
The Visual Computer (SIBGRAPI’10 Special Issue) manuscript No.
(will be inserted by the editor)

A Fast Hybrid Method for Apparent Ridges

Eric Jardim · Luiz Henrique de Figueiredo

last updated April 13, 2011 at 4:08 P.M.

Abstract We propose a hybrid method for computing appar-
ent ridges, expressive lines recently introduced by Judd et al.
Unlike their original method, which works over the mesh
entirely in object space, our method combines object-space
and image-space computations and runs partially on the GPU,
producing faster results in real time.

Keywords expressive lines · non-photorealistic rendering

1 Introduction

Expressive line drawing of 3D models is a classic artis-
tic technique and remains an important problem in non-
photorealistic rendering [8,20]. A good line drawing can con-
vey the model’s geometry without using other visual cues like
shading, color, and texture [14]. Frequently, a few good lines
are enough to convey the main geometric features [3, 4, 19].
The central problem is how to define mathematically what
good lines are: ideally, they should capture all perceptually
relevant geometric features of the object and they should
depend on how the object is viewed by the observer.

There are several techniques (e.g., [6, 7, 9, 12, 16]) for
expressive line rendering of 3D models, but no single method
has emerged as the best for all models and viewing posi-
tions [3, 4]. Apparent ridges [12] have a relatively simple
definition and produce good results in many cases.

In this paper, we propose a hybrid method for computing
apparent ridges. Our main goal and motivation is achiev-
ing better performance without compromising image quality.
While the original method [12] is CPU-based and works
over the mesh entirely in object space, our method combines
object-space and image-space computations and runs par-
tially on the GPU, producing faster results in real time.

IMPA – Instituto Nacional de Matemática Pura e Aplicada, Rio de
Janeiro, Brazil. E-mail: ejardim@impa.br, lhf@impa.br

2 Previous work on line rendering

We start by briefly reviewing some of the lines that have been
proposed for expressive line drawing of 3D models. These
lines are illustrated in Fig. 1.

Object contours or silhouettes [11] are probably the most
basic type of feature line: they separate the visible and the
invisible parts of an object. Geometrically, contours are the
loci of points where the normal to the surface of the object
is perpendicular to the viewing vector. Thus, contours are
first-order view-dependent lines, that is, they depend only on
the surface normal and on the viewpoint. Contours alone may
not be enough to capture all perceptually relevant geometric
features of an object, but every line drawing should contain
them [9]. Moreover, other lines, such as ridges and valleys
and suggestive contours, must be combined with silhouette
contours to yield pleasant and perceptually complete pictures.

Ridges and valleys [10,13] are another traditional type of
feature line: they are the loci of points where the maximum
principal curvature assumes an extremum in the principal
direction (maxima at ridges and minima at valleys). Ridges
and valleys are second-order curves that complement con-
tour information because they capture elliptic and hyperbolic
maxima on the surface. However, ridges and valleys often
convey sharper creases than the surface actually has. More-
over, some models have so many ridges and valleys that the
resulting image is not a clean drawing. Finally, since ridges
and valleys depend only on the geometry of the model, and
not on the viewpoint, these lines can appear too rigid in an-
imated drawings. View-dependent fading effects have been
proposed to mitigate this problem [16].

Suggestive contours [5, 6] are view-dependent lines that
naturally extend contours at the joints. Intuitively, sugges-
tive contours are contours in nearby views. More precisely,
suggestive contours are based on the zeros of the radial curva-
ture in the viewing direction projected onto the tangent plane.

2 Eric Jardim, Luiz Henrique de Figueiredo

For the radial curvature to achieve the zero value in some
direction, the interval between the principal curvatures must
contain zero. Thus, suggestive contours cannot appear in el-
liptic regions, where the Gaussian curvature is positive, and
so suggestive contours cannot depict convex features. Sug-
gestive contours are visually more pleasant than the previous
lines because they combine view dependency and second-
order information to yield cleaner drawings. Nevertheless,
they still need contours to yield perceptually complete pic-
tures. Suggestive and principal highlights [7] complement
suggestive contours by including positive minima or nega-
tive maxima of directional curvatures. These highlight lines
typically occur near intensity ridges in the shaded image
(suggestive contours typically occur near intensity valleys).

