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1 Introduction and problem setting

We consider the coupling across an interface of a fluid flow and a porous
media flow. The differential equations involve Stokes equations in the fluid
region, Darcy equations in the porous region, plus a coupling through an in-
terface with Beaver-Joseph-Saffman transmission conditions, see [2, 8, 6, 1].
The discretization consists of P2-P0 finite elements in the fluid region, the
lowest order triangular Raviart-Thomas finite elements in the porous region,
and the mortar piecewise constant Lagrange multipliers on the interface. Due
to the small values of the permeability parameter κ of the porous medium,
the resulting discrete symmetric saddle point system is very ill conditioned.
Preconditioning is needed in order to efficiently solve the resulting discrete
system. The purpose of this work is to present some preliminary results on
the extension of the modular FETI type preconditioner proposed in [5, 7] to
the multidomain FETI-DP case.

Let Ωf , Ωp ⊂ R
n be polyhedral subdomains, define Ω = int(Ω

f ∪Ω
p
) and

Γ = ∂Ωf ∩ ∂Ωp, with outward unit normal vectors ηi on ∂Ωi, i = f, p. The
tangent vectors on Γ are denoted by τ 1 (n = 2), or τ l, l = 1, 2 (n = 3). The
exterior boundaries are Σi := ∂Ωi \ Γ , i = f, p. Fluid velocities are denoted
by ui : Ωi → R

n, i = f, p, and pressures by pi : Ωi → R, i = f, p.

We consider Stokes equations in the fluid region Ωf and Darcy equations
for the filtration velocity in the porous medium Ωp.

Stokes equations Darcy equations



−∇ · T (uf , pf ) = f f in Ωf

∇ · uf = gf in Ωf

uf = hf on Σf





up = −κ
ν∇pp in Ωp

∇ · up = gp in Ωp

up · ηp = hp on Σp.
(1)
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Here T (v, p) := −pI + 2νDv, where ν is the fluid viscosity, Dv := 1
2 (∇v +

∇vT ) is the linearized strain tensor and κ denotes the rock permeability. We
assume that κ is a real positive constant. We impose the following interface
matching conditions across Γ (see [2, 8, 6, 1] and references therein):

1. Conservation of mass across Γ : uf · ηf + up · ηp = 0 on Γ.
2. Balance of normal forces across Γ : pf − 2νηfT D(uf )ηf = pp on Γ .

3. Beavers-Joseph-Saffman condition: uf · τ l = −
√

κ
αf 2ηfT D(uf )τ l, l =

1, · · · , n − 1 on Γ .

We require that 〈gf , 1〉Ωf + 〈gp, 1〉Ωp − 〈hf · ηf , 1〉Σf − 〈hp, 1〉Σp = 0 which
is the compatibility condition (see [6]).

2 Weak Formulation

In this section we present the weak version of the coupled system of partial
differential equations introduced above. Without loss of generality, we consider
hf = 0, gf = 0, hp = 0 and gp = 0 in (1); see [6]. The weak problem
is formulated as: Find (u, p, λ) ∈ X × M0 × Λ such that for all (v, q, µ) ∈
X × M0 × Λ we have





a(u, v) + b(v, p) + bΓ (v, λ) = f(v)
b(u, q) = 0
bΓ (u, µ) = 0,

(2)

where X = Xf × Xp := H1
0 (Ωf , Σf )n × H0(div, Ωp, Σp) and M0 is the

subset of M := Mf × Mp := L2(Ωf ) × L2(Ωp) ≡ L2(Ω) of pressures
with a zero average value in Ω. Here H1

0 (Ωf , Σf ) denotes the subspace of
H1(Ωf ) of functions that vanish on Σf . The space H0(div, Ωp, Σp) con-
sists of vector functions in H(div, Ωp) with zero normal trace on Σp, where
H(div, Ωp) :=

{
v ∈ L2(Ωp)n : divv ∈ L2(Ωp)

}
. For the Lagrange multiplier

space we consider Λ := H1/2(Γ ). See [8, 6] for well posedness results. The
global bilinear forms are given by

a(u, v) := af
αf (uf , vf ) + ap(up, vp) and b(v, p) := bf (vf , pf ) + bp(vp, pp),

with local forms af
αf , bf and bp defined for uf , vi ∈ Xi, pi, qi ∈ M i by

af
αf (uf , vf ) := 2ν(Duf , Dvf )Ωf +

n−1∑

`=1

ναf

√
κ
〈uf · τ `, v

f · τ `〉Γ , (3)

ap(up, vp) := (
ν

κ
up, vp)Ωp , (4)

bf (vf , qf ) := −(qf ,∇ · vf )Ωf , and bp(vp, pp) := −(pp,∇ · vp)Ωp . (5)

