
Images of Julia sets that you can trust
LUIZ HENRIQUE DE FIGUEIREDO and DIEGO NEHAB
IMPA–Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
and
JORGE STOLFI
Instituto de Computação, UNICAMP, Campinas, Brazil
and
JOÃO BATISTA OLIVEIRA
Faculdade de Informática, Pontifı́cia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil

Abstract
We present an algorithm for computing images of quadratic Julia sets that
can be trusted in the sense that they contain numerical guarantees against
sampling artifacts and rounding errors in floating-point arithmetic. We use
cell mapping and color propagation in graphs to avoid function iteration and
rounding errors. As a result, our algorithm avoids point sampling and can
robustly classify entire rectangles in the complex plane as being on either
side of the Julia set. The union of the regions that cannot be so classified
is guaranteed to contain the Julia set. Our algorithm computes a refinable
quadtree decomposition of the complex plane adapted to the Julia set which
can be used for rendering and for approximating geometric properties such
as the area of the filled Julia set and the fractal dimension of the Julia set.

Keywords: Fractals, Julia sets, adaptive refinement, cellular models, cell
mapping, computer-assisted proofs

Last updated on January 8, 2013 at 10:45am.

1. INTRODUCTION

We all have seen many images of Julia sets [Peitgen and Richter
1986]. Can these beautiful images really be trusted? A Julia set is
the boundary between markedly different behaviors of the iteration
of a nonlinear function on the complex plane. Julia sets are typically
fractal, and near them rounding errors in the computation of the
function may decide the iteration in favor of the wrong domain.
Moreover, the number of iterations required to classify a point
depends on the point and cannot be reliably fixed a priori. Therefore,
for all we know, the images we have seen so far may simply be
numerical artifacts. Of course, it is very unlikely that these images
are actually false in any essential way, given that they have been
computed independently many times and always look the same.
However, as far as we know, no one has systematically produced
pictures that carry numerical guarantees.

In this paper, we describe how to compute images of Julia sets
that can be trusted. Our algorithm computes a refinable quadtree
decomposition of the complex plane that is adapted to the Julia
set. From this quadtree, we produce three-color images in which
each pixel corresponds to a rectangular region in the complex plane
whose color comes with a mathematical guarantee: white pixels
are guaranteed to be outside the filled Julia set, black pixels are
guaranteed to be inside the filled Julia set, and the union of the gray
pixels is guaranteed to contain the Julia set1 (see Fig. 1).

The main features of our algorithm that provide these guarantees
are:

No point sampling. The algorithm uses cell mapping [Hsu 1987;
Hsu 1992] to reliably classify entire rectangles in the complex
plane, not just a finite sample of points.

No orbits. The algorithm does not need to fix an arbitrary limit
for the number of iterations performed, that is, for the length
of partial orbits computed. In fact, the algorithm performs no
function iteration at all. Instead, it handles orbits by using color
propagation in graphs induced by cell mapping.

No rounding errors. The numbers processed by the algorithm are
dyadic fractions that are restricted in range and precision and the
algorithm uses error-free fixed-point arithmetic whose precision
depends only on the spatial resolution of the image. Standard
double-precision floating-point arithmetic is enough to generate
huge guaranteed images up to 106 × 106 pixels over the square
[−2, 2]× [−2, 2].

1To quote Sherlock Holmes in The Sign of Four, “when you have eliminated
the impossible, whatever remains, however improbable, must be the truth.”



2 • L. H. de Figueiredo, D. Nehab, J. Stolfi, and J. B. Oliveira

Fig. 1. Image of the Julia set for c = −1 computed with our algorithm,
cropped from a 4096× 4096 image. Top: filled Julia set. Middle: Julia set.
Bottom: zoom shows the gray region containing the Julia set. The white
region is guaranteed to be outside the filled Julia set and the black region is
guaranteed to be inside the filled Julia set.

