ ; z = 0orx = 0} by the 1-form ω1 = z dx − x dz and in
the set U2 = {(x, y, z, t) ; y = 0or t = 0} by the 1-form ω1 = t dy − y dt. In the
intersection U1 ∩ U2 we have ω1 = g12.ω2, where g12 = x2/t2 = z2/y2.
Example 1.2. An example in which the conclusion of the main theorem is true,

but which do not satisfy hypothesis (b). Let φ : C3 → C9 be defined by

φ(x, y, z) = (x2, y2, z2, x y, x z, y z, x3, y3, z3) .
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As the reader can check, φ|C3\{0} : C3 \ {0}→ C9 \ {0} is an immersion. Therefore,
X := φ(C3) has an isolated singularity at 0 ∈ C9 and X∗ = X \ {0}. Since X∗ is
biholomorphic to C3 \ {0}, we have H1(X∗,O) = 0 and H1(X∗,O∗) = 1. Hence,
X satisfies hypothesis (a) and (d) of the main theorem. If F is a foliation on X∗

then it is defined by a holomorphic 1-form on X∗ and the conclusion of the main
theorem is true : if F has no singularities on X∗ then it has a holomorphic first
integral, by Malgrange’s theorem. However, X do not satisfy hypothesis (b) of the

main theorem : the function f ∈ O(X∗) defined by f = x ◦ φ−1 : X∗ → C has no
holomorphic extension to a neighborhood of 0 ∈ C9.
Example 1.3. An example of singular variety which is not a complete intersection

and which admits foliations without meromorphic first integral. Let T ⊂ Pn be a
complex tori of dimension ≥ 2 and G be a codimension one foliation on T without
singularities and with dense leaves. Let π : Cn+1 \ {0} → Pn be the natural pro-
jection. Set X∗ = π−1(T ) and F = π∗(G). In this case, X = X∗ ∪ {0} has an
isolated singularity at 0 ∈ Cn+1. Each leaf of F is dense in X∗, and so it has no
meromorphic first integral.

Let us state some problems which arise naturally from the above results and

examples. The first one concerns the quadric of example 1.1.

Problem 1. Let X be the quadric (x y− z t = 0) ⊂ C4 and G be a germ at 0 ∈ C4
of non-singular codimension one foliation on X∗. Suppose that G is not defined by
a holomorphic 1-form as in (c) of the main theorem. Does there exists a germ of

automorphism ϕ : (X, 0)→ (X, 0) such that G = ϕ∗(F), where F is the foliation of
example 1.1 ?

Example 1.2 motivates the following :

Problem 2. Can we substitute hypothesis (b) of the main theorem by another

more general, in such a way that the result applies in the case of example 1.2 ?

As mentioned before the fact that the singular set of a codimension one foliation

F on Pn, n ≥ 3, has at least one codimension two irreducible component was used
in [LN] to prove that F has no non-trivial minimal set. Corollary 3 motivates the

following :

Problem 3. LetM ⊂ PN be a smooth complete intersection of dimension n ≥ 3. Is
it possible thatM admits a codimension one foliation F with a non-trivial minimal
set ?

This work will be organized as follows. In §2 we will state some basic results
that will be used in the proof of the main theorem, specially the construction

of the Godbillon-Vey sequence associated to an integrable 1-form ω such that

cod(sing(ω)) ≥ 3. The main theorem will be proved in §3.
We would like to mention that the problem of extending Malgrange’s theorem

for singular germs was posed to us by R. Moussu. He told us that the problem was

posed to him by H. Hauser. We would like to acknowledge them and also A. Dimca

for some helpfull suggestions.

2. Basic results

2.1. Godbillon-Vey sequences. One of the tools that will be used in the proof

of the main theorem is the so called ”Godbillon-Vey sequence” associated to a



5

foliation (cf. [Go]). Let M be a holomorphic manifold of dimension n ≥ 2 and ω
be a holomorphic integrable 1-form on M .

Definition 2.1.1. A holomorphic Godbillon-Vey sequence (briefly h.g.v.s.) for ω,

is a sequence (ωk)k≥0 of holomorphic 1-forms on M such that ω0 = ω and the

formal 1-form Ω on (C, 0)×M defined by the power series

Ω := dt+

∞

j=0

tj

j!
ωj

is formally integrable, that is

Ω ∧ dΩ = 0
It is not dificult to prove that the above relation is equivalent to

(1) dωk = ω0 ∧ ωk+1 +
k

j=1

k

j
ωj ∧ ωk+1−j , ∀ k ≥ 0 .

By using (1), it can be proved by induction on k ≥ 0, that a sufficient condition
for the existence of a h.g.v.s. for ω is that it satisfies the 2-division property, which

is defined below :

-division property (briefly -d.p.). We say that ω satisfies the -d.p., if for any
Θ ∈ Ω (M) such that ω ∧ Θ = 0 then there exists a η ∈ Ω −1(M) such that
Θ = ω ∧ η (cf. [M] and [Mo]).
For instance, if ω satisfies the 2-d.p., the first three steps of the h.g.v.s. can be

obtained as follows

ω0∧dω0 = 0 =⇒ dω0 = ω0∧ω1 =⇒ dω0∧ω1−ω0∧dω1 = 0 =⇒ ω0∧dω1 = 0 =⇒
=⇒ dω1 = ω0∧ω2 =⇒ dω0∧ω2−ω0∧dω2 = 0 =⇒ ω0∧ (dω2−ω1∧ω2) =⇒

=⇒ dω2 = ω0 ∧ ω3 + ω1 ∧ ω2 = ω0 ∧ ω3 + 2

1
ω1 ∧ ω2 + 2

2
ω2 ∧ ω1 =⇒ ...

Remark 2.1.1. If codM (sing(ω)) ≥ 2 then ω satisifies the 1-d.p., that is, if Θ ∈
Ω1(M) is such that ω ∧Θ = 0 then there exists g ∈ O(M) such that Θ = g.ω.
In the next result we give a sufficient condition for ω to satisfy the 2-d.p..

Lemma 2.1.1. Let M be a complex manifold of dimension n ≥ 3 and ω be a

holomorphic 1-form on M . Assume that codM (sing(ω)) ≥ 3 and H1(M,O) = 0.

Then ω satisfies the 2-division property.

Proof. Let Θ ∈ Ω2(M) be such that Θ ∧ ω = 0. Since codM (sing(ω)) ≥ 3, the

2-d.p. is true locally on M (cf. [M]). It follows that there exists a Leray covering

U = (Uj)j∈J ofM and a collection (ηj)j∈J , ηj ∈ Ω1(Uj), such that Θ|Uj = ηj∧ω|Uj ,
for all j ∈ J . If Uij := Ui ∩ Uj = ∅, then

(ηj − ηi) ∧ ω|Uij = 0 =⇒ ηj − ηi = gij .ω|Uij ,
where gij ∈ O(Uij). Note that the collection (gij)Uij=∅ can be considered as an
aditive cocycle in C1(U ,O). Since H1(M,O) = 0, there exists (fj)j∈J ∈ C0(U ,O)
such that gij = fj − fi on Uij = ∅. Hence there exists η ∈ Ω1(M) such that

η|Uj := ηj − fj .ω|Uj . This form satisfies Θ = η ∧ ω.
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Now, let X be a germ of irreducible analytic set at 0 ∈ CN , of dimension n,
3 ≤ n ≤ N , such that H1(X∗,O) = 0. Let ω be a germ of holomorphic integrable

1-form on X∗ with codX∗(sing(ω)) ≥ 3. In this case, if we take a ball B ⊂ CN
with small radius then we can assume that :

(I). X , sing(X) and X∗ have representatives on B, say XB , sing(XB) and
X∗B = XB \ sing(XB), respectively, where X∗B is a connected complex manifold

with dimension n ≥ 3.
(II). ω has a representative ωB ∈ Ω1(X∗B) such that codX∗B(sing(ωB)) ≥ 3.
(III). H1(X∗B ,O) = 0.
Since B will be fixed from now on, for simplicity we will use the old notations :

XB = X , X
∗
B = X

∗, sing(XB) = sing(X), ωB = ω.

