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Abstract

We propose an inexact version of the proximal point method and study its properties in
nonreflexive Banach spaces which are duals of separable Banach spaces, both for the problem
of minimizing convex functions and of finding zeroes of maximal monotone operators. By using
surjectivity results for enlargements of maximal monotone operators, we prove existence of
the iterates in both cases. Then we recover most of the convergence properties known to hold
in reflexive and smooth Banach spaces for the convex optimization problem. When dealing
with zeroes of monotone operators, our convergence result requests that the regularization
parameters go to zero, as is the case for standard (non-proximal) regularization schemes.

Key words: Proximal point method, ε-subdifferential, ε-duality mapping, inexact Breg-
man distance.
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1 Introduction

In this work we propose a proximal point method for certain problems defined in nonreflexive
Banach spaces that are topological duals of separable Banach spaces. We consider separately the
optimization case, namely the minimization of convex functions, and the operator case, namely
the problem of finding zeroes of point-to-set maximal monotone operators.

An impressive amount of work has been devoted to proximal point methods for optimization
and, more generally, for approximating zeros of maximal monotone operators, starting with the
seminal works of Martinet [13] and Moreau [15], which were enlightened in the comprehensive
study by Rockafellar [18], all of these and numerous others being set in Hilbert spaces.

Extensions of these methods to reflexive Banach spaces were carried out by Kassay [11], But-
nariu and Iusem [5], Burachik and Scheimberg [4] and Iusem and Gárciga Otero [10], to name
just a few of them. However, the complexity of the problems arising nowadays from practical
situations require formulating them in atypical settings, such as in nonreflexive Banach spaces.

To our knowledge, the few proximal point methods investigated so far in nonreflexive Banach
spaces address minimization of particular objective functions (e.g., quadratic) - see [16], [9], with
the aim of denoising or deblurring images. Here, we combine the idea of [16] with a surjectivity
result, shown in [7] and [12], in order to obtain a proximal point method for minimizing more
general convex functions, with interesting convergence properties.

Thus, in the optimization case where the objective function is not necessarily quadratic, the
regularizing term is a positive multiple of an inexact Bregman distance associated with the square
of the norm; a solution is approached by a sequence of approximate minimizers of an auxiliary
problem. In the operator case, the auxiliary problem consists of finding a zero of a regularized
operator, namely the sum of the original one and a positive multiple of the ε-subdifferential of the
square of the norm.
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Regarding the condition on the nonreflexive Banach space of being the dual of a separable
Banach space, we mention that this is satisfied by large classes of spaces, including the cases of
ℓ∞ and L∞(Ω), ℓ1 and BV (Ω) (the space of functions of bounded variation) which appear quite
frequently in a large range of applications - see the book of Meyer [14] in this respect.

In Section 2, we overview notions and results on which this work is based. Section 3 describes
the proximal point method for convex optimization, while Section 4 deals with the similar method
designed for finding zeroes of maximal monotone operators, both in the nonreflexive setting.

2 Preliminaries

Let X be a (possibly nonreflexive) Banach space, X∗ its topological dual and g : X → R ∪ {+∞}
a proper, convex function. Denote the domain of g by dom g = {x ∈ X : g(x) < ∞}. For ε ≥ 0,
the ε-subdifferential of g at a point x ∈ X is

∂εg(x) = {x∗ ∈ X∗ : g(y) − g(x) − 〈x∗, y − x〉 ≥ −ε, ∀y ∈ dom g}. (1)

Given a point-to-set operator U : X → P(X∗), G(U) denotes the graph of U , i.e. G(U) =
{(x, ξ) ∈ X × X∗ : ξ ∈ U(x)}. Consider h : X → R defined as

h(x) =
1

2
‖x‖2

. (2)

Given ε > 0, the so called normalized ε-duality operator Jε : X → P(X∗) is defined as the
ε-subdifferential of h, i.e., Jε(x) = ∂εh(x). An equivalent definition for Jε is

Jε(x) =

{

x∗ ∈ X∗ : 〈x∗, x〉 + ε ≥
1

2
‖x∗‖2 +

1

2
‖x‖2

}

. (3)

We recall several properties of the ε-subdifferentials.