We start by briefly recalling the main definitions and properties of
Julia sets in §2. We then discuss the limitations of the main known
algorithms for generating images of Julia sets in §3. We present our
algorithm in §4, discuss its behavior and its limitations in §5, present
some applications in §6 and possible extensions in §7.

2. JULIA SETS

Consider the quadratic function f :C→ C given by f(z) = z2 + c,
where c is a fixed complex number. (Most of what follows applies to
all polynomials of degree at least 2, but we shall concentrate on the
classic quadratic case.) Julia sets arise naturally when we study the
dynamics of f , that is, the behavior of the discrete dynamical system
induced by the iterates of f : f1 = f , f2 = f ◦f , f3 = f ◦f ◦f , . . .
To study the long-term behavior of this system, we start with a point
z0 ∈ C and see what happens with the sequence zn = fn(z0),
which is called the orbit of z0 under f . The orbit of a point z0
is either bounded or unbounded. When it is unbounded, the orbit
actually escapes away to infinity, in the sense that |fn(z0)| → ∞
as n→∞. Here is a well-known elementary quantitative proof of

this fact, which plays an important role in algorithms for drawing
Julia sets:

LEMMA 1 (ESCAPE RADIUS). Let f(z) = z2+c, where c ∈ C,
and letR = max(|c|, 2). If z ∈ C and |z| > R, then |fn(z)| → ∞
as n→∞.

PROOF. The triangle inequality gives |z2| = |z2 + c − c| ≤
|z2 + c|+ |c|, and so |f(z)| = |z2 + c| ≥ |z2| − |c| = |z|2− |c| >
|z|2 − |z| = |z|(|z| − 1) > |z| > R. Iterating this result, we get
|fn(z)| > |z|(|z| − 1)n →∞ because |z| − 1 > 1.

Therefore, if the orbit of z0 is unbounded, then it must go beyond
the escape radius R, in the sense that |fm(z0)| > R for some
m ∈ N, and once it does that the lemma shows that the orbit of z0
escapes to∞. In this case, we say that z0 is in the attraction basin
of∞, which is denoted byA(∞).2 The complementK = C\A(∞)
is thus the set of points having bounded orbits and is called the filled
Julia set of f . The Julia set J of f is the common boundary of
A(∞) and K.

Except for c = 0 (when it is a circle) and for c = −2 (when it
is an interval), the Julia set J is a fractal set and elusive to draw,
and so pictures typically show the filled Julia set K when possible
(that is, when K has an interior). As Devaney says [Peitgen and
Saupe 1988, §3.3.3], images of filled Julia sets are somehow more
appealing anyway.

The classic work of Julia and Fatou in 1918–1919 highlighted the
key role of the orbits of critical points and established an important
topological dichotomy: the Julia set is either connected or a Cantor
set. This dichotomy defines the famous Mandelbrot set, which rep-
resents in parameter space the set of c ∈ C such that J is connected.
According to Julia and Fatou, this happens exactly when the critical
point of f is inK, that is, when the orbit of 0 is bounded. For details
on the properties of Julia sets, see the surveys by Blanchard [1984],
Keen [1989], Branner [1989], and Milnor [2006].

3. COMPUTING IMAGES OF JULIA SETS

Although f is a simple quadratic function, its dynamics can be very
complicated in the sense that it is very hard to decide whether a
given point z0 has a bounded orbit. (Some Julia sets are not even
computable, though filled Julia sets always are [Braverman and
Yampolsky 2009].) Accordingly, Julia sets can be very complicated
sets and many pictures have been made to try to convey their com-
plexity [Peitgen and Richter 1986].

There are several well-known algorithms for computing approx-
imate images of Julia sets, such as the escape-time method, the
boundary scanning method, the inverse iteration method, and the
distance estimator method [Peitgen and Richter 1986; Peitgen and
Saupe 1988; Saupe 1987]. These methods are easy to implement
and have produced beautiful images that successfully exploit colors
to convey the rich dynamics of complex maps. Nevertheless, as
discussed below, these images come with no guarantees and cannot
really be trusted. For concreteness, we shall focus on the escape-time
method; similar remarks hold for the other methods.

