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Abstract

In this paper we consider the propagation of water waves in a long-wave asymptotic regime,

when the bottom topography is periodic on a short length scale. We perform a multiscale asymp-

totic analysis of the full potential theory model and of a family of reduced Boussinesq systems

parameterized by a free parameter that is the depth at which the velocity is evaluated. We obtain

explicit expressions for the coefficients of the resulting effective KdV equations. We show that it is

possible to choose the free parameter of the reduced model so as to match the KdV limits of the full

and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly

dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a

microstructure. We also discuss the impact of the rough bottom on the effective wave propagation.

In particular nonlinearity is enhanced and we can distinguish two regimes depending on the period

of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom

case.
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I. INTRODUCTION

The surface elevation of a body of fluid with a periodically varying bottom for two-

dimensional flows has been the subject of many papers in the last decades. Different asymp-

totic regimes can be addressed. Nevertheless research efforts has been mostly concentrated

in the Bragg resonance regime [1–7] namely a regime where the water wavelength and the

bottom wavelength are comparable. Linear and weakly nonlinear (solitary) waves have been

addressed in these works. Very little work has been devoted to rapidly varying topographies

as well as for bottoms with abrupt slope variations.

The objective of this paper is to describe the wave propagation in a long-wave asymp-

totic regime, when the bottom topography is periodic on a short length-scale and having

an arbitrary slope profile. In [8] Rosales and Papanicolaou derived an effective Korteweg-de

Vries (KdV) equation by using a multiscale expansion technique on the potential theory

formulation of the problem. In [9] Craig et al. give an alternate derivation of the effective

KdV, by applying a perturbation technique on the Hamiltonian system for the Euler equa-

tions for water waves. In addition, they consider both the two- and three-dimensional cases

in their analysis, and they obtain effective Boussinesq equations that describe the motion

of bidirectional long waves. However, the coefficients of the effective KdV equations are not

given explicitly in these works, but they are expressed as averages of solutions of auxiliary

problems. The first goal of our paper is to obtain explicit expressions for the coefficients

of the effective KdV equation in the two-dimensional case, which will allow us to discuss

the impact of the rough bottom on the wave propagation. Then, having these explicit KdV

equations at hand, we obtain an optimal Boussinesq system for shallow water (long) wave

interaction with a microstructure, here the rapidly varying topography.

Recently Nachbin has obtained a terrain-following Boussinesq system that is a weakly

nonlinear, weakly dispersive approximation of the potential theory formulation in the pres-

ence of a varying bottom [10]. This was obtained through the use of a conformal mapping

transformation in order to change the coordinate system. In the new coordinate system

abrupt bottom variations of large amplitude can be dealt with. This mapping strategy was

also used in [5] for the Bragg resonance case. Moreover this formulation represents a dra-

matic reduction of the complexity of the problem, since only one spatial terrain-following

coordinate is (asymptotically) used and therefore the space dimension is reduced by one
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compared to the potential theory equations. In this paper, we show that is possible to

obtain an effective KdV equation from this simplified system without solving auxiliary cell

problems. This effective KdV equation has similar properties as those obtained in [8, 9]

and allows us to consider more general bottom profiles. For example the profiles can be

discontinuous or even multi-valued, with the additional advantage that explicit expressions

are obtained for the coefficients of the effective KdV equation. This fact plays an important

role in answering our first goal.

As we shall see, the reduced Boussinesq system presented in this paper is parameterized

by a free parameter, namely the depth at which the velocity is evaluated. The choice of this

free parameter is determined by the specification of the physical properties that the reduced

model is required to reproduce with accuracy, when compared to the full potential theory

model. Different criteria may lead to different optimized values for the free parameter

[11–13]. Hence our second goal in this paper is to show that it is possible to choose the

free parameter of our family of Boussinesq systems so that the KdV limit of the reduced

model is the same as the KdV limit of the full potential theory model. Thus the reduced

model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear

characteristics of the underlying physical problem, in the presence of a microstructure.

The paper is organized as follows. In Section II we formulate the full potential theory.

The reduced Boussinesq system is presented in Section III. In Sections IV-V we perform a

multiscale analysis of the two models in the presence of a periodic bottom and we derive

the limit KdV equations. In particular, the optimization of the reduced Boussinesq model is

addressed in Subsection VE and the explicit expressions for the coefficients of the effective

KdV equation are discussed in Subsection VF.

II. THE EQUATIONS OF MOTION

We are in a regime where the fluid dynamic problem is governed by the Euler equations

with a free surface at the top of the fluid domain y = αη(x, t). The wave profile is described

by η(x, t). Using the fact that the flow is incompressible and irrotational the problem can

be recast in terms of a velocity potential φ(x, y, t), such that the velocity field is given by

(ũ, ṽ) = ∇φ. Following Rosales and Papanicolaou [8], the dimensionless nonlinear potential
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theory equations are

βφxx + φyy = 0, in −
√

βH(x/ε) < y < αη(x, t),

with free surface conditions at y = αη(x, t):

φt +
α

2
(φ2

x +
1

β
φ2

y) + η = 0,

ηt + αφxηx −
1

β
φy = 0,

and a Neumann condition
β

ε
H ′(

x

ε
)φx + φy = 0

along the highly variable topography described by y = −
√

βH(x/ε). The parameter α is

the ratio of the typical wave amplitude over the mean depth. It governs the strength of

the nonlinearity. The parameter β is the ratio of the squared mean depth over the squared

characteristic wavelength of the wave. It governs the strength of the dispersion. Finally the

parameter ε is the ratio of the topographic length scale over the characteristic wavelength.

