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Abstract

Consider a real-valued bifunction f defined on C×C, where C is a closed and convex subset
of a Banach space X , which is concave in its first argument and convex in its second one. We
study its subdifferential with respect to the second argument, evaluated at pairs of the form
(x, x), and the subdifferential of −f with respect to its first argument, evaluated at the same
pairs. We prove that if f vanishes whenever both arguments coincide, these operators are
maximal monotone, under rather undemanding continuity assumptions on f . We also establish
similar results under related assumptions on f , e.g. monotonicity and convexity in the second
argument. These results were known for the case in which the Banach space is reflexive and
C = X . Here we use a different approach, based upon a recently established sufficient condition
for maximal monotonicity of operators, in order to cover the nonreflexive and constrained case
(C 6= X). Our results have consequences in terms of the reformulation of equilibrium problems
as variational inequality ones.
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1 Introduction

Let X be a Banach space and X∗ its topological dual. Consider a function f : X ×X → R which
is concave in its first argument and convex in its second one. We will be concerned in this paper
with two set-valued operators related to the bifunction f , namely Rf , Sf : X → P(X∗), defined as:

Rf (x) = ∂1(−f)(x, x), (1)

Sf (x) = ∂2f(x, x), (2)

where ∂1, ∂2 denote the subdifferentials with respect to the first and second argument respectively.
We will refer to Rf , Sf as diagonal subdifferential operators. Observe that neither Rf nor

Sf are subdifferentials of convex functions: at each point x each one of them coincides with the
subdifferential of a certain convex function evaluated at x, but the functions themselves change
with x. More precisely, Sf (x) is the subdifferential of the convex function f(x, ·) evaluated at x.
Similarly, Rf (x) is the subdifferential of the convex function −f(·, x) evaluated at x. In fact both
Rf and Sf may fail to be monotone operators, unless additional assumptions are imposed upon
f . The basic one seems to be that f(x, x) = 0 for all x ∈ X. We will also consider the case in
which the domain of f is a set of the form C ×C, where C ⊂ X is closed and convex, and satisfies
also an additional technical condition. In this case the definitions of Sf , Rf require some technical
adjustments.

The motivation for studying these operators arises from the so called equilibrium problem, which
we describe next. Given X,C and f as above (possibly with additional and/or slightly different
assumptions on f , some of which will be detailed later on), the equilibrium problem EP(f,C)
consists of finding x̂ ∈ C such that f(x̂, x) ≥ 0 for all x ∈ C. See [2], [10] and [9] for definitions
and properties of equilibrium problems pertinent to the subject of this paper.

Under the additional assumption that f(x, x) = 0 for all x ∈ C, the convexity of f(x, ·) implies
easily that x̂ solves EP(f,C) if and only x̂ minimizes the marginal function f(x̂, ·) on the feasible
set C, which happens if and only if x̂ is a zero of the sum of the subdifferential of this objective
function and the normalized cone NC of C, i.e. a zero of Sf + NC . Equivalently, x̂ is a solution
of the variational inequality problem VIP(Sf , C). It is well known that variational inequality
problems are substantially easier to solve when the involved operator is maximal monotone. Thus,
the study of conditions under which Sf is maximal monotone has a significant impact on the theory
of equilibrium problems. We remind here that a set-valued operator T : X → P(X∗) is monotone
if 〈u1 − u2, x1 − x2〉 ≥ 0 for all (x1, u1), (x2, u2) ∈ G(T ), where the graph G(T ) of T is defined as
G(T ) = {(x, u) ∈ X × X∗ : u ∈ T (x)}. T is said to be maximal monotone if it is monotone and
G(T ) = G(T ′) for all monotone operator T ′ : X → P(X∗) such that G(T ) ⊂ G(T ′).

We will prove in this paper that Rf and Sf are maximal monotone under some further assump-
tions on the behavior of f as a function of its two arguments, like for instance vanishing on the
diagonal of C × C.

We will also study the monotonicity properties of Rf and Sf under a different set of assumptions
on f . We will drop the concavity of f(·, y), imposing instead stronger joint assumptions on f : it
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must vanish on the diagonal and be a monotone bifunction, meaning that f(x, y) + f(y, x) ≤ 0
for all (x, y) ∈ C × C. In this case the monotonicity of Sf is almost immediate, but that of Rf

is to some extent unexpected: Since −f(·, y) may fail to be convex, in principle Rf (x) could be
empty for some or even for all values of x. We will prove nevertheless that Rf is indeed maximal
monotone, and that its graph contains the graph of Sf . Sf , while trivially monotone, may fail to be
maximal monotone, in the absence of further assumptions on f as a function of its first argument.