Apparent ridges [12] were proposed recently and pro-
duce good results in many cases. With a single mathematical
definition of what a good line is, apparent ridges depict most
features that are captured by other definitions and some ad-
ditional features not captured before. As explained below,
apparent ridges are based on a view-dependent curvature that
plays an analogue role for apparent ridges as the curvature
does for ridges and valleys. Like suggestive contours, ap-
parent ridges combine both second-order information and
view-dependency. Unlike suggestive contours, however, con-
tours are a special case of apparent ridges and so do not
require extra computation or special treatment.

Lee et al. [15] described a GPU-based method that ren-
ders lines and highlights along tone boundaries that can in-
clude silhouettes, creases, ridges, and generalized suggestive
contours. Their work bears some resemblance to ours but
differs in its goals and methods.

3 Apparent ridges

The key idea of the view-dependent curvature used to define
apparent ridges is to measure how the surface bends with
respect to the viewpoint, taking into account the perspective
transformation that maps a point on the surface to a point on
the screen. We now review how the view-dependent curvature
is defined and computed. For details, see Judd et al. [12].

Given a point p on a smooth surface M, the shape opera-
tor at p is the linear operator S defined on the tangent plane
to M at p by S(r) = Drn, where r is a tangent vector to M
at p and Drn is the derivative of the normal to M at p in the
r direction. The shape operator is a self-adjoint operator, and
so has real eigenvalues k1 and k2, known as the principal
curvatures at p; the corresponding eigenvectors e1 and e2 are
called the principal directions at p.

Let Π be the parallel projection that maps M onto the
screen and let q = Π(p). If p is not a contour point, then
Π is locally invertible and we can locally define an inverse
function Π−1 that maps points on the screen back to the sur-
face M. The inverse Jacobian J−1

Π
of Π maps screen vectors

shaded

contours

ridges and valleys

suggestive contours

apparent ridges

Fig. 1 Comparison of expressive lines for two 3D models. Contours are
essential, but insufficient to depict a shape. Ridges and valleys extend
contours, but angles are too sharp and appear at rigid places due to their
view independence (contours in green). Suggestive contours smoothly
complement contours in a view-dependent way but do not appear on
convex regions (contours in green). Apparent ridges depict features in a
smooth and clean view-dependent way. They appear at convex regions
and contain contours.

A Fast Hybrid Method for Apparent Ridges 3

Fig. 2 The original method happens in object space and runs entirely on the CPU. Our method is a hybrid method that runs partially on the GPU.

at q to tangent vectors at p. The view-dependent shape trans-
form Q at q = Π(p) is defined by Q = S◦J−1

Π
, where S is the

shape operator at p. The view-dependent shape transform is
thus the screen analogue of the shape operator.

The maximum view-dependent curvature is the largest
singular value of Q:

q1 = max
||s||=1

||Q(s)||

This value can be computed as the square root of the largest
eigenvalue of QT Q. The singular value q1 has a correspond-
ing direction t1 on the screen called the maximum view-
dependent principal direction. Apparent ridges are the local
maximum of q1 in the t1 direction, or

Dt1q1 = 0 and Dt1 (Dt1q1)< 0

This definition adds view dependency to ordinary ridges.
When a point moves towards a contour, q1 will tend to infinity
due to projection. Although the view-dependent curvature is
not defined at contours, q1 is well-behaved and achieves a
maximum at infinity. This means that contours can be treated
as a special case of apparent ridges.

4 Our method

The main motivation of our method is to exploit the GPU
processing power to speed up the extraction of apparent
ridges without compromising image quality. Judd et al. [12]
presented a CPU-based method for finding apparent ridges
on triangle meshes. All computations are performed in object
space, over the 3D mesh. The result is a set of 3D lines that
lie on the mesh and approximate the actual apparent ridges.