As a consequence of lemma 2.1.1, we have the following :

Corollary 2.1.1. In the above situation there exists a h.g.v.s. for ω, say (ωk)k≥0,
where ω0 = ω.

2.2. Resolution of X and h.g.v.s. Let B ⊂ CN , X, sing(X), X∗ and the h.g.v.s.
(ωj)j≥0 of ω0 = ω be as in section 2.1. In this section we will suppose that X is

0 and 1-regular. In particular, we can take the ball B in such a way that, for any

j ≥ 0 there exists a holomorphic 1-form ηj on B such that ηj |X∗ = ωj .

Consider a resolution of (B,X) by blowing-ups Π : B̃ → B (cf. [ ]). The complex

manifold B̃ and the holomorphic map Π are obtained in such a way that :

(A). The strict transform X̃ of X by Π is a connected smooth complex submanifold

of B̃ of complex dimension n = dim(X). Set π := Π|X̃ : X̃ → X.

(B). E := Π−1(sing(X)) ∩ X̃ is a connected codimension one analytic subset of

X̃. Moreover, E is a normal crossing sub-variety of X̃, which means that for any

p ∈ E there exists a neighborhood V of p in X̃ such that V ∩ E is bimeromorphic

to an union of at most n pieces of (n− 1)-planes in general position.
(C). The maps Π|B̃\E : B̃ \E → B \ sing(X) and π|X̃\E : X̃ \E → X∗ are bimero-
morphisms.

Let X̃∗ := Π−1(X∗) = X̃ \E. If we set η̃j := Π∗(ηj), j ≥ 0, then η̃j ∈ Ω1(B̃) and
η̃j |X̃∗ = π∗(ωj), so that π∗(ωj) can be extended to a holomorphic 1-form ω̃j := η̃j |X̃
on X̃, for all j ≥ 0. Set ω̃ = ω̃0.

We can assume that the blowing-up process begins by a blowing-up at 0 ∈ CN .
In this case, Π−1(0) has codimension one in B̃. This implies that :
(D). The analytic set D := Π−1(0) ∩ X̃ ⊂ E has codimension one in X̃ , is a

normal crossing codimension one sub-variety of X̃ and is connected (because X is

irreducible).

Remark 2.2.1. The sequence (ω̃j)j≥0 is a h.g.v.s. for ω̃ = ω̃0.

Lemma 2.2.1. For any k ≥ 0 we have ω̃k|D = 0.
Proof. Let p be a smooth point of D. Since dim(D) = n − 1 = dim(X̃) − 1,
we can find a local coordinate system [U, (u, z, v) ∈ Cn−1 × C × CN−n] such that
U ∩ X̃ = (v = 0) and U ∩D = (z = 0) ∩ (v = 0). In this coordinate system we can

write Π|U = (X1, ..., XN ), where Xj : U → C and Xj(u, 0, 0) = 0. This implies that

Xj(u, z, v) = z.Aj(u, z, v) +

N−n

i=1

vi.Bij(u, z, v) .



7

It follows that

Π∗(dxj) = Aj .dz + z.dAj +
N−n

i=1

Bijdvi + vi.dBij =⇒ Π∗(dxj)|D∩U = 0 .

Hence, ω̃k|D∩U = Π∗(ηk)|D∩U = 0.
Remark 2.2.2. Note that the foliation π∗(Fω), which in principle is defined only
on X̃∗, can be extended to the foliation Fω̃ on X̃.
On the other hand, in general the singular set of ω̃ has components of codimen-

sion one. After dividing ω̃ by the local equations of the codimension one irreducible

components of sing(ω̃), we obtain a foliation F̃ , which will be called the strict trans-
form of π∗(Fω).
Lemma 2.2.2. Any irreducible component of D is invariant for the strict transform

F̃ .
Proof. Let p be a smooth point of D and [U, (u, z, v) ∈ Cn−1 × C × CN−n] be a
coordinate system around p as in the proof of lemma 2.2.1. We can write ω̃|X̃∩U =
z .ωU , where ωU ∈ Ω1(X̃ ∩ U) is integrable, ≥ 0 and cod(sing(ωU )) ≥ 2. The
foliation F̃ is defined on X̃ ∩ U by the form ωU . If = 0 then the result follows

from lemma 2.2.1. If ≥ 1, then it follows from dω̃ = ω̃ ∧ ω̃1 that
z −1 dz ∧ ωU + z dωU = z ωU ∧ ω̃1 =⇒ dz ∧ ωU = z.θ ,

where θ = −1(ωU ∧ ω̃1 − dωU ) ∈ Ω2(U). This implies that (z = 0) = D ∩ U is

invariant for F̃ .

3. Proof of the main theorem

3.1. Formal first integrals in the resolution. Let Π : (B̃, X̃) → (B,X) be a

resolution of X, satisfying properties (A), (B), (C) and (D) of the last section.

Consider also the h.g.v.s. (ω̃k)k≥0 of ω̃ and the formal integrable 1-form

(2) Ω̃ = dt+ ω̃ +

∞

j=1

tj

j!
ω̃j

Recall that ω̃j |D = 0, where D = X̃ ∩ Π−1(0). By doing more blowing-ups along
the normal crossings of E = Π−1(sing(X)) ∩ X̃, we can assume that
(E). All irreducible components of E are smooth. In particular, all irreducible

components of D are smooth.

The aim of this section is to prove that F̃ has a ”formal” first integral. This

formal first integral will be a global section of the formal (or m-adic) completion of

X̃ along D (cf. [B-S] and [Mi]).

Definition 3.1.1. Let M be a complex manifold and Y ⊂M be an analytic subset

of M . Let I ⊂ OM be the sheaf of ideals defining Y . The formal completion of M

in Y , denoted by OŶ (see [B-S]), is the sheaf of ideals defined by
OŶ = ( im←

n

OM/In)|Y
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Similarly, when M is a sheaf of OM -modules, we define
MŶ = ( im←

n

M/In.M)|Y

Note that Ωk
Ŷ
is a sheaf of modules over ÔY . A global section of ÔY (resp. Ωk

Ŷ
)

will be called a formal function (resp. k-form) along Y .

Remark 3.1.1. Since OY (OM/I)|Y , we have a natural projection OŶ
r→ OY ,

called the restriction to Y . Given a formal function f̂ along Y we will use the

notation r(f̂) := f̂ |Y . Note that, if Y is compact then f̂ |Y is a constant.
Notation. Let A be an integral domain and k ≥ 1. We use the notation

A[[z]] := A[[z1, ..., zk]] for the set of complex formal power series F in k variables

with coefficients in A of the form :

F =
σ

aσ z
σ , aσ ∈ A ,

where z = (z1, ..., zk), σ = (σ1, ...,σk), σj ≥ 0, 1 ≤ j ≤ k, and zσ = zσ11 ...z
σk
k .

Remark that A[[z]] is also an integral domain, with the operations of sum and

multiplication of formal power series.

Suppose that Y is a codimension k smooth submanifold of M and dimC(M) =
n ≥ k + 1. Let [W, (u, z) ∈ Cn−k × Ck] be a holomorphic coordinate system such

that U := Y ∩W = (z = 0) is non-empty and connected. We have the following

interpretation for a formal function along U ⊂ Y , say f̂ : f̂ |U can be thought as a
formal power series in O(U)[[z]] of the form S = f̂(u, z) = σ fU,σ(u) z

σ, where

fU,σ ∈ O(U) for all σ.
Notation. Given a coordinate system [W, (u, z)], U = Y ∩W = (z = 0) and the

series S, as above, we will call S a representative of f̂ over U .

Note that, f̂ |U = f(u, 0) = fU,0(u) ∈ O(U), where 0 = (0, ..., 0) ∈ Zk. If

σ fU,σ(u) z
σ ∈ O(U){z}, that is the series converges, then it represents a holo-

morphic function in a neighborhood of U in M . In this case, we will say that f̂

converges over U .

Similarly, if η̂ is a formal 1-form along Y , then

η̂|U =
n−k

j=1

ĝj .duj +

k

i=1

ĥi.dzi , ĝj , ĥi ∈ O(U)[[z]] , ∀ i, j .

