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Abstract

We analyze an explicit method for solving nonsmooth variational inequality problems, estab-
lishing convergence of the whole sequence, under paramonotonicity of the operator. Previous
results on similar methods required much more demanding assumptions, like coerciveness of the
operator.
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1 Introduction

Let C be a nonempty, closed and convex subset of Rn and T : Rn → P(Rn) a point-to-set operator.
The variational inequality problem for T and C, denoted VIP(T, C), is the following:

Find x∗ ∈ C such that there exists u∗ ∈ T (x∗) satisfying

〈u∗, x− x∗〉 ≥ 0 ∀x ∈ C.

We denote the solution set of this problem by S(T,C).
The variational inequality problem was first introduced by P. Hartman and G. Stampacchia

[12] in 1966. An excellent survey of methods for finite dimensional variational inequality problems
can be found in [9].

Here, we are interested in direct methods for solving VIP(T, C). They are called direct because
the solution of subproblems at each iteration is not required. Iterate xk+1 is computed using only
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information on the previous point xk and easy computations. The basic idea consists of extending
the projected gradient method for constrained optimization, i.e., for the problem of minimizing
f(x) subject to x ∈ C. This problem is a particular case of VIP(T, C) taking T = ∇f . This
procedure is given by the following iterative scheme:

x0 ∈ C, (1)

xk+1 = PC(xk − αk∇f(xk)), (2)

with αk > 0 for all k. The coefficients αk are called stepsizes and PC : Rn → C is the orthogonal
projection onto C, i.e. PC(x) = argmin

y∈C
‖x− y‖.

An immediate extension of the method (1)–(2) to VIP(T, C) for the case in which T is point-
to-set, is the iterative procedure given by

x0 ∈ C, (3)

xk+1 = PC(xk − αku
k) , (4)

where uk ∈ T (xk), and the positive sequence αk satisfies some conditions.
Convergence results for this method require some monotonicity properties of T . We introduce

next several possible options.

Definition 1. Consider T : Rn → P(Rn) and W ⊂ Rn convex. T is said to be:

i) monotone on W if 〈u− v, x− y〉 ≥ 0 for all x, y ∈ W and all u ∈ T (x), v ∈ T (y),

ii) paramonotone on W if it is monotone in W , and whenever 〈u− v, x− y〉 = 0 with x, y ∈ W ,
u ∈ T (x), v ∈ T (y) it holds that u ∈ T (y) and v ∈ T (x),

iii) strictly monotone on W if 〈u − v, x − y〉 > 0 for all x, y ∈ W such that x 6= y, and all
u ∈ T (x), v ∈ T (y),

iv) uniformly monotone on W if 〈u− v, x− y〉 ≥ ψ(‖x− y‖) for all x, y ∈ W and all u ∈ T (x),
v ∈ T (y), where ψ : R+ → R is an increasing function, with ψ(0) = 0,

v) strongly monotone on W if 〈u− v, x− y〉 ≥ ω‖x− y‖2 for some ω > 0 and for all x, y ∈ W

and all u ∈ T (x), v ∈ T (y).

It follows from Definition 1 that the following implications hold: (v) ⇒ (iv) ⇒ (iii) ⇒ (ii) ⇒
(i). The reverse assertions are not true in general.

Convergence of the scheme (3)-(4), is established in [1] assuming uniform monotonicity of T ,
and in [3] assuming paramonotonicity of T .
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We remark that there is no chance to relax the assumption on T to plain monotonicity, to
case one-step iteration. For example, consider T : R2 → R2 defined as T (x) = Ax, with A =(

0 1
−1 0

)
. T is monotone and the unique solution of VIP(T,C) is x∗ = 0. However, it is easy

to check that ‖xk − αkT (xk)‖ > ‖xk‖ for all xk 6= 0 and all αk > 0, and therefore the sequence
generated by (4) moves away from the solution, independently of the choice of the stepsize αk.

