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Abstract

In this paper we propose a strongly convergent variant on the projected subgradient method for
constrained convex minimization problems in Hilbert spaces. The advantage of the proposed method is
that it converges strongly when the problem has solutions, without additional assumptions. The method
also has the following desirable property: the sequence converges to the solution of the problem which
lies closest to the initial iterate.
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1 Introduction

First we briefly describe our notation. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and f : H → R be a continuous, proper and convex function. The inner product in H is denoted by
〈·, ·〉. The norm determined by the inner product is denoted by ‖ · ‖. For an element x ∈ H, the orthogonal
projection of x onto C is denoted by PC(x).
The problem under consideration is the following:

min f(x) s.t. x ∈ C. (1)

We denote f∗ := inf
x∈C

f(x) and the solution set of this problem by S∗ := {x ∈ C : f(x) = f∗}.
We remind that the subdifferential of f at x is the subset ∂f(x) of H given by

∂f(x) = {u ∈ H : f(y) ≥ f(x) + 〈u, y − x〉 ∀ y ∈ H} . (2)

The elements of the subdifferential of f at x are called subgradients of f at x.
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1.1 The projected subgradient method

Many methods have been proposed to solve Problem (1), with the simplest being the projected subgradient
method [17, 18, 2, 1].

The projected subgradient method has several advantages. Primarily, it is easy to implement (specifically,
for optimization problems with relatively simple constraints), it uses little storage and readily exploits any
sparsity or separable structure of ∂f or C. Furthermore, it is able to drop or add active constraints during
the iterations. Thus, the projected subgradient method has been widely used for solving various cases of
Problem (1).

Each iteration of the projected subgradient method, consists basically of two stages: starting from the
iterate xk, we move a certain length in the direction opposite to a subgradient of f at xk, and next the
resulting vector is projected onto C. This is not a trivial idea, since the function will not, in general,
decrease along a direction selected in this way.

When C = H and f is differentiable this is just the steepest descent method [8]. For differentiable
functions the projected subgradient method coincides with the projected gradient method and different
variants rules are used to choose the stepsizes in order to ensure functional decrease at each iteration; see
[13]. Its extension to the generalized convex case is studied in [21, 7, 14].

1.2 On strong convergence

1.2.1 The new method

In this paper, a modification of the projected subgradient method forcing strong convergence in Hilbert
spaces is considered. The new method is related to the classical projected subgradient method and it uses a
similar idea exposed in [6] and [19], with the same goal, upgrading weak convergence to strong one. Strong
convergence is forced by combining a subgradient iteration with a simple projection step onto the intersection
of C and two halfspaces, containing S∗.

Additionally, our algorithm has the distinctive feature that the limit of the generated sequence is the
closest solution of the problem to the initial iterate x0. This property is useful in many specific applications,
e.g. in image reconstruction [12, 9, 16]. We emphasize that this feature is of interest also in finite dimension,
differently from the strong versus weak convergence issue.

We mention that the proposed method requires in each iteration the computation of the exact projection
onto the intersection of C with two halfspaces. The presence of the halfspaces does not entail any significant
additional cost over the computation of the projection onto C itself. The computational cost of this projection
is similar to the cost of a projected subgradient step.

In order to prove the convergence of the new method, we assume that f is finite valued, so that the
effective domain is H. Also we suppose that ∂f is bounded on bounded sets, which holds automatically in
finite dimension, as a consequence of the maximal monotonicity of the subdifferential of lower semicontinuous
convex functions. We also mention that these assumptions are required in the analysis of [2] for proving
weak convergence of the projected subgradient method in infinite-dimensional Hilbert spaces.

