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Abstract

We introduce a fully explicit method for solving monotone variational inequalities in Hilbert
spaces, where orthogonal projections onto C are replaced by projections onto suitable hyper-
planes. We prove weak convergence of the whole generated sequence to a solution of the problem,
under the only assumptions of continuity and monotonicity of the operator and existence of so-
lutions.
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1 Introduction

Let H be a Hilbert space, C be a nonempty, closed and convex subset of H and T : H → P(H) a
point-to-set operator. The variational inequality problem for T and C, denoted VIP(T, C), is the
following:

find x∗ ∈ C such that there exists u∗ ∈ T (x∗) satisfying

〈u∗, x− x∗〉 ≥ 0 ∀x ∈ C.

We denote the solution set of this problem by S(T,C).
The variational inequality problem was first introduced by P. Hartman and G. Stampacchia [10]

in 1966. Variational inequalities have a wide range of applications. Several of them are described
in [18]. An excellent survey of methods for finite dimensional variational inequality problems can
be found in [9].
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Here, we are interested in explicit methods for solving VIP(T, C), that is to say, methods whose
iterations are given by closed formulae, without demanding solution of subproblems. The basic
idea consists of extending the projected gradient method for constrained optimization, i.e., for the
problem of minimizing f(x) subject to x ∈ C. This problem is a particular case of VIP(T, C) taking
T = ∇f . This procedure is given by the following iterative scheme:

x0 ∈ C, (1)

xk+1 = PC(xk − αk∇f(xk)), (2)

with αk > 0 for all k. The coefficients αk are called stepsizes and PC : H → C is the orthogonal
projection onto C, i.e. PC(x) = argminy∈C ‖x− y‖. See [2], [3] and [12] for convergence properties
of this method for the case in which f is convex, which are related to results in this paper.

An immediate extension of the method (1)–(2) to VIP(T, C) for the case in which T is point-
to-set, is the iterative procedure given by

xk+1 = PC(xk − αku
k) , (3)

where uk ∈ T (xk), and the sequence αk satisfies some conditions.
Convergence results for this method require some monotonicity properties of T . Next, we

introduce several possible options.

Definition 1. Consider T : H → P(H) and W ⊂ H convex. T is said to be:

i) monotone on W if 〈u− v, x− y〉 ≥ 0 for all x, y ∈ W and all u ∈ T (x), v ∈ T (y),

ii) paramonotone on W if it is monotone in W , and whenever 〈u− v, x− y〉 = 0 with x, y ∈ W ,
u ∈ T (x), v ∈ T (y), it holds that u ∈ T (y) and v ∈ T (x),

iii) uniformly monotone on W if 〈u− v, x− y〉 ≥ ψ(‖x− y‖) for all x, y ∈ W and all u ∈ T (x),
v ∈ T (y), where ψ : R+ → R is an increasing function, with ψ(0) = 0.

It follows from Definition 1 that the following implications hold: (iii) ⇒ (ii) ⇒ (i). The reverse
assertions are not true in general.

Convergence results for scheme (3) have been established in [1] for the case of uniformly mono-
tone operators, and in [6] for the case of paramonotone ones.

We remark that for the method given by (3) there is no chance of relaxing the assumption
on T to plain monotonicity. For example, consider T : R2 → R2 defined as T (x) = Ax, with

A =
(

0 1
−1 0

)
. T is monotone and the unique solution of VIP(T,C) is x∗ = 0. However, it is

easy to check that ‖xk−αkT (xk)‖ > ‖xk‖ for all xk 6= 0 and all αk > 0, and therefore the sequence
generated by (3) moves away from the solution, independently of the choice of the stepsize αk.
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To overcome this weakness of the method defined by (3), Korpelevich proposed in [19] a modi-
fication of the method, called the extragradient algorithm. It generates iterates using the formulae:

yk = PC(xk − βT (xk)), (4)

xk+1 = PC(xk − βT (yk)), (5)

where β > 0 is a fixed number. The difference with (3) is that T is evaluated twice and the
projection is computed twice at each iteration, but the benefit is significant because the resulting
algorithm is applicable to the whole class of monotone variational inequalities. However, in order
to establish convergence, Korpelevich assumed that T is Lipschitz continuous and that an estimate
of the Lipschitz constant (called L) is available. It has been proved in [19] that the extragradient
method is globally convergent if T is monotone and Lipschitz continuous on C and β ∈ (

0, 1
L

)
.

When T is not Lipschitz, or it is Lipschitz but the constant L is not known, the fixed parameter
β must be replaced by stepsizes computed through an Armijo-type search, as in the following
method, presented in [15] (see also [17] for another related approach). The algorithm requires the
following exogenous parameters: δ ∈ (0, 1), β̂, β̃ satisfying 0 < β̂ ≤ β̃, and a sequence {βk} ⊆ [β̂, β̃].