The weak conservation of mass bilinear form is defined by
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bΓ (v, µ) := 〈vf · ηf , µ〉Γ + 〈vp · ηp, µ〉Γ , v = (vf , vp) ∈ X, µ ∈ Λ. (6)

The second duality pairing of (6) is interpreted as 〈vp · ηp, Eηp(µ)〉∂Ωp . Here

Eηp is any continuous liftin operator from H1/2(Γ ) to H1/2(∂Ωp); recall that
Γ ⊂ ∂Ωp and v ∈ H0(div, Ωp, Σp), see [6]. The functional f in the right-hand
side of (2) is defined by f(v) := f f (vf ) + fp(vp), for all v = (vf , vp) ∈ X ,
where f i(vi) := (f i, vi)L2(Ωi) for i = f, p.

The bilinear forms af
αf , bf are associated to the Stokes equations, and the

bilinear forms ap, bp to the Darcy law. The bilinear form af
αf includes interface

matching conditions 1.b and 1.c above. The bilinear form bΓ is used to impose
the weak version of the interface matching condition 1.a above.

3 Discretization and Decomposition

From now on we consider only the two-dimensional case. The ideas developed
below can be extended to the case of three-dimensional subdomains. We as-
sume that Ωi, i = f, p, are polygonal subdomains. For the fluid region, let
Xh,f and Mh,f be P2/P0 triangular finite elements. For the porous region,
let Xh,p and Mh,p be the lowest order Raviart-Thomas finite elements based
on triangles. Define Xh := Xh,f ×Xh,p ⊂ X and Mh := Mh,f ×Mh,p ⊂ M0.
We assume that the boundary conditions are included in the definition of the
finite element spaces, i.e., for vf ∈ Xh,f we have vf = 0 on the exterior fluid
boundary Σf and for vp ∈ Xh,p we have that v

p
h · ηp = 0 on the porous

exterior boundary Σp.

With the discretization chosen before we obtain the following symmetric
saddle point linear system




Kf 0 MfT

0 Kp MpT

Mf Mp 0







uf

pf

up

pp

λ




=




Af BfT 0 0 CfT

Bf 0 0 0 0
0 0 Ap BpT −CpT

0 0 Bp 0 0
Cf 0 −Cp 0 0







uf

pf

up

pp

λ




=




f f

gf

fp

gp

0




(7)
with matrices Ai, Bi, Ci defined by

ai(ui, vi) = viT Aiui, bi(ui, qi) = qiT Biui, (ui · ηf , µ)Γ = µT Ciui,

and vectors f i, gi given by f i(vi) = viT f i, gi(qi) = qiT gi, i = f, p. Matrix
Af corresponds to ν times the discrete version of the linearized stress tensor
on Ωf . Note that in the case αf > 0, the bilinear form af

αf in (3) includes a
boundary term. The matrix Ap corresponds to ν/κ times a discrete L2-norm
on Ωp. Matrix −Bi is the discrete divergence in Ωi, i = f, p, and matri-
ces Cf and Cp correspond to the matrix form of the discrete conservation
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of mass on Γ . Note that ν can be viewed as a scaling factor since it appears
in both matrices Af and Ap, therefore, ν plays no role for the preconditioning.

Fig. 1. Global interface eΓ that includes all local interfaces and the Stokes/Darcy
interface Γ .

Let {Ωi,(`)}Ni

`=1 be geometrically conforming substructures of Ωi, i = f, p.

We also assume that {Ωf,(`)}Nf

`=1∪{Ωp,(`)}Np

`=1 forms a geometrically conform-
ing decomposition of Ω, hence, the two decompositions are aligned on the
Stokes/Darcy interface Γ , see Figure 1. We define the local inner interfaces
as Γ i,(`) = ∂Ωi,(`) \ ∂Ωi, ` = 1, . . . , N i, i = f, p. We also define the global
interface

Γ̃ =




Nf⋃

`=1

Γ f,(`)


 ∪

(
Np⋃

`=1

Γ p,(`)

)
∪ Γ ≡ (Γ f ) ∪ (Γ p) ∪ Γ.

On the Stokes region Ωf,(`) we consider the following partition of the degrees
of freedom,




u
f,(`)
I

p
f,(`)
I

u
f,(`)
eΓ

p̄f,(`)




Interior velocities in Ωf,(`) + tangential velocities on ∂Ωf,(`)\Γ,

Interior pressures with zero average in Ωf,(`),
Interface velocities on Γ f,(`) + normal velocities on ∂Ωf,(`) ∩ Γ ,

Constant pressure in Ωf,(`).

Analogously, on the Darcy region Ωp,(`) we use,




u
p,(`)
I

p
p,(`)
I

u
p,(`)
eΓ

p̄p,(`)




Interior velocities in Ωp,(`),
Interior pressures with zero average in Ωp,(`),

Normal velocities on Γ p,(`) + normal velocities on ∂Ωp,(`) ∩ Γ ,

Constant pressure in Ωp,(`).