Observe that Ω̃ can be thought as a formal 1-form (on X̃ × C) along X̃ × {0}.
The aim of this section is to prove the following :

Theorem 3.1. There exist formal functions f̂ and ĝ along D ⊂ X̃ such that

ω̃ = ĝ.df̂ , ĝ|D = 1 and f̂ |D = 0. In particular, f̂ is a formal first integral of F̃ .
Proof. Let D = ∪rj=1Dj be the decomposition of D into smooth irreducible com-

ponents. Fix an irreducible component D and a coordinate system of X̃, say

[W, (u, z) ∈ Cn−1 × C] such that U := D ∩W = (z = 0), is connected and non-

empty.

Lemma 3.1.1. Let h(t) = j≥1 aj t
j ∈ C[[t]] \ {0}. Then there exists a unique

formal power series F h ∈ O(U)[[z, t]],
F h(u, z, t) =

i,j≥0
fij(u) z

i.tj
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such that F ht .Ω̃ = dF h and F h(u, 0, t) = h(t). In particular, F h is a formal first

integral of Ω̃.

Proof. Recall that ω̃k|D = 0 for all j ≥ 0. This implies that ω̃k can be written in
the coordinate system [W, (u, z)] as

ω̃k = Ak(u, z) dz +

n−1

i=1

z.Bki(u, z) dui ,

where Ak, Bki ∈ O(W ). In a neighborhood W1 = U × (|z| < ) of U in W , we

can represent the Ak s and Bki s by power series in O(U){z}. By doing that and
adding the forms tk

k! ω̃k to obtain Ω̃, it is not difficult to see that we can write :

Ω̃ = dt+G(u, z, t) dz +

n−1

i=1

z.Hi(u, z, t) dui ,

where G,Hi ∈ O(U)[[z, t]]. Note that Ft.Ω̃ = dF is equivalent to

(3) Fz = G.Ft and Fui = z.Hi.Ft , i = 1, .., n− 1 .
Uniqueness. Suppose that F (u, z, t) = i,j≥0 fij(u) z

i.tj is a solution of the

problem. If we set fi(u, t) = j fij(u) t
j ∈ O(U)[[t]], then we can write F as

an element of (O(U)[[t]])[[z]] : F (u, z, t) = i fi(u, t) z
i. Note that f0(u, t) =

F (u, 0, t) = h(t). Similarly, we can write G(u, z, t) = i gi(u, t) z
i. Therefore, the

first relation in (3), Fz = G.Ft, gives

(4) (k + 1).fk+1(u, t) =

i+j=k

gj(u, t).
∂fi

∂t
(u, t) , k ≥ 0 ,

where ∂fi
∂t (u, t) = j (j + 1)fij+1(u) t

j ∈ O(U)[[t]]. This, of course, implies that F
is unique. Note that (4) implies that, if K ∈ O(U)[[z, t]] satisfies Kz = G.Kt and

K(u, 0, t) = 0 then K ≡ 0.
Existence. Relation (4) allows us to find, by induction on k ≥ 0, the coefficients
fi ∈ O(U)[[t]] of F ∈ (O(U)[[t]])[[z]] = O(U)[[z, t]] in such a way that Fz = G.Ft.
It remains to prove that F satisfies the others relations in (3). Let Θ := Ft.Ω̃.

Remark that Θ is integrable. On the other hand, we can write

Θ = Ft.dt+ Ft.G.dz +

i

z.Ft.Hi dui = dF +

i

Ki dui ,

where Ki = z.Hi.Ft−Fui . We want to prove that Ki ≡ 0 for all i = 1, ..., n−1. The
reader can check that the coefficient of dz ∧ dt ∧ dui in Θ ∧ dΘ is Fz.Kit − Ft.Kiz.

Since Θ ∧ dΘ = 0, we get
0 = Fz.Kit − Ft.Kiz = Ft (G.Kit −Kiz) = 0 =⇒ Kiz = G.Kit ,

because Ft ≡ 0. On the other hand, we have

Ki(u, 0, t) = −Fui(u, 0, t) = −
∂

∂ui
(F (u, 0, t)) = −∂h(t)

∂ui
= 0 .

This implies that Ki ≡ 0.
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Notations. Set Y = D × {0} ⊂ X̃ × C, 1 ≤ ≤ r. We will denote by FU the
solution given by lemma 3.1.1, for which FU (u, 0, t) = t. Note that FU ∈ Γ(U,OŶ ).
Let {[Wj , (uj , zj)]}j∈J be a collection of coordinate systems on X̃ such that for

all Uj := Wj ∩ D = (zj = 0) = ∅ is connected and ∪j∈J Uj = D . We will set

Uij = Ui ∩ Uj .
Corollary 3.1.1. If Uij = ∅ then the sections FUi and FUj coincide over Uij. In
particular, there exist formal functions F̂ and Ĝ along Y such that Ω̃ = Ĝ .dF̂ ,

Ĝ |Y = 1 and F̂ |Y = 0, 1 ≤ ≤ r.
Proof. The fact that FUi and FUj coincide over Uij follows from the uniqueness in

lemma 3.1.1. We leave the details of its proof for the reader. It implies that there

exists F̂ ∈ OŶ such that F̂ |Uj = FUj for all j ∈ J . Recall that the formal power
series FUj satisfies

∂FUj

∂t
.Ω̃ = dFUj .

Since FUj (u, 0, t) = t we get
∂FUj
∂t (u, 0, t) = 1, and so

∂FUj
∂t (u, 0, 0) = 1. It follows

that
∂FUj
∂t is an unit of the ring O(Uj)[[z, t]]. Therefore we can define GUj :=

(
∂FUj
∂t )

−1 ∈ O(Uj)[[z, t]], so that Ω̃ = GUj .dFUj for all j ∈ J . Of course, the first
part of the lemma implies that the sections GUi and GUj coincide over Uij = ∅.
Hence, there exists Ĝ ∈ Γ(Y ,OŶ ) such that Ω̃ = Ĝ .dF̂ .

Recall that ω̃ = Ω̃|(t=0). If we set f̂ := F̂ |(t=0) and ĝ := Ĝ |(t=0), then
Corollary 3.1.1 implies the following :

Remark 3.1.2. For all ∈ {1, ..., r} there exist f̂ , ĝ ∈ OD̂ such that ω̃ = ĝ .df̂ ,

f̂ |D ≡ 0 and ĝ |D ≡ 1. In particular, f̂ is a formal first integral of F̃ along D .

Now we consider a point p ∈ sing(D) which is a normal crossing of two irreducible
components of D, say Dm and Dn, m = n. In this case, we can find a local

coordinate system around p, [W, (u, zm, zn) ∈ Cn−2 × C2], such that u(p) = 0 ∈
Cn−2, zm(p) = zn(p) = 0 ∈ C, Umn := (zm = zn = 0) and Uj := Dj ∩W = (zj = 0)

are connected, for j = m,n.

With the above conventions, we can consider, in a natural way, O(Um)[[zn, t]]
and O(Un)[[zm, t]] as sub-rings of O(Umn)[[zm, zn, t]]. Let Fm(u, zm, zn, t) :=

FUm(u, zm, zn, t) ∈ O(Um)[[zn, t]] and Fn(u, zm, zn, t) := FUn(u, zm, zn, t) ∈
O(Un)[[zm, t]] be as in corollary 3.1.1. As the reader can check, the uniqueness
in lemma 3.1.1 implies the following :

Remark 3.1.3. The formal power series Fm and Fn coincide, when we consider

them as elements of O(Umn)[[zm, zn, t]]. In particular, there exists a formal func-
tion along Ym ∪ Yn, say F̂mn, such that F̂mn coincides with F̂m over Ym and with

F̂n over Yn.

Let us finish the proof of theorem 3.1. Remark 3.1.3 implies that there exist

a formal function along D × {0} ⊂ X̃ × C, say F̂ , such that F̂ coincides with

F̂ over Y , for all ∈ {1, ..., r}. On the other hand, we have seen in corollary
3.1.1 that Ω̃ = Ĝ .dF̂ over Y , where Ĝ = (∂F̂ /∂t)−1, for all . This implies

that Ω̃ = Ĝ.dF̂ , where Ĝ = (∂F̂ /∂t)−1. Note that, by construction, we have
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Ĝ|D×{0} = 1 and F̂ |D×{0} = 0. If we set f̂ := F̂ |(t=0) and ĝ := Ĝ|(t=0), then we get
ω̃ = ĝ.df̂ , as in remark 3.1.2. This finishes the proof of theorem 3.1.