Initialization step. Take
x0 ∈ C. (6)

Iterative step. Given xk define
zk := xk − βkT (xk). (7)

If xk = PC(zk) stop. Otherwise take

j(k) := min{ j ≥ 0 :
〈
T (2−jPC(zk) + (1− 2−j)xk), xk − PC(zk)

〉

≥ δ

βk
‖xk − PC(zk)‖2 }, (8)

yk := 2−j(k)PC(zk) + (1− 2−j(k))xk, (9)

xk+1 := PC

(
xk − 〈T (yk), xk − yk〉

‖T (yk)‖2
T (yk)

)
. (10)

This strategy for determining the stepsizes guarantees convergence under the only assumptions
of monotonicity and continuity of T and existence of solutions of VIP(T, C), without assuming
Lipschitz continuity of T . Also, this algorithm demands only two projections onto C per iteration,
unlike other variants, e.g. [13] and [20], with projections onto C inside the inner loop for the search
of the stepsize. Other algorithms for VIP(T, C), less directly related to Korpelevich’s method, can
be found in [11], [22] and [24].
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1.1 Relaxed projection methods

The method given by (3) is fully direct only in a few specific instances, namely when PC is given
by an explicit formula (e.g. when C is a halfspace, or a ball, or a subspace). When C is a general
closed convex set, however, one has to solve the problem min{‖x− (xk−αku

k)‖ : x ∈ C}, in order
to compute the projection onto C. The same drawback affects the algorithms given by (4)-(5) and
(6)-(10), which demand in fact two orthogonal projections per iteration.

One option for avoiding this difficulty consists of replacing at iteration k PC by PCk
, where Ck

is a halfspace containing the given set C and not xk. Observe that projections onto halfspaces are
easily computable. We consider the case in which C is of the form

C = {z ∈ H : g(z) ≤ 0}, (11)

where g : H → R is a convex function, satisfying Slater’s condition, i.e. there exists a point w such
that g(w) < 0. The differentiability of g is not assumed and the representation (11) is therefore
rather general, because any system of inequalities gj(x) ≤ 0 with j ∈ J , where all the gj ’s are
convex, may be represented as in (11) with g(x) = sup{gj(x) : j ∈ J}.

We studied in [6] a method for solving VIP(T, C) for the case in which T is point-to-set in a
finite dimensional space, i.e. H = Rn, using the following relaxed iteration:

xk+1 = PCk

(
xk − βk

ηk
uk

)
, (12)

where uk ∈ T (xk), ηk = max{1, ‖uk‖}, βk is an exogenous stepsize satisfying
∑∞

k=0 βk = ∞,∑∞
k=0 β2

k < ∞, and Ck is defined as

Ck := {z ∈ H : g(xk) + 〈vk, z − xk〉 ≤ 0},

with vk ∈ ∂g(xk), where ∂g(xk) is the subdifferential of g at xk, i.e. ∂g(xk) = {v : g(x) ≥
g(xk) + 〈v, x− xk〉}.

We proved that the sequence generated by (12) is bounded, the difference between consecutive
iterates converges to zero, and all its cluster points belong to S(T, C). These results were established
under quite demanding assumptions: T must be paramonotone and it must satisfy the following
coerciveness condition:

(Q) There exist z ∈ C and a bounded set D ⊆ H such that 〈u, x − z〉 ≥ 0 for all x /∈ D and for
all u ∈ T (x).

In this paper we will analyze a new algorithm for the case in which T is a point-to-point
operator, relaxing the hypotheses in [6] in two directions: we assume plain monotonicity of T
instead of paramonotonicity, and we don’t need any coerciveness condition. Additionally, we obtain
convergence results stronger them those in [6]; namely we get weak convergence of the whole
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sequence to some solution of VIP(T,C), assuming only existence of solutions, and all results hold in
a Hilbert space (of course, in finite dimensional case we get strong, rather than weak, convergence).

The main advantage over Korpelevich’s method (4)-(5) and its variants (e.g. (6)-(10)) is that it
replaces orthogonal projections onto C, which in general are not easily computable, by projections
onto hyperplanes, which have simple closed formulae. Thus, the method is indeed fully explicit.