Similarly, it will be proved that Sf is maximal monotone when −f is monotone and it vanishes
on the diagonal, without requiring convexity of f(x, ·), and that G(Sf ) ⊃ G(Rf ), while Rf in
this case is trivially monotone, but not necessarily maximal monotone. Some rather undemanding
semi-continuity assumptions on f are also needed for all these results.

For the case in which X is reflexive and C = X, most of these these results were established in
[8]. In particular, it was proved that both Sf and Rf are maximal monotone under the first set of
assumptions, and that the same happens with Sf when f(x, ·) is convex, f(·, y) is continuous, f is
monotone and it vanishes on the diagonal of X ×X, and with Rf when f(·, y) is concave, f(x, ·) is
continuous, −f is monotone and it vanishes on the diagonal of X×X. In this reference, reflexivity
of X was heavily used, both for establishing the monotonicity of Sf and Rf and the maximality.
The latter was proved using a classical result by Rockafellar (see Theorem 4.4.7 in [4]), which states
that a monotone operator T such that T + J is onto (where J : X → X∗ is the duality operator),
is maximal monotone. This result holds in smooth reflexive Banach spaces, and can be extended
to nonsmooth reflexive Banach spaces, using a renormalization procedure proposed in [1]. The
technique used in [8] for proving monotonicity of Sf and Rf requires local boundedness of these
operators. Since the image of a point in the boundary of the domain through a maximal monotone
operator always contains a halfline, the results in [8] cover only the unconstrained case, i.e. when
C = X, that is to say, f is finite on the whole X ×X, so that the domain of Sf and Rf is also the
whole space X, and henceforth the boundary of their domains is empty.

In this paper we get rid of these limitations, through the use of a completely different approach
for establishing maximal monotonicity, based upon the characterizations of maximal monotone
operators through convex functions defined on X ×X∗. We describe next the fundamentals of this
theory.

Let X be a Banach space and X∗, X∗∗ its topological dual and bi-dual, respectively. 〈·, ·〉
will denote the duality coupling in X × X∗ and X∗ × X∗∗ respectively, i.e., 〈x, x∗〉 = x∗(x),
〈x∗, x∗∗〉 = x∗∗(x∗) for all x ∈ X,x∗ ∈ X∗, x∗∗ ∈ X∗∗. In 1988, S. Fitzpatrick associated to each
point-to-set operator T : X → P(X∗) the function ϕT : X ×X∗ → R ∪ {+∞} defined as

ϕT (x, x∗) = sup
(y,y∗)∈G(T )

{〈x− y, y∗ − x∗〉} + 〈x, x∗〉, (3)

called the Fitzpatrick function of T , see [7]. It is easy to check that ϕT is convex and lower
semicontinuous and that ϕT (x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ G(T ). Also, T is maximal monotone
if and only if

G(T ) = {(x, x∗) ∈ X ×X∗ : ϕT (x, x∗) = 〈x, x∗〉}; (4)
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indeed, it follows easily from (3) that ϕT (x, x∗) = 〈x, x∗〉 if and only if

〈x− y, x∗ − y∗〉 ≥ 0 ∀(y, y∗) ∈ G(T ). (5)

It is an elementary consequence of the respective definitions that monotonicity of T is equivalent
to the validity of (5) for all pairs (x, x∗) ∈ G(T ), and that maximality holds if and only if all pairs
(x, x∗) satisfying (5) belong to G(T ). Thus maximal monotonicity of T is equivalent to the equality
in (4). The Fitzpatrick function was independently rediscovered in [5] and [14]. Note that, in view
of (4), ϕT fully characterizes the operator T .