Recall that the escape-time method uses the definition of the filled
Julia set K as the set of points whose orbit is bounded and the
fact that K is contained in the escape circle of radius R centered
at the origin. For each pixel in the image, the escape-time method
computes the orbit of the center of the pixel until it exits the escape
circle or a given maximum number of iterations is reached. In the

2When we extend f to a map of the Riemann sphere C = C ∪ {∞} by
setting f(∞) =∞, we find that∞ is an attractive fixed point of f .



Images of Julia sets that you can trust • 3

first case, the point is classified as in A(∞) and the pixel is painted
white. In the second case, the point is classified as inK and the pixel
is painted black. By varying the color according to how long the
orbit takes to exit the escape circle, beautiful images are produced.

The images produced by these methods cannot be trusted because
they rely on point sampling, compute partial orbits, and may be
subject to rounding errors:

Point sampling. The images are produced by choosing a sample of
points on a grid laid over a region of interest and tacitly assuming
that the behavior between sample points is represented reliably by
the behavior of the sample points nearby. While both A(∞) and
K \ J are open, this assumption is not warranted near the Julia
set J . To mitigate this problem, one typically uses a finer grid
to get more detail and more confidence on the images produced.
However, for a fixed resolution, there are no guarantees that the
images obtained by point sampling are correct.

Partial orbits. All the methods compute partial orbits for many
points and so need to fix an arbitrary limit for the number of
iterations performed. The methods compute at most N points
in each orbit. In the escape-time method, it may well happen
that the first N points in an orbit are inside the escape circle,
but further points land outside it and the orbit diverges. In this
case, the starting point will be erroneously classified as in K
instead of A(∞). Relying on partial orbits of fixed bounded
length is a real problem in all methods: we cannot run the program
forever and we cannot choose an N that is large enough for
all points, because points in A(∞) that are very near J may
take arbitrarily long to leave the escape circle. To mitigate this
problem, one typically uses a large N to get more detail and
more confidence on the images produced. However, in most cases
there is a limit beyond which increasing N does not produce any
visible improvement in the images, despite the much increased
computation time. This may be naively taken as a sign that the
image is correct, even though there are no such guarantees.

Rounding errors. To represent precisely the value of a quadratic
function at a point in a computer one needs twice the number
of bits used to represent the point. Thus, iterating a quadratic
function in fixed-precision floating-point arithmetic rapidly loses
precision and so rounding errors during the iteration may influ-
ence the classification of a point, especially near the Julia set. In
the escape-time method, if rounding errors take an orbit outside
the escape circle, then the starting point will be classified erro-
neously as in A(∞), even if the orbit in fact remains inside the
circle forever. On the other hand, rounding errors may erroneously
keep the orbit of a point inside the circle, thereafter producing
false points inside K. Some programs use multiple-precision
floating-point arithmetic to avoid these problems, especially in
deep zoom, at the cost of greatly increased computation times.
The issue remains whether rounding errors during iteration actu-
ally do influence the classification of points. As far as we know,
this issue has never been studied.

In summary, the usual methods for producing pictures of Julia
sets leave us wondering whether the point sampling was reliable,
whether the grid was fine enough, whether the partial orbits were
long enough, and whether rounding errors were relevant. As men-
tioned in §1, our algorithm does not suffer from these limitations.

Previous work related to these issues has focused mainly on the
computability of Julia sets and on the computational complexity of
approximating Julia sets [Rettinger and Weihrauch 2003; Rettinger
2005; Braverman 2005]. A good reference is the book by Braver-
man and Yampolsky [2009]. This is important theoretical work that

probes the limits of what in principle can be computed about Julia
sets. In particular, they imply that we can expect that hyperbolic
Julia sets3 are easy to draw but parabolic ones can be hard. However,
as far as we know, the algorithms given in these papers have not
been implemented in practice or have not been widely used.