We describe next our method and compare it with (6)-(10). In (6)-(10) a step is taken from the
current iterate xk in the direction of −T (xk), resulting in an auxiliary point zk. A line search is
then performed in the segment between xk and PC(zk), resulting in a point yk. Then, a step with a
specified steplength is taken from xk in the direction of −T (yk), and the next iterate is obtained by
projecting the resulting point onto C. In our method, we construct simultaneously two sequences,
the main sequence {xk} and the auxiliary sequence {ỹk}. A step is taken from ỹk−1 in the direction
of −T (ỹk−1) with an exogenous steplength, and the resulting point is projected onto an auxiliary
hyperplane containing C. This projection step is repeated in a finite inner loop, changing the
auxiliary hyperplanes, until a point ỹk is obtained, whose distance to C is smaller than a certain
multiple of the current exogenous steplength. After this inner loop, the next main iterate xk+1 is
a convex combination with exogenous coefficients of ỹk and xk. The inner loop of projections onto
hyperplanes hence substitutes for the exact projection onto C, demanded in (4)-(5) and (6)-(10).

In connection with the method in [6], the algorithm in this paper works under weaker assump-
tions on T , but it demands continuity of the operator. Thus, it cannot be used for point-to-set
operators T , which are admissible in the convergence analysis in [6]. Extensions of Korpelevich
method to the of point-to-set case can be found in [14] and [4].

The outline of this paper is as follows. In Section 2 we present some theoretical tools needed in
our analysis. In Section 3 we state our algorithm formally. In Section 4 we establish the convergence
properties of the algorithm.

2 Preliminary results

In this section, we present some definitions and results that are needed for the convergence analysis
of the proposed method. First, we state two well known facts on orthogonal projections.

Lemma 1. Let K be any nonempty closed and convex set in H, and PK the orthogonal projection
onto K. For all x, y ∈ H and all z ∈ K, the following properties hold:

i) ‖PK(x)− PK(y)‖2 ≤ ‖x− y‖2 − ‖(PK(x)− x)− (PK(y)− y)‖2.

ii) 〈x− PK(x), z − PK(x)〉 ≤ 0.

Proof. See Lemma 1 in [23].

We next deal with the so called quasi-Fejér convergence and its properties.
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Definition 2. Let S be a nonempty subset of H. A sequence {xk} in H is said to be quasi-Fejér
convergent to S if and only if for all x ∈ S there exist k0 ≥ 0 and a sequence {δk} ⊂ R+ such that∑∞

k=0 δk < ∞ and ‖xk+1 − x‖2 ≤ ‖xk − x‖2 + δk for all k ≥ k0.

This definition originates in [8] and has been further elaborated in [16].

Proposition 1. If {xk} is quasi-Fejér convergent to S then:

i) {xk} is bounded,

ii) {‖xk − x‖} converges for all x ∈ S,

iii) if all weak cluster point of {xk} belong to S, then the sequence {xk} is weakly convergent.

Proof. See Proposition 1 in [2].

For S ⊆ H, define dist(x, S) := infz∈S ‖z − x‖. It is clear that if S is a closed and convex
set then dist(x, S) = minz∈S ‖z − x‖ = ‖PS(x) − x‖ where PS(x) = argminz∈S ‖x − z‖. Next, we
establish two properties of quasi-Fejér convergent sequences.

Lemma 2. If a sequence {xk} is quasi-Fejér convergent to a closed and convex set S, then

i) the sequence {dist(xk, S)} is convergent,

ii) the sequence {PS(xk)} is strongly convergent.

Proof. i) The sequence {dist(xk, S)} is bounded, because 0 ≤ dist(xk, S) ≤ ‖xk − x‖ for all
x ∈ S, and {‖xk − x‖} converges for all x ∈ S, by Lemma 1(ii).

Assume that {dist(xk, S)} has two cluster points, say λ and µ, with λ < µ. It follows
that {dist(xk, S)2} has λ2 and µ2 as cluster points. Take ν = (µ2 − λ2)/3, and subsequences
{dist(xj(k), S)2} and {dist(x`(k), S)2} of {dist(xk, S)2} such that limk→∞{dist(xj(k), S)2} = λ2,
limk→∞{dist(x`(k), S)2} = µ2. For each k take jk, `k such that k < `k < jk, with dist(xjk , S)2 <
λ2 + ν, dist(x`k , S)2 > µ2 − ν. Defining w = PS(xjk), we get

0 < ν = 3ν − 2ν = µ2 − λ2 − 2ν = (µ2 − ν)− (λ2 + ν) < dist(x`k , C)2 − dist(xjk , C)2

= dist(x`k , C)2 − ‖xjk − w‖2 ≤ ‖x`k − w‖2 − ‖xjk − w‖2

=
jk∑

j=`k−1

(‖xj+1 − w‖2 − ‖xj − w‖2) ≤
jk∑

j=`k−1

δj ≤
∞∑

j=k

δj .