1.2.2 Why strong convergence?

It is important to mention that many real-world problems in economics and engineering are modeled in
infinite-dimensional spaces. These include optimal control and structural design problems, among others. It
is clear that weak and strong convergence are only distinguishable in the infinite-dimensional setting. On
the other hand, even when we have to solve infinite-dimensional problems, numerical implementations of
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algorithms are certainly applied to finite-dimensional approximations of the problems. Nevertheless, it is
important to have convergence theory for the infinite-dimensional case, because it guarantees robustness and
stability with respect to discretization schemes employed for obtaining finite-dimensional approximations of
infinite-dimensional problems. This issue is closely related to the so-called Mesh Independence Principle
[4, 3, 15]. This principle relies on infinite-dimensional convergence to predict the convergence properties of a
discretized finite-dimensional method. Furthermore, the mesh independence provides theoretical justification
for the design of refinement strategies.

Note that fine discretization is crucial for the obtained discrete solution to be an appropriate approx-
imation to the true solution of the infinite-dimensional problem being solved. Many important real-world
problems in economics and engineering are modeled in infinite-dimensional spaces. These include optimal
control and structural design problems, and the problem of minimal area surface with obstacles, among
others. We refer the reader to [11], where a variety of applications are described. A strong convergence
principle for Fejér-monotone methods in Hilbert spaces was presented in [5].

The importance of strong convergence is also underlined in [10], where a convex function f is minimized
via the proximal-point algorithm: It is shown that the rate of convergence of the value sequence {f(xk)} is
better when {xk} converges strongly than when it converges weakly. Such properties have a direct impact
when the algorithm is executed directly in the underlying infinite-dimensional space, as is the case, for
instance, in optical signal processing, see [20].

1.3 Preliminary material

In this subsection we present some results that are used in the convergence analysis. First, we state a well
known fact on orthogonal projections.

Proposition 1. Let K be any nonempty closed and convex set in H. For all x, y ∈ H and all z ∈ K,
〈x− PK(x), z − PK(x)〉 ≤ 0.

Proof. Elementary.

We continue with an elementary property of the solution set of Problem (1).

Proposition 2. Assume that f : H → R is proper, finite-valued, convex and continuous. Then S∗, if
nonempty, is a closed and convex set.

Proof. Closedness of S∗ = {x ∈ C : f(x) ≤ f∗} follows easily from the continuity of f . Convexity of S∗ is
elementary.

2 The Algorithm

In this section we state the method, which generates a sequence strongly convergent to a point belonging to
S∗, differently from the projected subgradient method, for which only weak convergence has been established.
We assume that the optimal value f∗ of Problem (1) is available.

Algorithm A

Initialization step. Take x0 ∈ C, β0 := f(x0)− f∗ and u0 ∈ ∂f(x0).

Iterative step. Given xk and uk ∈ ∂f(xk), define

βk := f(xk)− f∗, (3)
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Hk :=
{
x ∈ H : 〈x− xk, uk〉+ βk ≤ 0

}
,

and
Wk :=

{
x ∈ H : 〈x− xk, x0 − xk〉 ≤ 0

}
.

Compute
xk+1 := PHk∩Wk∩C(x

0). (4)

If xk+1 = xk then stop.

Before the formal analysis of the convergence properties of the algorithm, we make the following remarks:

1. Regarding the projection step, we shall prove that the set Hk ∩Wk ∩C is nonempty, ensuring that the
algorithm is well defined.

2. Concerning the complexity of the projection step in Algorithm A, the presence of the halfspaces does
not entail any significant additional cost over the computation of the projection onto C itself. The
computational cost of this projection is similar to the cost of a projected subgradient step. Even though
we are working in an infinite-dimensional space, projection onto an intersection of two halfspaces
amounts to solving, at most, a linear system of two equations with two unknowns. Thus, the cost of
each iteration of Algorithm A is about the same as that of an iteration of the projected subgradient
method.

Next we proceed to establish strong convergence of the sequence generated by Algorithm A.

3 Convergence analysis

First we establish some properties of the iterates.