These lines are then projected and drawn onto the screen. In
contrast, our method is a hybrid method: it has an object-
space stage and an image-space stage (see Fig. 2). We now
explain the modifications needed in their approach and some
implementation details to achieve this goal.

As seen in Section 3, apparent ridges are the loci of local
maxima of the view-dependent curvature q1 in the maximum
view-dependent principal direction t1. Judd et al. [12] extract
apparent ridges by estimating Dt1q1 at the vertices of the
mesh and finding its zero crossings between two mesh edges
for each triangle of the mesh. The estimation of Dt1q1 at each
vertex is done by finite differences, using the q1 values of
the adjacent vertices. Here lies the main bottleneck of their
object-space method: the computation of derivatives and the
detection of its zero crossings is done over the whole mesh
and must be repeated every time the viewpoint changes.

In our method, we split the rendering process into two
stages, which we shall discuss in detail below (see Fig. 2). In
the first stage, which happens in object space, we estimate
the view-dependent curvature data over the mesh and encode
it into an image. In the second stage, which happens in im-
age space, we extract apparent ridges on the visible part of
the model using edge detection; the required derivatives are
computed at each pixel of the image output by the first stage.

While the performance of the first stage depends on the
mesh size, the performance of the second stage depends
only on the image size, providing an overall performance
improvement. Moreover, this split allows us to use vertex and
fragment shaders to run each stage on the GPU, exploiting
its processing power and parallelism. These changes provide
significant speedup, which we shall discuss in Section 5.

4 Eric Jardim, Luiz Henrique de Figueiredo

4.1 Object-space stage

In the first stage, q1 and t1 are estimated at each vertex of
the mesh. This is done in a vertex shader by the GPU using
the same computations performed by Judd et al. [12]. The
vertex shader is executed every time the viewpoint changes.
However, the 3D data required for estimating q1 and t1 does
not depend on the viewpoint and is computed only once.

More precisely, the normal n, the principal curvatures
k1 and k2, and the first principal direction e1 are estimated
on the CPU using a technique by Rusinkiewicz [17] imple-
mented in the trimesh2 library [18]. This data is passed to the
vertex shader as follows: n as the vertex normal, k1 in the red
channel of the primary vertex color, k2 in the green channel
of the primary vertex color, and e1 as the secondary vertex
color. The second principal direction e2 is computed in the
vertex shader as n× e1; this helps to reduce the amount of
data transferred from the CPU to the GPU.1

From q1 we compute a scaled curvature value q = f 2q1,
where f is the feature size of the mesh. This is equivalent to
the scaling of the threshold done by Judd et al. [12] to make
it dimensionless.

The values of q and t1 are rasterized to an off-screen
floating-point framebuffer object (FBO) using one channel
for q and two channels for t1 (a 2D screen vector). The values
between the vertices are interpolated at the pixels by the
GPU. This framebuffer will be input to the fragment shader
in the second stage. Using a floating-point framebuffer avoids
having to clamp q to the interval [0,1] and provides enough
precision for the edge detection. As mentioned in Section 3,
q1 achieves extremely high values near the contours, and so
does q.

4.2 Image-space stage

The second stage is run in a fragment shader using a standard
technique for image processing on the GPU [21]. We draw
a quad covering the screen using as texture the framebuffer
computed in the first stage. This gives the values of q and t1
for each screen pixel because the GPU performs the necessary
interpolation.

Like Judd et al. [12], we extract apparent ridges by find-
ing the zero-crossings of Dt1q1. The main difference is that
we find those zero-crossings at the pixel level. More precisely,
we find the local maxima of q1 in the t1 direction in image
space by using edge detection.