The introduction of ϕT naturally leads to the consideration of other functions that represent
a maximal monotone operator T in a similar way, i.e. convex and lower semicontinuous functions
h : X ×X∗ such that h(x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ X ×X∗, with equality iff (x, x∗) ∈ G(T ).
Calling FT such family of functions, it was proved in [7] that ϕT is the smallest member of the
family, i.e. ϕT (x, x∗) ≤ h(x, x∗) for all (x, x∗) ∈ X × X∗ and all h ∈ FT . The family FT , and
more generally the theory of convex representation of monotone operators, was analyzed in several
papers; see e.g. [3], [11], [13], [15], [16] and [17]. We will be concerned here with two results
within this theory. We recall that given a function φ : X → R ∪ {+∞}, its convex conjugate
φ∗ : X∗ → R∪ {+∞} is defined as φ∗(x∗) = supx∈X{〈x, x∗〉 −φ(x)}. It has been proved in [6] that
if X is reflexive, T is maximal monotone and h belongs to the above defined family FT , then it also
holds that h∗(x∗, x) ≥ 〈x, x∗〉 for all (x∗, x) ∈ X∗ ×X = X∗ ×X∗∗. Furthermore, this inequality,
together with h(x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ X × X∗ (embedded in the definition of FT ), are
enough to establish maximal monotonicity of the operator whose graph is the set where the latter
inequality holds as an equality. More precisely, the result, presented in Theorem 3.1 of [6], is the
following:

Theorem 1. Let X be a reflexive Banach space, and h : X ×X∗ → R ∪ {+∞} a proper, convex
and lower semicontinuous function (in the strong-weak∗ topology), satisfying

h(x, x∗) ≥ 〈x, x∗〉, h∗(x∗, x) ≥ 〈x, x∗〉 ∀(x, x∗) ∈ X ×X∗.

Consider the operator T : X → P(X∗) whose graph G(T ) is given by

G(T ) = {(x, x∗) ∈ X ×X∗ : h(x, x) = 〈x, x∗〉}.

Then,

i) T is maximal monotone.

ii) G(T ) = {(x, x∗) ∈ X ×X∗ : h∗(x∗, x) = 〈x, x∗〉}.

We will use the following extension of Theorem 1 to nonreflexive Banach spaces, which has been
proved in Theorem 3.1 and Corollary 3.2 of [12]. We will consider X as a subset of X∗∗ through the
natural immersion: a point x ∈ X is seen as an element of X∗∗, i.e. a continuous linear functional
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defined on X∗, whose value x(x∗) at a point x∗ ∈ X∗ is given by x∗(x). We will denote as D1(h)
the projection of the domain of h onto X, i.e.

D1(x) = {x ∈ X : there exists x∗ ∈ X∗ : such that h(x, x∗) < +∞}.

Theorem 2. Let X be an arbitrary Banach space, and h : X ×X∗ → R ∪ {+∞} a proper, convex
and lower semicontinuous function (in the strong-weak ∗ topology), satisfying

h(x, x∗) ≥ 〈x, x∗〉 ∀(x, x∗) ∈ X ×X∗ (6)

h∗(x∗, x) ≥ 〈x∗, x〉 ∀(x∗, x) ∈ X∗ ×X ⊂ X∗ ×X∗∗. (7)

Assume also that for some x0 ∈ D1(h), the set ∪λ>0λ[D1(h) − x0] is a closed subspace of X.
Consider the operator T : X → P(X∗) whose graph G(T ) is given by

G(T ) = {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x, x∗〉}.

Then

i) T is maximal monotone.

ii) G(T ) = {(x, x∗) ∈ X ×X∗ ⊂ X∗∗ ×X∗ : h∗(x∗, x) = 〈x, x∗〉}.

We mention that the assumption on D1(h) holds when the affine hull of the projection of
the domain of h onto X is closed, and this projection has nonempty relative interior. It holds
automatically when the domain of h itself has nonempty interior.

We remark that the sufficient condition for maximal monotonicity given by Theorems 1, 2
turns out to be a quite powerful tool. One could think at first view that it is a mere refinement of
Fitzpatrick’s result, which states a similar conclusion using ϕT instead of a general h. It is the case,
nevertheless, that the Fitzpatrick function does not help much for proving that a given operator is
maximal monotone, because, as shown above, the equivalence between the maximal monotonicity
of T and the equality related to ϕT , holding precisely on the graph of T , is too immediate, so
that both statements are equally hard to prove. On the other hand, Theorems 1 and 2 above
allow us to use a large array of possible functions h, for some of which proving the inequalities
above might be a far easier task than establishing in a direct way the maximal monotonicity of
T . This fact is enhanced by our proofs in the following sections. We will find certain h’s which
adequately fit the operators Sf , Rf , for each set of assumptions on the bifunction f , and such
that the corresponding inequalities are quite easy to establish (we emphasize that these h’s are not
the Fitzpatrick functions of these operators). Maximal monotonicity of the operators will then be
an immediate consequence of Theorem 2. Comparison of this proofline with the one adopted for
proving quite weaker similar results in [8] leads to a categorical corroboration of the strength of
the theory of convex representation of monotone operators in general, and of Theorems 1 and 2 in
particular.
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2 Maximal monotonicity of the diagonal subdifferential operators