4. OUR ALGORITHM

Our algorithm computes a decomposition of the complex plane
into three regions: a white region, which is contained in A(∞), a
black region, which is contained in K, and a gray region, which
contains J . Since K is contained in the escape circle of radius
R = max(|c|, 2) centered at the origin, we can concentrate our
attention on the square region Ω = [−R,R] × [−R,R], because
C \ Ω is contained in A(∞). However, our algorithm works on
any rectangle Ω that contains the escape circle. For |c| ≤ 2, we get
R = 2 and Ω = [−2, 2]× [−2, 2], which is very convenient.

Our algorithm uses an adaptive refinement method that computes
a quadtree decomposition [Samet 1984] of Ω into rectangular cells
and assigns the appropriate color to each leaf cell in this tree (see
Fig. 2). The steps performed by the algorithm are explained in detail
below. Besides adaptive refinement (step 1), its main features are
the use of cell mapping (step 2) and color propagation in graphs
(steps 3 and 4).

(0) [init] Start with a single-node quadtree containing a gray cell
over Ω. Create a separate special white cell representing the
complement of Ω, called the exterior.

(1) [refine] Subdivide each gray leaf cell into four new gray sub-
cells.

(2) [build cell graph] For each gray leaf cell A, find a set of leaf
cells such that f(A) is contained in the union of these cells and
the exterior. For each such cell B, add an edge A→ B to the
graph.

(3) [find new white cells] Color white each gray leaf cell such that
all paths from it reach white cells.

(4) [find new black cells] Color black each gray leaf cell such that
no path from it reaches a white cell.

(5) [prune] Prune the quadtree from the bottom up, converting
internal nodes whose children are all white or all black to a leaf
of that color.

(6) [repeat] If the desired quadtree resolution has not been reached,
go to step 1.

When the algorithm ends, the resulting quadtree can be stored
for future analysis or processed as desired. Typically, we generate
a digital image from it by painting the leaves with their color. We
shall discuss this and other applications of the quadtree in §6. We
now give the details of the algorithm.

Step 0 [init]. The single gray cell over Ω reflects our initial knowl-
edge that J is completely contained in Ω. The white region is rep-
resented at this moment by the exterior cell and reflects our initial
knowledge that the exterior is contained in A(∞). (Hence the re-
quirement that Ω contains the escape circle.) No part of the interior
of K is known at this moment and so the black region is empty.
Together, these three facts establish the initial fundamental invariant
of the algorithm: the white region is contained in A(∞), the black
region is contained in K, and the gray region contains J .

3A Julia set is hyperbolic when the critical point 0 converges to an attracting
periodic orbit or to∞ (which is an attracting fixed point).



4 • L. H. de Figueiredo, D. Nehab, J. Stolfi, and J. B. Oliveira

Fig. 2. Quadtree of refinement level 7 computed by our algorithm for
c = −1 and Ω = [−2, 2]× [−2, 2]. The white region is contained in A(∞),
the black region is contained in K, and the gray region contains J . The
refinement process to level 14 is shown in Fig. 10.

Step 1 [refine]. This is the standard quadtree refinement step. Each
gray leaf cell is subdivided into four equal child cells by bisecting its
sides. The child cells are colored gray. This is an adaptive refinement
because only gray cells are refined. White cells and black cells are
not refined because their final color is known.

The aim of refining is to classify a subset of the new gray cells
(typically those near the boundary of the gray region) as white or
black, thus improving the approximation.

Step 2 [build cell graph]. In this step, we build a graph that repre-
sents the cell mapping [Hsu 1987; Hsu 1992; Dellnitz and Hohmann
1997] induced by f on C, as decomposed into the leaf cells plus the
exterior.

