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Abstract

Consider a real-valued bifunction f which is concave in its first argument and convex in its
second one. We study its subdifferential with respect to the second argument, evaluated at pairs
of the form (x, x), and the subdifferential of −f with respect to its first argument, evaluated at
the same pairs. The resulting operators are not always monotone, and we analyze additional
conditions on f which ensure their monotonicity, and furthermore their maximal monoticity.
Our main result is that these operators are maximal monotone when f is continuous and it
vanishes whenever both arguments coincide. Our results have consequences in terms of the
reformulation of equilibrium problems as variational inequality ones.
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1 Introduction

Let X be a reflexive Banach space and X∗ its dual. Consider a function f : X × X → R which
is concave in its first argument and convex in its second one. Let ∂1(−f)(x, y), ∂2f(x, y) denote
the subdifferentials of −f with respect to its first argument, and of f with respect to the second
one, respectively, evaluated at a point (x, y) ∈ X × X. The well known saddle point operator
Tf : X × X → P(X∗ × X∗) is defined as

Tf (x, y) = (∂1(−f)(x, y), ∂2f(x, y)). (1)

We will be concerned in this paper with two other set-valued operators related to the bifunction
f , namely Rf , Sf : X → P(X∗), defined as:

Rf (x) = ∂1(−f)(x, x), (2)

Sf (x) = ∂2f(x, x). (3)

We will refer to Rf , Sf as diagonal subdifferential operators. Obeserve that neither Rf nor
Sf are subdifferentials of convex functions: at each point x each one of them coincides with the
subdifferential of a certain convex function evaluated at x, but the functions themselves change
with x. More precisely, Sf (x) is the subdifferential of the convex function fx : X → R evaluated
at x, where fx is defined as fx(y) = f(x, y). Similarly, Rf (x) is the subdifferential of the convex
function −f(·, x) evaluated at x. In fact, as we will show later on, both Rf and Sf may fail to
be monotone operators, unless additional assumptions are imposed upon f . The study of these
conditions is the purpose of this paper.

The motivation for studying these operators arises from the so called equilibrium problem,
which we describe next. Given X, f as above (possibly with additional and/or slightly different
assumptions on f , some of which will be detailed later on), and a closed and convex subset C ⊂ X,
the equilibrium problem EP(f,C) consists of finding x∗ ∈ C such that f(x∗, x) ≥ 0 for all x ∈ C.
See [1], [7] and [6] for definitions and properties of equilibrium problems pertinent to the subject
of this paper.

Under the additional assumption that f(x, x) = 0 for all x ∈ X, the convexity of f(x, ·) implies
easily that x∗ solves EP(f,C) if and only x∗ minimizes the marginal function fx∗ defined above
on the feasible set C, which happens if and only if x∗ is a zero of the sum of the subdifferential
of this objective funcion and the normalized cone NC of C, i.e. a zero of Sf + NC . Equivalently,
x∗ is a solution of the variational inequality problem VIP(Sf , C). It is well known that variational
inequality problems are substantially easier to solve when the involved operator is maximal mono-
tone. Thus, the study of conditions under which Sf is maximal monotone has a significant impact
on the theory of equilibrium problems. We remind here that a set-valued operator T : X → P(X∗)
is monotone if 〈u1 − u2, x1 − x2〉 ≥ 0 for all (x1, u1), (x2, u2) ∈ G(T ), where the graph G(T ) of T
is defined as G(T ) = {(x, u) ∈ X × X∗ : u ∈ T (x)}. T is said to be maximal monotone if it is
monotone and G(T ) = G(T ′) for all monotone operator T ′ : X → P(X∗) such that G(T ) ⊂ G(T ′).
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We will prove in this paper that Rf and Sf are monotone under some further assumptions on
the bifunction f , besides its concave-convex property, related to its behavior as a funtion of its two
arguments simultaneously, like for instance being jointly continuous on x, y and vanishing on the
diagonal of X × X. Monotonicity of Sf will also be established without demanding concavity of
f(·, y), but imposing instead stronger joint assumptions on f : it must vanish on the diagonal and
be a monotone bifunction, meaning that f(x, y) + f(y, x) ≤ 0 for all (x, y) ∈ X × X∗. Similarly, it
will be proved that Rf is monotone when −f is monotone and it vanishes on the diagonal, without
requiring convexity of f(x, ·). These results will be proved in Section 2.

In Section 3 we deal with the maximal monotonicity of Sf and Rf . We prove that both operators
are indeed maximal monotone under any of our sets of assumptions guaranteeing their monotonicity,
with an additional hypothesis on the Banach space X. We describe next this result and the main
idea behind its proof. We recall that the duality operator J : X → P(X∗) is the subdifferential of
the convex function (1/2) ‖·‖2. A well known result, due to R.T. Rockafellar (see Theorem 4.4.7
in [3]), states that, in a Banach space X such that both J and J−1 are single-valued, a monotone
operator T is maximal monotone if and only if the operator T + J is surjective. Thus, we will try
to prove surjectivity of Sf + J (same for Rf ). For this surjectivity result, we will exhibit some f̃
such that S

f̃
= Sf +J , and then apply a theorem on existence of solutions of equilibrium problems,

related to some results proved in [7], [6], to the problem EP(f̃ ,X), which easily implies surjectivity
of Sf + J . The appropriate f̃ is given by

f̃(x, y) = f(x, y) +
1

2

(

‖y‖2 − ‖x‖2
)

+ 〈b, x − y〉,

where 〈·, ·〉 denotes the duality coupling in X∗ ×X, and b is a fixed element of X∗. It turns out to
be the case that f̃ inherits from f all the assumptions used in our analysis, like concavity-convexity,
monotonicity, continuity, etc.