Thus, the scheme (3)-(4) fails to converges for arbitrary monotone operators. In such a case,
an available option is Korpelevich’s method and its variants, which perform a double-step iteration
of the form:

yk = PC(xk − αkT (xk)) (5)

xk+1 = PC(xk − γkT (yk)), (6)

where yk is an auxiliary point. See, e.g. [13],[16],[17],[18].
In this paper we will deal with one-step iterations, and thus we keep the paramonotonicity

assumption. We comment next on this assumption.
The notion of paramonotonicity, which is in-between monotonicity and strict monotonicity, was

introduced in [5], and many of its properties were established in [8] and [14]. Among them, we
mention the following:

i) If T is the subdifferential of a convex function, then T is paramonotone; see Proposition 2.2
in [14].

ii) If T : Rn → Rn is monotone and differentiable, and JT (x) denotes the Jacobian matrix of T

at x, then T is paramonotone if and only if Rank(JT (x) + JT (x)t) = Rank(JT (x)) for all x;
see Proposition 4.2 in [14].

It follows that affine operators of the form T (x) = Ax + b are paramonotone when A is positive
semidefinite (not necessarily symmetric), and Rank(A + At) = Rank(A). This situation includes
cases of nonsymmetric and singular matrices, where S(T,Rn) can be a subspace, differently from
the case of strictly or strongly monotone operators, for which S(T,C) is always a singleton, when
nonempty. Of course, this can happen also for nonlinear operators.

1.1 Relaxed projection methods

The method given by (3)-(4) is fully direct only in a few specific instances, namely when PC is given
by an explicit formula (e.g. when C is a halfspace, or a ball, or a subspace). When C is a general
closed convex set, however, one has to solve the problem min{‖x − (xk − αkT (xk))‖ : x ∈ C}, in
order to compute the projection onto C.
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One option for avoiding this difficulty consists of replacing at iteration k PC by PCk
, where

Ck is a halfspace containing the given set C and not xk. For variational inequality problems, this
approach was introduced by M. Fukushima in [11].

Observe that projections onto halfspaces are easily computable. We consider the case in which
C is of the form

C = {z ∈ Rn : g(z) ≤ 0}, (7)

where g : Rn → R is a convex function. The differentiability of g is not assumed and the repre-
sentation (7) is therefore rather general, because any system of inequalities gj(x) ≤ 0 with j ∈ J ,
where all the gj ’s are convex, may be represented as in (7) with g(x) = sup{gj(x) : j ∈ J}.

An explicit method for solving VIP(T, C) was studied in [3], using the following relaxed iteration:

xk+1 = PCk

(
xk − βk

ηk
uk

)
, (8)

where ηk = max{1, ‖uk‖}, βk is an exogenous stepsize satisfying

∞∑

k=0

βk = ∞. (9)

∞∑

k=0

β2
k < ∞, (10)

and Ck is defined as
Ck := {z ∈ Rn : g(xk) + 〈vk, z − xk〉 ≤ 0},

with vk ∈ ∂g(xk), where ∂g(xk) is the subdifferential of g at xk.
It was proved in [3] that the sequence generated by (8) is bounded, the difference between

consecutive iterates converges to zero, and all its cluster points belong to S(T, C), under a quite
demanding assumption, besides paramonotonicity; namely T must satisfy the following coerciveness
condition:

(Q) There exist z ∈ C and a bounded set D ⊆ Rn such that 〈u, x− z〉 ≥ 0 for all x /∈ D and for
all u ∈ T (x).

In this paper we will analyze a new algorithm relaxing the hypotheses in [3]. We do not need
any coerciveness condition. Also, we obtain convergence of the whole sequence to some the solution
of VIP(T, C), assuming only existence of solutions.