In other work by the authors [14–21] the topography was taken as disordered and modeled

by a random process, and therefore the topographic length scale was the correlation length

of the random process. Of great interest is the case of solitary waves in the presence of

random topographies as considered by different authors [14, 17, 19, 22]. In this paper, the

bottom has periodic modulations and the topographic length scale can then be defined as

the period of the modulations.

In [10] a conformal mapping is used to map the rough channel onto a flat strip. This

is the same as changing variables from a cartesian xy-coordinate system to an orthogonal

curvilinear one, namely in, say, ξζ-variables. This is done in such a way that at the undis-

turbed free surface y ≡ 0 and ζ ≡ 0 coincide. The topography now is along a (ζ ≡constant)

curve. Since we are dealing with harmonic functions (through the potential and the confor-

mal map) it easily follows that in the curvilinear coordinates we have a new set of orthogonal

velocity components (u, v) = ∇φ(ξ, ζ, t), where u(ξ, ζ, t) is a terrain-following component,

namely tangent to the ζ-level curves. Now the gradient is to be considered in the new set

of variables. As shown in [18], in the limit α ≪ 1, β ≪ 1, one obtains a family of Boussi-

nesq systems for the wave elevation η and the velocity component u that are parameterized

by the depth ζ at which the u-velocity component is evaluated. The dispersion relations
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of these Boussinesq systems depend on this parameter, which therefore change in differ-

ent interesting ways through a family of Padé approximations from the original potential

theory dispersion relation. The choice of this parameter depends on the criterion used to

evaluate the quality of the reduced model compared to the full potential theory. This issue

is very important from the physical oceanography point of view, as for example shown in

[18] regarding a waveform inversion procedure. Namely, a time-reversal procedure is used in

order to find, say, a tsunami’s initial waveform through the recompression of scattered data

near the coast. As shown in [18] the initial amplitude, regarding the tsunami’s waveform

inversion, is underestimated by the reduced model unless the optimal parameter is used. In

[11, 12] different strategies are used to optimize some prescribed linear and nonlinear phys-

ical characteristics of the reduced model, such as the phase velocity for a given waveband,

the linear shoaling characteristics, or the nonlinear transfer of energy between harmonics.

To the best of our knowledge this has only been done for smoothly varying bottoms and

shoaling scenarios. Here we extend this type of model optimization to rapidly varying to-

pographies. As in [11, 12] we use a free parameter, namely the arbitrary depth parameter for

the velocity variable, in order to optimize the scattering properties of solitary waves. This

is done by matching the leading order KdV equations arising from our reduced, variable

coefficient, Boussinesq system with that arising from the potential theory framework. At

the end we obtain an optimal Boussinesq system for practical applications where a weakly

nonlinear wave, such as a solitary wave, interacts with rapidly varying topographic features.

III. THE TERRAIN-FOLLOWING BOUSSINESQ SYSTEM

In this section, we present our reduced model that has the form of a one-parameter family

of Boussinesq equations that describe the evolution of surface waves in shallow channels with

arbitrary, rough topographies [10, 18, 23]:

Mηt +
[
(1 +

αη

M
)u
]

ξ
− β

2
(y2

0 −
1

3
) [Mη]ξξt = 0 , (1)

ut + ηξ + α

[
u2

2M2

]

ξ

+
β

2
(y2

0 − 1)uξξt = 0 , (2)

where u is the terrain-following velocity evaluated at the relative depth y0 (y0 = 0 is the

bottom, y0 = 1 is the free surface) and η is the wave elevation. ξ and t are the space and

time coordinates. As mentioned above, system (1-2) is derived from the full potential theory
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equations, in curvilinear coordinates, in the asymptotics α ≪ 1 and β ≪ 1, and it neglects

terms of order O(α2), O(αβ), and O(β2). The system is a weakly nonlinear, weakly dispersive

approximation of the potential theory equations for an irrotational, incompressible, and

inviscid fluid. It is of interest to point out that when ε → 0 the wavelength is increasing

with respect to the microscale and an averaging process takes place. Rather than calling this

a singular limit, we refer the reader to [17] where it was shown that the change to curvilinear

coordinates preconditions the equations in the ε → 0 limit. Namely the eigenvalue band

of the underlying linear (α = 0) system remains bounded in opposition to the cartesian

coordinates case where the same linear analysis leads to an ever growing interval containing

the linear spectrum. Numerical experiments that corroborate with this fact are presented

in [17, 18]. In particular in [18] random, multiply scattered signals produced by both the

Boussinesq and the complete linear potential theory models are compared. An excellent

agreement is observed when the depth parameter is optimized numerically. Here this optimal

value will be found theoretically through a weakly nonlinear multiscale analysis. Having

this in mind we keep the conformal mapping setup and work towards one of our objectives:

similarly to [11, 12] we compute an optimal value for y0 so that the reduced model retains

certain physical properties from the full Euler equations.

The variable coefficient M(ξ) is a smooth topography-dependent function which appears

as a consequence of our change of variables from cartesian to curvilinear coordinates. The

Jacobian for the conformal mapping transformation is defined as |J | = y2
ξ + y2

ζ where the

Cauchy-Riemann equations have been used. For weakly nonlinear waves, hence to leading

order in α, the Jacobian along the free-surface can be approximated as |J | ≈ y2
ζ (ξ, ζ =

0) ≡ M2(ξ) [10]. Therefore M(ξ) is called the metric term. It is computed directly from

the physical topography function H(x/ε) which describes the channel depth. The averaged

depth has been normalized to 1. In the derivation of (1-2) the topography profile

H(x/ε) = 1 + n(x/ε)

can be rapidly varying, discontinuous, or even multi-valued, and no mild slope condition

is required. The only requirement is that there exists a constant C ∈ (0, 1) such that

‖n‖∞ ≤ C, which simply means that the bottom never goes above the free surface. In the

terrain-following system the physical topography H(x/ε) = 1 + n(x/ε) is replaced by the
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FIG. 1: Grating amplitude versus dimensionless coordinate x: a slanted period grating (dashed)

and the corresponding periodic metric coefficient (solid) in the
√

β = 1 regime. Only three com-

ponents of the grating with period 3/2 are shown for simplicity.

metric coefficient [24]

M(ξ) = 1 +
π

4
√

β

∫ ∞

−∞

n(x(ξ0,−
√

β)/ε)

cosh2
[

π
2
√

β
(ξ0 − ξ)

]dξ0 , (3)

where (x, y) 7→ (ξ, ζ) represents the, conformal map, coordinate transformation such that

M(ξ) = yζ(ξ, 0) [10].