Proposition 3. For all k ≥ 0 it holds that

‖xk+1 − x0‖2 ≥ ‖xk − x0‖2 + ‖xk+1 − xk‖2, (5)

and

‖xk+1 − xk‖ ≥ f(xk)− f∗

‖uk‖
. (6)

Proof. Since xk+1 ∈ Wk,

0 ≥ 〈xk+1 − xk, x0 − xk〉 = 1

2

(
‖xk+1 − xk‖2 − ‖xk+1 − x0‖2 + ‖xk − x0‖2

)
,

which implies (5).
Now, since ‖xk − PHk

(xk)‖ ≤ ‖z − xk‖ for all z ∈ Hk and xk+1 ∈ Hk, we have that

‖xk+1 − xk‖ ≥ ‖xk − PHk
(xk)‖. (7)

Using (3) and the fact that PHk
(xk) = xk − βk

uk

‖uk‖2
, we obtain from (7)

‖xk+1 − xk‖ ≥ ‖xk − PHk
(xk)‖ =

βk

‖uk‖
=

f(xk)− f∗

‖uk‖
.
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Now we show feasibility of the sequence generated by Algorithm A and the validity of the stopping criterion.

Proposition 4. If the Algorithm A generates an infinite sequence {xk}, then {xk} ⊆ C. Furthermore, if
Algorithm A stops, xk ∈ S∗.

Proof. First suppose that Algorithm A generates an infinite sequence. By (4), we have {xk} ⊆ C. If
Algorithm A stops, then xk+1 = xk. It follows from (6) that f(xk)− f∗ ≤ 0, so xk ∈ S∗.

Next we prove optimality of the weak cluster points of {xk}.

Theorem 1. Suppose that Algorithm A generates an infinite sequence {xk}. Then either {xk} is bounded
and each of its weak cluster points belongs to S∗ 6= ∅, or S∗ = ∅ and limk→∞ ‖xk‖ = ∞.

Proof. If {xk} is bounded, we obtain from (5) that the sequence {‖xk −x0‖} is nondecreasing and bounded,
hence convergent. By (5) again, 0 ≤ ‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2, and we conclude that

lim
k→∞

‖xk+1 − xk‖2 = 0. (8)

By Proposition 4, f(xk)− f∗ ≥ 0 for all k. So,

0 = lim
k→∞

‖xk+1 − xk‖ ≥ lim
k→∞

f(xk)− f∗

‖uk‖
≥ 0,

using (6) and (8). The boundedness of {uk} follows from the boundedness of {xk} and the assumption that
∂f is bounded on bounded sets. Thus,

lim
k→∞

f(xk)− f∗ = 0, (9)

Since {xk} is bounded, there exists a weakly convergent subsequence. Let {xik} be any weakly convergent
subsequence of {xk}, and let x̄ ∈ C be its weak limit. Since f is weakly lower semicontinuous we get, using
(9),

f∗ ≤ f(x̄) ≤ lim inf
k→∞

f(xik) = lim
k→∞

f(xk) = f∗.

Thus f(x̄) = f∗, implying that x̄ ∈ S∗. We conclude that all weak cluster points of {xk} belongs to S∗.
Suppose now that S∗ = ∅. Using the previous assertion in this theorem, we obtain that {xk} has no

bounded subsequence, and consequently limk→∞ ‖xk‖ = ∞.

Next, we shall prove that when S∗ 6= ∅ Algorithm A is well defined and the generated sequence {xk}
converges strongly to a solution.

We assume from now on that S∗ is nonempty. Having chosen the initial iterate x0, define

V0 := {x ∈ H : 〈z − x, x0 − x〉 ≤ 0 ∀z ∈ S∗ }. (10)

Next we show that the generated sequence {xk} is contained in V0 and that the set Hk ∩ Wk ∩ C always
contains the solution set S∗.

Proposition 5. If xk ∈ V0 then

i) S∗ ⊆ Hk ∩Wk ∩ C,

5



ii) xk+1 is well defined and xk+1 ∈ V0.

Proof. (i) Since βk = f(xk)− f∗ by (3), we get, using (2),

βk + 〈uk, x∗ − xk〉 = f(xk)− f(x∗) + 〈uk, x∗ − xk〉 ≤ 0, (11)

for any x∗ ∈ S∗. It follows from (11) that S∗ ⊆ Hk.