We describe next our method. We construct the main sequence {xk} as follows: we perform a
finite inner loop starting at the current iterate xk, consisting of projections onto suitable hyperplanes
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containing C, until a point ỹk is obtained, whose distance to C is smaller than a certain multiple of
the current exogenous steplength βk. After this inner loop, a step is taken from ỹk in the opposite
direction to ũk ∈ T (ỹk) with an exogenous steplength related to βk, and the resulting point is
projected onto another auxiliary hyperplane containing C, thus obtaining the next main iterate
xk+1. The inner loop of projections onto hyperplanes hence substitutes for the exact projection
onto C, demanded in the exact algorithm given by (3)-(4).

A related inner loop has been proposed in [4], combined with a two-step strategy like in (5)-(6),
for solving point-to-point monotone variational inequality problems, thus relaxing the paramono-
tonicity assumption. We emphasize that the method proposed in this paper allows for point-to-set
operators.

There are just a few options for the case in which T is point-to-set and just monotone. Two of
them can be found in [2] and [15], but these methods are not easily implementable, and cannot be
considered direct or explicit methods.

2 Preliminary results

In this section, we present some definitions and results that are needed for the convergence analysis
of the proposed method.

Definition 2. Let S be a nonempty subset of Rn. A sequence {xk} in Rn is said to be quasi-Fejér
convergent to S if and only if for all x ∈ S there exist k0 ≥ 0 and a sequence {δk} ⊂ R+ such that∑∞

k=0 δk < ∞ and ‖xk+1 − x‖2 ≤ ‖xk − x‖2 + δk for all k ≥ k0.

Proposition 1. If {xk} is quasi-Fejér convergent to S then:

i) {xk} is bounded,

ii) if a cluster point x∗ of {xk} belongs to S, then the whole sequence {xk} converges to x∗.

Proof. See Theorem 1 in [6].

It is convenient to introduce the following notation: let g : Rn → R be a convex function, and
X a nonempty, compact and convex subset of Rn. Given a point x ∈ X and v ∈ ∂g(x), the solution
of the problem

min{‖z − x‖ : g(x) + 〈v, z − x〉 ≤ 0 , z ∈ X}
is denoted by z̃(x, v). Let C = {z ∈ Rn : g(z) ≤ 0}.

Lemma 1. There exists α̃ ∈ [0, 1) such that dist(z̃(x, v), C) ≤ α̃ dist(x,C) for all x ∈ X \ C and
for all v ∈ ∂g(x), where dist(x,C) = miny∈C ‖x− y‖.

5



Proof. See Lemma 4 in [10].

Now, we state two well known facts on orthogonal projections.

Lemma 2. Let K be any nonempty closed and convex set in Rn and PK the orthogonal projection
onto K. For all x, y ∈ Rn and all z ∈ K, the following properties hold:

i) ‖PK(x)− PK(y)‖2 ≤ ‖x− y‖2 − ‖(PK(x)− x)− (PK(y)− y)‖2.

ii) 〈x− PK(x), z − PK(x)〉 ≤ 0.

Proof. See Lemma 4.1 in [15].

We recall now the definition of maximal monotone operators.

Definition 3. Let T : Rn → P(Rn) be a monotone operator. T is maximal monotone if T = T ′

for all monotone T ′ : Rn → P(Rn) such that G(T ) ⊆ G(T ′), where G(T ) := {(x, u) ∈ Rn ×Rn :
u ∈ T (x)}.

We also need the following results on maximal monotone and paramonotone operators.

Lemma 3. Let T : Rn → P(Rn) be a maximal monotone operator. Then

i) T is locally bounded at any point in the interior of its domain.

ii) G(T ) is closed.

iii) T is bounded on bounded subsets of the interior of its domain.

Proof. i) See Theorem 4.6.1(ii) of [7].

ii) See Proposition 4.2.1(ii) of [7].

iii) It follows easily from (i).

Proposition 2. Let T be a paramonotone operator in C. Take x ∈ S(T,C) and x∗ ∈ C. If there
exists u∗ ∈ T (x∗) such that 〈u∗, x∗ − x〉 = 0 then x∗ is also solution of VIP(T,C).