We close this section with some comments on the operator Tf defined by (1). It is easy to check
that when the bifunction f is concave-convex then the zeroes of Tf are the saddle points of f , i.e.
(0, 0) ∈ Tf (x∗, y∗) if and only if

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y)

for all (x, y) ∈ X × X.
Also, we mention that the most important example of a concave-convex bifunction is the La-

grangian function L associated to the convex minimization problem,

min h0(y)

s.t. hi(y) ≤ 0 (1 ≤ i ≤ m),

with hi : R
n → R convex (0 ≤ i ≤ m). In this case, L : R

m × R
n → R is defined as L(x, y) =

h0(y) +
∑m

i=1
xihi(y). L is clearly concave in x for all y ∈ R

n, and convex in y for all x ∈ R
n
+. The

solutions of VIP(TL, Rn × R
m
+ ) are optimal primal-dual pairs for the optimization problem above.
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2 Monotonicity of the diagonal subdifferential operators

We start by introducing the concave-convex property of the bifunction f in a formal way. We
consider the following two assumptions on f : X × X → R.

A1) f(·, y) is concave for all y ∈ X.

A2) f(x, ·) is convex for all x ∈ X.

We will prove first that, assuming only (A1) and (A2), the operator Rf +Sf is monotone. This
result will follow from the monotonicity of Tf under the same assumptions. It is well known that
Tf is monotone, and furthermore maximal monotone (see e.g. Theorem 4.7.5 in [3]), but we include
a proof of this fact, which is quite elementary, for the sake of self-containment, and also because
we will use part of it later on.

Proposition 1. Assume that X is a reflexive Banach space and that f : X ×X → R satisfies (A1)
and (A2) above. Consider Tf , Sf and Rf as defined by (1), (2) and (3) respectively. Then

i) Tf is monotone.

ii) Rf + Sf is monotone.

.

Proof. i) Take (xi, yi) ∈ X × X, (ui, vi) ∈ T (xi, yi) (i = 1, 2). We must verify that

〈(u1, v1) − (u2, v2), (x1, y1) − (x2, y2)〉 ≥ 0. (4)

Note that ui ∈ ∂1(−f)(xi, yi), vi ∈ ∂2f(xi, yi) (i = 1, 2). By convexity of −f(·, yi):

〈−u1, x1 − x2〉 = 〈u1, x2 − x1〉 ≤ −f(x2, y1) + f(x1, y1), (5)

〈u2, x1 − x2〉 ≤ −f(x1, y2) + f(x2, y2). (6)

Adding (5) and (6):

−〈u1 − u2, x1 − x2〉 ≤ f(x1, y1) − f(x1, y2) − f(x2, y1) + f(x2, y2). (7)

By convexity of f(xi, ·):

〈−v1, y1 − y2〉 = 〈v1, y2 − y1〉 ≤ f(x1, y2) − f(x1, y1), (8)

〈v2, y1 − y2〉 ≤ f(x2, y1) − f(x2, y2). (9)

Adding (8) and (9):

−〈v1 − v2, y1 − y2〉 ≤ −f(x1, y1) + f(x1, y2) + f(x2, y1) − f(x2, y2). (10)

4



Adding (7) and (10), and multiplying by −1,

0 ≤ 〈u1 − u2, x1 − x2〉 + 〈v1 − v2, y1 − y2〉 = 〈(u1, v1) − (u2, v2), (x1, y1) − (x2, y2)〉, (11)

establishing (4) and the monotonicity of Tf .

ii) Take zi ∈ (Rf + Sf )(xi) (i = 1, 2). Then zi = ui + vi with ui ∈ Rf (xi), vi ∈ Sf (xi), i.e.
ui ∈ ∂1(−f)(xi, xi), vi ∈ ∂2f(xi, xi). It follows that zi = (ui, vi) ∈ Tf (xi, xi) (i = 1, 2) and
therefore,

〈z1 − z2, x1 − x2〉 = 〈u1 − u2, x1 − x2〉 + 〈v1 − v2, x1 − x2〉 ≥ 0, (12)

using (11) with xi = yi (i = 1, 2). In view of (12), Rf + Sf is monotone.