In this paper we consider that n is a zero-mean periodic function. The periodic orography

H(x/ε) = 1 + n(x/ε) is transformed through (3) into a periodic metric coefficient M(ξ),

which is a smoothed version of the original profile. The smoothing is all the more important

as β is larger. In Section V we will perform a detailed analysis of the metric coefficient in the

case in which the orography is sinusoidal. Here we briefly show by some illustrations that

this transformation allows us to consider complicated, non-continuous, multi-valued profiles.

We use Driscoll’s Toolbox [25] to perform the numerical Schwarz-Christoffel mapping. In

figures 1 and 2 we have a slanted grating, of amplitude half the total depth, in two different

regimes for the parameter β. These are to illustrate that the smaller the β more details from

n(x/ε) are captured in the metric coefficient M(ξ).

In this paper, we assume that the period of the bottom fluctuations is small compared

to the typical wavelength of the wave. This means that we assume that ε is a small dimen-

sionless parameter. We also assume that the small nonlinearity and dispersion parameters

can be written as

α = ε2α0, β = ε2β0 . (4)
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FIG. 2: Grating amplitude versus dimensionless coordinate x: same slanted period grating (dashed)

has in figure 1 and the corresponding periodic metric coefficient (solid) in the
√

β = 0.5 regime.

Only two components of the grating with period 3/2 are shown.

Here α0 (resp. β0) is the normalized nonlinearity (resp. dispersion) parameter which is a

nonnegative number of order one. The fact that β is of order ε2 ensures that the convolution

in (3) occurs at the same length scale as the period of the fluctuations, which represents

the most interesting case. Note that the kernel is of total mass one, hence tending to a

Dirac delta function as β → 0. The fact that α is of order ε2 ensures that the nonlinear and

dispersive effects are of the same order so that a nontrivial interplay between nonlinearity,

dispersion, and periodic forcing can be expected. This regime is appropriate for the existence

of solitary waves and hence also appropriate for the KdV parameter matching we will perform

in optimizing the above Boussinesq system. In the next sections, we perform multiscale

asymptotics with both the full potential theory model and the reduced Boussinesq system.

We have two goals. The first one is to obtain explicit expressions for the coefficients of the

effective KdV equation in the special case of sinusoidal topography, which will allow us to

discuss the impact of the a rough bottom on wave propagation. The second one is to show

that it is possible to choose the depth parameter y0 in order to match the KdV limit of the

full potential theory model and that of the Boussinesq system.
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IV. MULTISCALE EXPANSION FOR THE BOUSSINESQ SYSTEM WITH A PE-

RIODIC TOPOGRAPHY

In this section we assume that the metric coefficient M(ξ) is a rapidly-varying periodic

function of the form

M(ξ) = m(
ξ

ε
) , (5)

where m(s) is a smooth periodic function in s. In Section V we shall obtain the explicit

expression of the metric coefficient m in the case in which the physical coefficient n is

sinusoidal. Here we consider the asymptotic behavior of the solution (η, u) of (1-2) as ε → 0

by analyzing the multiscale expansion of the solution. We will see that the effective behavior

for times of order one is described by a standard homogeneous wave equation. For times

of order ε−2 we will obtain an effective system of partial differential equations involving

dispersion, nonlinearity and periodic forcing.

A. Propagation times of order one

We look for an expansion of the form

η(t, ξ) = η0(t, ξ,
ξ

ε
) + εη1(t, ξ,

ξ

ε
) + · · ·

u(t, ξ) = u0(t, ξ,
ξ

ε
) + εu1(t, ξ,

ξ

ε
) + · · ·

where ηj and uj are periodic in s = ξ/ε and the averages of η1 and u1 with respect to s are

zero. Substituting into (1-2) and collecting the terms with the same powers in ε, we obtain

at order ε−1:

u0s = 0 , η0s = 0 ,

which shows that the leading-order terms (η0, u0) do not depend on s = ξ/ε. At order ε0,

we get

mη0t + u1s + u0ξ −
β0

2
(y2

0 −
1

3
)mssη0t = 0,

u0t + η1s + η0ξ = 0.

By taking the average with respect to s, we obtain the compatibility equations:

〈m〉 η0t + u0ξ = 0, (6)

u0t + η0ξ = 0, (7)
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where 〈·〉 stands for an average in s. This shows that (η0, u0) obeys a standard wave equation

with the effective velocity v = 〈m〉−1/2 in the (t, ξ)-variables. We can introduce the left and

right-going modes A and B,

A = 〈m〉1/4 η0 + 〈m〉−1/4 u0 , B = 〈m〉1/4 η0 − 〈m〉−1/4 u0 .

They satisfy the two uncoupled transport equations

At + vAξ = 0 , Bt − vBξ = 0,

and they are given by

A(t, ξ) = A(t = 0, ξ − vt) , B(t, ξ) = B(t = 0, ξ + vt).