Thus, ν <
∑∞

j=k δj for all k, contradicting the fact that
∑∞

j=0 δj < ∞. Hence, ν = 0, i.e.
λ2 = µ2 implying λ = µ. It follows that all cluster points of {dist(xk, S)} coincide, i.e. that the
sequence {dist(xk, S)} converges.
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ii) We will prove that {uk} := {PS(xk)} is a Cauchy sequence, hence strongly convergent. Using
Lemma 1(i) with K = S, x = xq and y = up, we get

‖uq − up‖2 = ‖PS(xq)− PS(up)‖2 ≤ ‖xq − up‖2 − ‖xq − uq‖2. (13)

Since {xk} is quasi-Fejér convergent to S and p < q, we get from (13) that

‖uq − up‖2 ≤ ‖xp − up‖2 − ‖xq − uq‖2 +
q∑

j=p

δj

≤ dist(xp, S)2 − dist(xq, S)2 +
∞∑

j=p

δj . (14)

By (i), {dist(xk, S)} converges, and using the fact
∑∞

j=0 δj < ∞, we obtain from (14) that {uk}
is a Cauchy sequence.

We recall now the definition of maximal monotone operators.

Definition 3. Let T : H → P(H) be a monotone operator. T is maximal monotone if T = T ′ for
all monotone T ′ : H → P(H) such that G(T ) ⊆ G(T ′), where G(T ) := {(x, u) ∈ H×H : u ∈ T (x)}.
We also need the following results on maximal monotone operators and monotone variational
inequalities.

Lemma 3. Let T : H → P(H) be a maximal monotone operator and C a closed and convex set.
Then

i) T is locally bounded at any point in the interior of its domain.

ii) G(T ) is closed.

iii) If H is finite dimensional then T is bounded on bounded subsets of the interior of its domain.

iv) If T is point-to-point then T is continuous.

v) S(T, C), if nonempty, is closed and convex.

Proof. i) See Theorem 4.6.1(ii) of [7].

ii) See Proposition 4.2.1(ii) of [7].

iii) It follows easily from (i) using a compactness argument.

iv) See Theorem 4.6.3 of [7].
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v) See Lemma 2.4(ii) of [5].

The next lemma will be useful for proving that all weak cluster points of the sequence generated
by our algorithm belong to S(T, C) = {x ∈ C : 〈T (x), y − x〉 ≥ 0 , ∀y ∈ C}.
Lemma 4. Consider VIP(T, C). If T : H → H is maximal monotone and point-to-point, then

S(T, C) = {x ∈ C : 〈T (y), y − x〉 ≥ 0 , ∀ y ∈ C}.
Proof. By Lemma 3(iv), if T is point-to-point and maximal monotone then T is continuous. By
the monotonicity of T , we have 〈T (x), y − x〉 ≤ 〈T (y), y − x〉 for all x, y ∈ C. Thus, it is clear
that S(T, C) ⊆ {x ∈ C : 〈T (y), y − x〉 ≥ 0 , ∀ y ∈ C}. Conversely, assume that x ∈ {x ∈ C :
〈T (y), y − x〉 ≥ 0 ∀ y ∈ C}. Take y(α) = (1 − α)x + αy, y ∈ C with α ∈ (0, 1). It is clear that
y(α) ∈ C and therefore

0 ≤ 〈T (y(α)), y(α)− x〉 = 〈T ((1− α)x + αy), (1− α)x + αy − x〉
= α〈T ((1− α)x + αy), y − x〉.

Dividing by α > 0, we get
0 ≤ 〈T ((1− α)x + αy), y − x〉, (15)

for all α ∈ (0, 1). Making α → 0 and using the continuity of T , we obtain from (15) that 〈T (x), y−
x〉 ≥ 0, for all y ∈ C, i.e. x ∈ S(T, C).

The next lemma provides a computable upper bound for the distance from a point to the feasible
set C.

Lemma 5. Let g : H → R be a convex function and C := {z ∈ H : g(z) ≤ 0}. Assume that there
exists y ∈ C such that g(y) < 0. Then, for all x such that g(x) > 0, we have

dist(x, C) ≤ ‖x− y‖
g(x)− g(y)

g(x) .

Proof. Take xλ := λy + (1− λ)x with λ := g(x)
g(x)−g(y) . Note that λ ∈ (0, 1). Then

g(xλ) = g(λy + (1− λ)x) ≤ λg(y) + (1− λ)g(x) = g(x)− λ(g(x)− g(y)) = 0.

Thus, xλ ∈ C and

dist(x,C) ≤ ‖x− xλ‖ = ‖x− (λy + (1− λ)x)‖ = λ‖x− y‖ =
g(x)

g(x)− g(y)
‖x− y‖.
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We will also need the following elementary result on sequence averages.

Proposition 2. Let {uk} ⊂ H be a sequence strongly convergent to ũ. Take nonnegative real
numbers ζk,j (k ≥ 0, 0 ≤ j ≤ k) such that lim ζk,j = 0 for all j and

∑k
j=0 ζk,j = 1 for all k. Define

wk :=
k∑

j=0

ζk,ju
j .