for a concave-convex f

We start by introducing the concave-convex property of the bifunction f in a formal way. Let X
be an arbitrary Banach space and C a non-empty closed and convex subset of X. We consider the
following two assumptions on f : C × C → R.

A1) f(·, y) : C → R is concave and upper semicontinuous for all y ∈ C.

A2) f(x, ·) : C → R is convex and lower semicontinuous for all x ∈ C.

We define now, for each x ∈ C, the functions fx, f
x : X → R ∪ {+∞} as

fx(y) =

{

f(x, y) if y ∈ C

+∞ otherwise,
(8)

fx(y) =

{

−f(y, x) if y ∈ C

+∞ otherwise.
(9)

It follows from (A1), (A2), (8) and (9) that both fx and fx are closed convex functions for all
x ∈ C, and are proper if and only if x ∈ C. We define now the operators Rf , Sf : X → P(X∗):

Rf (x) =

{

∂fx(x) if x ∈ C

∅ otherwise,
(10)

Sf (x) =

{

∂fx(x) if x ∈ C

∅ otherwise.
(11)

We remark now that under just (A1) and (A2), the operators Rf , Sf may fail to be monotone, as
shown in the following example, taken from [8]: ConsiderX = C = R

n, and an indefinite A ∈ R
n×n,

i.e. such that there exist x̃, x̂ ∈ R
n satisfying x̃tAx̃ > 0, x̂tAx̂ < 0. Define f : R

n × R
n → R as

f(x, y) = xtAy, so that Rf (x) = −Ax,Sf (x) = Atx. It is immediate that both (A1) and (A2) hold,
but the indefiniteness of A implies that neither Rf nor Sf is monotone.

An additional condition related to the joint behavior of f in its two arguments is needed, and
an appropriate one is:

A3) f(x, x) = 0 for all x ∈ C.

Now we introduce two additional properties of the bifunction f , to be used in Section 3. We
recall that a bifunction f : C × C → R is said to be monotone if

f(x, y) + f(y, x) ≤ 0
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for all (x, y) ∈ C × C.
The announced monotonicity assumptions on f are:

A4) f is monotone.

A5) −f is monotone.

At this point, it is convenient to formalize a certain symmetry relation between Rf and Sf . To
any bifunction f : C × C → R we associate the bifunction g : C × C → R defined as g(x, y) =
−f(y, x). The connections between Rf , Sf , Rg and Sg are encapsulated in the following proposition.

Proposition 1. i) f satisfies (A1) iff g satisfies (A2),

ii) f satisfies (A2) iff g satisfies (A1),

iii) f satisfies (A3) iff g satisfies (A3),

iv) f satisfies (A4) iff g satisfies (A5),

v) f satisfies (A5) iff g satisfies (A4),

vi) Rf = Sg, Sf = Rg.

Proof. Elementary, cf. Proposition 2 in [8].

We will prove now that, assuming (A1), (A2) and (A3), the operators Rf and Sf are maximal
monotone. A similar result can be found in Theorem 4.1 of [8], but only for the reflexive and
unconstrained cases, i.e. when X is reflexive and C = X.

Theorem 3. Assume that either X is reflexive or ∪λ>0λ[C−x0] is a closed subspace of X for some
x0 ∈ C. If (A1), (A2) and (A3) hold then both Rf and Sf are maximal monotone, and Rf = Sf .