Consequently, an arbitrary initial condition gives rise to two waves A and B, one propagating

to the right with velocity +v and one propagating to the left with velocity −v. For instance,

an initial condition such that u0(t = 0, ξ) = 〈m〉1/2 η0(t = 0, ξ) = 〈m〉1/4 f(ξ) generates a

pure right-going wave, that propagates without distortion for times of order one:

u0(t, ξ) = 〈m〉−1/4 f(ξ − vt) , η0(t, ξ) = 〈m〉1/4 f(ξ − vt).

This result holds true for times of order O(1).

B. Propagation times of order ε−2

We investigate the slow evolution of the solution (η, u) for times of order ε−2 in the frame

moving with the velocity v. We look for an expansion of the form

η(t, ξ) = η0(ξ − vt, ε2t) + εη1(ξ − vt,
ξ

ε
, ε2t)

+ε2η2(ξ − vt,
ξ

ε
, ε2t) + · · ·

u(t, ξ) = u0(ξ − vt, ε2t) + εu1(ξ − vt,
ξ

ε
, ε2t)

+ε2u2(ξ − vt,
ξ

ε
, ε2t) + · · ·

where ηj and uj are periodic in s = ξ/ε and admit slow variations in τ = ε2t. We denote

χ = ξ − vt. At order ε0 we find that

−vmη0t + u1s + u0χ + v
β0

2
(y2

0 −
1

3
)mssη0χ = 0,

−vu0χ + η1s + η0χ = 0.
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By taking the average in s, we get that v2 〈m〉 = 1, which is satisfied, and

η0 = vu0,

which means that the leading-order terms have the form of a right-going wave. Hence, as

expected, no reflection is generated by the homogenized bottom. Besides the corrections

(η1, u1) are given by

u1 = v

(
ma − ms

β0

2
(y2

0 −
1

3
)

)
η0χ + u1 , η1 = η1, (8)

where (u1, η1) do not depend on s and ma is the zero-mean periodic function

ma(s) = m̃a(s) − 〈m̃a〉 , m̃a(s) =

∫ s

0

m(s) − 〈m〉 ds.

Note that 〈u1〉 = u1 and 〈η1〉 = η1.

At order ε we obtain

−vmη1χ + u2s + u1χ + α0u0η0

(
1

m

)

s

+v
β0

2
(y2

0 −
1

3
)
[
mη1χ

]
ss

= 0,

−vu1χ + η2s + η1χ +
α0u

2
0

2

(
1

m2

)

s

−β0

2
(y2

0 − 1)u1χss = 0.

By taking the average in s, we obtain the compatibility equations

−v 〈m〉 η1χ + u1χ = 0,

−vu1χ + η1χ = 0,

which are satisfied if

η1 = vu1.

Besides, the corrections (η2, u2) have the form

η2 = v2

(
mb −

β0

3
(m − 〈m〉)

)
η0χχ

−β2
0

4
(y2

0 −
1

3
)(y2

0 − 1)mssη0χχ

−α0η
2
0

2v2

(
1

m2
−
〈

1

m2

〉)
+ η2,
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u2 = v

(
−mb +

β0

2
(y2

0 −
1

3
)(m − 〈m〉)

)
η0χχ

−α0η
2
0

v

(
1

m
−
〈

1

m

〉)

+v

[
ma −

β0

2
(y2

0 −
1

3
)ms

]
η1χ + u2,

where (η2, u2) do not depend on s and mb is the zero-mean periodic function

mb(s) = m̃b(s) − 〈m̃b〉 , m̃b(s) =

∫ s

0

ma(s)ds.

Note once again that 〈u2〉 = u2 and 〈η2〉 = η2. In the following we denote η̃2 = η2 − η2.

At order ε2 we obtain the system

m(η0τ − vη2χ) + u3s + u2χ + α0

(
1

m
(η1u0 + η0u1)

)

s

+α0(u0η0)χ
1

m
− β0

2
(y2

0 −
1

3
)
[
m(η0τ − vη2χ)

]
ss

+
β0

2
(y2

0 −
1

3
)
{
2v
[
mη1χχ

]
s
+ vmη0χχχ

}
= 0,

u0τ − vu2χ + η3s + η2χ + α0u0

( u1

m2

)

s
+

α0(u
2
0)χ

2m2

−v
β0

2
(y2

0 − 1)(u0χχχ + 2u1χχs + u2χss) = 0.

By taking the average with respect to s, we get the compatibility equations

〈m〉 η0τ − v
〈
mη̃2χ

〉
− v 〈m〉 η2χ + u2χ

+
α0

v
(η2

0)χ

〈
1

m

〉
+ v

β0 〈m〉
2

(y2
0 −

1

3
)η0χχχ = 0,

1

v
η0τ − vu2χ + η2χ +

〈
1

m2

〉
α0(η

2
0)χ

2v2

−β0

2
(y2

0 − 1)η0χχχ = 0.

We multiply by v the first equation and add the second equation, which gives

2

v
η0τ − v2

〈
mη̃2χ

〉
+ α0(η

2
0)χ

(〈
1

m

〉
+

1

2

〈
1

m2

〉
〈m〉

)

+
β0

3
η0χχχ = 0.