Proposition 2.1. Let g and h be two proper, convex functions on X and consider x ∈ dom h ∩
dom g, z∗ ∈ X∗, ε > 0, λ > 0. Then,

i)
∂εh(x) 6= ∅, ∀ε > 0 (4)

if and only if h is lower semicontinuous at x.

ii)
∪η∈[0,ε] [∂ηg(x) + ∂ε−ηh(x))] ⊂ ∂ε(g + h)(x). (5)

iii)
∂ε(h + z∗)(x) = ∂εh(x) + z∗. (6)

iv)
∂ε(λh)(x) = λ∂ ε

λ
h(x). (7)

Proof: See Theorem 2.4.2 and Theorem 2.4.4 in [21].

We need to introduce inexact Bregman distances with respect to the convex function h defined
by (2) and to an ε-subgradient η of h. Given ε ≥ 0, define Dε : X × G(Jε) → [0, +∞) as

Dε(x, (y, η)) = h(x) − h(y) − 〈η, x − y〉 + ε. (8)

Clearly, we have Dε(x, (y, η)) ≥ 0 for all (x, (y, η)) ∈ X × G(Jε), in view of (1). Also, when h is
Fréchet differentiable, in which case η = h′(y), we have D0(x(y, η)) = D(x, y), where D denotes
the standard Bregman distance related to h (see e.g., [2], [6]). Note that, while D(x, x) = 0 for all
x ∈ X , this is not the case for Dε. In fact, if ε > 0, we have Dε(x, x) = ε > 0 for all x ∈ X .
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Given ε ≥ 0 and a function g : X → R ∪ {+∞}, we say that x̄ ∈ dom g is an ε-minimizer of g

when
g(x̄) ≤ g(x) + ε (9)

for all x ∈ dom g.
Our convergence theorem for the operator case requires the following well known property,

called demi-closedness of the graph of maximal monotone operators.

Proposition 2.2. Assume that X is the dual of a Banach space and let T : X → P(X∗) be a
maximal monotone operator. Consider a sequence {(yk, ηk)} ⊂ G(T ). If {ηk} converges to some
point η̄ ∈ X∗ in the norm topology, and {yk} converges to some point ȳ ∈ X in the weak∗ topology,
then (ȳ, η̄) belongs to G(T ).

Proof: See, e.g., Proposition 4.2.1(i) in [3].

We shall also use in our analysis a surjectivity result for sums of maximal monotone operators
and generalized duality operators. In order to introduce it, we need some background material.
Let T : X → P(X∗) be a maximal monotone operator, and consider X as a subset of the bidual
space X∗∗ through the canonical inclusion. T can be seen as an operator defined in X∗∗, and
its monotonicity is obviously preserved, but not its maximality, in general. A standard argument
using Zorn’s Lemma establishes that there exist maximal monotone extensions of T as an operator
defined on X∗∗. Operators for which such an extension is unique play a significant role in the
theory. This happens when T is maximal monotone and X is reflexive, because in this case
X = X∗∗. A class of operators for which the extension is unique was introduced in [7], and
denoted as class (D). Its definition demands the introduction of the monotone closure T̄ of T

defined as
T̄ = {(x∗∗, x∗) ∈ X∗∗ × X∗ : 〈x∗∗ − y, x∗ − y∗〉 ≥ 0 ∀(y, y∗) ∈ T }.

Again, when X is reflexive, maximality of T implies that T = T̄ . Class (D) consists of those
operators T : X → P(X∗) such that T is “dense” in T̄ , with the following precise meaning: every
point (x∗∗, x∗) in T̄ is the limit of a bounded net {(xi, x

∗

i )}i∈I contained in T , where boundedness
refers to the norm topology in X × X∗ and the limit is taken with respect to the weak∗× strong
topology in X∗∗ × X∗.

The motivation behind the definition of class (D) lies in a result in [17], stating that ∂g belongs
to class (D) for all convex and lower semicontinuous g : X → R ∪ {+∞}.

It has been proved in [7] that when T belongs to class (D) the operator T̄ is monotone, and
hence it is the unique maximal monotone extension of T as an operator defined on X∗∗. The fact
that for an operator T of class (D) the operator T + λJε is onto for all λ > 0 and all ε > 0 has
also been established in [7].

Another class of operators, denoted as (NI), was introduced in [19]. An operator T : X →
P(X∗) belongs to class (NI) if

inf
(y,y∗)∈T

〈y − x∗∗, y∗ − x∗〉 ≤ 0 ∀(x∗∗, x∗) ∈ X∗∗ × X∗.