3.2. Convergence of formal first integrals. Let f̂ and ĝ be as in theorem 3.1,

so that ω̃ = ĝ df̂ , f̂ |D = 0 and ĝ|D = 1. The aim of this section is to give conditions
for the convergence of f̂ and ĝ.

Let ĥ be a formal function along D ⊂ X̃. Given p ∈ D , 1 ≤ ≤ r, consider a
representative ĥ(u, z) = j≥0 hj(u) z

j ∈ O(U)[[z]] of ĥ over U , where p ∈ U ⊂ D .

We say that ĥ converges over U , if for every u ∈ U the series j≥0 hj(u) z
j ∈

C[[z]] converges. In this case, the power series defines a holomorphic function on a
neighborhood of U in X̃. Conversely, a holomorphic function in a neighborhood of

U in X̃ can be expanded as a power series in O(U)[[z]] and defines a section of OD̂
over U . This implies that the definition is independent of the coordinate system

used to express the power series.

We say that ĥ converges, if for any p ∈ D and any irreducible component D of

D such that p ∈ D , there exist a neighborhood U of p in D and a representative

of ĥ over U that converges. After this discussion, we have the following :

Remark 3.2.1. If ĥ converges then there exists a holomorphic function h on a

neighborhood of D in X̃ such that the section defined by h on Γ(D,OD̂) coincides
with ĥ.

Given p ∈ D, we will denote by Ôp (resp. Op) the ring of formal functions
along {p} ⊂ X̃ (resp. germs at p of holomorphic functions on X̃). Recall that

Ôp and Op are Noetherian rings. Note that, given a formal function ĥ along D,
p ∈ D and a formal power series that represents ĥ over some neighborhood of p

in D, say ĥ(u, z) = j hj(u) z
j , then it can expanded as a formal power series in

(u− u(p), z), so defining an element ĥp ∈ Ôp. We will call ĥp the germ of ĥ at p.

Lemma 3.2.1. Let f̂ be the formal first integral of F̃ given by theorem 3.1. Suppose
that there is p ∈ D such that the germ f̂p ∈ Ôp converges. Then f̂ converges.
Proof. Let A = {q ∈ D | the germ f̂q converges } = ∅. We will prove that A is

open and closed in D. Since D is connected, this will imply that A = D and the

lemma.

I. A is open in D. Let q ∈ A. Suppose that q ∈ D , 1 ≤ ≤ r. Since f̂q
converges, we can find a coordinate system [W, (u, z)] such that u(q) = 0 ∈ Cn−1,
z(q) = 0 ∈ C, q ∈ W ∩ D = (z = 0) is connected and f̂q can be represented by

a convergent series f̂(u, z) =
∞
σ,j aσ,j u

σ.zj . Suppose that the series converges in

the set V := {(u, z) | max(||u||, |z|) < ρ} ⊂ W . In this case, for all j ≥ 1, the series
fj(u) = σ aσ,j u

σ converges in the set U := {(u, 0) | ||u|| < ρ} ⊂ D . Hence,

the series f̂(u, z) = j fj(u) z
j ∈ O(U){z}, so that f̂ converges over U and f̂x

converges for every x ∈ U . This implies that A is open in D . Since the argument

is true for every such that q ∈ D , it follows that A is open in D.

II. If A∩D = ∅ then A ⊃ D . Since codX̃(sing(F̃)) ≥ 2, we get codD (sing(F̃)) ≥
1. It follows that the set B = D \ sing(F̃) is open, connected and dense in D .

Claim 3.2.1. If B is as above then A ⊃ B .
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Proof. First of all, A∩B is a non-empty open subset of D , because B is open and

dense in D . Fix q ∈ B . Since q /∈ sing(F̃) and D is invariant for F̃ (lemma 2.2.2),
we can find a coordinate system [W, (u, z)] such that q ∈ U := W ∩D = (z = 0)

is connected and F̃|W is defined by dz = 0. It follows that df̂ ∧ dz = 0, and so

f̂ can be represented over U by a power series of the form
∞
j=0 aj .z

j ∈ C[[z]].
This implies that : A ∩ U = ∅ ⇐⇒ A ⊃ U . Hence, A ∩ B is closed in B and

A ⊃ B .

Now, fix q ∈ sing(F̃) ∩ D and let us prove that q ∈ A. At this point, we will
use the following result (cf. [M-M]) :

Theorem 3.2.1. Let η be a germ of holomorphic integrable 1-form at 0 ∈ Cn, with
η(0) = 0 and codCn(sing(η)) ≥ 2. If η has a non-constant formal first integral then
η has a non-constant holomorphic first integral. Moreover, the holomorphic first

integral, say g ∈ On, can be choosen in such a way that g(0) = 0 and it is not a

power in On, that is g = g1, ≥ 2. In this case, any formal first integral f of η is
of the form f = ζ ◦ g, where ζ ∈ C[[t]] (power series in one variable).
Theorem 3.2.1 is consequence of Theorem A, page 472 in [M-M]. Given q ∈

D ∩ sing(F̃), write the germ of ω̃ at q as : ω̃q = k.η, where k ∈ Oq, η is integrable
and cod(sing(η)) ≥ 2. The germ f̂q is a non-constant formal first integral of η.

Hence, by theorem 3.2.1, F̃ has a non-constant holomorphic first integral, say

gq ∈ Oq, with gq(0) = 0, and such that f̂q = ζ ◦ gq, where ζ ∈ C[[t]]. Note that
ζ(0) = 0, because gq(q) = f̂q(q) = 0. Since D is invariant for F̃ we must have

gq|D ,q = 0, where D ,q denotes the germ of D at q.

Consider a representative g of gq in some polydisk ∆ around q. Note that

g|∆∩D ≡ 0. The polydisk ∆ is given in some coordinate [∆, (u, z)] as (||u|| <
, |z| < ) and U := ∆ ∩ D = (z = 0). Let f̂(u, z) = j≥1 fj(u) z

j ∈ O(U)[[z]]
be a representative of f̂ over U . We can also consider g ∈ O(∆) as an element of
O(U)[[z]]. Since g|U ≡ 0, we can compose the series ζ ∈ C[[t]] and g ∈ O(U)[[z]],
so that we can consider ζ ◦ g ∈ O(U)[[z]]. Note that ζ ◦ g ∈ O(U)[[z]] and f̂
coincide as elements of O(U)[[z]], because f̂q = ζ ◦ gq. Since B ∩ U = ∅ and
A ⊃ B , there exists (uo, 0) ∈ U such that the power series f̂(uo, z) is convergent.

It follows that the series ζ ∈ C[[t]] is convergent, because g(uo, z), f̂(uo, z) ∈ C{z}
and ζ ◦ g(uo, z) = f̂(uo, z). Hence, f̂ ∈ O(U){z}, which implies that q ∈ A.
Note, that II implies that A is the union irreducible components of D, and so it

is closed in D. This finishes the proof of lemma 3.2.1.

Corollary 3.2.1. Under the hypothesis of lemma 3.2.1, ĝ converges. Moreover,

there exist a ball B1 ⊂ B around 0 ∈ CN and f, g ∈ O(B1) such that f(0) = 0,

g(0) = 1 and ω = g.df on X∗ ∩B1.
Proof. Fix q ∈ D. Since df̂ converges and ω̃q = ĝq.df̂q ∈ Ω1q, it follows that

ĝq ∈ Oq. This implies that ĝ converges. Therefore, we can consider f̂ and ĝ as
holomorphic functions defined in a neighborhood Ṽ of D in X̃. We can suppose

that Ṽ = π(B1∩X), where B1 ⊂ B is a ball around 0 ∈ CN . Since π : X∗ → X̃ \E
is a biholomorphism, these functions induce holomorphic functions f1, g1 ∈ O(V ∗),
satisfying ω|V ∗ = g1.df1, where V ∗ = π−1(V \E). Now, f1 and g1 can be extended
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to holomorphic functions f, g ∈ O(B1), because X is 0-regular, and this proves the

corollary.