Proof. See Proposition 13 in [8].

Lemma 4. Let T be a maximal monotone and paramonotone operator. Let {(xk, uk)} ⊂ G(T ) be
a bounded sequence such that all cluster points of {xk} belong to C. For each x ∈ S(T,C) define
γk(x) := 〈uk, xk − x〉. If for some x ∈ S(T, C) there exists a subsequence {γjk

(x)} of {γk(x)} such
that limk→∞ γjk

(x) ≤ 0, then there exists a cluster point of {xjk} belonging to S(T, C).
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Proof. See Lemma 6 of [3].

The next lemma provides a computable upper bound for the distance from a point to the feasible
set C.

Lemma 5. Let g : Rn → R be a convex function and C := {z ∈ Rn : g(z) ≤ 0}. Assume that
there exists w ∈ C such that g(w) < 0. Then, for all x such that g(x) > 0, we have

dist(x,C) ≤ ‖x− w‖
g(x)− g(w)

g(x) .

Proof. Take xλ := λy + (1− λ)x with λ := g(x)
g(x)−g(y) . Note that λ ∈ (0, 1). Then

g(xλ) = g(λy + (1− λ)x) ≤ λg(y) + (1− λ)g(x) = g(x)− λ(g(x)− g(y)) = 0.

Thus, xλ ∈ C and

dist(x,C) ≤ ‖x− xλ‖ = ‖x− (λy + (1− λ)x)‖ = λ‖x− y‖ =
g(x)

g(x)− g(y)
‖x− y‖.

3 A relaxed projection algorithm

We introduce an algorithm which replaces projections onto the feasible set by easily computable
projections onto suitable hyperplanes. We assume that the operator T is point-to-set, maximal
monotone and paramonotone.

We assume also that C is of the form given in (7), which we repeat here:

C = {z ∈ H : g(z) ≤ 0}, (11)

where g : H → R is a convex function, and that a Slater point is available, i.e. we will explicitly
use a point w such that g(w) < 0.

The algorithm presented here has higher computational demands than the algorithm introduced
in [3], basically the inner loop of projections onto separating hyperplanes, but as a compensation
we obtain better convergence results, namely convergence of the whole sequence, and we do not
assume any coercivity condition.

7



3.1 Statement of Algorithm

Consider an exogenous sequence {βk} ⊆ R++ satisfying

∞∑

k=0

βk = ∞, (12)

∞∑

k=0

β2
k < ∞. (13)

The algorithm is defined as follows.

Algorithm A

Initialization step: Take
x0 ∈ Rn.

Iterative step: Given xk, if g(xk) ≤ 0 then take ỹk := xk. Else, perform the following inner loop,
generating points yk,0, yk,1, . . . . Take yk,0 = xk, θ > 0 and choose vk,0 ∈ ∂g(yk,0). For j = 0, 1, . . . ,
let

Ck,j := {z ∈ Rn : g(yk,j) + 〈vk,j , z − yk,j〉 ≤ 0}, (14)

with vk,j ∈ ∂g(yk,j). Define
yk,j+1 := PCk,j

(yk,j). (15)

Stop the inner loop when j = j(k), defined as

j(k) := min
{

j ≥ 0 :
g(yk,j) ‖yk,j − w‖

g(yk,j)− g(w)
≤ θβk

}
. (16)

Let
ỹk = yk,j(k). (17)

Take ũk ∈ T (ỹk) and defined ηk := max{1, ‖ũk‖} and Ck := Ck,j(k). Compute

xk+1 = PCk

(
ỹk − βk

ηk
ũk

)
, (18)

with βk satisfying (12)-(13).

If xk+1 = ỹk then stop.