Then, for i = f, p, we have the block structure:

Ai =

[
Ai

II AiT
ΓI

Ai
ΓI Ai

ΓΓ

]
, Bi =

[
Bi

II BiT
ΓI

0 B̄iT

]
and Ci =

[
0 0 C̃i 0

]
.
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The (2, 1) entry of Bi corresponds to integrating an interior velocity against
a constant pressure, therefore, it vanishes due to the divergence theorem.

Following [9] we choose the following matrix representation in each sub-
domain Ωi,(`), i = f, p,

Ki,(`) =




A
i,(`)
II B

i,(`)T
II A

i,(`)T
ΓI 0

Bi
II 0 B

i,(`)
IΓ 0

A
i,(`)
ΓI B

i,(`)T
IΓ A

i,(`)
ΓΓ B̄i,(`)T

0 0 B̄i,(`) 0




=

[
K

i,(`)
II K

i,(`)T
ΓI

K
i,(`)
ΓI K

i,(`)
ΓΓ

]
. (8)

4 Dual Formulation

In order to simplify the notation and since there is no danger of confusion, we
will denote the finite element functions and the corresponding vector repre-
sentation by the same symbols. Let X i,(`), M i,(`) be the finite element spaces
Xh and Mh restricted to subdomain Ωi,(`), i = f, p, ` = 1, . . . , N i. Define the
product spaces,

W = W f ⊗ W p =
⊗

i

⊗

`

Xi,(`)

and Q = Mf ⊗Mp =
⊗

i

⊗
` M i,(`). Functions in W do not satisfy any conti-

nuity requirement on the subdomains corners or edges. In particular they do
not satisfy continuity on Stokes/Stokes edges, or continuity of normal com-
ponent on Darcy/Darcy edges, neither discrete continuity of normal fluxes on
Stokes/Darcy edges. The linear operator K = diag(Kf , Kp) in (7) defined
on the pair of spaces (Xh, Mh), can be extended to the pair (W , Q) defined
above. The resulting matrix will be a block diagonal.

Primal degrees of freedom and definition of W̃ : now we introduce
our primal degrees of freedom, as is usual in the constructions of FETI-DP
[4] and BDDC methods [3]. The primal degrees of freedom are selected ac-
cordingly for Stokes and Darcy substructures. On the fluid side, the primal
degrees of freedom are given by the fluid velocity field at the substructure
corners and by the mean value of both components over each Stokes/Stokes
edge on Γ f ; see [10, 9]. For the porous side, the primal degrees of freedom
consist of the mean value of the normal flux on each Darcy/Darcy edge on
Γ p; see [11]. For the Stokes/Darcy interface Γ , the primal degrees of freedom
consist of the mean value of the normal (either Stokes or Darcy velocity) flux

on each Stokes/Darcy edge on Γ ; see [7]. The W̃ is the subspace of W made
of functions that are continuous on the primal degrees of freedom described
above.
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Once the linear operator K = diag(Kf , Kp) in (7) is extended to (W , Q),

it can be restricted to an operator K̃ acting on (W̃ , Q). The matrix form of

K̃ is no longer block diagonal but it will have a block structure with small
interaction between blocks associated to different subdomains; see [9] In the

FETI-DP method we will need the inverse action of K̃. This inverse action
can be obtained by solving a small coarse problem and a (either Darcy or
Stokes) local problems for each subdomains.

Functions in W̃ do not satisfy the dual continuity requirements on Γ̃ . The
dual continuity requirements can be enforced using additional FETI-Lagrange
multipliers µ on Γ̃ \ Γ and the Stokes-Mortar-Darcy-Lagrange multipliers on
Γ just as before. We obtain the linear system

[
K̃ B̃T

B̃ 0

] [
w

λ̃

]
=

[
b
0

]
(9)

where the vector λ̃ includes all Lagrange multiplier degrees of freedom. Matrix
B̃ has entries +1,−1, 0 for the degrees of freedom associated Γ f and Γ p.
On the Stokes/Darcy interface Γ , we ensure that the flux continuity across
Stokes/Darcy edges on Γ coincides with the last equation of (7). For that, we
use the same Lagrange multipliers, up to the constant functions, as for the
Stokes-Mortar-Darcy system (7). We now eliminate all degrees of freedom but
the ones associated to the Lagrange multipliers to obtain a dual formulation,

B̃K̃−1B̃T λ̃ = F̃ λ̃ = b = B̃K̃−1b (10)

where λ̃ ∈ Rank(B̃). Note that applying K̃−1 requires the solution of a
Stokes/Darcy problem with a block structure and very little coupling between
blocks; see [9].