3.3. End of the proof of the main theorem. The idea is to prove that there

exists ζ ∈ C[[t]] such that ζ ◦ f̂ converges. The composition ζ ◦ f̂ is defined in such
a way that, if ζ(t) = i≥0 ai t

i and f̂(u, z) = j≥1 fj(u) z
j is a representative of

f̂ over some open set U ⊂ D , 1 ≤ ≤ r, then ζ ◦ f̂ is represented over U by the

formal power series in z, S(u, z) = ζ ◦ j≥1 fj(u) z
j . This series is well defined

because f̂ |U ≡ 0. The next result imples the main theorem :

Lemma 3.3.1. There exists ζ ∈ C[[t]] such that ζ(0) = 0, ζ (0) = 1 and ζ ◦ f̂
converges. In particular, there exist holomorphic functions f̃ := ζ ◦ f̂ and g̃ defined
in a neighborhood of D in X̃ such that ω̃ = g̃ df̃ .

Proof. Let us suppose for a moment that there exists ζ ∈ C[[t]] as in the conclusion
of the lemma. Since ω̃ = ĝ.df̂ , we have

f̃ = ζ ◦ f̂ =⇒ df̃ = ζ ◦ f̂ .df̂ =⇒ df̂ = ĥ.df̃ ,

where ĥ = (ζ ◦ f̂)−1 and ĥ|D = 1. This implies ω̃ = g̃.df̃ , where g̃ = ĝ.ĥ. Since ω̃
and df̃ are convergent, so is g̃. Moreover, g̃|D = 1. Let us prove the existence of ζ.
Let Di be an irreducible component of D and p ∈ Di be fixed. Let [W, (u, z)]

be a coordinate system around p such that p ∈ U := W ∩ Di = (z = 0) and

f̂ has a representative f̂(u, z) ∈ O(U)[[z]] over U . Since f̂(u, 0) ≡ 0, we get

f̂(u, z) = zk(U).fU (u, z), k(U) ≥ 1, fU ∈ O(U)[[z]] and fU (u, 0) ≡ 0.
Remark 3.3.1. The integer k(U) depends only of the irreducible component Di.

It will be called the multiplicity of f̂ at Di and will be denoted by ki.

We leave the proof of the above remark for the reader. Since Ôp is a noetherian

ring, the germ f̂p ∈ Ôp of f̂ at p can be decomposed as
f̂p = z

ki .ĥm1
1 ...ĥms

s ,

where mj ≥ 1, ĥj(p) = 0 and ĥj is irreducible in Ôp for all j = 1, ..., s.
Claim 3.3.1. For each j ∈ {1, ..., s} there exist hj ∈ Op and v̂j ∈ Ôp such that
v̂j(p) = 0 and ĥj = v̂j .hj . In particular, each hj is invariant for F̃ . Moreover, we
can write f̂p = α̂.zki .hm1

1 ...hms
s , where α̂ ∈ Ôp and α̂(0) = 0.

Notation. The germs (z = 0), (h1 = 0), ..., (hs = 0) will be called the separatrices

of F̃ through p. The integer mj ≥ 1 will be called the multiplicity of the separatrix
(hj = 0), 1 ≤ j ≤ s.
Proof. It follows from theorem 3.2.1 that the germ of F̃ at p has a first integral

g ∈ Op such that f̂p = μ ◦ g, where μ ∈ C[[t]] and μ(0) = 0. We can set μ(t) =

tm.β(t), where m ≥ 1, β ∈ C[[t]] and β(0) = 0. It follows that f̂p = γ̂.gm, where

γ̂ = β ◦ g ∈ Ôp and γ̂(0) = 0. If we write the decomposition of g into irreducible
factors in Op as g = z .h 1

1 ...h
r
r then we get

f̂p = z
ki .ĥm1

1 ...ĥms
s = γ̂m.zm. .hm. 11 ...hm. rr =⇒ r = s

and we can suppose that ĥj = v̂j .hj , where v̂j ∈ Ôp and v̂j(0) = 1, for all j =

1, ..., s. In this case we get, ki = m. and mj = m. j , for all j = 1, ..., s, and
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f̂p = α̂.zki .hm1
1 ...hms

s , where α̂ = v̂m1
1 ...v̂ms

s . The fact that α̂.zki .hm1
1 ...hms

s is a

formal first integral for F̃ implies that each hj is invariant for F̃ . We leave the
proof of this last assertion for the reader.

Let S = (h = 0) be a germ of separatrix of F̃ at p, where h ∈ Op is irreducible.
We have two possibilities : either S is contained in some irreducible component of

E, or not.

Claim 3.3.2. Let m be the multiplicity of h in f̂p. If m ≥ 2 then S is contained
in some irreducible component C of E. In this case, C is invariant for F̃ .
Proof. It follows from claim 3.3.1 that we can write f̂p = h

m.φ̂, where φ̂ ∈ Ôp. We
have

ω̃p = ĝp.df̂p = ĝp.d(h
m.φ̂) = hm−1 ĝp.(m.φ̂.dh+ h.dφ̂) .

Hence, h divides all coefficients of ω̃p and (h = 0) ⊂ sing(ω̃). Since

codX∗(sing(F)) ≥ 3 and ω̃ represents F̃ on X̃ \ E, any irreducible component
of sing(ω̃) which cuts X̃ \ E has codimension ≥ 3. This implies that (h = 0) ⊂ E,
because (h = 0) has codimension one. Since h is irreducible in Op, it follows that
(h = 0) must be contained in some irreducible component of E, say C. This com-

ponent C contains a non-empty open subset (in C) which is invariant for F̃ and

this implies that it is invariant for F̃ .
Lemma 3.3.2. Suppose that there exists p ∈ D and a separatrix of F̃ through p,

say (h1 = 0), with multiplicity one. Then the conclusions of lemma 3.3.1 are true.

Proof. In this case, the germ f̂p ∈ Ôp can be written as f̂p = α̂.h1.h
m2
2 ...hms

s , where

α̂ is an unit in Ôp. It follows from theorem 3.2.1 that F̃p has a first integral g ∈ Op
such that g(p) = 0 and f̂p = β ◦ g, where β ∈ C[[t]]. Clearly β(0) = 0. Let us

prove that β (0) = 0. Set β(t) = t .μ(t), where ≥ 1, μ ∈ C[[t]] and μ(0) = 0. Let
g = gn11 ...g

nk
k be the decomposition of g into irreducible factors. Then

α̂.h1.h
m2
2 ...hms

s = β ◦ g = g .μ ◦ g = μ ◦ g. g .n1
1 ...g .nk

k .

Since α̂ and μ ◦ g are units in Ôp, it follows that there is j ∈ {1, ..., k} such that
g
.nj
j and h1 differ by an unit in Op, so that .nj = 1. Therefore, = nj = 1, which

implies that β (0) = 0.

Since β (0) = 0 there exists ζ ∈ C[[t]] such that ζ ◦ β(t) = t. It follows that g =
ζ ◦ f̂p = (ζ ◦ f̂ )p. This implies that there exists p ∈ D such that (ζ ◦ f̂ )p converges.
Hence, ζ ◦ f̂ satisfies the hypothesis of lemma 3.2.1, and so it converges.
The next result will imply lemma 3.3.1 and the main theorem.

Lemma 3.3.3. There exists p ∈ D and a separatrix of F̃ through p with multiplicity
one.

Proof. The proof will be by contradiction. Suppose by contradiction that F̃ has

no separatrix of multiplicity one. Let H be a -plane of CN , where = N − n+ 2,
such that 0 ∈ H. Denote by H̃ be the strict transform of H ∩X by Π.