Unlike other projection methods, Algorithm A generates a sequence {xk} which is not neces-
sarily contained in the set C. As will be shown in the next subsection, the generated sequence is
asymptotically feasible and, in fact, converges to some solution of VIP(T, C).
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Algorithm A can be easily implemented, because PCk,j
and PCk

have explicit formulae, which
we present next.

Proposition 3. Define Cx := {z ∈ Rn : g(x) + 〈v, z − x〉 ≤ 0} with v ∈ ∂g(x). Then for any
y ∈ Rn,

PCx(y) =





y − g(x) + 〈v, y − x〉
‖v‖2

v if g(x) + 〈x, y − x〉 > 0

y if g(x) + 〈v, y − x〉 ≤ 0.

Proof. See Proposition 3.1 in [19].

It follows from Proposition 3, (14), and (18) that

yk,j+1 = PCk,j
(yk,j) = yk,j − 1

‖vk,j‖2 max
{

0, g(yk,j)
}

vk,j ,

and

xk+1 = PCk

(
ỹk − βk

ηk
ũk

)
= ỹk − βk

ηk
ũk − 1

‖vk‖2 max
{

0, g(ỹk)− βk

ηk
〈ũk, ṽk〉

}
ṽk,

so that Algorithm A can be considered as a fully direct method for VIP(T, C).
The iteration formulae of the algorithm become more explicit in the smooth case, i.e. when C

is of the form C = {z ∈ Rn : gi(z) ≤ 0, 1 ≤ i ≤ m} where the gi’s are convex and differentiable.
The set C can be rewritten in our notation with g(x) = max1≤i≤m{gi(x)}. In this situation, the
well known formula for the subdifferential of the maximum of convex functions allows us to take

vk,j = ∇g`(k,j)(y
k,j), with `(k, j) ∈ argmax0≤i≤m{gi(yk,j)},

so that the hyperplane onto which each inner-loop iterate is projected is the first order approxima-
tion of the most violated constraint at that iterate.

Observe that ∂g(x) 6= ∅ for all x ∈ Rn, because we assume that g is convex and dom(g) = Rn.

3.2 Convergence analysis of Algorithm A

Before establishing convergence of Algorithm A, we need to ascertain the validity of the stopping
criterion and the fact that the algorithm is well defined.

Proposition 4. Take C, Ck,j, ỹk and xk defined by Algorithm A. Then,

i) C ⊆ Ck,j for all k and for all j.

ii) If xk+1 = ỹk for some k, then ỹk ∈ S(T, C).
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iii) j(k) is well defined.

Proof. i) It follows from (14) and the definition of subgradient.

ii) Suppose that xk+1 = ỹk. Then , since xk+1 ∈ Ck, we have g(ỹk)+〈ṽk, xk+1− ỹk〉 = g(xk) ≤ 0,
i.e. ỹk ∈ C. Moreover, since xk+1 is given by (18), using Lemma 2(ii) with x = ỹk − βk

ηk
ũk

and K = Ck, we obtain
〈

xk+1 −
(

ỹk − βk

ηk
ũk

)
, z − xk+1

〉
≥ 0 ∀z ∈ Ck. (19)

Taking xk+1 = ỹk in (19) and taking into account the facts that βk > 0, ηk ≥ 1 for all k, and
C ⊆ Ck, we get 〈ũk, z − ỹk〉 ≥ 0 for all z ∈ C. Since ũk ∈ ũk, we conclude that ỹk ∈ S(T, C).

iii) Assume by contradiction that
g(yk,j) ‖yk,j − w‖

g(yk,j)− g(w)
> θβk for all j. Thus, we get an infinite

sequence {yk,j}∞j=0 such that

lim
j→∞

g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≥ θβk > 0. (20)

Taking into account the inner loop in j given in (16)-(15), i.e. yk,j+1 = PCk,j
(yk,j) for each

k, we obtain, for each x ∈ C,

‖yk,j+1 − x‖2 = ‖PCk,j
(yk,j)− PCk,j

(x)‖2 ≤ ‖yk,j − x‖2 − ‖yk,j+1 − yk,j‖2 (21)