An easy argument shows that class (D) is contained in class (NI). The uniqueness of the maximal
monotone extension to X∗∗, as well as the above mentioned surjectivity result, have been extended
to the class (NI) in [12]. We will need this fact, which we state next, in our analysis.

Proposition 2.3. If T is a maximal monotone operator of class (NI), then the operator T +λJε

is onto, for all λ > 0 and all ε > 0.

Proof: See [12].

3 The proximal point method for convex optimization

Our aim is to approximate minimizers of a convex function f : X → R ∪ {∞}. We propose a
proximal point method which employs inexact Bregman distances as regularizing terms.
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From now on, we consider h : X → R defined as h(x) = 1
2‖x‖

2. Consider exogenous sequences
{εk}, {λk} of positive numbers satisfying the following two assumptions:

H1) The sequence {εk} is summable, i.e.,
∑

∞

k=0 εk < ∞,

H2) The sequence {λk} is bounded above.

The number εk is some sort of error bound for the inexact minimization performed at the k-th
iteration of the algorithm, while λk is the regularization parameter used in the same iteration.

Our algorithm, called Algorithm A in the sequel, is defined as follows:

Initialization

Take (x0, ξ0) ∈ G(Jε0
).

Iterative step

Let k ∈ N. Define Dεk(x, (xk , ξk)) = h(x) − h(xk) − 〈ξk, x − xk〉 + εk and ε̄k = λkεk+1.
Determine xk+1 ∈ dom f as an ε̄k-minimizer of the function fk(x) defined as

fk(x) = f(x) + λkDεk(x, (xk, ξk)), (10)

that is to say, in view of (9),

f(xk+1) + λkDεk

h (xk+1, (xk, ξk)) ≤ f(x) + λkDεk

h (x, (xk , ξk)) + ε̄k (11)

for all x ∈ dom f .
Let ξk+1 ∈ Jεk+1

(xk+1) and ηk+1 ∈ ∂f(xk+1) such that

ηk+1 − λk(ξk+1 − ξk) = 0. (12)

We prove below that the sequence {xk} generated by Algorithm A is well defined.

Proposition 3.1. Let X be a Banach space and f : X → R ∪ {+∞} be a proper, convex and
lower semicontinuous function. Then for each k ∈ N, there exists an ε̄k-minimizer xk+1 of the
function fk defined by (10) and there exist subgradients ξk+1 ∈ Jεk+1

(xk+1) and ηk+1 ∈ ∂f(xk+1)
such that (10) holds.

Proof: We proceed by induction on k. The definition of the initial iterate x0, as given
in the initialization step, offers no difficulty. For the inductive step, we assume that the pair
(xk, ξk) ∈ G(Jεk

) is given and show that an appropriate xk+1, i.e. an ε̄k-minimizer of fk, indeed
exists. Observe first that, in view of (8), convexity of h implies convexity of Dε0(·, (x0, ξ0)), and
then (10) and convexity of f imply convexity of f0. Note that the first order optimality condition
for the problem of approximate minimization of f0, sufficient by convexity, is

0 ∈ ∂ε̄k
fk(x). (13)

Thus, it suffices to show that the inclusion given by (13) has solutions. Recall that the subdif-
ferential of a lower semicontinuous convex function is a maximal monotone operator, and, as we
have already commented upon, it belongs to class (D) (both facts were proved in [17]), and “a
fortiori”, to class (NI). Therefore, Proposition 2.3 can be applied and yields that the operator
∂f + λkJεk+1

is surjective. Hence there exists xk+1 ∈ X such that

λkξk ∈ [∂f + λkJεk+1
](xk+1), (14)

i.e., there exist ξk+1 ∈ Jεk+1
(xk+1) and ηk +1 ∈ ∂f(xk +1) which satisfy ηk+1−λk(ξk+1−ξk) = 0.

We claim that such an xk+1 is an ε̄k-minimizer of fk because, due to (5), (7) and (6), we get from
(14)

0 ∈ ∂f(xk+1) + λk

[

Jεk+1
(xk+1) − ξk

]

= ∂f(xk+1) + λk[∂εk+1
h(xk+1) − ξk] =
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∂f(xk+1) + λk

[

∂εk+1
Dεk(·, (xk, ξk))(xk+1)

]

= ∂f(xk+1) + ∂ε̄k
[λkDεk(·, (xk, ξk))] (xk+1) ⊂

∂ε̄k
(f + λkDεk(·, (xk, ξk))(xk+1) = ∂ε̄k

fk(xk+1). (15)

Hence, xk+1 satisfies (13), the claim is established and the inductive step is complete.