We estimate Dt1q1 at a pixel p using finite differences
∆q+ = q1−q0, ∆q− = q0−q−1, where qk = q(p+kt1) (see
Fig. 3). We detect a decreasing zero-crossing when ∆q− >

1 If further data reduction is necessary, it is possible to pack k1,
k2, and the x and y coordinates of e1 in the primary vertex color, and
compute the z coordinate of e1 in the shader using that e1 has norm 1.

Fig. 3 Sampling q for estimating Dt1 q1.

0 and ∆q+ < 0. In this case, if q0 is greater than a user-
selected threshold τ , the pixel is painted with an intensity
of v = (q0− τ)/q0. This produces a nice line fading effect,
similar to the one in the object-space method (see Fig. 4).
This fading effect can be disabled by setting the pixel to
black. Because near the contours the estimated value q0 is
not always high enough, we actually set v=max(v,L), where
L = ∆q−−∆q+ = 2q0−q1−q−1 estimates the (negative of
the) Laplacian of q at p. To enhance edges, we can also use
central differences ∆q+ = q2−q0, ∆q− = q0−q−2 instead
of forward differences (see Fig. 5). This choice also affects
the value of the Laplacian L.

Fig. 4 Results with (left) and without (right) the fading effect.

Fig. 5 Results with forward (left) and with central differences (right).

A Fast Hybrid Method for Apparent Ridges 5

Fig. 6 Threshold variation from left to right: τ = 0.43, 0.21, 0.10, 0.05, 0.02.

5 Results

As expected from apparent ridges, our method generates nice
line drawings that capture most of the geometric features of
the model. Compare each line drawing with the correspond-
ing shaded view in Fig. 7. Further results can be seen in
Fig. 8 and 9. We shall now discuss the effects of varying the
threshold τ and compare our results with the ones obtained
with the object-space method by Judd et al. [12] in terms of
image quality and especially performance.

All images generated by our method used central dif-
ferences to enhance edges. All images generated by Judd’s
method used a line width of 4.

5.1 Threshold variation

Like Judd et al. [12], we use a single threshold τ to control
what lines are shown and which the user can tune to improve
image quality. Fig. 6 shows the results of our method on the
cow model for increasing values of τ . Low values of τ mainly
capture just the contours. Apparent ridges appear in detail as
τ increases, but when τ is very high the image has too many
lines. In practice, there is a clear range of suitable values of τ

that the user can explore interactively to create a good image.
All images generated by our method used a threshold of

0.10, except for these: buddha 0.02, column 0.05, ecat 0.06,
golfball 0.21, minerva 0.06, tablecloth 0.21, turtle 0.21.

5.2 Image comparison

Our main goal was to increase the performance of apparent
ridges, not to reproduce the exact results obtained by Judd
et al. [12]. Nevertheless, we did compare the results of both
methods, as follows. Given a model and a viewpoint, we
chose an appropriate threshold for the object-space method,
which was then used in our method. Although in principle
both methods compute the same lines, they do so differ-
ently and the lines are rendered differently: the object-space
method draws lines in space, whereas our methods paint pix-
els directly on the image. Nevertheless, in all cases tested,
the same threshold was suitable for both methods.

As illustrated in Fig. 8, the images produced by both
methods are quite similar; apparent ridge lines appear mostly
in the same places. Some visual differences appear because
the approximations used in the two methods are not exactly
the same. In particular, the fading effect is slightly differ-
ent: while Judd et al. [12] use only values of q1 above a
certain threshold, we also use an estimate of the Laplacian
when q1 is not high enough. Other visual differences ap-
pear in large models with small triangles. In the object-space
method, apparent ridge lines in small triangles are projected
into a single pixel. Our hybrid model extract lines from the
projected model and so is less sensitive to small triangles.

While the images produced by both methods are equally
pleasant, we find ours a little sharper due to the pixel-level
estimation, especially for more detailed models. However,
for images where the projected face size is much larger than
the pixel size, our images may seem worse. In these cases,
the excessive interpolation of q1 and t1 may produce visual
artifacts. In general, our method works well for larger models
and these artifacts can be eliminated by mesh subdivision if
desired. (This subdivision could be done on the GPU.)