We remark now that under just (A1) and (A2), the operators Rf , Sf may fail to be monotone.
Take X = R

n, and an indefinite A ∈ R
n×n, i.e. such that there exist x̃, x̂ ∈ R

n satisfying x̃tAx̃ > 0,
x̂tAx̂ < 0. Define f : R

n × R
n → R as f(x, y) = xtAy, so that Tf (x, y) = (−Ay,Atx), Rf (x) =

−Ax,Sf (x) = Atx, and hence (Rf + Sf )(x) = (−A + At)(x). Since −A + At is skew-symmetric,
Rf + Sf is indeed monotone, as established in Proposition 1(ii), but the indefiniteness of A implies
that neither Rf nor Sf are monotone.

We introduce next additional assumptions on the joint behavior of f in its two arguments, which
will allow us to establish monotonicity of Rf , Sf . The key property seems to be the following: f
must be constant on the diagonal of X × X, i.e., there must exist µ ∈ R such that f(x, x) = µ
for all x ∈ X. Since both Rf and Sf are defined up to additive constants in f , without loss of
generality we will assume that µ = 0.

Something else is needed, and at this point we will consider two alternatives. The first of them
consists of demanding monotonicity of either f or −f . We recall that a bifunction f : X ×X → R

is said to be monotone if
f(x, y) + f(y, x) ≤ 0 (13)

for all (x, y) ∈ X × X.
We will consider the following assumptions related to monotoncity of f .

A3) f(x, x) = 0 for all x ∈ X.

A4) f is monotone.

A5) −f is monotone.

Working under these assumptions, we can relax the concavity-convexity hypotheses on f : we
will need only convexity of f(x, ·), i.e. (A2), for proving monotonicity of Sf , and just concavity of
−f(·, y), i.e. (A1), for monotonicity of Rf .

A second and more interesting alternative consists of avoiding any monotonicity assumption on
f , and instead adding to the concavity-convexity properties given by (A1), (A2), a rather weak
assumption on the joint behavior of f in its two arguments, namely
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A6) f is continuous on X × X.

We will prove monotonicity of Rf under (A1), (A3) and (A5), and of Sf under (A2), (A3) and
(A4), along the first alternative, and later on we will follow the second alternative, establishing
monotonicity of both Rf and Sf under (A1), (A2), (A3) and (A6).

We mention that none of these two sets of assumptions implies the remaining one. We give
two examples, both of them with X = R

n. Take A,C ∈ R
n×n positive semidefinite, but such that

A − C is indefinite. Define

f(x, y) = −xtAx + ytCy + xt(A − C)y. (14)

This f satisfies (A1), (A2), (A3) and (A6), but not (A4), because neither f nor −f is monotone:
note that f(x, y) + f(y, x) = (x − y)t(C − A)(x − y), which is neither positive nor negative for all
x, y ∈ X, due to the indefiniteness of A − C. A non-quadratic example with the same properties
is obtained by taking f̄(x, y) = f(x, y) − h(x) + h(y), with f as in (14), where h : X → R is an
arbitrary convex function.

Consider now f : R
n × R

n → R defined as

f(x, y) =
n
∑

j=1

x3
j (yj − xj).

This f satisfies (A2), (A3) and (A4) (note that f(x, y)+f(y, x) =
∑n

j=1
(x3

j −y3
j )(yj −xj) ≤ 0), but

(A1) fails, because f is not concave in x for all y. The bifunction −f , with f as in this example,
satisfies (A1), (A3) and (A5), but not (A2).

At this point it is convenient to formalize a certain symmetry relation between Rf and Sf .
To any bifunction f : X × X → R we associate the bifunction g : X × X → R defined as
g(x, y) = −f(y, x). The connections between Rf , Sf , Rg and Sg are encapsulated in the following
proposition.

Proposition 2. i) f satisfies (A1) iff g satisfies (A2),

ii) f satisfies (A2) iff g satisfies (A1),

iii) f satisfies (A3) iff g satisfies (A3),

iv) f satisfies (A4) iff g satisfies (A5),

v) f satisfies (A5) iff g satisfies (A4),

vi) Rf = Sg, Sf = Rg.

Proof. Elementary.
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Proposition 2 will allow us to obtain results for Rf from similar results for Sf , avoiding the
duplication of arguments.

We have the following results on monotonicity of Rf , Sf , assuming monotonicity properties of
f .

Theorem 1. i) If f satisfies (A1), (A3) and (A5) then Rf is monotone.

ii) If f satisfies (A2), (A3) and (A4) then Sf is monotone.

Proof. i) Take xi ∈ X, ui ∈ Rf (xi) (i = 1, 2). In view of (A1), which is equivalent to convexity
of −f(·, xi), we invoke (7), obtained under just this assumption, with xi = yi, and we get

〈u1 − u2, x1 − x2〉 ≥ −f(x1, x1) + f(x1, x2) + f(x2, x1) − f(x2, x2) ≥ 0, (15)

using (A3) and (A5) in the second inequality (observe that the inequality in (13) is reversed
in view of (A5)). It follows from (15) that Rf is monotone.

ii) For establishing monotonicity of Sf , we can either invoke (i) and Proposition 2, or use (10)
with xi = yi (i = 1, 2), which holds on account of (A2), together with (A3) and (A4), to
obtain

−〈v1 − v2, x1 − x2〉 ≤ −f(x1, x1) + f(x1, x2) + f(x2, x1) − f(x2, x2) ≤ 0,

which implies monotonicity of Sf .