Proof. We prove first that Rf is maximal monotone. Define h : X ×X∗ → R ∪ {+∞} as

h(x, x∗) =

{

f∗x(x∗) if x ∈ C

+∞ otherwise,
(12)

where f∗x denotes the convex conjugate of the function fx defined in (10). We intend to apply
Theorems 1 or 2 with this h, and so we must check the validity of the assumptions of these theorems.
Since D1(h) = C by (12), if X is non-reflexive, our hypothesis on C implies the assumption on
D1(h) made in Theorem 2.
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We move on now to convexity and lower semicontinuity of h. We remark that we need to show
that these properties hold for h as a function of its two arguments. In view of (12), (8), (9) and
the definition of the convex conjugation,

h(x, x∗) = sup
y∈X

{〈y, x∗〉 − fx(y)}

= sup
y∈C

{〈y, x∗〉 − f(x, y)} = sup
y∈C

{〈y, x∗〉 + f y(x)},

for all x ∈ C, x∗ ∈ X∗, using the fact that fx(y) = +∞ for y /∈ C in the second equality. Therefore

h(x, x∗) = sup
y∈C

{〈y, x∗〉 + f y(x)} (13)

for all x ∈ X,x∗ ∈ X∗. Since the supremum of convex and lower semicontinuous functions is
convex and lower semicontinuous, in view of (13) it suffices to check that the function ψy : X×X∗,
defined as ψy(x, x

∗) = 〈y, x∗〉 + f y(x), is convex and lower semicontinuous for all y ∈ C. Since f y

is convex and lower semicontinuous by (A1) and (9), the joint lower semicontinuity of ψy in its two
arguments, in the strong-weak∗ topology, follows now from the facts that x∗ 7→ 〈y, ·〉 is continuous
in the weak∗ topology of X∗, and that ψy is separable.

We must show now that the values of both h and its conjugate h∗ remain above the duality
coupling, i.e. that (6), (7) hold. We start with (6), which holds trivially if x /∈ C, because in such
a case, according to (12), the left hand side of (6) is +∞. If (x, x∗) ∈ C ×X∗, using (12), (8) and
A3) we conclude that

h(x, x∗) = sup
y∈X

〈y, x∗〉 − fx(y) ≥ 〈x, x∗〉 − fx(x) = 〈x, x∗〉 − f(x, x) = 〈x, x∗〉.

It follows that
h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗. (14)

Now we must check the inequality in (7). Note that, for (x∗, x∗∗) ∈ X∗ ×X∗∗

h∗(x∗, x∗∗) = sup
(z,y∗)∈X×X∗

{〈z, x∗〉 + 〈y∗, x∗∗〉 − h(z, y∗)} =

sup
z∈X

{

〈z, x∗〉 + sup
y∗∈X∗

{〈y∗, x∗∗〉 − h(z, y∗)}

}

. (15)

Since h(z, y∗) = +∞ for z /∈ C by (12), the inner supremum in (15) takes the value −∞ for z /∈ C,
so that we might assume that the outer supremum is taken over z ∈ C, in which case we have,
again by (12), h(z, y∗) = f∗z (y∗). Thus, for z ∈ C,

sup
y∗∈X∗

{〈y∗, x∗∗〉 − h(z, y∗)} = sup
y∗∈X∗

{〈y∗, x∗∗〉 − f∗z (y∗)} = (f∗z )∗(x∗∗) = f∗∗z (x∗∗). (16)
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We conclude from (15) and (16) that

h∗(x∗, x∗∗) = sup
z∈C

{〈z, x∗〉 + f∗∗z (x∗∗)}. (17)

Since fx is convex and lower semicontinuous, an elementary property of the convex conjugation
guarantees that the restriction of f∗∗z to X (seen as a subset of X∗∗), coincides with fz, so that,
taking into account (8), (9) and the definition of convex conjugation, (17) becomes, for points
x∗∗ = x ∈ X,

h∗(x∗, x) = sup
z∈C

{〈z, x∗〉 + fz(x)}. (18)

Again, if x /∈ C, then we conclude from (8) that fz(x) = ∞ for all z ∈ C and h∗(x∗, x) = ∞ >
〈x, x∗〉. If x ∈ C, then we get from (18), taking x = z,

h∗(x∗, x) ≥ 〈x, x∗〉 + fx(x) = 〈x, x∗〉 + f(x, x) = 〈x, x∗〉, (19)

using A3 in the second equality. It follows from (19) that (7) holds. We have finished checking
the assumptions of Theorems 1 and 2, and so their conclusions are valid in our setting, namely,
the operator T whose graph G(T ) is given by G(T ) = {(x, x∗) ∈ X × X∗ : h(x, x∗) = 〈x, x∗〉} is
maximal monotone, and also

G(T ) = {(x, x∗) ∈ X∗ ×X ⊂ X∗ ×X∗∗ : h∗(x∗, x) = 〈x, x∗〉} ⊂ C ×X∗. (20)