Using the expression of η̃2 and the integration by parts formulas 〈mmb〉 = −〈m2
a〉 and

〈mmss〉 = −〈m2
s〉:

〈
mη̃2χ

〉
= v2

(
−
〈
m2

a

〉
− β0

3

〈
(m − 〈m〉)2

〉
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+
β2

0

4
(y2

0 −
1

3
)(y2

0 − 1)
〈
m2

s

〉)
η0χχχ

−α0(η
2
0)χ

2v2

(〈
1

m

〉
−
〈

1

m2

〉
〈m〉

)
,

we obtain the effective equation for η0:

2 〈m〉1/2 η0τ +
3α0

2
(η2

0)χ

〈
1

m

〉

+

[
β0

3
+

〈m2
a〉

〈m〉2
+

β0

3

〈(m − 〈m〉)2〉
〈m〉2

−β2
0

4
(y2

0 −
1

3
)(y2

0 − 1)
〈m2

s〉
〈m〉2

]
η0χχχ = 0. (9)

This system is expressed in the variables (τ, χ), where τ = ε2t is the slow time variable and

χ is the traveling coordinate moving with velocity v: χ = ξ − vt. The metric coefficient

M(ξ) is defined by M(ξ) = yζ(ξ, 0), which is also equal to xξ(ξ, 0) by the Cauchy-Riemann

equation. Therefore, at the undisturbed surface,

dx

dξ
(ξ, 0) = M(ξ). (10)

This equation allows us to state the system in the original variables (x, t). Indeed, M is a

rapidly varying periodic function with mean 〈M〉 = 1 + 〈m〉, so that the effective equation

for η0 can be rewritten as the KdV equation

η0τ +
3α∗

4
(η2

0)X +
β∗

6
η0XXX = 0, (11)

where X = x − v∗t is the spatial coordinate in the frame moving with the velocity

v∗ = 〈m〉1/2 , (12)

and the nonlinearity and dispersion parameters are given explicitly by

α∗ = α0

〈
1

m

〉
〈m〉1/2 , (13)

β∗ = β0 〈m〉5/2

[
1 +

3 〈m2
a〉

β0 〈m〉2
+

〈(m − 〈m〉)2〉
〈m〉2

−3β0

4
(y2

0 −
1

3
)(y2

0 − 1)
〈m2

s〉
〈m〉2

]
. (14)

The signs of the corrective terms can be discussed:

(i) As first noted in [8] and proved in [9], the effective velocity is strictly smaller than one
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as soon as n(x) is periodic and non-identically zero. This means that the effective depth is

reduced and that the metric coefficient satisfies 〈m〉 ≤ 1.

(ii) The expression (13) allows us to claim that nonlinearity is enhanced. Indeed, by Cauchy-

Schwarz inequality, we obtain

1 =
〈
m1/2m−1/2

〉2 ≤ 〈m〉
〈

1

m

〉
= 〈m〉1/2 〈m〉1/2

〈
1

m

〉

and therefore

1 ≤ 〈m〉1/2

〈
1

m

〉
=

α∗

α0

where we have used the fact that 〈m〉 ≤ 1 once again.

(iii) The sign of the dispersive correction β∗ − β0 cannot be determined without specifying

the bottom topography modulation. As we shall see in the next section, dispersion can be

enhanced or reduced depending on the period of the modulation.

We recall that the effective parameters in [8, 9] are defined implicitly through the solution

of auxiliary cell problems. Below we present an example where we compute all parameters

analytically. This is a useful example for validating the capabilities of the present (reduced)

Boussinesq model in comparison with potential theory and also for discussing quantitatively

the impact of the periodic modulations of the bottom on wave propagation. Moreover the

example presented below will allow us to compute explicitly the optimal value for the depth

parameter y0, so that the above KdV equations matches the one that arises directly from

the potential theory model.

V. MULTI-SCALE EXPANSION FOR A SINUSOIDAL OROGRAPHY

In this section we consider that n(x) is the periodic sinusoidal function

n(x) = n1 sin(kx),

with n1 ∈ (0, 1) and k > 0.

A. Asymptotic analysis of the conformal mapping

The metric coefficient M(ξ) is defined by (3). It is given by the convolution of a smooth

explicit kernel with the composition of the periodic function n and the real part of the

15



conformal map x(ξ, ζ) evaluated at the unperturbed bottom −
√

β = −
√

β0ε. The goal of

this subsection is to get an asymptotic expansion of x(ξ,−
√

β0ε) as ε → 0. This requires to

analyze the conformal mapping introduced in [10, 21]. We start by considering the Neumann

problem

∆ξ(x, y) = 0 , (15)

with the boundary condition ξy = 0 at y = 0 and

ξn = ξy +
√

β0n
′(x/ε)ξx = 0 at y = −

√
β0ε(1 + n(x/ε)) . (16)

To solve this problem in the asymptotic ε → 0 regime, we first replace the boundary con-

dition at the random bottom y = −
√

β0ε(1 + n(x/ε)) by a boundary condition at the flat

bottom y = −
√

β0ε:

ξy +
√

β0n1k cos(
kx

ε
)ξx = Rε

1 + Rε
2 ,

with

Rε
1 =

√
β0εn1 sin(

kx

ε
)

×
∫ 1

0

ξyy

(
x,−

√
β0ε(1 + θn1 sin(

kx

ε
))

)
dθ ,

Rε
2 = β0εn

2
1k sin(

kx

ε
) cos(

kx

ε
)

×
∫ 1

0

ξxy

(
x,−

√
β0ε(1 + θn1 sin(

kx

ε
))

)
dθ .

The corrective terms Rε
1 and Rε

2 are the Lagrange remainders of the Taylor expansions of ξy

and
√

β0 cos(kx/ε)ξx at y = −
√

β0ε. The solution has the form

ξ(x, y) = ξ0(x) + ξ1(x, y) + ξr(x, y) , (17)

where ξ0(x) = x is the identity describing the conformal map in absence of a perturbation.