Now we move to the second set of assumptions. We will prove monotonicity of Rf and Sf under
(A1), (A2), (A3) and (A6). The proof is more involved than that of Theorem 1 (we will prove first
that Rf and Sf satisfy several properties known to hold for monotone operators, and then get the
monotonicity of Rf , Sf as a consequence), and we will motivate it with a special case in which the
result is quite immediate, namely the smooth and finite dimensional case.

Proposition 3. Assume that X = R
n and that f satisfies (A1), (A2), (A3) and the following

condition stronger than (A6): f is continuously differentiable in X × X. Then Rf = Sf and both
are monotone.

Proof. In this case Rf and Sf are point-valued; i.e. Rf (x) = −∇1f(x, x), Sf (x) = ∇2f(x, x), where
∇1,∇2 have obvious meanings. The Taylor expansion of f gives, for all (x′, y′), (x, y) ∈ R

n × R
n,

f(x′, y′) = f(x, y) + (∇1f(x, y),∇2f(x, y))t((x′, y′) − (x, y)) + o
(∥

∥(x′, y′) − (x, y)
∥

∥

)

. (16)

Fix w ∈ R
n, γ ∈ R, and take y = x and y′ = x′ = x + γw, so that (16) becomes

f(x′, x′) = f(x, x) + γ(∇1f(x, x),∇2f(x, x))t(w,w)) + o (γ ‖w‖) . (17)
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Using (A3) in (17),
0 = γ(∇1f(x, x) + ∇2f(x, x))tw + o (γ ‖w‖) . (18)

Dividing (18) by γ and letting γ → 0,

0 = (∇1f(x, x) + ∇2f(x, x))tw = (−Rf (x) + Sf (x))tw (19)

for all x,w ∈ R
n. It follows from (19) that Rf (x) = Sf (x) for all x ∈ R

n, and hence

Rf = Sf =
1

2
(Rf + Sf ).

In view of Proposition 1(ii), both Rf and Sf are monotone.

Now we will try to extend the argument in the proof of Proposition 3 to the nonsmooth case,
but the issue is more delicate, and we will have to establish first several additional properties of
Rf , Sf .

We recall that a set-valued operator T : X → P(X∗) is closed-convex-valued if T (x) is closed
and convex for all x ∈ X, and locally bounded if for all x ∈ X there exists a neighborhood U of
x such that ∪x∈UT (x) is bounded. Also, the graph G(T ) of T is demiclosed if for all sequence
{(xk, uk)} ⊂ G(T ) such that {xk} converges strongly to x̄ ∈ X and {uk} converges weakly to
ū ∈ X∗, it holds that (x̄, ū) belongs to G(T ).

Proposition 4. If f satisfies (A1) and (A2) then

i) Rf and Sf are closed-convex-valued.

ii) If f also satisfies (A3) and (A6) then Rf and Sf are locally bounded.

iii) If f also satisfies (A3) and (A6) then the graphs of Rf and Sf are demiclosed.

Proof. We will prove the results only for Sf . Then they will hold also for Rf by virtue of Proposition
2.

i) Perform the required elementary computations, or observe that the set Sf (x) is the subd-
ifferential of the convex function f(x, ·) evaluated at the point x, and remember that the
subdifferential is known to be closed-convex-valued.

ii) Fix x ∈ X. We claim that there exists ρ > 0 such that f is bounded in B(x, ρ) × B(x, ρ).
Otherwise there exists a sequence {(ẑk, z̃k)} ⊂ X × X such that limk→∞(ẑk, z̃k) = (0, 0) and
f(x + ẑk, x + z̃k) ≥ 1 for all k. By (A6)

f(x, x) = lim
k→∞

f(x + ẑk, x + z̃k) ≥ 1,

contradicting (A3) and establishing the claim.
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Define σ = ρ/2. We will prove that Sf is bounded on B(x, σ). Take θ such that f(z, y) ≤ θ
for all (z, y) ∈ B(x, ρ) × B(x, ρ). Take any z ∈ B(x, σ) and any nonzero v ∈ Sf (z).

We will use now the duality operator J . Reflexivity of f implies that J is onto, and that
whenever v ∈ J(w) it holds that ‖v‖ = ‖w‖ =

√

〈v,w〉 (see [4]). Use the surjectivity of J to
find w ∈ J−1(v) and take

y = z +
σ

‖v‖
w.

Note that
‖y − x‖ ≤ ‖z − x‖ +

σ

‖v‖
‖w‖ ≤ σ + σ = ρ,

so that y ∈ B(x, ρ) and z ∈ B(x, σ) ⊂ B(x, ρ). Hence f(z, y) ≤ θ and therefore, using the
fact that v ∈ Sf (z), the definition of Sf and (A3), we get

σ ‖v‖ =
σ

‖v‖
〈v,w〉 = 〈v, y − z〉 ≤ f(z, y) − f(z, z) = f(z, y) ≤ θ.