The only remaining task consists of verifying that T = Rf .
Using (18), (8) and (9) we have

h∗(x∗, x) =

{

(fx)∗(x∗) if x ∈ C

+∞ otherwise,

Therefore, in view of (7) and (20), (x, x∗) belongs to G(T ) if and only if

x ∈ C, 〈x, x∗〉 ≥ h∗(x∗, x) = (fx)∗(x∗) = sup
y∈X

{〈y, x∗〉 − fx(y)}

which is equivalent to

x ∈ C, 〈x, x∗〉 ≥ 〈y, x∗〉 − fx(y) = 〈y, x∗〉 − fx(y) + fx(x), (21)

for all y ∈ X, using (A3) in the equality. Now, (21) is equivalent to

x ∈ C, fx(y) ≥ 〈y − x, x∗〉 + fx(x)

for all y ∈ X, which occurs if and only if x∗ ∈ ∂fx(x) = Rf (x). We have established that T = Rf

and hence Rf is maximal monotone by Theorem 1 or 2.
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In order to prove that Sf = Rf , in view of (12) and (6), (x, x∗) ∈ G(T ) if and only if

x ∈ C, 〈x, x∗〉 ≥ h(x, x∗) = f∗x(x∗) = sup
y∈X

{〈y, x∗〉 − fx(y)}

which is equivalent to

x ∈ C, 〈x, x∗〉 ≥ 〈y, x∗〉 − fx(y) = 〈y, x∗〉 − fx(y) + fx(x), (22)

for all y ∈ X, using (A3) in the equality. Now, (22) is equivalent to

x ∈ C, fx(y) ≥ 〈y − x, x∗〉 + fx(x)

for all y ∈ X, which occurs if and only if x∗ ∈ ∂fx(x) = Sf (x).

3 Maximal monotonicity of the diagonal subdifferential operators

for a monotone f

We recall that a bifunction f : C × C → R is said to be monotone if f(x, y) + f(y, x) ≤ 0 for all
(x, y) ∈ C × C.

In this section we will relax assumptions (A1) or (A2), demanding instead monotonicity of either
f or −f (i.e., assumptions (A4) and (A5)), while keeping (A3). Working under these assumptions,
we can relax the concavity-convexity hypotheses on f : we will need only convexity of f(x, ·),
i.e. (A2), for proving monotonicity of Sf and maximal monotonicity of Rf , and just concavity of
−f(·, y), i.e. (A1), for monotonicity of Rf and maximal monotonicity of Sf .

We mention that these sets of assumptions, namely (A1), (A3) and (A5), or (A2), (A3) and
(A4), are independent of (A1), (A2) and (A3). We present two examples, taken from [8], both of
them with X = C = R

n. Take A,B ∈ R
n×n positive semidefinite, but such that A−B is indefinite.

Define
f(x, y) = −xtAx+ ytBy + xt(A−B)y. (23)

This f satisfies (A1), (A2) and (A3), but neither (A4) nor (A5), because neither f nor −f is
monotone: note that f(x, y) + f(y, x) = (x − y)t(B − A)(x − y), which is neither positive nor
negative for all x, y ∈ X, due to the indefiniteness of A − B. A non-quadratic example with the
same properties is obtained by taking f̄(x, y) = f(x, y) − φ(x) + φ(y), with f as in (23), where
φ : X → R is an arbitrary convex function.

Consider now f : R
n × R

n → R defined as

f(x, y) =

n
∑

j=1

x3
j (yj − xj).
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This f satisfies (A2), (A3) and (A4) (note that f(x, y)+f(y, x) =
∑n

j=1(x
3
j −y

3
j )(yj −xj) ≤ 0), but

(A1) fails, because f is not concave in x for all y. The bifunction −f , with f as in this example,
satisfies (A1), (A3) and (A5), but not (A2).

We have the following results on monotonicity of Rf , Sf , assuming monotonicity properties of
f .

Theorem 4. Assume that either X is reflexive or ∪λ>0λ[C − x0] is a closed subspace of X for
some x0 ∈ C.

i) If f satisfies (A2), (A3) and (A4) then Rf is maximal monotone and Sf is monotone.

ii) If f satisfies (A1), (A3) and (A5) then Sf is maximal monotone and Rf is monotone.