Then, {wk} also converges strongly to ũ.

Proof. Elementary.

3 A relaxed projection algorithm

In this section, we introduce an algorithm which replaces projections onto C by easily computable
projections onto suitable hyperplanes. We assume that C is of the form given in (11) and satisfies
Slater’s condition, and that T is point-to-point and maximal monotone. We need the following
boundedness assumptions on ∂g and T .

(R) ∂g is bounded on bounded sets.

(S) T is bounded on bounded sets.

In finite dimensional spaces, these two assumptions are always satisfied in view of Lemma 3(iii),
because T and ∂g are maximal monotone operators. We also assume that a Slater point is available,
i.e. we will explicitly use a point w such that g(w) < 0.

Consider an exogenous sequence {βk} ⊆ R++ satisfying

∞∑

k=0

βk = ∞, (16)

∞∑

k=0

β2
k < ∞. (17)

The algorithm is defined as follows.

Algorithm A
Initialization step: Fix an exogenous constant θ > 0 and define

x0 := 0 and z0 ∈ H.
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Iterative step: Given zk, if g(zk) ≤ 0 then take ỹk := zk. Else, perform the following inner loop,
generating points yk,0, yk,1, . . . . Take yk,0 = zk, choose vk,0 ∈ ∂g(yk,0). For j = 0, 1, . . . , let

Ck,j := {z ∈ H : g(yk,j) + 〈vk,j , z − yk,j〉 ≤ 0}, (18)

with vk,j ∈ ∂g(yk,j). Define
yk,j+1 := PCk,j

(yk,j). (19)

Stop the inner loop when j = j(k), defined as

j(k) := min
{

j ≥ 0 :
g(yk,j) ‖yk,j − w‖

g(yk,j)− g(w)
≤ θβk

}
. (20)

Let

ỹk := yk,j(k). (21)

Choose ṽk ∈ ∂g(ỹk) and let

Ck := Ck,j(k) = {z ∈ H : g(ỹk) + 〈ṽk, z − ỹk〉 ≤ 0} . (22)

Define ηk := max{1, ‖T (ỹk)‖}. Take

zk+1 := PCk

(
ỹk − βk

ηk
T (ỹk)

)
. (23)

If zk+1 = ỹk, stop. Otherwise , define

σk :=
k∑

j=0

βj

ηj
= σk−1 +

βk

ηk
, (24)

xk+1 :=
(

1− βk

ηkσk

)
xk +

βk

ηkσk
ỹk. (25)

Unlike other projection methods, Algorithm A generates a sequence {xk} which is not neces-
sarily contained in the set C. As will be shown in the next subsection, the generated sequence is
asymptotically feasible and, in fact, converges to some solution of VIP(T, C).

Algorithm A can be easily implemented, because PCk,j
and PCk

have explicit formulae, which
we present next.

Proposition 3. Define Cx := {z ∈ H : g(x)+〈v, z−x〉 ≤ 0} with v ∈ ∂g(x). Then for any y ∈ H,

PCx(y) =





y − g(x) + 〈v, y − x〉
‖v‖2

v if g(x) + 〈x, y − x〉 > 0

y if g(x) + 〈v, y − x〉 ≤ 0
.
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Proof. See Proposition 3.1 in [21].

It follows from Proposition 3, (18), (19), (22) and (23) that

yk,j+1 = PCk,j
(yk,j) = yk,j − 1

‖vk,j‖2 max
{

0, g(yk,j)
}

vk,j ,

zk+1 = PCk

(
ỹk − βk

ηk
T (ỹk)

)
= ỹk − βk

ηk
T (ỹk)− 1

‖vk‖2 max
{

0, g(ỹk)− βk

ηk
〈T (ỹk), ṽk〉

}
ṽk,

so that Algorithm A can be considered as a fully explicit method for VIP(T,C).
The iteration formulae of the algorithm become more explicit in the smooth case, i.e. when

C is of the form C = {x ∈ H : gi(x) ≤ 0, 1 ≤ i ≤ m} where the gi’s are convex and Gateaux
differentiable. The set C can be rewritten in our notation with g(x) = max1≤i≤m{gi(x)}. In this
situation, the well known formula for the subdifferential of the maximum of convex functions allows
us to take

vk,j = ∇g`(k,j)(y
k,j), with `(k, j) ∈ arg max

0≤i≤m
{gi(yk,j)}

vk = ∇g`(k)(ỹ
k), with `(k) ∈ arg max

0≤i≤m
{gi(ỹk)},

so that the hyperplane onto which each inner-loop iterate is projected is the first order approxima-
tion of the most violated constraint at that iterate.