It follows that

‖v‖ ≤
θ

σ

for all z ∈ B(x, σ) and all v ∈ Sf (z), establishing the local boundedness of Sf .

iii) Take a sequence {(xk, uk)} ⊂ G(Sf ) such that {xk} is strongly convergent to some x̄ ∈ X
and {uk} is weakly convergent to some ū ∈ X∗. Then, for all y ∈ X,

〈ū, y − x̄〉 = 〈ū − uk, y − x̄〉 + 〈uk, y − x̄〉 = 〈ū − uk, y − x̄〉 + 〈uk, y − xk〉 + 〈uk, xk − x̄〉 ≤

〈ū−uk, y−x̄〉+f(xk, y)−f(xk, xk)+‖uk‖ ‖x̄ − xk‖ = 〈ū−uk, y−x̄〉+f(xk, y)+‖uk‖ ‖x̄ − xk‖ ,
(20)

using Cauchy-Schwartz inequality, together with the fact that uk ∈ Sf (xk), in the inequal-
ity, and (A3) in the last equality. Now we take limits with k → ∞ on the rightmost ex-
pression of (20). Note that limk→∞〈ū − uk, y − x̄〉 = 0 by the weak convergence of {uk},
limk→∞ ‖x̄ − xk‖ = 0 by the strong convergence of {xk}, and limk→∞ f(xk, y) = f(x̄, y) by
(A6). Also {uk} is bounded as a consequence of (ii), because the tail of {uk} is contained
in Sf (U), for any neighborhood U of x̄. It follows that the rightmost expression in (20)
converges to f(x̄, y) when k → ∞, and hence 〈ū, y − x̄〉 ≤ f(x̄, y) = f(x̄, y) − f(x̄, x̄) for all
y ∈ X, so that ū ∈ Sf (x̄) and hence G(Sf ) is demiclosed.

Now we prove monotonicity of both Rf and Sf under our second set of assumptions. The proof
of the following theorem can be seen as a nonsmooth version of the proof of Proposition 3.
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Theorem 2. If f satisfies (A1), (A2), (A3) and (A6), then Sf = Rf and both of them are
monotone.

Proof. We prove first that Sf (x) ⊂ Rf (x) for all x ∈ X. Fix x, z ∈ X and define yk = x + (1/k)z.
Take v ∈ Sf (x), uk ∈ Rf (yk). By the definitions of Sf , Rf and (A3),

〈v, yk − x〉 ≤ f(yk, x) − f(x, x) = f(yk, x), (21)

〈−uk, yk − x〉 = 〈uk, x − yk〉 ≤ −f(yk, x) − (−f(yk, yk)) = −f(yk, x). (22)

Adding (21) and (22),
1

k
〈v − uk, z〉 = 〈v − uk, yk − x〉 ≤ 0,

implying that
〈v − uk, z〉 ≤ 0 (23)

for all k. Note that limk→∞ yk = x, so that {yk} is bounded, and hence {uk} is bounded by
Proposition 4(ii), because uk ∈ Sf (yk) for all k. Since X is reflexive, it follows from Bourbaki-
Alaoglu Theorem (see, e.g. [9], Vol I, p. 248), that {uk} has weak cluster points; let u be one of
them. By Proposition 4(iii), u ∈ Sf (x). Taking limits with k → ∞ in (23) along the subsequence
which is weakly convergent to u, we get 〈u − v, z〉 ≥ 0. We have shown that for all z ∈ X there
exists u ∈ Rf (x) such that 〈u− v, z〉 ≥ 0. Let V = Rf (x)− v. By Proposition 4(i), V is closed and
convex, and we have just established that for all z ∈ X there exists w ∈ V such that

〈w, z〉 ≥ 0. (24)

Invoking again the reflexivity of X, it follows easily from the separation version of Hahn-Banach
Theorem (see e.g. Theorem 1.7 in [2]), that 0 ∈ V (otherwise there exists a hiperplane which
strictly separates V from 0, contradicting (24)). Now, since V = Rf (x) − v, 0 belongs to V if and
only if v ∈ Rf (x). Since v is an arbitrary element of Sf (x), we have proved that Sf (x) ⊂ Rf (x).
The converse inclusion results from Proposition 2. It follows that Rf = Sf = (1/2)(Rf + Sf ).
Monotonicity of Rf and Sf is then a consequence of Proposition 1(ii).

3 Maximal monotonicity of the diagonal subdifferential operators

In this section we will prove maximal monotonicity of Rf , Sf under the same assumptions used
in Section 2 for establishing their monotonicity, assuming that the space X is such that both the
duality operator J and its inverse J−1 are single-valued. We remark that single-valuedness of J is
equivalent to continuous differentiability of ‖·‖2, i.e. to smoothness of X. Among Banach spaces
satisfying this assumption, we mention the spaces ℓp, Lp(Ω), and the Sobolev spaces W p,q(Ω),
taking always 1 < p < ∞.

We need first some preliminary material. We begin with an already mentioned result by Rock-
afellar.
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Proposition 5. Assume that X is a reflexive Banach space such that both J and J−1 are single-
valued. Let T : X → P(X∗) be a monotone operator. If T +J is onto then T is maximal monotone.