In cell mapping, one represents the dynamics of a discrete dynam-
ical system induced by a map f using a directed cell graph whose
vertices are cells that decompose the domain of f and whose edges
A→ B go from a cell A to a cell B whenever f(A) intersects B.
Thus, f(A) is contained in the union U of all cells B that are the
target of an edge A→ B in the cell graph. Because f(A) is usually
properly contained in U , the cell graph is a conservative approxima-
tion for the dynamics of f . Nevertheless, cell mapping is a powerful
tool. In particular, graph traversals replace function iteration with
advantage because they can track orbits for whole sets of starting
points. They do so very conservatively but robustly nevertheless.

The main difficulty in cell mapping is finding the edges in the
cell graph, that is, deciding which cells f(A) intersects. We call
this the edge problem. For general nonlinear functions f , there is no
simple geometric description for f(A) on which to base an exact
intersection test, and the simplest solution for the edge problem is
to use point sampling: for each cell A and for each point p in a
finite set of samples chosen in A (perhaps sampling A more finely
on its boundary [Dellnitz and Hohmann 1997]), we identify the
cells B that contain f(p) and add an edge A→ B to the cell graph.

Fig. 3. The bounding box for the image of a quadtree cell is defined by the
image of its vertices (left), even when the cell touches an axis (middle), but
not when the cell straddles an axis (right). Here we took c = 0.

While this solution is simple to implement and gives good results in
many cases, it is not guaranteed to find the complete cell graph: we
may miss an edge A→ B simply because no sample point in A is
mapped into B. Missing edges is fatal to an algorithm that aims to
provide robust computational proofs such as the guaranteed images
we seek.

Under the quadratic function f(z) = z2 + c, a rectangular cell A
is mapped to a curvilinear quadrilateral f(A) whose boundary is
formed by parabolic arcs and possibly one line segment (see Fig. 3),
and an exact intersection test between f(A) and rectangles B can
be devised in principle. Nevertheless, because this test is tedious
to implement, we have chosen a more conservative but much sim-
pler test that uses a bounding box T for f(A), as explained below.
Although using bounding boxes for finding edges in the cell graph
makes cell mapping even more conservative than it already is by
nature, we have found that it is simple, efficient, and quite effective.

For cells A in a quadtree decomposition of Ω = [−R,R] ×
[−R,R], a tight bounding box T for f(A) is easy to compute be-
cause it coincides with the bounding box of the images of the ver-
tices of A under f . Indeed, writing c = a + b i, z = x + y i, and
f(z) = (x2− y2 +a) + (2xy+ b) i = u+ v i, we see that f sends
horizontal lines and vertical lines to parabolas of the form u = g(v)
having vertex in v = b, except that f sends the coordinate axes
to the line v = b. Therefore, the boundary of f(A) is formed by
parabolic arcs that are monotonic in both the u and the v directions,
except around the vertex, when v = b, that is, when xy = 0. Since
no quadtree cell A straddles a coordinate axis, the parabolic arcs
that define f(A) are always monotonic. When the boundary of A
touches a coordinate axis, f(A) has a horizontal segment that does
not affect the bounding box (see Fig. 3, middle). When Ω is not cen-
tered at the origin, some quadtree cells A will straddle a coordinate
axis and the bounding box T has to take into account the image of
the points where the boundary of A crosses that axis. In that case,
we need to compute the image of six points in A, not just four, to
find T .

Having found a bounding box T for f(A), we add edges A→ B
for each leaf cellB that intersects T , including the exterior cell. The
union of all such cells B contains T and so a fortiori contains f(A).
We traverse the quadtree to locate the leaves that intersect T , thus
avoiding testing T against all leaves in the quadtree (see Fig. 4).
The simple geometry of T simplifies both the traversal and the
intersection test.

After this step, we have a directed graph whose vertices are the
leaves plus the exterior and whose edges emanate from all the gray
leaves. This graph is needed only for the color propagation done
in Steps 3 and 4; a new graph is built after every refinement step
because it is based on a different set of leaves.