Proximal point methods based on some distances (metric and Bregman, for instance) in re-
flexive Banach spaces enjoy the following features:

• the objective function decreases along the iterations,

• the distance from the iterates to any solution decreases along the iterations.

Due to the lack of reflexivity of the space, and the inexact nature of the Bregman distances,
which seems to be unavoidable in this context, our method has weaker monotonicity properties.
We establish next some of them.

Proposition 3.2. Let X be a Banach space and f : X → R ∪ {+∞} a proper, convex and
lower semicontinuous function. Assume that z is a minimizer of f . Define βk = Dεk(z, (xk, ξk)),
γk = Dεk(xk+1, (xk, ξk)), with Dεk as in (8). If H1 and H2 hold, then the sequence {xk} generated
by Algorithm A has the following properties:

i)
f(xk+1) ≤ f(xk) + λk(εk + εk+1), (16)

ii)

βk+1 − βk + γk +
f(xk+1) − f(z)

λk

≤ εk+1, (17)

iii) The sequence {βk} is bounded,

iv) The sequence {γk} is summable,

v) The sequence {f(xk) − f(z)} is summable.

Proof: i) The definition of xk+1, namely (11), yields

f(xk+1) + λkDεk(xk+1, (xk, ξk)) ≤ f(xk) + λkDεk(xk, (xk, ξk)) + ε̄k. (18)

Since Dεk(xk, (xk, ξk)) = εk and Dεk(xk+1, (xk, ξk)) ≥ 0, (16) follows from (18), in view of the
definition of ε̄k.

ii) From the definition of the inexact Bregman distance, i.e. (8), we obtain

βk − βk+1 − γk = Dεk(z, (xk, ξk)) − Dεk+1(z, (xk+1, ξk+1)) − Dεk(xk+1, (xk, ξk))

= 〈ξk − ξk+1, xk+1 − z〉 − εk+1. (19)

Rearranging (19), we get

βk+1 − βk + γk − 〈ξk − ξk+1, z − xk+1〉 = εk+1 (20)

Note that equality (12) implies

λk(ξk − ξk+1) ∈ ∂f(xk+1). (21)

In view of the definition of subgradient,

〈λk(ξk − ξk+1), z − xk+1〉 ≤ f(z) − f(xk+1). (22)

Dividing both sides of (22) by λk and replacing the result in (20) yields (17), establishing (ii).
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[iii)-v)] Summing (17) with k between 0 and ℓ we get

βℓ+1 +

ℓ
∑

k=0

γk +

ℓ
∑

k=0

f(xk+1) − f(z)

λk

≤ β0 +

ℓ
∑

k=0

εk+1 ≤ β0 +

∞
∑

k=0

εk, (23)

Let λ̂ be an upper bound of the sequence {λk}, which exists by virtue of assumption H2. Define
θ =

∑

∞

k=0 εk. Note that θ is well defined by assumption H1. Since f(xk+1) − f(z) ≥ 0 because z

is a minimizer of f , we obtain from (23)

βℓ+1 +

ℓ
∑

k=0

γk +
1

λ̂

ℓ
∑

k=0

[f(xk+1) − f(z)] ≤ β0 + θ, (24)

for all ℓ ∈ N, and then items (iii), (iv) and (v) follow immediately by taking limits in (24) with
ℓ → ∞.

We prove next that {xk} is a minimizing sequence for f , and that all its weak∗ cluster points
are minimizers.

Theorem 3.3. Let X be a Banach space which is the dual of a separable Banach space and
f : X → R ∪ {+∞} be a proper, convex and weakly∗ lower semicontinuous function. Assume
that f has minimizers. If H1 and H2 hold, then the sequence {xk} generated by Algorithm A is
bounded, limk→∞ f(xk) = minx∈X f(x), and all cluster points of {xk} in the weak∗ topology of X

are minimizers of f .