We can assume that H̃ ∩ E = H̃ ∩ D. If sing(X) = {0} then D = E and

the assertion is trivially true. Suppose that sing(X) = {0}. In this case, the

closure of E \ D in B̃ is the strict transform of sing(X) by Π. Recall that the

first blowing-up in the process was a blowing-up at 0 ∈ B ⊂ CN . Denote it by
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Π1 : (B1,PN−1) → (B, 0). Let C and H1 be the strict transforms of sing(X) and

H respectively by Π1. Since dim(H1) = N−n+2, dim(C) = dim(sing(X)) ≤ n−3
and (N − n+ 2) + (n− 3) = N − 1 < dim(B1), if we choose H in such a way that

H1 is transverse to all strata of C then C ∩ H1 = ∅. This, of course, implies the
assertion.

In the above situation, we have X ∩ H = (X∗ ∩ H) ∪ {0}. It follows from

the theory of transversality that we can choose H in such a way that it cuts X∗

transversely, so that any irreducible component of X∩H has an isolated singularity

at 0 ∈ CN and has dimension 2 = (N − n+ 2) + n−N .
Let S ⊂ X̃ be an irreducible component of the strict transform of H ∩X by Π

(dim(S) = 2). Since H̃ ∩ E = H̃ ∩D and all separatrices F̃ have multiplicity ≥ 2,
it follows from claim 3.3.2 that, if p ∈ S ∩ D and h is a separatrix of F̃ through

p then (h = 0) ⊂ D. Note that S∗ := S \ D is smooth of dimension 2, so that

sing(S) ⊂ D. After new blowing-ups involving only points or curves contained in
S ∩D, we can assume that :
(F). S is smooth and cuts transversely all the irreducible componentsDj , 1 ≤ j ≤ r.
We can assume also that for each j ∈ {1, ..., r} the curve S ∩Dj is smooth and cuts
tranversely Dj ∩Di, for all i = j.
Let D ∩ S = ∪sj=1 C j be the decomposition of D ∩ S into irreducible compo-

nents. Denote by [C j ] the class in H
2
DR(S) of the divisor C j . Let L ∈ H2

DR(S) be

defined by

(5) L =

r

=1

s

j=1

k .[C j ] :=
σ

kσ [Cσ] .

In (5) we set kσ = k if σ = ( j). Since S ∩ D is contracted to a point by Π,

it follows that L2 < 0, because the intersection matrix ([Cσ].[Cμ])σμ is negative

defined (cf. [La]).

Let i : S → X̃ be the inclusion map and G = i∗(F̃) be the induced foliation.
It follows from (F) that the singularities of G are the corners C j ∩ Cmi = ∅,
where = m. Moreover, the Camacho-Sad index (cf. [C-S] or [Su]) of G at a
point p ∈ C j ∩ Cmi with respect to C j , denoted by CS(G, C j , p), is −km/k .
This follows from the fact that F̃ has a first integral of the form zkmm .zk in a

neighborhood of the point, where (z = 0) and (zm = 0) are local equations of D

and Dm, respectively (see theorem 3.2.1). It follows from Camacho-Sad theorem

(cf. [C-S] or [Su]) that

(6) [Cσ]
2 =

p∈Cσ
CS(G, Cσ, p) = −

p∈Cσ∩Cμ
μ=σ

kμ/kσ = − 1
kσ

μ=σ

kμ.[Cσ].[Cμ]

On the other hand, (5) and (6) imply that

L2 =
σ

k2σ [Cσ]
2 +

μ=σ

kμ.kσ [Cμ].[Cσ] = 0 ,

a contradiction. This contradiction implies lemma 3.3.3 and the main theorem.
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4. Appendix.

In this appendix X will be an irreducible complete intersection germ at 0 ∈ CN
of analytic set. In this case, the generating ideal of X has generators f1, ..., fk ∈ ON
such that dimC(X) + k = N . From now on we will fix these generators. Let B be

a ball around 0 ∈ CN such that f1, ..., fk have representatives, which by simplicity

we will denote by the same letters. The ball B will be taken small in such a

way that (f1 = ... = fk = 0) is irreducible in B. For simplicity, we will denote

X = (f1 = ... = fk = 0). We will set sing(X) = {p ∈ B | df1(p) ∧ ... ∧ dfk(p) = 0}
and X∗ = X \ sing(X). We will suppose that sing(X) = ∅. Note that X∗ is a
holomorphic sub-manifold of complex dimension n = N − k of B \ sing(X).
With these conventions in mind, we will prove the following results :

Proposition 4.0.1. Suppose that dim(sing(X)) ≤ dim(X) − 2. Then any holo-
morphic function g ∈ O(X∗) can be extented to a holomorphic function g̃ ∈ O(B).
In particular, the germ of X at 0 ∈ CN is 0-regular.

Proposition 4.0.2. Suppose that dim(sing(X)) ≤ dim(X) − 3. Then any holo-
morphic 1-form ω ∈ Ω1(X∗) can be extended to a holomorphic 1-form ω̃ ∈ Ω1(B).
In particular, the germ of X at 0 ∈ CN is 1-regular.

Proposition 4.0.3. If dim(sing(X)) ≤ dim(X)− 3 then H1(X∗,O) = 0.
In the next result, we will consider the case of a complete intersection X =

(f1 = ... = fk = 0) ⊂ B, with an isolated singularity at 0 ∈ CN . In this case,
X∗ = X \ {0}.
Proposition 4.0.4. Suppose that sing(X) = {0} and dimC(X) ≥ 4. If the ball B
is small enough then H1(X∗,O∗) = 1.
Next we state some facts that will be used in the proof of the above results. The

first one is the following (cf. [G-R] page 133) :

Theorem 4.0.1. Let Z be an analytic subset of a Stein manifoldM with dim(M) =

N . If dim(Z) ≤ N − − 2 then Hj(M \ Z,O) = 0 for 1 ≤ j ≤ .

The second one, is a consequence of De Rham-Saito division theorem (cf. [D-R]

and [S]) and the fact that X = (f1 = ... = fk = 0) ⊂ B is a complete intersection.

Let U be a Stein open subset of B \sing(X) and V = X∗ ∩U = ∅. Let ej ∈ O(B)k
be defined as ej = (0, ..., 0, 1, 0, ..., 0), where the 1 appears in the j

th position. Set

(7) F =

k

j=1

fj . ej ∈ Λ1(Ok(B)) .

Theorem 4.0.2. If Gj ∈ Λj(O(U)k) is such that Gj ∧ F = 0 and 1 ≤ j ≤ k − 1
then there exists Hj−1 ∈ Λj−1(O(U)k) such that Gj = Hj−1 ∧ F .
The third is also a consequence of the fact that X is a complete intersection and

that sing(X) = {q ∈ X | df1(q) ∧ ... ∧ dfk(q) = 0}.
Remark 4.0.2. Let U be a Stein open subset of B\sing(X) and V = X∩U ⊂ X∗.
If h ∈ O(U) is such that h|V ≡ 0 then there exist h1, ..., hk ∈ O(U) such that

h =

k

j=1

hj . fj |U .
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Fix a Leray covering U = (Uj)j∈J of B \ sing(X).
Definition 4.0.1. Let Σ = {Eσ := eσ1 ∧ ... ∧ eσ | 1 ≤ σ1 < ... < σ ≤ k}. An
-vector of s-cochains in U is an element Gs = σ∈Σ gσEσ, where gσ ∈ Cs(U ,O)
for all σ ∈ Σ . Its coboundary, defined by δGs = σ δgσEσ, is an -vector of

(s+ 1)-cochains. The set of -vectors of s-cochains in U will be denoted by Λs(U).
In the case = 0 we set Λ0s(U) = Cs(U ,O).
The following consequence of theorem 4.0.2 will be usefull :

Lemma 4.0.4. Fix s, integers with s ≥ 1 and 1 ≤ ≤ k − 1. Assume that
Hj(B \ sing(X),O) = 0 for 1 ≤ j ≤ s + . Let Gs ∈ Λs(U) be be such that
δGs ∧ F = 0. Then there exist H −1

s ∈ Λ −1s (U) and Hs−1 ∈ Λs−1(U) such that
Gs = H

−1
s ∧ F + δHs−1.

Proof. Note that δGs ∧ F = 0 and theorem 4.0.2 imply that there exists G −1s+1 ∈
Λ 1
s+1(U) such that

δGs = G
−1
s+1 ∧ F =⇒ δG −1s+1 ∧ F = 0 .