Proof. See Theorem 4.4.7 in [3].

We continue with a celebrated lemma due to Ky Fan.

Proposition 6. Let Y be a nonempty subset of a real Hausdorff topological vector space Z. Con-
sider a closed-valued F : Y → P(Z). If

i) the convex hull of any finite subset {y1, . . . , ym} of Y is contained in
⋃m

i=1
F (yi),

ii) there exists y ∈ Y such that F (y) is compact,

then
⋂

y∈Y F (y) 6= ∅.

Proof. See Lemma 1 in [5]

We remind now that given f : X × X → R and a closed and convex subset C ⊂ X, the
equilibrium problem EP(f,C) consists of finding x∗ ∈ C such that f(x∗, x) ≥ 0 for all x ∈ C.

The following property of EP(f,C) appears in [7], with a slightly different formulation.

Proposition 7. Let K,C be closed and convex subsets of X. Consider a convex h : X → R and
f : X × X → R satisfying (A2) and (A3).

i) If x̄ minimizes h on C ∩ K and it belongs to the interior of K, then x̄ minimizes h on C.

ii) If x̄ solves EP(f,C ∩ K) and it belongs to the interior of K, then x̄ solves EP(f,C).

Proof. Item (i) is an elementary fact in convex analysis: local minimizers of convex functions are
indeed global. We move over to (ii). By (A2), the marginal function fx : X → R defined as
fx̄(y) = f(x̄, y) is convex. Since x̄ solves EP(f,C ∩ K) we have, in view of (A3),

fx̄(x) = f(x̄, x) ≥ 0 = f(x̄, x̄) = fx̄(x̄)

for all x ∈ C ∩K, i.e. x̄ minimizes the convex function fx̄ on C ∩K. By (i), x̄ minimizes fx̄ on the
whole C, and hence, using again (A3),

0 = f(x̄, x̄) = fx̄(x̄) ≤ fx̄(x) = f(x̄, x)

for all x ∈ C, so that x̄ solves indeed EP(f,C).

We will give now a condition on f and C which ensures existence of solutions of EP(f,C) when
f satisfies any one of the two set of assumptions considered in Section 2. Several variants of this
condition were originally introduced in [7] and further analyzed in [6].
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P) For any sequence {xk} ⊂ C such that limk→∞ ‖xk‖ = ∞, there exists w ∈ C and k0 ∈ N such
that f(xk, w) ≤ 0 for k ≥ k0.

We show next that (P) guarantees indeed existence of solutions of EP(f,C) under two different
sets of assumptions on f .

Theorem 3. i) If f satisfies (A1), (A2), (A3) and (P), then EP(f,C) has solutions.

ii) If f satisfies (A2), (A3), (A4) and (P), and additionally f(·, y) is continuous for all y ∈ C,
then EP(f,C) has solutions.

Proof. i) Let Cn be the intersection of C with the ball B(0, n) with radius n centered at 0.
Define Fn : Cn → P(X) as Fn(y) = {x ∈ Cn : f(x, y) ≥ 0}. We intend to use Proposition
6 for proving existence of solutions of EP(f,Cn), and hence we must check its assumptions.
First, we take as Z the Banach space X endowed with its weak topology, under which X is
clearly a Haussdorf topological vector space, and Y = Cn. The set Cn is certainly closed and
in the strong topology of X, and also convex, in view of (A1). Hence, it is also weakly closed.
We check now assumption (ii) of Proposition 6. In view of (A1), Fn(y) is the intersection
of Cn with a super-level set of the concave function f(·, y), so that Fn is closed-valued with
respect to the topological space Z. We claim now that Fn(y) is compact for all y ∈ C. Note
that Fn(y) is weakly closed and also bounded, because it is contained in the bounded set
Cn, hence it is weakly compact, i.e. compact in the given topology of Z. Now we must
check assumption (i) of Proposition 6. Take y1, . . . ym ∈ Cn, and α1, . . . , αm ∈ R+ such that
∑m

i=1
αi = 1. We must verify that

∑m
i=1

αiyi ∈
⋃m

i=1
Fn(yi), i.e. that there exists ℓ such that

f

(

n
∑

i=1

αiyi, yℓ

)

≥ 0. (25)

Observe that

0 = f





m
∑

i=1

αiyi,
m
∑

j=1

αjyj



 ≤
m
∑

j=1

αjf

(

m
∑

i=1

αiyi, yj

)

≤ max
1≤j≤m

f

(

m
∑

i=1

αiyi, yj

)

, (26)

using (A3) in the first equality and (A2) in the first inequality. Thus, (25) holds if we
take as ℓ the index which realizes the maximum in the rightmost expression of (26). The
assumptions of Proposition 6 therefore hold, and so there exists xn ∈