Proof. Note that weak∗ lower semicontinuity of f yields also its lower semicontinuity, because
the norm topology of X is finer than the weak∗ topology of X (see, e.g., [1, Proposition 2.3,
p. 34]). Let z be a minimizer of the function f . Thus, Proposition 3.2 holds. It follows from
Proposition 3.2(v) that

lim
k→∞

f(xk+1) = f(z), (25)

establishing the second statement of the theorem.
By Proposition 3.2(iii), {βk} is bounded, and hence there exists σ > 0 such that

σ ≥ βk = Dεk(z, (xk, ξk)) =
‖z‖2

2
−

‖xk‖2

2
− 〈ξk, z − xk〉 + εk ≥

‖z‖2

2
− 〈ξk, z〉 +

‖ξk‖2

2
, (26)

using (3) in the last inequality. Thus,

‖ξk‖2

2
≤ 〈ξk, z〉 + σ ≤ ‖ξk‖ ‖z‖+ σ, (27)

which shows that the sequence {ξk} is bounded. Using now (27) and (3),

‖xk‖2

2
≤ 〈ξk, xk〉 + εk ≤ ‖ξk‖ ‖xk‖ + θ, (28)

with θ =
∑

∞

k=0 εk < ∞, in view of H1. It follows from (28) that the sequence {xk} is also
bounded. Consider now any subsequence {xjk

} of {xk} which converges in the weak∗ topology
(such a sequence does exist, because bounded sequences in X are weakly∗ sequentially relatively
compact, by Banach-Alaoglu’s Theorem), and let x̄ be the weak∗ limit of {xjk

}. In view of (25)
and the lower semicontinuity of f with respect to the weak∗ topology, we get

f(x̄) ≤ lim inf
k→∞

f(xjk
) = f(z) < ∞,

showing that x̄ is a minimizer of f and completing the proof.
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4 The proximal point method for finding zeroes of mono-

tone operators

As it was made clear in Rockafellar’s papers written in the seventies (e.g. [18]), the proximal
point method can be naturally extended from the convex optimization context to the problem
of finding zeroes of maximal monotone operators; it suffices to substitute a maximal monotone
operator for the subdifferential of the objective function. Of course, the same extension is possible
for our method in nonreflexive Banach spaces, but the absence of a real valued function which
almost decreases along the iterations (cf. Proposition 3.2(i)), entails some complications for the
convergence analysis, and the results become weaker. We are forced to demand that the sequence
of regularization parameters {λk} converge to 0. This is somewhat undesirable, because when
λk is close to 0 the effect of the regularization term vanishes, so that if the original problem is
ill-conditioned the same will occur with the k-th proximal subproblem for large k. Then one has
to stop earlier the algorithm in order to obtain approximations which are as accurate and stable
as possible. Such a proximal point method for ill-posed problems is dealt with in [8].

The fact that the generated sequence converges to a solution even with large values of the reg-
ularization parameter is one of the main advantages of the proximal method when compared with
conventional regularization procedures (see e.g. [20]), but then nonreflexive Banach spaces are
rather hard to deal with, and a convergence proof for the case of vanishing regularization param-
eters ensures that at least the proximal point for finding zeroes of maximal monotone operators
behaves no worse than standard regularization schemes, in Tikhonov’s sense.

In this section, X is, as before, a possibly nonreflexive Banach space, X∗ its dual and T : X →
P(X∗) a maximal monotone operator of class (NI). The problem of interest consists of finding a
zero of T , i.e. a point x̄ ∈ X such that 0 ∈ T (x̄).

The proximal point method for this problem requires exogenous sequences of positive real
numbers {εk}, {λk} satisfying H1 of Section 3 and additionally:

H3) limk→∞ λk = 0.

The algorithm, to be denoted as Algorithm B in the sequel, is defined as follows.

Initialization

Take (x0, ξ0) ∈ G(Jε0
).

Iterative step

For k ∈ N, given (xk, ξk), the next iterate is a pair (xk+1, ξk+1) ∈ G(Jεk+1
) such that

λkξk ∈ T (xk+1) + λkξk+1. (29)

The fact that the method is well defined is established with the same argument as in the
optimization case.

Proposition 4.1. If T is of class (NI) then the sequence {(xk, ξk)} generated by Algorithm B is
well defined.

Proof: Note that T + λkJεk+1 is surjective by Proposition 2.3.

Now we establish the monotonicity properties of the algorithm.