4.1 Dirichlet Preconditioner

Let us define

SD
eΓ

:= diag(Sf
eΓ
, Sp

eΓ
) where Si

eΓ
=:

Ni∑

`=1

Ri,(`)T D
i,(`)
1 S

i,(`)
eΓ

D
i,(`)
1 Ri,(`) (11)

and S
i,(`)
eΓ

is defined from (8) via

Si,(`) =

[
S

i,(`)
eΓ

B̄i,(`)T

B̄i,(`) 0

]
:= K

i,(`)
ΓΓ − K

i,(`)
ΓI

(
K

i,(`)
II

)
−1

K
i,(`)T
ΓI ,

ID
eΓ

:= diag(If
eΓ
, Ip

eΓ
) where I i

eΓ
=:

Ni∑

`=1

Ri,(`)T D
i,(`)
2 I

i,(`)
eΓ

D
i,(`)
2 Ri,(`) (12)
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and I
i,(`)
eΓ

is an identity matrix. We propose the following preconditioners:

B̃(SD
eΓ

+ ID
eΓ
)B̃T . (13)

In (11) we choose the diagonal matrix D
i,(`)
1 with entries 1/2 on both sides of

Stokes/Stokes and Darcy/Darcy edges, the value zero at the Stokes corners,

and the values γf
1 (Stokes side) and γp

1 (Darcy side) on the Stokes/Darcy

edges. In (12) we choose the diagonal matrix D
i,(`)
2 entries equal to γf

2 (Stokes
side) and γp

2 (Darcy side) on the Stokes/Darcy edges, and entries equal zero
elsewhere.

5 Numerical Results

In this section we present representative numerical results concerning the per-
formance of the FETI-DP methods introduced before. We consider Ωf =
(1, 2) × (0, 1) and Ωp = (0, 1) × (0, 1). We set µ = 1. See [6] for examples of
exact solutions and compatible divergence and boundary data. We use Conju-
gate Gradient (CG) and Preconditioned Conjugate Gradient (PCG) with the
Dirichlet preconditioner (13) to solve the linear system (10). In our test prob-
lems we run (CG) PCG until the initial residual is reduced by a factor of 10−6.

In our first experiment we fix H/h = 4 or H/h = 8 and run CG and PCG
for different values of H = Hf = Hp and different values of κ. See Table 1
for the FETI-DP method with and without a preconditioner. We observe the
preconditioned FETI-DP method with γf

1 = 0, γp
1 = 1, γp

2 = 0 and γf
2 = 0 is

robust with respect to the number of subdomains and size of the subdomains
when the κ is not very small. We repeat the experiment above with γf

1 = 0,

γp
1 = 0, γf

2 = 0 and γp
2 = 1 + H/h and present the number of iterations and

estimate condition numbers in Table 2. With this choice of paramenters we
obtain a robust preconditioner for κ small. Analysis of the FETI-DP methods
presented here as well as the design of more sophisticated FETI-DP solvers
are currently being studied by the authors.

κ ↓ N → 2 × 2 4 × 4 8 × 8

1 5(27) 7(57) 8(66)
10−2 7(13) 8(22) 8(36)
10−4 11(47) 19(52) 15(33)
10−6 18(74) 34(131) 43(157)

κ ↓ N → 2 × 2 4 × 4 8 × 8

1 6(62) 9(98) 10(104)
10−2 8(23) 10(40) 10(64)
10−4 20(70) 20(61) 16(36)
10−6 29(150) 60(259) 79(275)

Table 1. Right: PCG iteration number for different number of subdomains. CG
iteration number in parenthesis. Here H

h
= 4, Hf = Hp = H = 1

N
, γf

1
= 0, γp

1
= 1,

γf
2

= 0, γp
2

= 0. Left: H
h

= 8.
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κ ↓ N → 2 × 2 4 × 4 8 × 8

1 9(4.4e+2) 15 (1.8e+3) 22 (7.0e+3)
10−2 7(5.5e+0) 12 (1.9e+1) 16 (7.1e+1)
10−4 7(3.2e+0) 8 (4.6e+0) 8 (4.6e+0)
10−6 7(3.4e+0) 9 (5.7e+0) 10 (6.7e+0)

κ ↓ N → 2 × 2 4 × 4 8 × 8

1 18(3.2e+3) 32(1.3e+4) 40(5.2e+4)
10−2 14(3.3e+1) 24(1.3e+2) 30(5.2e+2)
10−4 10(8.3e+0) 12(1.3e+1) 14(1.7e+1)
10−6 11(8.3e+0) 13(1.2e+1) 15(1.5e+1)

Table 2. Top: PCG iteration and condition number for different number of subdo-
mains. H

h
= 4, Hf = Hp = H = 1

N
, γf

1
= 0, γp

1
= 0, γf

2
= 1, γp

2
= 1 + H/h. Bottom:

H
h

= 8
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