5.3 Performance comparison

We ran timing experiments for rendering all models shown
in Fig. 7. on a 2.67GHz Intel Core i7-920 Linux machine
with 6GB of RAM and a NVidia GeForce GTX 480 card.
We implemented our method in C++ using the trimesh2 li-
brary [18] with support for OpenMP enabled. The shaders
were written in GLSL [21]. The original apparent ridges
code from rtsc [2] was adapted to run inside our program
for side-by-side and performance comparisons. The vertex
shader was also based on code from rtsc. The 3D mesh
models were collected from the internet [1, 2]. All images
are 1024×1024. Full-size images and code are available at
http://w3.impa.br/~lhf/har/.

The results in Table 1 show that our hybrid method pro-
vides significant speedup (except for the smallest model),
even when the object-space method uses multiple cores. As
we expected, our method performs much better for larger
models and the speedup grows with the mesh size.

http://w3.impa.br/~lhf/har/

6 Eric Jardim, Luiz Henrique de Figueiredo

Fig. 7 The models used in our experiments: shaded views (top), apparent ridges computed with our method (bottom). Full-size images are available
at http://w3.impa.br/~lhf/har/.

http://w3.impa.br/~lhf/har/

A Fast Hybrid Method for Apparent Ridges 7

Fig. 8 Image comparison: original object-space method (top) and our hybrid method (bottom).

Fig. 9 Further results obtained with our hybrid method.

8 Eric Jardim, Luiz Henrique de Figueiredo

model vertices object-space hybrid speedup
roundedcube 1538 1582.3 1576 1
tablecloth 22653 183.2 1456 8
cow 46433 123.7 1357 11
maxplanck 49132 109.6 1276 12
dinosaur 56194 64.7 1315 20
bunny 72027 74.2 1194 16
golfball 122882 43.5 911 21
turtle 134057 29.7 980 33
igea 134345 40.6 941 23
column 262653 16.4 732 45
lucy 262909 15.7 733 47
brain 294012 16.2 634 39
ecat 342246 10.4 628 60
buddha 543652 7.0 463 66
minerva 830288 3.9 341 87

Table 1 Performance in frames per second (fps).

6 Conclusion

Apparent ridges are perceptually pleasant and also visually
competitive with other lines like suggestive contours by de-
picting the same features in a clear and smooth way, includ-
ing convex features. However, with the original object-space
method of Judd et al. [12], apparent ridges are slower to
compute because they need expensive computation that is
performed over the whole mesh every time the viewpoint
changes.

Our method provides images of similar quality and is
faster than the original method because it computes the view-
dependent curvature on the GPU and finds its directional
derivatives in image space and their zero crossings using
edge detection. The performance of the image-space stage
does not depend on the mesh size, only on the image size.
With this improved performance, apparent ridges become
even more competitive, especially for large meshes.

We find that the results are very encouraging and show
that GPU-based solutions for line extraction may be useful
when performance matters, such as in NPR-rendered games
and scientific visualization. The high frame rate allows fur-
ther processing to take place on both the CPU and the GPU.

The image-space stage of our method can be used as part
of a pipeline to extract apparent ridges from volume data and
implicit models. One would just need to extract the view-
dependent curvature from the isosurfaces and rasterize it to
an off-screen buffer.

Our method can probably be adapted to extract other
feature lines, such as suggestive contours. Properties like the
radial curvature and its derivative would be rasterized to an
off-screen buffer and appropriate screen operations would be
applied to find those lines.

Finally, we intend to investigate how to remove object-
space computations completely.

Acknowledgements We thank Waldemar Celes, Diego Nehab, and the
referees for their comments and suggestions. A previous version of this
paper was presented at SIBGRAPI 2010 and was based on the first
author’s M.Sc. work at IMPA. The second author is partially supported
by CNPq. This work was done in the Visgraf laboratory at IMPA, which
is sponsored by CNPq, FAPERJ, FINEP, and IBM Brasil.