Proof. i) We intend to use again Theorems 1 or 2, but now the function h defined in (12) does
not work, because it is not convex any more as a function of x, due to the absence of (A1)
among the assumptions of this item, which entails lack of concavity of f(·, y). Thus, we define
instead ĥ : X ×X∗ → R ∪ {+∞} as

ĥ(x, x∗) =

{

(fx)∗(x∗) if x ∈ C

+∞ otherwise,
(24)

with fx as in (9). We remark that although fx may fail to be convex, there is no problem
with taking its convex conjugate. Convex conjugates of nonconvex functions might not be
proper, but this does not occur when the nonconvex function is proper and is bounded below
by a proper closed convex function, which is precisely the case in our situation, because, since
f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C × C by (A4), we have that

fx(y) ≥ fx(y) (25)

for all y ∈ X, with fx as in (8), and fx is indeed convex, by virtue of (A2). Now we check
the assumptions of Theorem 2. As in Theorem 3, the assumption on D1(h) is taken care
by our hypothesis on C. Convexity and lower semicontinuity of ĥ are proved also like in
Theorem 3, but we repeat the argument, so that the use of (A2), instead of (A1), becomes
fully transparent.

For any x ∈ C,

ĥ(x, x∗) = sup
y∈X

{〈y, x∗〉 − fx(y)}

= sup
y∈C

{〈y, x∗〉 − fx(y)} = sup
y∈C

{〈y, x∗〉 + f(y, x)} . (26)

Therefore
ĥ(x, x∗) = sup

y∈C

{〈y, x∗〉 + fy(x)} , (27)

11



for all x ∈ X,x∗ ∈ X∗. Using (A2) we conclude that, for each y ∈ C, the function ρy :
X × X∗ → R defined as ρy(x, x

∗) = 〈y, x∗〉 + fy(x) is convex and lower-semicontinuous in

the strong×weak∗ topology of X ×X∗. It folows from (27) that ĥ is also convex and lower-
semicontinuous in this topology.

To prove that ĥ satisfies (6), first note that in view of (24), it suffices to verify this inequality
for x ∈ C. If x ∈ C, then taking y = x in (26) we conclude that

h(x, x∗) ≥ 〈x, x∗〉 + f(x, x) = 〈x, x∗〉

where the equality follows from (A3). Therefore, ĥ satisfies (6).

For (7), note that

ĥ∗(x∗, x∗∗) = sup
z∈X

{

〈z, x∗〉 + sup
y∗∈X∗

{〈y∗, x∗∗〉 − ĥ(z, y∗)}

}

.

As in the proof of Theorem 3 we assume that the outer supremum is taken over z ∈ C, in
which case we have, again by (24), ĥ(z, y∗) = (f z)∗(y∗). Thus, for z ∈ C,

sup
y∗∈X∗

{〈y∗, x∗∗〉 − ĥ(z, y∗)} = sup
y∗∈X∗

{〈y∗, x∗∗〉 − (f z)∗(y∗)} = (f z)∗∗(x∗∗). (28)

We conclude from (15) and (28) that

ĥ∗(x∗, x∗∗) = sup
z∈X

{〈z, x∗〉 + (f z)∗∗(x∗∗)}. (29)

At this point the situation differs from the proof of Theorem 3. As mentioned above, f z in
not convex in general, and hence it does not hold that (f z)∗∗ = f z. We invoke instead the
following elementary property of convex conjugation: if φ1, φ2 : X → R∪{+∞} are such that
φ1(x) ≤ φ2(x) for all x ∈ X, then φ∗∗1 (x) ≤ φ∗∗2 (x) for all x ∈ X. In view of (25), we can
apply this result to fx, f

x, concluding that

〈z, x∗〉 + (f z)∗∗(x∗∗) ≥ 〈z, x∗〉 + f∗∗z (x∗∗),

so that we get from (29)

ĥ∗(x∗, x∗∗) ≥ sup
z∈X

{〈z, x∗〉 + f∗∗z (x∗∗)} (30)

for all (x∗, x∗∗) ∈ X∗ × X∗∗. Since fz is convex and lower semicontinuous by (A2) and
(8), we have, as before, fz = f∗∗z in X, so that (30) becomes, for the restriction of ĥ∗ to
X∗ ×X ⊂ X∗ ×X∗∗,