4 Convergence analysis of Algorithm A

For convergence of our method, we assume that T is point-to-point and maximal monotone, and
hence continuous by Lemma 3(iv). Observe that ∂g(x) 6= ∅ for all x ∈ H, because we assume that
g is convex and dom(g) = H.
First we establish that Algorithm A is well defined.

Proposition 4. Take C, Ck,j, Ck, ỹk, zk and xk defined by (11), (18), (22), (21), (23) and (25)
respectively. Then,

i) C ⊆ Ck,j and C ⊆ Ck for all k and for all j.

ii) If zk+1 = ỹk for some k, then ỹk ∈ S(T, C).

iii) j(k) is well defined.
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Proof. i) It follows from (18), (22) and the definition of subdifferential.

ii) Suppose that zk+1 = ỹk. Then , since zk+1 ∈ Ck, we have g(ỹk) + 〈ṽk, zk+1 − ỹk〉 = g(ỹk) ≤ 0,
i.e. ỹk ∈ C. Moreover, since zk+1 is given by (23), using Lemma 1(ii) with x = ỹk − βk

ηk
T (ỹk) and

K = Ck, we obtain
〈

zk+1 −
(

ỹk − βk

ηk
T (ỹk)

)
, z − zk+1

〉
≥ 0 ∀z ∈ Ck. (26)

Taking zk+1 = ỹk in (26) and using the facts that βk > 0, and C ⊆ Ck for all k, we get
〈T (ỹk), z − ỹk〉 ≥ 0 for all z ∈ C. We conclude that ỹk ∈ S(T,C).

iii) Assume by contradiction that
g(yk,j) ‖yk,j − w‖

g(yk,j)− g(w)
> θβk for all j. Thus, we get an infinite

sequence {yk,j}∞j=0 such that

lim inf
j→∞

g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≥ θβk > 0. (27)

Taking into account the inner loop in j given in (21) i.e. yk,j+1 = PCk,j
(yk,j) for each k, we

obtain, for each x ∈ C,

‖yk,j+1 − x‖2 = ‖PCk,j
(yk,j)− PCk,j

(x)‖2 ≤ ‖yk,j − x‖2 − ‖yk,j+1 − yk,j‖2 ≤ ‖yk,j − x‖2, (28)

using Lemma 1(i) with x = yk,j , y = x and K = Ck,j . Thus, {yk,j}∞j=0 is quasi-Fejér convergent

to C, and hence it is bounded by Proposition 1(i). It follows that τ :=
1

−g(w)
sup

0≤j≤∞
‖yk,j − w‖ is

finite and also,
g(yk,j) > 0 for all j. (29)

Using (28), we get

lim
j→∞

‖yk,j+1 − yk,j‖ = lim
j→∞

‖PCk,j
(yk,j)− yk,j‖ = 0. (30)

Since yk,j+1 belongs to Ck,j , we have from (18) that

g(yk,j) ≤ 〈vk,j , yk,j − yk,j+1〉 ≤ ‖vk,j‖‖yk,j − yk,j+1‖, (31)

using Cauchy-Schwartz in the last inequality.
Since {yk,j}∞j=0 is bounded and the subdifferential of g is bounded on bounded sets by assump-

tion (R), we obtain from Lemma 3(iii) that {‖vk,j‖}∞j=0 is bounded. In view of (30) and (31),

lim inf
j→∞

g(yk,j) ≤ 0. (32)
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It follows from (29) and (32) that

lim inf
j→∞

g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≤ lim inf
j→∞

g(yk,j) ‖yk,j − w‖
−g(w)

≤ 1
−g(w)

sup
0≤j≤∞

‖yk,j − w‖ lim inf
j→∞

g(yk,j)

= τ lim inf
j→∞

g(yk,j) ≤ 0,

contradicting (27). It follows that j(k) is well defined.

We continue by proving the quasi-Fejér properties of the sequences {zk} and {ỹk} generated by
Algorithm A.

Proposition 5. If S(T,C) is nonempty, then {ỹk} and {zk} are quasi-Fejér convergent to S(T, C).