Step 3 [find new white cells]. In this step, we identify gray leaf
cells that are guaranteed to be white based on the following cru-
cial observation: if all paths in the cell graph starting at a gray
cell A eventually reach white cells, then the orbits of all points in A



Images of Julia sets that you can trust • 5

Fig. 4. Image of the cell [−1.25,−1]× [0.5, 0.75] for c = −1: actual im-
age (blue), bounding box (red), quadtree traversal for locating the bounding
box, and the edges in the cell graph starting at the original cell.

reach A(∞). By definition, A must then be inside A(∞) and we
can color A white.

We have used two different methods to find new white cells: front
propagation and reverse sweep. Although their results are the same,
each method has its advantages and disadvantages, as discussed
below:

Front propagation. This method repeatedly loops over all gray cells
in the cell graph. Throughout each loop, every gray cell A for
which f(A) is contained in A(∞) is promptly transformed into a
new white cell. These are the cells whose edges all point to white
cells. Since each new white cell increases the region currently
assigned to A(∞), the process is repeated until an entire loop
completes during which no new white cells are found. Thus, at
iteration k this method finds the gray leaf cells from which the
longest path leading to white cells has length k.

Reverse sweep. The same goal can be achieved with a single traversal
of the reverse cell graph, starting from each gray cell. For each
visited cell A, we check whether f(A) is contained in A(∞).
(This test uses the original graph.) If so, A is marked white and
the traversal proceeds recursively, visiting all cells B for which
f(B)∩A 6= ∅. (This test uses the reverse graph.) Note that a gray
cellA that will eventually be marked white may not be so marked
the first time it is inspected, because A may point to another gray
cell B that has not yet been marked white either. However, as
soon as the last such cell B has been marked white, A will be
visited again and at that moment it will be finally marked white
as well. By assumption, all paths emanating from A eventually
terminate in white cells, and so A cannot be part of a cycle.

The front propagation method is easier to understand and implement,
but it can be inefficient because it can go repeatedly over all gray leaf
cells in the cell graph. The reverse sweep methods is efficient (runs
in linear time), but it needs almost twice the amount of memory,
since it needs to build and maintain the reverse cell graph.

Regardless of the method used, after this step we have propa-
gated white to some gray cells, increasing the white region and
reducing the external part of the gray region, thus finding a better
approximation for A(∞) and a better enclosure for J .

Step 4 [find new black cells]. In this step, we identify gray leaf
cells that can be proven to be black based on the following crucial
observation: if no paths in the cell graph starting at a gray cellA ever
reach a white cell, then no orbit starting in A ever reaches A(∞).
By definition, A must then be inside K because all orbits starting
in A are bounded. We can therefore color A black.

To find new black cells, we mark all gray leaf cells that do have
paths to white cells. Once all these cells have been marked, the new
black cells are simply those gray cells that have not been marked.
To mark the gray leaf cells that have paths to white cells, we use
two methods very similar to those used in Step 3:

Front propagation. Repeatedly loop over unmarked gray cells in
the cell graph. In each loop, mark all gray cells A for which
f(A)∩A(∞) 6= ∅. When a loop completes without a single new
cell being marked, the propagation stops.

Reverse sweep. Traverse the reverse cell graph starting from each
gray cell A for which f(A) ∩A(∞) 6= ∅. For each visited cell,
mark and recursively traverse all cells B for which f(B) ∩A 6=
∅.

Again, the front propagation method is simpler but can be inefficient;
the reverse sweep method is efficient but needs twice the memory.
Of course, if reverse sweep is used in Step 3, then the reverse graph
does not need to be rebuilt in Step 4.

Regardless of the method used, after this step we have propagated
black to some gray cells or even found some black cells for the
first time, increasing the black region and reducing the internal part
of the gray region, thus finding a better approximation for K and
a better enclosure for J . As mentioned in §5, once the algorithm
has found some black cells, it finds most of them quickly in the
next iterations. This step may be skipped when K is known to have
empty interior; for instance, when |c| > 2.