Then ξ1 is the first order corrective term satisfying the Laplace equation ∆ξ1 = 0, the bound-

ary condition ξ1y = 0 at y = 0 and the boundary condition ξ1y +
√

β0n1k cos(kx/ε)ξ0x = 0

at y = −
√

β0ε. The solution is

ξ1(x, y) =

√
β0n1ε

sinh(k
√

β0)
cosh(

ky

ε
) cos(

kx

ε
) . (18)

At the unperturbed bottom y = −
√

β0ε the correction ξ1has the form

ξ1(x,−
√

β0ε) =

√
β0n1ε

tanh(k
√

β0)
cos(

kx

ε
).
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This result also shows that Rε
1 = O(n2

1) and Rε
2 = O(n3

1) which means that the terms

Rε
j are higher-order corrections in (16) in the case n1 ≪ 1. Inverting relation (17) at the

undisturbed bottom, we have

x(ξ,−
√

β0ε) = ξ − εn1

√
β0

tanh(k
√

β0)
cos(

kξ

ε
) + O(εn2

1). (19)

B. Expansion of the metric coefficient

We use the integral expression (3) of M(ξ) and the expansion (19) of x(ξ,−
√

β0ε):

M(ξ) = 1 +
π

4
√

β0ε

∫ ∞

−∞

n1 sin(kx(ξ0,−ε
√

β0)
ε

)

cosh2
[

π
2
√

β0ε
(ξ0 − ξ)

]dξ0

= 1 +
πn1

4
√

β0ε

∫ ∞

−∞

sin(kξ0
ε

)

cosh2
[

π
2
√

β0ε
(ξ0 − ξ)

]dξ0

− πn2
1k

4 tanh(k
√

β0)ε

∫ ∞

−∞

cos2(kξ0
ε

)

cosh2
[

π
2
√

β0ε
(ξ0 − ξ)

]dξ0

+O(n3
1)

which gives

M(ξ) = 1 +
n1k

√
β0

sinh(k
√

β0)
sin(

kξ

ε
) − n2

1k
√

β0

2 tanh(k
√

β0)

− n2
1k

2β0

2 sinh2(k
√

β0)
cos(

2kξ

ε
) + O(n3

1). (20)

This expansion exhibits several interesting features:

(i) The average physical bottom is one, but the average of the metric coefficient is smaller

than one:

〈M〉 = 1 − n2
1k
√

β0

2 tanh(k
√

β0)
+ O(n3

1).

The fact that a zero-mean varying random topography can give rise to a non-zero average

depth through the conformal mapping was already observed in the numerical simulations

reported in [20] and analyzed in [19] in the case of a random topography. This is reminiscent

of the ellipticity of the conformal mapping problem, namely that the effect from one bound-

ary on the other side of the domain decays very rapidly. As a consequence, the surface wave

is more sensitive to the peaks of the rough bottom than to the valleys, which gives a bias in

the evaluation of the mean.
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(ii) The fundamental fluctuations of the metric coefficient are reduced compared to the ones

of the topography. The reduction factor is k
√

β0/sinh(k
√

β0) which is close to one when

k
√

β0 is small and very small when k
√

β0 is large.

(iii) Second harmonic modulations are generated with an amplitude that is smaller com-

pared to the fundamental modulations. Besides, we can expect the generation of a cascade

of harmonics when taking into account all terms of order nk
1.

(iv) By (17-18) we have

dξ

dx
(x, 0) = 1 − n1k

√
β0

sinh(k
√

β0)
sin(

kx

ε
) + O(n2

1) ,

which gives after inversion

dx

dξ
(ξ, 0) = 1 +

n1k
√

β0

sinh(k
√

β0)
sin(

kξ

ε
) + O(n2

1),

in agreement with (10) and (20).

C. Effective wave propagation

We can now apply the result of Section IV. We introduce the parameters m0 and m1:

m0 = 1 − n2
1k
√

β0

2 tanh(k
√

β0)
, m1 =

n1k
√

β0

sinh(k
√

β0)
. (21)

The averaged parameters needed to compute the coefficients of the effective KdV equation

(11) are given explicitly by

〈m〉 = m0,
〈
(m − 〈m〉)2

〉
=

m2
1

2
,

〈
m2

s

〉
=

k2m2
1

2
,

〈
m2

a

〉
=

m2
1

2k2
,

〈
1

m

〉
=

1

m0

(
1 − m2

1

m2
0

)−1/2

,

〈
1

m2

〉
=

1

m2
0

(
1 − m2

1

m2
0

)−3/2

.

By collecting all terms of order n2
1, we obtain

v∗2 = 1 − n2
1

2

√
β0k

tanh(
√

β0k)
, (22)

α∗

α0
= 1 +

n2
1

2

[( √
β0k

sinh(
√

β0k)

)2

+
1

2

√
β0k

tanh(
√

β0k)

]
, (23)
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β∗

β0

= 1 +
n2

1

2

[(
3

β0k2
+ 1 − 3β0k

2

4
(y2

0 −
1

3
)(y2

0 − 1)

)

×
( √

β0k

sinh(
√

β0k)

)2

− 5

2

√
β0k

tanh(
√

β0k)

]
. (24)

The main features of the effective system (that will be discussed in more detail in Section

VF) are:

(i) For a mean-zero topography the velocity is reduced (v∗ < 1).

(ii) The nonlinearity is enhanced (α∗ > α0).

(iii) The dispersion can be enhanced or reduced, depending on β0k
2.

The dependence of the KdV’s dispersion parameter with respect to y0 is noticeable. Note

that in the flat bottom case [11, 18] the depth parameter does not affect the cubic term of

the dispersion relation. Nevertheless here it does affect the cubic term in the presence of

a rapidly varying periodic forcing. Namely, the Boussinesq system leads an effective KdV

equation whose dispersion relation depends on y0. This is very fortunate because it provides

us with an optimization procedure for the Boussinesq system, as follows. In the next section,

following [8], we will compute the coefficients of the effective KdV equation given directly by

the long-wavelength asymptotics of the potential theory in the presence of a rough bottom.

We shall then show that the full potential theory model and the reduced Boussinesq model

give the same averaged KdV equation if the parameter y0 is chosen in a suitable, hence

optimal, way.