When = 1, the last relation implies that δG0s+1 = 0, and so G
0
s+1 = δH0

s for some

H0
s ∈ Cs(U ,O), because Hs+1(U ,O) = 0. In this case, we get

δ(G1s −H0
s .F ) = 0 =⇒ G1s = H

0
s .F + δH1

s−1 ,

where H1
s−1 ∈ Λ1s−1(U), because Hs(U ,O) = 0.

When > 1, we get by induction that for all j ∈ {0, ..., − 1} there exists
G
j
s+ −j ∈ Λjs+ −j(U) such that

(8) δG
j+1
s+ −j−1 = G

j
s+ −j ∧ F =⇒ δG

j
s+ −j ∧ F = 0 .

If we do j = 0 in the second relation in (8) we get

δG0s+ = 0 =⇒ G0s+ = δH0
s+ −1 ,

because Hs+ (U ,O) = 0. Hence,
δ(G1s+ −1 −H0

s+ −1 ∧ F ) = 0 =⇒ G1s+ −1 = H
0
s+ −1 ∧ F + δH1

s+ −2 ,

because Hs+ −1(U ,O) = 0. It follows that
δG2s+ −2 = (H

0
s+ −1 ∧ F + δH1

s+ −2) ∧ F = δH1
s+ −2 ∧ F =⇒

δ(G2s+ −2 −H1
s+ −2 ∧ F ) = 0 =⇒ G2s+ −2 = H

1
s+ −2 ∧ F + δH2

s+ −3
and by induction that there exists H −1

s ∈ Λ −1s (U) such that
... δ(Gs −H −1

s ∧ F ) = 0 =⇒ Gs = H
−1
s ∧ F + δHs−1

where Hs−1 ∈ Λs−1(U).

Proof of proposition 4.0.1 Observe first that dim(X) = N − k, and so

dim(sing(X)) ≤ N−k−2. It follows from theorem 4.0.1 that Hj(B\sing(X),O) =
0 for 1 ≤ j ≤ k.
Fix a holomorphic function g ∈ O(X∗) and let us prove that it can be extended

to a holomorphic function g̃ ∈ O(B).
Let U = (Uj) be a Leray covering of B \ sing(X). Define Vj = Uj ∩ X∗ and

V = (Vj). We will use the notations Uij = Ui ∩ Uj and Vij = Vi ∩ Vj .
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For each j let gj ∈ O(Uj) be an extension of g|Vj to Uj . If Vj = ∅ we define
gj = 0. Since (gj − gi)|Vij ≡ 0, it follows from remark 4.0.2 that there exist

1-cochains g11 , ..., g
k
1 , g

r
1 = (g

r
ij)Uij=∅, r = 1, ..., k, such that

(9) gj − gi =
k

r=1

grij fr .

Let F be as in (7). Consider the (k − 1)-vector of 1-cochains Gk−11 defined by

(Gk−11 )ij =

k

r=1

(−1)r−1 grij e1 ∧ ... ∧ êr ∧ ... ∧ ek

and the k-vector of 0-cochains Gk0 defined by (G
k
0)j = gj e1 ∧ ... ∧ ek. Then (9) is

equivalent to

δGk0 = G
k−1
1 ∧ F =⇒ δGk−11 ∧ F = 0 .

Since Hj(B \ sing(X),O) = 0 for 1 ≤ j ≤ k, we get from lemma 4.0.4 that there

exist Hk−2
1 ∈ Λk−21 (U) and Hk−1

0 ∈ Λk−10 (U) such that Gk−11 = Hk−2
1 ∧F + δHk−1

0 ,

which implies

(10) δ(Gk0 −Hk−1
0 ∧ F ) = 0

If we set

(Hk−1
0 )j =

k

r=1

(−1)r−1 hrj e1 ∧ ... ∧ êr ∧ ... ∧ ek , hrj ∈ O(Uj) .

then (10) is equivalent to

gj − gi =
k

r=1

(hrj − hri ).fr =⇒ ∃ g̃ ∈ O(B \ sing(X)) s.t. g̃|Uj = gj −
k

r=1

hrj .fr .

The function g̃ extends g to X \ sing(X). Since cod(sing(X)) ≥ 2, it follows from
Hartogs’ theorem that g̃ can be extended to B.

Proof of proposition 4.0.3 It follows from theorem 4.0.1 that Hj(B \
sing(X),O) = 0 for 1 ≤ j ≤ k + 1, because dim(sing(X)) ≤ N − k − 3 =
N − (k + 1)− 2.
Let U = (Uj)j∈J be a Leray covering of B \ sing(X) and V = (Vj)j∈J be defined

by Vj = Uj ∩ X∗. Since V is a Leray covering of X∗ it is sufficient to prove that
H1(V ,O) = 0.
Fix g1 = (gij)Vij=∅ ∈ Z1(V ,O). We want to prove that g1 = δh0, where h0 =

(hj)j ∈ C0(V ,O). Extend each gij to g̃ij ∈ O(Uij), thus obtaining g̃1 = (g̃ij)Uij=∅ ∈
C1(U ,O). Set δ g̃1 := (g̃ij )Uij =∅, where g̃ij = g̃ij + g̃j + g̃ i. If Vij = ∅ then
g̃ij |Vij = gij + gj + g i = 0. It follows from remark 4.0.2 that

(11) g̃ijk =

r=1

grijk .fr ,

where grijk ∈ O(Uijk). Let Gk−12 ∈ Λk−12 (U) be defined by

(Gk−12 )ij =

k

r=1

(−1)r−1 grij e1 ∧ ... ∧ êr ∧ ... ∧ ek .



19

Then (11) is equivalent to

(12) δg̃1 e1 ∧ ... ∧ ek = Gk−12 ∧ F =⇒ δGk−12 ∧ F = 0 ,
where F is as in (7). Therefore, lemma 4.0.4 implies that there exist Hk−2

2 ∈
Λk−22 (U) and Hk−1

1 ∈ Λk−11 (U) such that
Gk−12 = Hk−1

2 ∧ F + δHk−1
1 =⇒ δg̃1 e1 ∧ ... ∧ ek = δHk−1

1 ∧ F =⇒
δ(g̃1 e1 ∧ ... ∧ ek −Hk−1

1 ∧ F ) = 0 =⇒ g̃1 e1 ∧ ... ∧ ek = Hk−1
1 ∧ F + δHk

0 ,

where Hk
0 = h0e1 ∧ ... ∧ ek, h0 = (hj)j ∈ C0(U ,O). Since F |X∗ = 0, it follows that

gij − (hj − hi)|Vij = [g̃ij − (hj − hi)] |Vij = 0 ,
if Vij = ∅. Hence H1(X∗,O) = 0.
Proof of proposition 4.0.2 Recall that X = (f1 = ... = fk = 0) ⊂ B. For

1 ≤ ≤ k, set X = (f1 = ... = f = 0) and X∗ = X \ sing(X ). Note that

sing(X ) = {p ∈ X | df1(p)∧...∧df (p) = 0} and that X is a complete intersection

of dimension N − . We set also, X∗0 = B \ sing(X). In this way, we have B \
sing(X) = X∗0 ⊃ X∗1 ⊃ ... ⊃ X∗k = X∗. Note that H1(X∗0 ,O) = 0 (see theorem

4.0.1). We need a lemma.

Lemma 4.0.5. For all 1 ≤ ≤ k we have dim(sing(X )) ≤ dim(X ) − 3. In
particular, H1(X∗,O) = 0 for all 0 ≤ j ≤ k.
Proof. For = k this is the hypothesis. Let 1 ≤ < k. If we set W = (f +1 = ... =

fk = 0) then dim(W ) = N − (k − ). On the other hand,

W ∩ sing(X ) = (f1 = ... = fk = 0) ∩ (df1 ∧ ... ∧ df = 0) ⊂ sing(X) .
This implies that

dim(W ∩ sing(X )) ≤ dim(sing(X)) ≤ dim(X)− 3 = N − k − 3 .
On the other hand, we have

dim(W∩sing(X )) ≥ dim(W )+dim(sing(X ))−N = dim(sing(X ))−k+ =⇒
dim(sing(X )) ≤ N − − 3 = dim(X )− 3 .