Proof. Observe that ηk ≥ ‖T (ỹk)‖ and ηk ≥ 1 for all k by the definition of ηk. Then, for all k,

1
ηk
≤ 1 (33)

and
‖T (ỹk)‖

ηk
≤ 1. (34)

Take x̄ ∈ S(T,C). Then,

‖ỹk − x̄‖ = ‖yk,j(k) − x̄‖ = ‖PCk,j(k)−1
(yk,j(k)−1)− PCk,j(k)−1

(x̄)‖ ≤ ‖yk,j(k)−1 − x̄‖
= ‖PCk,j(k)−2

(yk,j(k)−2)− PCk,j(k)−2
(x̄)‖ ≤ ‖yk,j(k)−2 − x̄‖ ≤ · · · ≤ ‖zk − x̄‖. (35)

Let θ̃ = 1 + θ T (x̄) ≥ 1 + θ
T (x̄)
ηk

, by (33). Then

‖ỹk+1 − x̄‖2 ≤ ‖zk+1 − x̄‖2 =
∥∥∥∥PCk

(
ỹk − βk

ηk
T (ỹk)

)
− PCk

(x̄)
∥∥∥∥

2

≤
∥∥∥∥ỹk − βk

ηk
T (ỹk)− x̄

∥∥∥∥
2

= ‖ỹk − x̄‖2 +
‖T (ỹk)‖2

η2
k

β2
k − 2

βk

ηk
〈T (ỹk), ỹk − x̄〉

≤ ‖ỹk − x̄‖2 + β2
k − 2

βk

ηk
〈T (x̄), ỹk − x̄〉

13



= ‖ỹk − x̄‖2 + β2
k − 2

βk

ηk

(
〈T (x̄), ỹk − PC(ỹk)〉+ 〈T (x̄), PC(ỹk)− x̄〉

)

≤ ‖ỹk − x̄‖2 + β2
k + 2

βk

ηk
〈T (x̄), PC(ỹk)− ỹk〉

≤ ‖ỹk − x̄‖2 + β2
k +

βk

ηk
‖T (x̄)‖‖PC(ỹk)− ỹk‖ ≤ ‖ỹk − x̄‖2 + θ̃β2

k

≤ ‖zk − x̄‖2 + θ̃β2
k, (36)

using (35) in the first inequality, Lemma 1(i) in the second one, the monotonicity of T and (34) in
the third one, the definition of S(T,C) in the fourth one, Cauchy-Schwartz inequality in the fifth
one, Lemma 5 and the definition of j(k) in the sixth one, and (35) in the last one.

Using Definition 2, (36) and (17), we conclude that the sequences {ỹk} and {zk} are quasi-Fejér
convergent to S(T,C).

Proposition 6. Let {zk}, {ỹk} and {xk} be the sequences generated by Algorithm A. Assume that
S(T,C) is nonempty. Then,

i) {ỹk}, {xk} and {T (ỹk)} are bounded,

ii) xk+1 =
1
σk

k∑

j=0

βj

ηj
ỹj,

iii) limk→∞ dist(xk, C) = 0,

iv) all weak cluster points of {xk} belong to C.

Proof. i) For {ỹk} use Proposition 5 and Proposition 1(i). For {T (ỹk)}, use boundedness of {ỹk}
and assumption (S). For {xk}, use boundedness of {ỹk} and (25).

ii) Apply (25) recursively.

iii) It follows from Lemma 5 and (20)-(21) that

dist(ỹk, C) ≤ θβk. (37)

Define

x̃k+1 :=
1
σk

k∑

j=0

βj

ηj
PC(ỹj). (38)
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Since 1
σk

∑k
j=0

βj

ηj
= 1 by (24), we get from the convexity of C that x̃k+1 ∈ C. Let

β̃ :=
∞∑

j=0

β2
j . (39)

Note that β̃ is finite by (17). Then

dist(xk+1, C) ≤ ‖xk+1 − x̃k+1‖ =

∥∥∥∥∥∥
1
σk




k∑

j=0

βj

ηj
(ỹj − PC(ỹj))




∥∥∥∥∥∥
≤ 1

σk

k∑

j=0

βj

ηj
‖ỹj − PC(ỹj)‖

=
1
σk

k∑

j=0

βj

ηj
dist(ỹj , C) ≤ θ

σk

k∑

j=0

β2
j

ηj
≤ θ

σk

k∑

j=0

β2
j ≤ θ

β̃

σk
, (40)

using the fact that x̃k+1 belongs to C in the first inequality, (ii) and (38) in the first equality,
convexity of ‖ · ‖ in the second inequality, (37) in the third one, (33) in the fourth one and (39) in
the last one.

Take γ > 1 such that ‖T (ỹk)‖ ≤ γ for all k. Existence of γ follows from (i). Thus,

lim
k→∞

σk = lim
k→∞

k∑

j=0

βj

ηj
≥ lim

k→∞
1
γ

k∑

j=0

βj = ∞, (41)

using that ηj = max{1, ‖T (ỹj)‖} ≤ max{1, γ} ≤ γ for all j in the first inequality and (16) in the
last equality. Thus, taking limits in (40), we get limk→∞ dist(xk, C) = 0, establishing (iii).

iv) Follows from (iii).