≤ ‖yk,j − x‖2,

using Lemma 2(i) with x = yk,j , y = x and K = Ck,j . Thus, {yk,j}∞j=0 is quasi-Fejér conver-

gent to C, and hence it is bounded by Proposition 1(i). It follows that τ :=
1

−g(w)
sup

0≤j≤∞
‖yk,j−

w‖ is finite and also,
g(yk,j) > 0 ∀ j. (22)

Using (21), we get

lim
j→∞

‖yk,j+1 − yk,j‖ = 0. (23)

Since yk,j+1 belongs to Ck,j , we have from (14) that

g(yk,j) ≤ 〈vk,j , yk,j − yk,j+1〉 ≤ ‖vk,j‖‖yk,j − yk,j+1‖, (24)
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using Cauchy-Schwartz inequality in the last inequality.

Since {yk,j}∞j=0 is bounded and the subdifferential of g is bounded on bounded sets, we obtain
that {‖vk,j‖}∞j=0 is bounded. In view of (23) and (24),

lim
j→∞

g(yk,j) ≤ 0. (25)

It follows from (22) and (25) that

lim
j→∞

g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≤ lim
j→∞

g(yk,j) ‖yk,j − w‖
−g(w)

≤ 1
−g(w)

sup
0≤j≤∞

‖yk,j − w‖ lim
j→∞

g(yk,j)

= τ lim
j→∞

g(yk,j) ≤ 0,

contradicting (20). It follows that j(k) is well defined.

We continue by proving the quasi-Fejér properties of the sequences {xk} and {ỹk} generated by
Algorithm A.

Proposition 5. If S(T, C) is nonempty, then {ỹk} and {xk} are quasi-Fejér convergent to S(T, C).

Proof. Observe that ηk ≥ ‖ũk‖ and ηk ≥ 1 for all k by the definition of ηk. Then, for all k,

1
ηk
≤ 1 (26)

and
‖ũk‖
ηk

≤ 1. (27)

Take x̄ ∈ S(T,C). Thus, there exists ū ∈ T (x̄) such that

〈ū, x− x̄〉 ≥ 0 ∀x ∈ C. (28)

First note that,

‖ỹk − x̄‖ = ‖yk,j(k) − x̄‖ = ‖PCk,j(k)−1
(yk,j(k)−1)− PCk,j(k)−1

(x̄)‖
≤ ‖yk,j(k)−1 − x̄‖ = ‖PCk,j(k)−2

(yk,j(k)−2)− PCk,j(k)−2
(x̄)‖

≤ ‖yk,j(k)−2 − x̄‖ ≤ · · · ≤ ‖yk,0 − x̄‖ = ‖xk − x̄‖, (29)
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using Lemma 2(i) and (15).

Let θ̃ = 1 + θ ‖ū‖ ≥ 1 + θ
‖ū‖
ηk

, by (26). Then

‖ỹk+1 − x̄‖2 ≤ ‖xk+1 − x̄‖2 =
∥∥∥∥PCk

(
ỹk − βk

ηk
ũk

)
− PCk

(x̄)
∥∥∥∥

2

≤
∥∥∥∥ỹk − βk

ηk
ũk − x̄

∥∥∥∥
2

= ‖ỹk − x̄‖2 +
‖ũk‖2

η2
k

β2
k − 2

βk

ηk
〈ũk, ỹk − x̄〉

≤ ‖ỹk − x̄‖2 + β2
k − 2

βk

ηk
〈ū, ỹk − x̄〉

= ‖ỹk − x̄‖2 + β2
k − 2

βk

ηk

(
〈ū, ỹk − PC(ỹk)〉+ 〈ū, PC(ỹk)− x̄〉

)