References

1. Apparent ridges for line drawings. http://people.csail.mit.
edu/tjudd/apparentridges.html

2. Suggestive contours. http://www.cs.princeton.edu/gfx/

proj/sugcon/

3. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein,
A., Funkhouser, T., Rusinkiewicz, S.: Where do people draw lines?
ACM Trans. Graph. 27(3), 1–11 (2008)

4. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T.,
Rusinkiewicz, S., Singh, M.: How well do line drawings depict
shape? ACM Trans. Graph. 28(3), 1–9 (2009)

5. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S.: Interactive render-
ing of suggestive contours with temporal coherence. In: NPAR ’04,
pp. 15–145. ACM (2004)

6. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Sug-
gestive contours for conveying shape. In: ACM SIGGRAPH ’03,
pp. 848–855 (2003)

7. DeCarlo, D., Rusinkiewicz, S.: Highlight lines for conveying shape.
In: NPAR ’07, pp. 63–70. ACM (2007)

8. Gooch, B., Gooch, A.: Non-Photorealistic Rendering. A K Peters
(2001)

9. Hertzmann, A.: Introduction to 3d non-photorealistic rendering. In:
Non-Photorealistic Rendering (SIGGRAPH 99 Course Notes), pp.
7–1–7–14. ACM (1999)

10. Interrante, V., Fuchs, H., Pizer, S.: Enhancing transparent skin
surfaces with ridge and valley lines. In: Visualization ’95, pp.
52–59. IEEE Computer Society (1995)

11. Isenberg, T., Freudenberg, B., Halper, N., Schlechtweg, S.,
Strothotte, T.: A developer’s guide to silhouette algorithms for
polygonal models. IEEE Computer Graphics and Applications
23(4), 28–37 (2003)

12. Judd, T., Durand, F., Adelson, E.: Apparent ridges for line drawing.
ACM Trans. Graph. 26(3), 19 (2007)

13. Koenderink, J.J.: Solid Shape. MIT Press (1990)
14. Koenderink, J.J., van Doorn, A.J., Christou, C., Lappin, J.S.: Shape

constancy in pictorial relief. Perception 25(2), 155–164 (1996)
15. Lee, Y., Markosian, L., Lee, S., Hughes, J.F.: Line drawings via

abstracted shading. In: ACM SIGGRAPH ’07, p. 18 (2007)
16. Na, K., Jung, M., Lee, J., Song, C.G.: Redeeming valleys and

ridges for line-drawing. In: PCM 2005, Lecture Notes in Computer
Science 3767, pp. 327–338. Springer (2005)

17. Rusinkiewicz, S.: Estimating curvatures and their derivatives on
triangle meshes. In: 3DPVT ’04, pp. 486–493. IEEE Computer
Society (2004)

18. Rusinkiewicz, S.: trimesh2 library, version 2.10 (December 2010).
http://www.cs.princeton.edu/gfx/proj/trimesh2/

19. Sousa, M.C., Prusinkiewicz, P.: A few good lines: suggestive draw-
ing of 3d models. Computer Graphics Forum 22(3), 327–340
(2003)

20. Strothotte, T., Schlechtweg, S.: Non-Photorealistic Computer
Graphics: Modeling, Rendering, and Animation. Morgan Kauf-
mann (2002)

21. Wright, R., Lipchak, B., Haemel, N.: OpenGL Superbible, fourth
edn. Addison-Wesley Professional (2007)

http://people.csail.mit.edu/tjudd/apparentridges.html
http://people.csail.mit.edu/tjudd/apparentridges.html
http://www.cs.princeton.edu/gfx/proj/sugcon/
http://www.cs.princeton.edu/gfx/proj/sugcon/
http://www.cs.princeton.edu/gfx/proj/trimesh2/

	Introduction
	Previous work on line rendering
	Apparent ridges
	Our method
	Results
	Conclusion