D. Multiscale expansion of the potential flow

In [8] the authors derive effective equations for the surface elevation of gravity waves

with a periodic bottom. They apply a multiscale expansion technique to the potential flow

formulation of the problem expressed in the cartesian coordinates. The averaged equation

has the form of a KdV equation. The coefficients are not given explicitly, but must be de-

termined by solving auxiliary problems. More precisely, the coefficients of the effective KdV

equation (velocity, nonlinearity and dispersion coefficients) are expressed as averages of the

solutions of cell problems, which are elliptic problems with Neumann boundary conditions

in the strip −1 − n(x/ε) ≤ y ≤ 0. We here reformulate the results in a way that allows

comparison with our own results. Besides, we expand the effective coefficients obtained in
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[8] so that the comparisons are quantitative, and this allows us to identity the value of the

parameter y0 in our reduced model that fits the results of the potential flow theory.

The elliptic cell problems are defined in terms of the operators:

L = ∂yy + β0∂zz in − 1 − n(z) < y < 0,

Lb = ∂y + β0n
′(z)∂z on y = −1 − n(z),

Ls = ∂y on y = 0.

where z = x/ε. The cell, bottom and surface averages are defined by

〈a〉 =
1

L

∫ L

0

dz

∫ 0

−1−n(z)

dy a(z, y),

〈a〉b =
1

L

∫ L

0

dz a(z,−1 − n(z)),

〈a〉s =
1

L

∫ L

0

dz a(z, 0),

where L is the period of n(z).

First cell problem:

LA = 0 , LbA = −β0n
′(z) , LsA = 0,

with periodic dependence in z and cell average equal to zero. If n(z) = n1 sin(kz), then the

solution can be expanded in powers of n1:

A(z, y) =
√

β0n1 cos(kz)
cosh(k

√
β0y)

sinh(k
√

β0)

−β0n
2
1k

4
sin(2kz)

cosh(2k
√

β0y)

sinh2(k
√

β0)
+ O(n3

1).

The effective velocity, provided in [8], is given by

v⋆2 = 1 −
〈
A2

z + β−1
0 A2

y

〉
,

which, by the results above, can be expanded as

v⋆2 = 1 − n2
1

2

k
√

β0

tanh(k
√

β0)
+ O(n3

1). (25)

Second cell problem:

LB = −β0(2Az + 1) , LbB = −β0n
′(z)A ,

and LsB = −β0v
2 ,
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with periodic dependence in z and cell average equal to zero. The solution can be expanded

in powers of n1:

B(z, y) = −β0

(
y2

2
+ y +

1

3

)

+β0n1 sin(kz)

[
y sinh(k

√
β0y)

sinh(k
√

β0)

− cosh(k
√

β0y)

tanh sinh(k
√

β0)

]
+ n2

1b2(z, y) + O(n3
1),

where the zero-frequency component of b2 is

1

L

∫ L

0

dzb2(z, y) =
β0

2

[
k
√

β0

tanh(k
√

β0)

(
y +

1

2

)

−1 +
1

tanh2(k
√

β0)

]
.

Third cell problem:

LC = −β0(2Bz + A) , LbC = −β0n
′(z)B ,

and LsC = −β0v
⋆2A ,

with periodic dependence in z and cell average equal to zero. The solution can be expanded

in powers of n1:

C(z, y) = n1 cos(kz)

{
−β

3/2
0

2

y2 cosh(k
√

β0y)

sinh(k
√

β0)

+β
3/2
0

y sinh(k
√

β0y)

tanh sinh(k
√

β0)
+

cosh(k
√

β0y)

sinh(k
√

β0)

×
[

7β
3/2
0

6
− β0

k tanh(k
√

β0)
− β

3/2
0

tanh2(k
√

β0)

]

−β0

k

sinh(k
√

β0y)

sinh(k
√

β0)

}
+ O(n2

1).

The effective dispersion parameter, provided in [8], is

β⋆ =
3

v⋆

(
−〈n′C〉b − v⋆2 〈B〉s

)
,

which, by the present results, can be expanded as

β⋆

β0
= 1 +

n2
1

2

[
3k

√
β0

tanh3(k
√

β0)
− 11k

√
β0

2 tanh(k
√

β0)

]
+ O(n3

1). (26)
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Forth cell problem:

LD = 0 , LbD = 0 , LsD = −α0v
⋆Ayy ,

with periodic dependence in z and cell average equal to zero. The solution can be expanded

in powers of n1:

D(z, y) = −α0n1 cos(kz)
kβ0 cosh[k

√
β0(y + 1)]

sinh2(k
√

β0)
+ O(n2

1).

The effective nonlinearity parameter, provided in [8], is

α⋆ =
1

v⋆

(
α0 +

α0

3

〈
A2

z

〉
s
− 2

3v⋆
〈n′D〉b

)
,

which can be expanded as

α⋆

α0
= 1 +

n2
1

2

[(
k
√

β0

sinh(k
√

β0)

)2

+
1

2

k
√

β0

tanh(k
√

β0)

]
+ O(n3

1). (27)

E. Optimization of the terrain-following Boussinesq system

The expressions (25) and (27) of the effective velocity and nonlinearity parameters co-

incide exactly with the ones (22) and (23) derived from the multiscale expansion of the

terrain-following Boussinesq system. The agreement is achieved independently of the choice

of the depth parameter y0. In order to establish a similar agreement for the dispersion

parameter (compare (24) and (26)), it is necessary to fix the parameter y0 ∈ [0, 1]. It is

remarkable that it is possible to find a value of y0 which allows for an agreement of the

dispersion parameter for any value of
√

β0k, and that this value does not vary much with
√

β0k, as seen in Figure 3.