≤ ‖ỹk − x̄‖2 + β2
k + 2

βk

ηk
〈ū, PC(ỹk)− ỹk〉

≤ ‖ỹk − x̄‖2 + β2
k +

βk

ηk
‖ū‖‖PC(ỹk)− ỹk‖

≤ ‖ỹk − x̄‖2 + β2
k +

βk

ηk
‖ū‖dist(ỹk, C)

≤ ‖ỹk − x̄‖2 + β2
k +

βk

ηk
‖ū‖g(yk,j) ‖yk,j − w‖

g(yk,j)− g(w)

≤ ‖ỹk − x̄‖2 + β2
k

(
1 + θ

‖ū‖
ηk

)

≤ ‖ỹk − x̄‖2 + θ̃β2
k ≤ ‖xk − x̄‖2 + θ̃β2

k, (30)

using (29) in the first inequality, Lemma 2(i) in the second one, the monotonicity of T and (27) in
the third one, the definition of S(T,C) in the fourth one, Cauchy-Schwartz inequality in the fifth
one, Lemma 5 and the definition of j(k) in the sixth and seventh one, and (29) in the last one.

Using Definition 2, (30) and (13), we conclude that the sequences {ỹk} and {xk} are quasi-Fejér
convergent to S(T,C).

Next we establish some important convergence properties of Algorithm A.

Proposition 6. Let {xk}, {ỹk} and {ũk} be the sequences generated by Algorithm A. Then,

i) {xk}, {ỹk} and {ũk} are bounded.

ii) limk→∞ dist(xk, C) = limk→∞ dist(ỹk, C) = 0.
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iii) limk→∞ ‖xk+1 − ỹk‖ = 0.

iv) All cluster points of {xk} and {ỹk} belong to C.

Proof. i) For {xk} and {ỹk} use Proposition 5(i) and Proposition 1(i). For {ũk}, use bounded-
ness of {ỹk} and Lemma 3(iii).

ii) We have that dist(ỹk, C) ≤ g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≤ θβk by definition of j(k), using Lemma 5.

In view of (10), limk→∞ dist(ỹk, C) = 0.

For all k we have that

‖xk+1 − PCk
(ỹk)‖ =

∥∥∥∥PCk

(
ỹk − βk

ηk
ũk

)
− PCk

(ỹk)
∥∥∥∥ ≤ βk, (31)

using (18) and Lemma 2(i) in the first inequality.

We may apply Lemma 1 because {ỹk} is bounded by (i). It follows that there exists a compact
set containing {ỹk}, and we can conclude that there exists µ̃ ∈ [0, 1) such that

dist(z̃(x, v), C) ≤ µ̃ dist(x, C) (32)

for all x ∈ X \ C and all v ∈ ∂g(x).

In view of the definition of z̃(x, v),

z̃(ỹk, ṽk) = PCk
(ỹk).

Therefore, it follows from (32) that

dist(PCk
(ỹk), C) = dist(z̃(ỹk, ṽk), C) ≤ µ̃ dist(ỹk, C), (33)

for all k such that ỹk /∈ C. If ỹk ∈ C, (33) holds trivially because C ⊆ Ck by Proposition
4(i). Observe that

dist(xk+1, C) ≤ ‖xk+1 − PCk
(ỹk)‖+ dist(PCk

(ỹk), C) ≤ βk + µ̃ dist(ỹk, C) ≤ βk + µ̃ θβk,

using (31) and (33) in the second inequality. Therefore, we obtain lim
k→∞

dist(xk, C) = 0,

establishing (ii).

iii) Using (31), we get

‖xk+1 − ỹk‖ ≤ ‖xk+1 − PCk
(ỹk)‖+ ‖PCk

(ỹk)− ỹk‖ ≤ βk + dist(ỹk, C). (34)

Since limk→∞ βk = 0 by (10), it follows from (ii) and (34) that limk→∞ ‖xk+1 − ỹk‖ = 0.
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iv) Follows from (ii).

Paramonotonicity of T is used for the first time in this section in the following theorem.