Step 5 [prune]. In this step, we consolidate the new color informa-
tion found in Steps 3 and 4. Whenever all four child nodes of a cell
have the same color, their parent node becomes a leaf painted with
that color and the child nodes are removed from the quadtree. This
process is repeated recursively upwards in the quadtree.

This step guarantees that the quadtree is as shallow as possible or,
equivalently, that it has leaves that are as large as possible, within the
geometric constraints of the quadtree decomposition. Although this
step is not strictly necessary, it significantly improves the traversals
in Step 2 and it simplifies the traversals used for image generation
and other geometric applications discussed in §6.

5. DISCUSSION

Fig. 5 shows some of Julia sets computed with our algorithm.4
The corresponding refinement processes to level 14 are shown in
Figs. 10–15.

Note how the algorithms works for different types of Julia sets:
connected sets with non-empty interior (Figs. 10–13), connected sets
with empty interior (Fig. 14), and totally disconnected Cantor sets
(Fig. 15). In all cases, the approximation of the exterior improves
steadily after each refinement. For the Julia sets with non-empty
interior, it may take several refinements steps until the interior first
appears, and then further refinements seem to find most of the
interior quickly. The speed of convergence naturally depends on the
value of c. Once the interior appears, we have a computational proof
that c is in the Mandelbrot set.

When the Julia set is a Cantor set, especially when c is outside but
near the boundary of the Mandelbrot set, the algorithm may need
to perform several refinements steps before the Julia set emerges

4For full resolution pictures, see http://www.impa.br/~lhf/julia.
We have computed several thousand pictures of Julia sets. They
are available as an interactive panorama of the Mandelbrot set at
http://monge.visgraf.impa.br/panorama/viewer/index.html?

img=../julia-256GP/julia.xml.

http://www.impa.br/~lhf/julia
http://monge.visgraf.impa.br/panorama/viewer/index.html?img=../julia-256GP/julia.xml
http://monge.visgraf.impa.br/panorama/viewer/index.html?img=../julia-256GP/julia.xml


6 • L. H. de Figueiredo, D. Nehab, J. Stolfi, and J. B. Oliveira

c = −0.12 + 0.30 i c = −0.12 + 0.60 i c = −0.12 + 0.74 i

c = i c = −0.25 + 0.74 i

Fig. 5. Examples of Julia sets and filled Julia sets computed with our algorithm.

c = 0.25 c = −0.75

Fig. 6. Parabolic Julia sets.

as disconnected (see Fig. 15). Once it does, we have a computa-
tional proof that c is not in the Mandelbrot set. We cannot hope to
prove with our algorithm that a given c is on the boundary of the
Mandelbrot set because an interior region will never appear and the
approximation will remain connected (see Fig. 14).

In agreement with the theoretical results mentioned in §3, we
have found it easier to approximate the Julia set for c in the interior
of the Mandelbrot set, but harder to approximate the Julia set for c

near the boundary of the Mandelbrot set, especially near bifurcation
points. For instance, our algorithm finds a very good approximation
for the interior ofK when c = 1/4 (a well-known bifurcation point)
but it did not find any part of the interior of K when c = −3/4
(another well-known bifurcation point). The difference is that for
c = 1/4 the algorithm successfully finds quadtree cells containing
the parabolic point which are invariant under f , and so can paint
them black; on the other hand, no such cells exist for c = −3/4 and
no interior appears (all interior cells remain gray forever. See Fig. 6.

Limitations

Although our algorithm produces guaranteed images of Julia sets, it
has some limitations:

—The resolution of the quadtree and the size of cell graph are
limited by the available memory. In current machines, one cannot
go beyond 20 levels, which translates to a spatial resolution of a
little less than 4× 10−6, even if it allows the generation of huge
images (up to 220 × 220 ≈ 106 × 106 pixels).

—Our algorithm needs to compute a quadtree for Ω = [−R,R]×
[−R,R] even if the region of interest is a smaller subregion. This
limits the amount of zoom that can be performed. This limitation
is inherent to using cell mapping because f is transitive on J .