For small β0k
2, the agreement is achieved for y0 = y1 :=

√
2
3
− 1√

5
≃ 0.4685.

For large β0k
2, the agreement is achieved for y0 = y2 :=

√
1
3
≃ 0.577.

In general, the value of the depth parameter y0 that should be chosen for equating the values

of the effective dispersion parameters (24) and (26) given by the two models is between the

values y1 and y2.

In conclusion, with the particular value of y0 plotted in Figure 3, the terrain-following

Boussinesq system (1-2) and the full potential theory give the same effective KdV equation

in the presence of a periodically varying bottom, that is, the velocity, the nonlinearity

coefficient and the dispersion coefficient are the same.
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We have pointed out in the introduction that the parameter y0 of the Boussinesq system

has been optimized in the literature in order to get the best agreement between the full

potential theory and the reduced Boussinesq model according to a specific criterion. In

[18] a linear version of the reduced Boussinesq model was used and compared to the lin-

ear potential theory model for the multiple-scattering problem of pulse shaped waves over

randomly varying topographies. In the corresponding linear flat bottom case, and working

with Padé approximations for the full dispersion relation, Nwogu [11] suggested a numerical

strategy for finding the optimal depth parameter y0 regarding phase errors over a waveband

of moderate wavelengths. For the linear Boussinesq model in the presence of disordered

bottom topographies, Muñoz and Nachbin [18] confirmed numerically that Nwogu’s best

value was indeed y0 = 0.469. The agreement for the result of multiply-scattered waves

from both the terrain-following Boussinesq system and linear potential theory model was

very good. It is remarkable that the present asymptotic analysis confirms this value from

a completely different perspective, giving it a more solid foundation. Here weakly nonlin-

ear waves over a rough topography is considered in the homogenization limit of vanishing

bottom period, as opposed to linear waves in a flat bottom configuration. Based on the

present analysis for rapidly varying periodic topographies, and the numerical evidence pro-

vided in [18] for rapidly varying random topographies, we can suggest one parameter value

for reflection-transmission of coastal waves in the presence of fine features. Namely, the

optimized terrain-following Boussinesq system should be considered:

Mηt +
[
(1 +

αη

M
)u
]

ξ
+

β

2

(√
1

5
− 1

3

)
[Mη]ξξt = 0 , (28)

ut + ηξ + α

[
u2

2M2

]

ξ

− β

2

(√
1

5
+

1

3

)
uξξt = 0 . (29)

This optimized reduced model has the correct physical properties in the presence of both

rapidly varying periodic and random topographies.

F. Analysis of the effective KdV equation

In this previous sections we have obtained explicit expressions for the coefficients of

the effective KdV equation that are the average velocity, the nonlinearity and dispersion

coefficients. In this section we will use these expressions in order to discuss the impact of
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FIG. 3: The effective dispersion parameter obtained from the averaging of the terrain-following

Boussinesq system is equal to the effective dispersion parameter obtained from the averaging of

the cartesian potential flow theory equations for a particular value of the depth parameter y0 that

is the function of
√

β0k plotted in this figure.

the periodic topography on the wave propagation.

In [9] the authors obtain implicit expressions for the effective KdV coefficients by a mul-

tiscale expansion technique of the water wave Hamiltonian and they compute numerically

these coefficients in order to study their dependence with respect to the modulation ampli-

tude n1. In these numerical simulations the modulation period and the depth of the channel

are fixed to 1, so that
√

β0k = 2π within our notation. Therefore, the dependence of the

coefficients of the KdV equation with respect to
√

β0k is not discussed. This parameter in

the original physical variables is 2π times the ratio of the mean depth over the period of

the bottom. Our explicit results, valid for small n1, allow us to exhibit that the effective

coefficients v∗, α∗, and β∗ strongly depend on
√

β0k. The corrective terms, which are the

terms of O(n2
1) in (25-26-27), are plotted in Figure 4. The average velocity is always reduced

(v∗ < 1), which was already mentioned in [8, 9]. The nonlinearity coefficient is enhanced

(α∗ > α0). The dispersion coefficient can be reduced or enhanced, depending on the value

of
√

β0k. If
√

β0k < (≥)arctanh1/2(6/11) ≃ 0.78, then β∗ > (≤)β0.

When β0k
2 is large, we have β∗ ≃ β0 − 5n2

1β
3/2
0 k/4 and the dispersion is reduced.

When β0k
2 is small, we have β∗ ≃ β0 + 3n2

1/(2k2) and the dispersion is enhanced. Note

that, if we start with an evanescent dispersion parameter β0, then the effective dispersion

parameter β∗ ≃ 3n2
1/(2k2) is positive. This phenomenon has already been encountered in

the literature in different contexts. In particular, apparent dispersion was seen for linear
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FIG. 4: Corrective terms of the coefficients of the effective KdV equation as a function of
√

β0k.

elastic waves [26] and for nonlinear elastic waves in a periodic composite [27].

VI. CONCLUSION

In this paper we have performed a multiscale analysis of the full potential flow model for

water waves over a rapidly-varying periodic bottom and another one for a family of reduced

Boussinesq models parameterized by a depth parameter. We have shown that it is possible

to fit the depth parameter so that the limit KdV equations obtained from the two models

agree. This serves to justify the use of the Boussinesq system for a wide range of bottom

topography, and to strengthen the value of the depth parameter exhibited by Nwogu [11].

We have explicitly computed the coefficients of the effective KdV equation in the case of

a small-amplitude sinusoidal topography profile and we have exhibited some interesting fea-

tures regarding the effect of the periodic bottom on surface wave propagation. In particular,

the velocity is reduced, the nonlinearity is enhanced, and the dispersion can be reduced or

enhanced depending on the ratio of the mean depth over the period of the bottom.
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