ĥ∗(x∗, x) ≥ sup
z∈X

{〈z, x∗〉 + fz(x)}

12



and therefore, taking z = x and using (A3), we get ĥ∗(x∗, x) ≥ 〈x, x∗〉 for all (x, x∗) ∈ X×X∗,
thus establishing (7). It follows that the conclusion of Theorem 1(i) or Theorem 2(i) holds
and hence the operator T̂ , whose graph G(T̂ ) is given by

G(T̂ ) = {(x, x∗) ∈ X ×X∗ : ĥ(x, x∗) = 〈x, x∗〉}, (31)

is maximal monotone. We proceed to identify the operator T̂ . In view of (31) and (24), x∗

belongs to T̂ (x) if and only if

x ∈ C, 〈x, x∗〉 ≥ ĥ(x, x∗) = sup
y∈X

{〈y, x∗〉 − fx(y)}

which is equivalent to
x ∈ C, 〈x, x∗〉 ≥ 〈y, x∗〉 − fx(y)

for all y ∈ X, which happens if and only if

〈y − x, x∗〉 ≤ fx(y) = fx(y) − fx(x), (32)

using (9) and (A3) in the last equality. Now, a point x∗ ∈ X∗ satisfies (32) precisely when it
is a subgradient of fx at x, i.e. when it belongs to Rf (x). We have proved that Rf coincides

with T̂ , and it is therefore maximal monotone.

We look now at Sf . A rather immediate proof of its monotonicity can be found in Theorem
1 of [8]. We give next an alternative proof, better fitted to our previous argument. We claim
that

G(Sf ) ⊂ G(Rf ), (33)

and we proceed to prove the claim. Note first that monotonicity of f implies that fx(y) ≤
fx(y) for all y ∈ X, and that fx(x) = fx(x) = 0 by (A3). Take now u ∈ Sf (x). In view of
the definition of Sf , for all y ∈ X,

〈u, y − x〉 ≤ fx(y) − fx(x) = fx(y) ≤ fx(y) = fx(y) − fx(x),

implying that u ∈ Rf (x) and establishing the claim. Since we have proved that Rf is maximal
monotone, monotonicity of Sf follows from (33).

ii) We consider, as before, the bifunction g : C × C → R defined as g(x, y) = −f(y, x). In view
of items (i), (iii) and (v) of Proposition 1, we get that g satisfies (A2), (A3) and (A4), so that,
by virtue of item (i) of this theorem, Rg is maximal monotone, and hence we get maximal
monotonicity of Sf from Proposition 1(vi). An argument similar to the one used to prove the
inclusion in (33) establishes that

G(Rf ) ⊂ G(Sf ), (34)

which entails the monotonicity of Rf .
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We mention that in the absence of further assumptions, Sf may fail to be maximal monotone
under the hypotheses of Theorem 4(i), and the same holds for Rf under the hypotheses of Theorem
4(ii). Consider the following example. Take X = C = R and φ : R → R nondecreasing (but
possibly discontinuous). Define f : R × R → R as f(x, y) = φ(x)(y − x). It is rather elementary to
prove that f satisfies (A2), (A3) and (A4). Taking in particular

φ(x) =

{

0 if x < 0

1 if x ≥ 0,

a simple algebra shows that

Sf (x) =

{

0 if x < 0

1 if x ≥ 0.

Note that Sf is not maximal monotone (in particular its graph is not closed). For this example,
one has

Rf (x) =











0 if x < 0

[0, 1] if x = 0

1 if x ≥ 0,

which is indeed maximal monotone, in agreement with the result of Theorem 4(i). Note also that
the inclusion in (33) holds. A similar counterexample to the maximal monotonicity of Rf under
(A1), (A3) and (A5) can be easily constructed.

We mention that in the reflexive and unconstrained case (i.e., X reflexive and X = C), Theorem
4 of [8] establishes maximal monotonicity of Sf under (A2), (A3) and (A4), assuming additionally
continuity of f(·, y), and of Rf under (A1), (A3) and (A5), assuming additionally continuity of
f(x, ·). Note that the additional continuity assumption does not hold for the example above,
because φ is discontinuous. We conjecture that these results hold also in our constrained and
nonreflexive setting. In view of (33) and (34), it suffices to prove that these continuity assumptions
imply that Sf = Rf .

We also comment that [8] contains no monotonicity results for Rf under (A2), (A3) and (A4),
or for Sf under (A1), (A3) and (A5).
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