Next we prove optimality of the cluster points of {xk}.
Theorem 1. If S(T,C) 6= ∅ then all weak cluster points of the sequence {xk} generated by Algorithm
A solve VIP(T, C).

Proof. For any x ∈ C we have

‖zj+1 − x‖2 =
∥∥∥∥PCj

(
ỹj − βj

ηj
T (ỹj)

)
− PCj (x)

∥∥∥∥
2

≤
∥∥∥∥
(

ỹj − βj

ηj
T (ỹj)

)
− x

∥∥∥∥
2

= ‖ỹj − x‖2 +
‖T (ỹj)‖2

η2
j

β2
j − 2

βj

ηj
〈T (ỹj), ỹj − x〉

≤ ‖zj − x‖2 + β2
j + 2

βj

ηj
〈T (x), x− ỹj〉, (42)
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using Lemma 1(i) in the first inequality, and the monotonicity of T and (34) in the last inequality.
Summing (42) from 0 to k − 1 and dividing by σk−1, we obtain from Proposition 6(ii)

(‖zk − x‖2 − ‖z0 − x‖2)
σk−1

≤
∑k−1

j=0 β2
j

σk−1
+ 〈T (x), x− xk〉. (43)

Let x̂ be a weak cluster point of {xk}. Existence of x̂ is guaranteed by Proposition 6(i). Note
that x̂ ∈ C by Proposition 6(iv).

By (16), (17), (41) and boundedness of {zk}, taking limits in (43) we obtain that 〈T (x), x−x̂〉 ≥
0 for all x ∈ C. Using Lemma 4 with k →∞ we get that x̂ ∈ S(T,C). Therefore, all weak cluster
points of {xk} solve VIP(T, C).

Finally, we can now state and prove our main result.

Theorem 2. Define x∗ = limk→∞ PS(T,C)(ỹk). Then either S(T, C) 6= ∅ and {xk} converges weakly
to x∗, or S(T, C) = ∅ and limk→∞ ‖xk‖ = ∞.

Proof. Assume that S(T, C) 6= ∅ and define uk = PS(T,C)(ỹk). Note that uk, the orthogonal
projection of ỹk onto S(T, C), exists because the solution set S(T, C) is nonempty by assumption,
and closed and convex by Lemma 3(v). By Proposition 5, {ỹk} is quasi-Fejér convergent to S(T, C).
Therefore, it follows from Lemma 2(ii) that {PS(T,C)(ỹk)} is strongly convergent. Let

x∗ = lim
k→∞

PS(T,C)(ỹ
k) = lim

k→∞
uk. (44)

By Proposition 6(i) and Theorem 1, {xk} is bounded and each of its weak cluster points belong
to S(T, C). Let {xik} be any weakly convergent subsequence of {xk}, and let x̂ ∈ S(T, C) be its
weak limit. It suffices to show that x̂ = x∗.

By Lemma 1(ii) we have that 〈x̂ − uj , ỹj − uj〉 ≤ 0 for all j. Let ξ = sup0≤j≤∞ ‖ỹj − uj‖. By
Proposition 6(i), ξ < ∞. Then,

〈x̂− x∗, ỹj − uj〉 ≤ 〈uj − x∗, ỹj − uj〉 ≤ ξ ‖uj − x∗‖ ∀j. (45)

Multiplying (45) by
βj

ηjσk−1
and summing from 0 to k − 1, we get from Proposition 6(ii)

〈
x̂− x∗, xk − 1

σk−1

k−1∑

j=0

βj

ηj
uj

〉
≤ ξ

σk−1

k−1∑

j=0

βj

ηj
‖uj − x∗‖. (46)

Define ζk,j := 1
σk

βj

ηj
(k ≥ 0, 0 ≤ j ≤ k). In view of (41), limk→∞ ζk,j = 0 for all j. By (24),

∑k
j=0 ζk,j = 1 for all k. Then, using (44) and Proposition 2 with wk =

∑k
j=0 ζk,ju

j = 1
σk

∑k
j=0

βj

ηj
uj ,

we obtain that
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lim
k→∞

1
σk−1

k−1∑

j=0

βj

ηj
uj = x∗, (47)

and hence

lim
k→∞

1
σk−1

k−1∑

j=0

βj

ηj
‖uj − x∗‖ = 0, (48)

using the fact that 1
σk−1

∑k−1
j=0

βj

ηj
= 1.

¿From (47) and (48), since limk→∞ xik = x̂, taking limits in (46) with k → ∞ along the
subsequence with subindices {ik}, we conclude that 〈x̂− x∗, x̂− x∗〉 ≤ 0, implying that x̂ = x∗.

If S(T, C) = ∅ then by Theorem 1 no subsequence of {xk} can be bounded, and hence
limk→∞ ‖xk‖ = ∞.
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