Since xk ∈ V0, we have that 〈x∗ − xk, x0 − xk〉 ≤ 0 for all x∗ ∈ S∗. By the definition of Wk, we
obtain that S∗ ⊆ Wk. Therefore, we conclude that S∗ ⊆ Hk ∩Wk ∩ C.

(ii) Since S∗ ⊆ Hk ∩Wk ∩C and S∗ is nonempty, it follows that Hk ∩Wk ∩C is nonempty. Thus, the next
iterate xk+1 is well defined, in view of (4).

Using (4) and Proposition 1, we have that

〈z − xk+1, x0 − xk+1〉 ≤ 0 ∀z ∈ Hk ∩Wk ∩ C. (12)

By (i), S∗ ⊆ Hk ∩Wk ∩ C for all k. Since (12) holds for all z ∈ S∗, so xk+1 ∈ V0 by (10).

Corollary 1. Algorithm A is well defined, {xk} ⊆ V0 and S∗ ⊆ Hk ∩Wk ∩ C for all k.

Proof. It is enough to observe that x0 ∈ V0 and apply inductively Proposition 5.

Corollary 2. The sequence {xk} generated by Algorithm A is bounded and each of its weak cluster points
belong to S∗.

Proof. If the solution set is nonempty, in view of (4) we have that ‖xk+1 − x0‖ ≤ ‖z − x0‖ for all z ∈
Hk ∩ Wk ∩ C. Since S∗ ⊆ Hk ∩ Wk ∩ C by Corollary 1, it follows that ‖xk+1 − x0‖ ≤ ‖x∗ − x0‖ for all
x∗ ∈ S∗. Thus, {xk} is bounded, and by Theorem 1, all its weak cluster points belong to S∗.

Finally, we are now ready to prove strong convergence of the sequence {xk} generated by Algorithm A
to the solution which lies closest to x0.

Theorem 2. Assume that S∗ 6= ∅ and let {xk} be a sequence generated by Algorithm A. Define x∗ = PS∗(x0).
Then {xk} converges strongly to x∗.

Proof. By Proposition 2, S∗ is closed and convex. Therefore x∗, the orthogonal projection of x0 onto S∗,
exists. By the definition of xk+1, we have that

‖xk+1 − x0‖ ≤ ‖z − x0‖ ∀ z ∈ Hk ∩Wk ∩ C. (13)

Since x∗ ∈ S∗ ⊆ Hk ∩Wk ∩ C for all k, it follows from (13) that

‖xk − x0‖ ≤ ‖x∗ − x0‖, (14)

for all k. By Corollary 2, {xk} is bounded and each of its weak cluster points belongs to S∗. Let {xik} be
any weakly convergent subsequence of {xk}, and let x̂ ∈ S∗ be its weak limit. Observe that

‖xik − x∗‖2 = ‖xik − x0 − (x∗ − x0)‖2

= ‖xik − x0‖2 + ‖x∗ − x0‖2 − 2〈xik − x0, x∗ − x0〉
≤ 2‖x∗ − x0‖2 − 2〈xik − x0, x∗ − x0〉,
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where the inequality follows from (14). By the weak convergence of {xik} to x̂, we obtain

lim sup
k→∞

‖xik − x∗‖2 ≤ 2(‖x∗ − x0‖2 − 〈x̂− x0, x∗ − x0〉). (15)

Applying Proposition 1 with K = S∗, x = x0 and z = x̂ ∈ S∗, and taking into account that x∗ is the
projection of x0 onto S∗, we have that

〈x0 − x∗, x̂− x∗〉 ≤ 0. (16)

Now, using (16) we have

0 ≥ −〈x̂− x∗, x∗ − x0〉 = −〈x0 − x∗, x∗ − x0〉 − 〈x̂− x0, x∗ − x0〉
≥ ‖x∗ − x0‖2 − 〈x̂− x0, x∗ − x0〉. (17)

Combining (17) with (15), we conclude that {xik} converges strongly to x∗. Thus, we have shown that
every weakly convergent subsequence of {xk} converges strongly to x∗. Hence, the whole sequence {xk}
converges strongly to x∗ ∈ S∗.
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