Fix ω∗ ∈ Ω1(X∗). Let U = (Uj) be a Leray covering of B \ sing(X). Set

Vj = Uj ∩X∗ and V = (Vj). Since Uj is Stein, we can extend ω∗|Vj to ωj ∈ Ω1(Uj).
Assertion 4.0.1. We can find the extensions ωj of ω

∗|Vj in such a way that, if
Uij = ∅ then

(13) ωj − ωi =
k

r=1

fr.α
r
ij where α

r
ij ∈ Ω1(Uij) .

Proof. Since ωj − ωi |Vij = 0, we can write

ωj − ωi =
k

r=1

grij .dfr +

k

r=1

fr.α
r
ij where g

r
ij ∈ O(Uij) and αrij ∈ Ω1(Uij) .

Let gr ∈ C1(V ,O) be defined by gr = (grij |Vij )Vij=∅. We assert that gr ∈ Z1(V ,O),
for all r ∈ {1, ..., k}.



20

Let us prove the assertion for r = 1. Fix p ∈ Vij = ∅. Then ωj(p) − ωi(p) =
k
r=1 g

r
ij(p).dfr(p). Since df1(p) ∧ ... ∧ dfk(p) = 0, we get

(ωj(p)− ωi(p)) ∧ df2(p) ∧ ... ∧ dfk(p) = g1ij(p).df1(p) ∧ ... ∧ dfk(p) =⇒
=⇒ g1ij(p) + g

1
j (p) + g

1
i(p) = 0 , if =⇒ δ g1 = 0 .

In a similar way, we get δgr = 0 for all r ≥ 2. Since H1(X∗,O) = 0, for all

r = 1, ..., k, there exists hr = (hrj)Vj=∅ ∈ C0(V ,O) such that gr = δhr. Extend

hrj ∈ O(Vj) to h̃rj ∈ O(Uj) (if Vj = ∅ set h̃rj = 0). Define ω̃j = ωj − k
r=1 h̃

r
j .dfr.

For p ∈ Vij = ∅ we have

ω̃j(p)− ω̃i(p) =
k

r=1

(grij(p)− hrj(p) + hri (p)).dfr(p) = 0 .

This implies that all coefficients of ω̃j− ω̃i vanish on Vij . Hence, there exist 1-forms
α̃rij ∈ Ω1(Uij) such that

ω̃j − ω̃i =
k

r=1

fr.α̃
r
ij

Assertion 4.0.2. Let 1 ≤ ≤ k. Suppose that there exists ω∗ ∈ Ω1(X∗) such that
ω∗|X∗ = ω∗. Then there exists ω∗−1 ∈ Ω1(X∗−1) such that ω∗−1|X∗ = ω∗.

Proof. Let ω∗ be as in the hypothesis. It follows from assertion 4.0.1 that there

exist ωj ∈ Ω1(Uj) and αrij ∈ Ω1(Uij) (Uij = ∅) such that

ωj − ωi =
j=1

fr.α
r
ij

Write αij =
N
s=1 a

s
ij dxs, where a

s
ij ∈ O(Uij). If p ∈ Uij ∩X∗−1, then

(14) ωj(p)− ωi(p) = f (p).αij(p) = f (p).
N

s=1

asij(p) dxs .

It follows from (14) that, if Uijr ∩X∗ = ∅ then asij(p) + asjr(p) + asri(p) = 0, which
implies that (asij |Uij∩X∗)Uij∩X∗=∅ ∈ Z1(U ∩X∗,O).
Since H1(X∗−1,O) = 0, for all s = 1, ..., N , there exists cs := (csj)Uj∩X∗−1=∅ ∈

C0(U ∩X∗,O) such that asij |Uij∩X∗ = csj − csi .
Extend csj to h

s
j ∈ O(Uj) and define ηj ∈ Ω1(Uj) by ηj = N

s=1 h
s
j dxs. Set

ω̃j = ωj − f .ηj .
The reader can check that, if p ∈ X∗−1 then

ω̃j(p)− ω̃i(p) = 0 =⇒ ∃ω∗−1 ∈ Ω1(X∗−1)
such that ω∗−1|Uj∩X∗−1 = ω̃j |Uj∩X∗−1 .
The last assertion implies that there exists ω∗0 ∈ Ω1(B \ sing(X)) such that

ω∗0 |X∗ = ω∗. Finally, Hartogs theorem implies that ω∗0 can be extended to a 1-form
ω ∈ Ω1(B), whose restriction to X∗ coincides with ω∗.
Proof of proposition 4.0.4 Let X = (f1 = ... = fk = 0) ⊂ B be a complete

intersection with an isolated singularity at 0 ∈ B ⊂ CN and dim(X) ≥ 4. We take
the ball B with small radius, in such a way that :
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(i). For any smaller ball Br := {z ∈ CN ; ||z|| ≤ r} ⊂ B then the sphere Sr = ∂Br
is transversal to X. This implies that Nr := Sr ∩ X is a real smooth compact

submanifold of CN of dimRNr = 2 dimC(X)− 1.
(ii). X∗ has a conical structure, that is, it is homeomorphic to Nr × R.
We want to prove that H1(X∗,O∗) = 1. As we have seen, H1(X∗,O) = 0. It

follows from the exact sequence

0 = H1(X∗,O) → H1(X∗,O∗) δ∗→ H2(M,Z) → ...

that it is sufficient to prove that δ∗ = 0. In fact, we will prove that X∗ is sim-
ply connected and that H2(X∗,Z) is finite. Let us prove that this implies that
H1(X∗,O∗) = 1.
Since δ∗ is injective, we get that H1(X∗,O∗) is finite. Let r = #(H1(X∗,O∗)).

Fix a Leray covering ,V = (Vj)j , of X
∗ and let g = (gij)Vij=∅ be a multiplicative

cocycle. We can assume that grij = 1. This implies that if Vij = ∅ then gij is a
constant, a rth-root of the unity. Therefore, g is a cocycle in H1(V, S1), where
S1 ⊂ C is the unit circle, considered as a multiplicative group. But, Π1(X∗) = 1
implies that H1(X∗, S1) = 1. Hence, g 1.

It follows from (ii) that X∗ has the same homotopy type of Nr. Therefore, it
is sufficient to prove that Π1(Nr) = 1 and H

2(Nr,Z) is finite. For the proof that
H2(Nr,Z) is finite, it is sufficient to prove that β2(Nr) = 0, so that we will prove
that H2(Nr,Z) = 0, which implies β2(Nr) = 0.
Given = ( 1, ..., k), define

F := (f1 = 1, ..., fk = k) ∩Br , Ḟ := F \ Sr and N := F ∩ Sr .
Since X cuts Sr transversely at Nr, it follows that, if || || := | 1| + ... + | k| is

small then N is homeomorphic to Nr. On the other hand, the following facts are

known :

(iii). If min{| 1|, ..., | k|} > 0 and || || is small then Ḟ is smooth and so a Stein

manifold. This fact implies that :

(iv). The inclusion N
i→ F induces isomorphisms

Π1(N )
i∗→ Π1(F ) ,if dimC(F ) ≥ 3

and

H2(N ,Z) i∗→ H2(F ,Z) ,if dimC(F ) ≥ 4 .
(v). (Milnor-Hamm). F has the homotopy type of a finite cell complex of real

dimension dimC(X) and is dimC(X)− 1 connected (cf. [L] pg. 72-73).
Since dimC(F ) = dimC(X) ≥ 4, we get from (iv) that

Π1(N ) Π1(F ) and H2(N ,Z) H2(F ,Z)

and from (v) that Π1(F ) = 1 and H2(F ,Z) = 0, which finishes the proof of the
proposition.
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linéaire”; Comm. Math. Helvetici, 28 (1954), pp. 346-352.

[G-H] Griffiths-Harris : ”Principles of Algebraic Geometry”; John-Wiley and

Sons, 1994.

[G-R] H. Grauert and R. Remmert : ”Theory of Stein Spaces” ; Grundlehren der

mathematishen Wissenschaften 236, Springer Verlag, 1979.

[Go] C. Godbillon: Feuilletages : Études géométriques. With a preface by G.
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