⋂

y∈Cn

Fn(y). It follows
from the definition of Fn that f(xn, y) ≥ 0 for all y ∈ Cn, and hence xn solves EP(f,Cn)
as claimed. We consider now a sequence {xn} of solutions of EP(f,Cn), whose existence
has just been established. We analyze two cases: if there exists n such that ‖xn‖ < n,
then xn ∈ int(B(0, n)), and by definition xn solves EP(f,Cn) =EP(f,C ∩ B(0, n)). We are
thus within the hypotheses of Proposition 7(ii), and we conclude that xn solves EP(f,C),
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establishing the result. We move over to the remaining case, i.e. we assume that ‖xn‖ = n
for all n, and hence limn→∞ ‖xn‖ = ∞. Now we invoke assumption (P), which ensures the
existence of w ∈ C such that

f(xn, w) ≤ 0 (27)

for n larger than a given n0. Take n > max{n0, ‖w‖}. Then w ∈ C ∩ B(0, n) = Cn, and,
since xn solves EP(f,Cn), it follows that f(xn, w) ≥ 0. In view of (27),

f(xn, w) = 0. (28)

By (28) and the definition of xn,

f(xn, w) = 0 ≤ f(xn, y) ∀y ∈ Cn. (29)

Consider the convex function fn : X → R, defined as fn(y) = f(xn, y). Since w belongs to
C ∩ B(0, n), w minimizes fn on Cn = C ∩ B(0, n) by (29). Since ‖w‖ < n, w belongs to the
interior of B(0, n). It follows from Proposition 7(i) that w minimizes of fn on C. Thus, using
again (28),

0 = f(xn, w) = fn(w) ≤ fn(y) = f(xn, y) ∀y ∈ C,

implying that xn solves EP(f,C), and establishing the result for this case too.

ii) This item has been proved in Theorem 4.2 of [6] under slightly weaker assumptions than those
used here, with a proof very similar to the proof of (i); the main difference lies in the use of
monotonicity of f instead of concavity of f(·, y) for establishing that one of the assumptions
of Proposition 6 holds, namely the weak compacity of Fn(y), which is defined in a different
way: Fn(y) = {x ∈ Cn : f(y, x) ≤ 0}.

The next proposition states that under the remaining assumptions of either item (i) or item (ii)
of Theorem 3, property (P) is not only sufficient but also necessary for the existence of solutions of
EP(f,C). We need not this result in the sequel, but we deem it interesting enough as to deserve
inclusion.

Proposition 8. Assume that f satisfies the assumptions of either item of Theorem 3, excluding
(P). If EP(f,C) has solutions then (P) holds.

Proof. Let x∗ be a solution of EP(f,C). We will show that (P) holds with w = x∗, and indeed the
inequality in (P) will hold with any x ∈ C as the first argument of f , and not just the tail of an
unbounded sequence. We consider separately the assumptions of each item of Theorem 3. Consider
first the hypotheses of item (i). We have already shown that, due to (A2) and (A3), the point x∗

minimizes the convex function fx∗ on C, where fx∗ : X → R is defined as fx∗(y) = f(x∗, y). By
convexity of of fx∗ and C, there exists u∗ ∈ ∂fx∗(x∗) = Sf (x∗) such that

0 ≤ 〈u∗, x − x∗〉 (30)
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for all x ∈ C. By Theorem 2, Sf = Rf , so that u∗ belongs to Rf . Using (30), the definition of Rf

and (A3), we get

0 ≤ 〈u∗, x − x∗〉 ≤ −f(x, x∗) − (−f(x∗, x∗)) = −f(x, x∗)

for all x ∈ C, showing that (P) holds indeed with w = x∗. The case of item (ii) was already dealt
with in [6], but under (A4) the proof is rather immediate:

0 ≤ f(x∗, x) ≤ −f(x, x∗)

for all x ∈ C, using the fact that x∗ solves EP(f,C) in the first inequality and (A4) in the second
one. Again, the inequality in (P) holds with w = x∗.

In the theory of equilibrium problems, it is customary to require that assumptions like (A1),
(A2), (A3), (A4), etc, hold just for points x, y ∈ C and not in the whole space X. In this case
some technical complications arise related to the domains of Rf and Sf . We have opted for a
presentation with “unconstrained assumptions” on f just for the sake of clarity of the exposition.

We present now our main result on maximal monotonicity of Rf , Sf .

Theorem 4. Assume that X is a Banach space such that both the duality operator J and its inverse
J−1 are single-valued. Then,

i) if f satisfies (A1), (A2), (A3) and (A6), then Sf = Rf and both of them are maximal
monotone,

ii) if f satisfies (A2), (A3) and (A4), and additionally f(·, y) is continuous for all y ∈ X, then
Sf is maximal monotone,

iii) if f satisfies (A1), (A3) and (A5), and additionally f(x, ·) is continuous for all x ∈ X, then
Rf is maximal monotone.

Proof. In view of Theorems 1 and 2, it suffices to prove the maximality of Sf , Rf . In view of
Proposition 2, it suffices to consider the case of Sf , so that we will deal only with items (i) and
(ii). By Proposition 5, it suffices to prove that Sf + J is onto, i.e. that for all b ∈ X∗ there exists
x ∈ X such that b ∈ Sf (x) + J(x). Define f̃ : X × X → R as

f̃(x, y) = f(x, y) +
1

2

(

‖y‖2 − ‖x‖2
)

+ 〈b, x − y〉, (31)

We will check now that f̃ inherits from f all the properties which appear in the assumptions of
either item (i) or item (ii), and that EP(f̃ ,X) also satisfies (P).