Theorem 1. Assume that T is paramonotone. If S(T, C) 6= ∅ then the sequence {xk} generated
by Algorithm A converges to some solution of VIP(T, C).

Proof. Assume that S(T, C) 6= ∅. Let {xk}, {ỹk} and {ũk} be the sequences generated by Algorithm
A. Define γk : S(T,C) → R as

γk(x) := 〈ũk, ỹk − x〉. (35)

Note that

‖xk+1 − x‖2 =
∥∥∥∥PCk

(
ỹk − βk

ηk
ũk

)
− PCk

(x)
∥∥∥∥

2

≤
∥∥∥∥
(

ỹk − βk

ηk
ũk

)
− x

∥∥∥∥
2

= ‖ỹk − x‖2 +
β2

k

η2
k

‖ũk‖2 − 2
βk

ηk
〈ũk, ỹk − x〉

≤ ‖ỹk − x‖2 − βk

(
2
γk(x)

ηk
− βk

)

≤ ‖xk − x‖2 − βk

(
2
γk(x)

ηk
− βk

)
. (36)

We prove first that {ỹk} has a cluster point which belongs to S(T,C). Since {(ỹk, ũk)} is
bounded by Proposition 6(i), it suffices to prove that {γk} has a nonpositive cluster point. Assume
that this is not true, and fix some x̄ ∈ S(T,C). Clearly {γk(x̄)} must be bounded away from zero
for large k, i.e. there exist k̄ and ρ > 0 such that γk(x̄) ≥ ρ for all k ≥ k̄. Since {ũk} is bounded,
there exists θ > 1 such that ‖ũk‖ ≤ θ for all k. Therefore

ηk = max{1, ‖ũk‖} ≤ max{1, θ} = θ

for all k. In view of Lemma 4 and Proposition 6(ii), we can find ρ̄ > 0 such that
γk(x̄)

ηk
≥ γk(x̄)

θ
> ρ̄

and hence, in view of (36), we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − βk(2ρ̄− βk) (37)

for all k ≥ k̄. Since limk→∞ βk = 0 by (10), there exists k′ ≥ k̄ such that βk ≤ ρ̄ for all k ≥ k̄. So,
we get from (37), for all k ≥ k′,

ρ̄βk ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2. (38)
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Summing (38) with k between k′ and m, we obtain:

ρ̄

m∑

k=k′
βk ≤

m∑

k=k′

(
‖xk − x̄‖2 − ‖xk+1 − x̄‖2

)
≤ ‖xk′ − x̄‖2 − ‖xm+1 − x̄‖2 ≤ ‖xk′ − x̄‖2. (39)

Taking limits in (39) with m →∞, we contradict the assumption that
∑∞

k=0 βk = ∞. Thus, there
exists a cluster point of {ỹk} belonging to S(T, C). It follows from Proposition 5 and Proposition
1(ii) that {ỹk} is convergent to some point in S(T,C). Using Proposition 6(iii), we obtain that
{xk} converges to some point onto S(T,C).

Remark 1. We have included the assumption that a Slater point w is available, only for obtaining
a fully explicit algorithm for a quite general convex set C. In fact, such assumption can be replaced
by a rather weaker one, namely:

H) There exists an easily computable and continuous g̃ : H → R such that dist(x,C) ≤ g̃(x) for
all x ∈ H, and g̃(x) = 0 if and only if g(x) = 0.

Assuming (H), we can replace the left hand side of the inequality in (16) by g̃(yk,j), and all our
convergence results are preserved; in fact only the proof of Proposition 4(iii) has to modified.

Assuming existence of a Slater point w allows us to give an explicit formula for g̃, namely

g̃(x) =





g(x)
g(x)− g(w)

‖x− w‖ if x /∈ C

0 if x ∈ C,

but there are examples of sets C for which no Slater point is available, while (H) holds, including
instances in which int(C) = ∅.
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