Proposition 4.2. Let {(xk, ξk)} be the sequence generated by algorithm B, consider a zero z of
T , and define βk, γk as in Section 3, i.e., βk = Dεk(z, (xk, ξk)), γk = Dεk(xk+1, (xk, ξk)), with
Dεk as in (8). Then

i) The sequence {βk} is bounded,

ii) The sequence {γk} is summable.
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Proof: As in the proof of Proposition 3.2, we have

βk − βk+1 − γk = Dεk(z, (xk, ξk)) − Dεk+1(z, (xk+1, ξk+1)) − Dεk(xk+1, (xk, ξk))

= 〈ξk − ξk+1, xk+1 − z〉 − εk+1. (30)

Since λk(ξk − ξk+1) ∈ T (xk+1) by (29) and 0 ∈ T (z), we get from the monotonicity of T that
〈ξk − ξk+1, xk+1 − z〉 ≥ 0, and hence we obtain from (30)

βk − βk+1 − γk ≥ −εk+1. (31)

It follows from (31) that
γk + βk+1 − βk ≤ εk+1 (32)

for all k ∈ N. Summing (32) with k between 0 and ℓ, we get

βℓ+1 +
ℓ

∑

k=0

γk ≤ β0 +
ℓ

∑

k=0

εk+1 ≤ β0 +
∞
∑

k=0

εk. (33)

In view of H1, the rightmost expression in (33) is finite, implying boundedness of {βk} and
summability of {γk}.

We present next our convergence result for Algorithm B.

Theorem 4.3. Let X be a Banach space which is the dual of a separable Banach space and
T : X → P(X∗) a maximal monotone operator of class (NI). Assume that T has zeroes. If H1
and H3 hold, then the sequence {(xk, ξk)} generated by Algorithm B is bounded, and all cluster
points of {xk} in the weak∗ topology are zeroes of T .

Proof: In view of Proposition 4.2(i), there exists σ > 0 such that σ ≥ βk = Dεk(z, (xk, ξk))
for all k. As in the proof of Theorem 3.3, we get

σ ≥
‖z‖2

2
− 〈ξk, z〉 +

‖ξk‖2

2
,

using (3), and obtaining
‖ξk‖2

2
≤ 〈ξk, z〉 + σ ≤ ‖ξk‖ ‖z‖+ σ, (34)

which implies that the sequence {ξk} is bounded. Using now (34) and (3), we get

‖xk‖
2

2
≤ 〈ξk, xk〉 + εk ≤ ‖ξk‖ ‖xk‖ + θ (35)

where θ =
∑

∞

k=0 εk, which is finite by H1. It follows from (35) that the sequence {xk} is also
bounded, establishing the first statement of the theorem.

Since {ξk} is bounded and limk→∞ λk = 0 by H3, we have

lim
k→∞

λk(ξk − ξk+1) = 0, (36)

in the norm topology. Rewrite now (29) as

λk(ξk − ξk+1) ∈ T (xk+1). (37)

Since X is the dual of a separable Banach space, boundedness of {xk} implies weak∗ compactness
of {xk}, and hence it has weak∗ cluster points. Let x̄ be one of them. Taking limits in (37) along
a subsequence converging to x̄, we invoke Proposition 2.2 and conclude from (36) that 0 ∈ T (x̄),
i.e. x̄ is a zero of T , completing the proof.
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We remark that in order to prove our convergence results assuming just H2, i.e. boundedness
of the sequence {λk}, instead of H3, thus obtaining a method which converges with regularization
coefficients which stay away from 0, it would be enough to prove that

lim
k→∞

(ξk − ξk+1) = 0. (38)

One could expect to obtain this fact from the summability of the sequence γk, which in fact was
not used in the analysis. This is what happens in the reflexive and smooth case, e.g. when X is
uniformly convex and uniformly smooth, in which case h is Fréchet differentiable, J := J0 is point-
to-point, and ξk = h′(xk). In such a situation, limk→∞ γk = 0 implies that the Bregman distance
between consecutive iterates goes to 0, which in turn implies that limk→∞[h′(xk+1) − h′(xk)] = 0
(see a proof in [10] for the case of εk = 0 for all k). Unfortunately, nonreflexive Banach spaces
fail to enjoy the smoothness properties required for this argument to work: in such a setting J is
always point-to-set, and it seems hard to establish that {ξk+1−ξk} goes to 0 in the norm topology
just from the fact that xk+1 and xk get arbitrarily close to each other, which follows, in some
sense, from the summability of the γk’s. On the other hand, we have no counterexample for (38),
whose validity thus remains as an open problem.

As mentioned in the Introduction, there is a wide range of applications which fit into the
theoretical setting of a nonreflexive Banach space that is the dual of a separable Banach space.
Indeed, we intend to consider in the future the solution of several variational problems arising in
image analysis based on the proximal method analyzed in this paper.
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