Note that f̃(x, x) = f(x, x) and f̃(x, y) + f̃(y, x) = f(x, y) + f(y, x), so that f̃ satisfies (A3),
(A4) or (A5) whenever f does. Note also that the second term in the right hand side of (31),
namely

1

2

(

‖y‖2 − ‖x‖2
)

+ 〈b, x − y〉,
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is convex as a function of y for all x ∈ X, concave as a function of x for all y ∈ X, and jointly
continuous as a function of x and y, so that f̃ inherits indeed from f properties (A1), (A2), (A6)
and continuity in either argument, when f itself enjoys any of them.

We look now at (P) applied to the problem EP(f̃ ,X). Let {xk} ⊂ X be a sequence such that
limk→∞ ‖xk‖ = ∞. Fix any w ∈ X. We will find appropriate upper bounds for f̃(xk, w), for which
we will consider separately the assumptions of items (i) and (ii). We start with item (i). By (A1),
−f(·, w) is convex. Let v be a subgradient of this function at w, i.e. v belongs to Rf (w), so that

〈v, xk − w〉 ≤ −f(xk, w) + f(w,w) = −f(xk, w),

using (A3) in the equality, and therefore

f(xk, w) ≤ 〈v,w − xk〉 ≤ ‖v‖ (‖w‖ + ‖xk‖). (32)

In view of (32) and (31),

f̃(xk, w) = f(xk, w) +
1

2

(

‖w‖2 − ‖xk‖
2
)

+ 〈b, xk − w〉 ≤

‖v‖ (‖w‖ + ‖xk‖) +
1

2

(

‖w‖2 − ‖xk‖
2
)

+ ‖b‖ (‖xk‖ + ‖w‖) =

−
1

2
‖xk‖

2 + (‖v‖ + ‖b‖) ‖xk‖ + ‖w‖

(

‖v‖ +
1

2
‖w‖ + ‖b‖

)

. (33)

Consider now the assumptions of item (ii). By (A4), f(xk, w) ≤ −f(w, xk). By (A3), f(w, ·) is
convex. Let now v′ be a subgradient of this function at w, i.e. v′ ∈ Sf (w), so that

〈v′, xk − w〉 ≤ f(w, xk) − f(w,w) = f(w, xk),

using (A3) in the equality, and therefore

f(xk, w) ≤ −f(w, xk) ≤ 〈v′, w − xk〉 ≤
∥

∥v′
∥

∥ (‖w‖ + ‖xk‖). (34)

Proceeding in a similar way from (34) and (31),

f̃(xk, w) ≤ −
1

2
‖xk‖

2 + (
∥

∥v′
∥

∥+ ‖b‖) ‖xk‖ + ‖w‖

(

∥

∥v′
∥

∥+
1

2
‖w‖ + ‖b‖

)

, (35)

Since limk→∞ ‖xk‖ = ∞, it follows from either (33) or (35) that limk→∞ f̃(xk, w) = −∞, so that
f̃(xk, w) ≤ 0 for large enough k, and hence (P) holds under the assumptions of either item (i) or
item (ii).

We have checked all the required properties of f̃ , so that we can apply Theorem 3, in order to
conclude that EP(f̃ ,X) has solutions, under the hypotheses of either item (i) or item (ii). Let x∗

be a solution of EP(f̃ ,X), i.e., since f̃ satisfies (A3), it holds that f̃(x∗, x∗) = 0 ≤ f̃(x∗, x) for all
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x ∈ X, so that x∗ is an unrestricted minimizer of the convex function f̃(x∗, ·), and hence a zero
of its subdifferential at x∗, namely S

f̃
(x∗). It follows easily from(31) and the definition of J that

S
f̃
(x) = Sf (x) + J(x) − b for all x ∈ X. We have proved that 0 ∈ (Sf + J)(x∗) − b, i.e. that

b ∈ (Sf + J)(x∗). Since b is an arbitrary element of X∗, it follows that Sf + J is onto, and hence
Sf is maximal monotone by Proposition 5. The proof is complete.

We mention that the result of Theorem 4(ii) has been proved, for the special case in which X
is a Hilbert space, in [8], but with another another regularization function f̂ , defined as f̂(x, y) =
f(x, y)+〈λx−b, y−x〉, instead of f̃ . We remark that this function f̂ cannot be adequately extended
to Banach spaces.

We mention also that the assumption of single-valuedness of J and J−1 in the proof of Proposi-
tion 5 cannot be relaxed (see p. 39 in [10]). Thus, our proof technique, based upon this surjectivity
result, precludes the extension of our result to nonsmooth Banach spaces. We conjecture never-
theless that Sf and Rf are maximal monotone in any reflexive Banach space X (and perhaps also
when X is nonreflexive), under the remaining assumptions of Theorem 4.
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