Images of Julia sets that you can trust • 7

About floating-point computations

Our algorithm works with standard floating-point arithmetic but is
not subject to errors due to rounding or truncation. The numerical
part of the algorithm is concentrated in Step 2, where we compute a
bounding box for the image of a quadtree cell under f . For simplicity,
we only discuss the case |c| ≤ 2, when R = 2 and Ω = [−2, 2]×
[−2, 2]. (In the general case, replace R with a power of 2 greater
than it and adapt the discussion below.)

Recall that we need to compute x2 − y2 + a and 2xy + b for
x+ y i a vertex of a quadtree cell and c = a+ b i. At level L, the
coordinates of the vertices of all quadtree cells are dyadic fractions
of the form t/2L−2, where t is an integer with |t/2L−2| ≤ 2 or
|t| ≤ 2L−1. This means that we need L bits to represent these
coordinates: 2 bits for the integer part andL−2 bits for the fractional
part.

Now, x, y, a, b ∈ [−2, 2] implies x2, y2 ∈ [0, 4], x2 − y2, xy ∈
[−4, 4], and so x2 − y2 + a ∈ [−6, 6], and 2xy + b ∈ [−10, 10].
This means that the integer part of the results needs 4 bits. For
representing the fractional part of the results, note that squares and
products need twice as many bits as their inputs and each addition
needs one more bit to account for a potential carry. (x2 − y2 does
not need an additional bit.) Thus, if the fractional part of a and b is
represented with F bits, then the fractional part of the results can be
represented with N = max(2(L− 2), F ) + 1 bits.

Therefore, the entire computation can be done exactly in fixed-
point arithmetic having 4 bits for the integer part and N bits for the
fractional part. We do not really need fixed-point arithmetic because
if the computer represents floating-points numbers withM mantissa
bits, then we can compute these expressions with no rounding errors
as long as N + 4 ≤ M . In standard double-precision floating-
point arithmetic, we have M = 53 and so error-free computation is
guaranteed for L ≤ 26 and K ≤ 48.

We represent each of a and b by either a single floating-point
number or an interval of floating-point numbers having width 2−48.
For instance, 0.12 ∈ [0.12−, 0.12+] and 0.30 ∈ [0.30−, 0.30+],
where

0.12−=0.119999999999997442046151263639330863952636718750

0.12+ =0.120000000000000994759830064140260219573974609375

0.30−=0.299999999999997157829056959599256515502929687500

0.30+ =0.300000000000000710542735760100185871124267578125

This allows c to be represented with high precision, but has two
consequences: First, the bounding box computed in Step 2 has to
be slightly enlarged to handle the representation of a and b as tiny
intervals. Second, this implies that the Julia sets we show are actually
the combination of all Julia sets for c in a tiny rectangle: the white
region is the intersection of all white regions, the black region is the
intersection of all black regions, and the gray region is the union of
all gray regions. Since the precision of c is much higher than the
spatial precision of the quadtree, no differences can be seen, unless
c is very near the boundary of the Mandelbrot set [Douady 1994].

Convergence

In most cases, our algorithm converges as the resolution of the
quadtree goes to infinity in the sense that if there are no limits
on time, memory, spatial resolution, and arithmetic precision, the
algorithm correctly classifies every point in A(∞) and in K.

Take z ∈ A(∞). Let U0 = C \ Ω. Then U0 is an open set
contained in A(∞). If z ∈ U0, then the algorithm establishes
that z ∈ A(∞) with no effort since |z| > R. Otherwise, let
U1 = f−1(U0). Then U1 is an open set, because U0 is open and

f is continuous. If z ∈ U1, then f(z) ∈ U0 and there is a small
box B0 around f(z) totally contained in U0. Since U0 is open and
f is continuous, there is a small box B1 around z totally contained
in U1 such that f(B1) ⊆ B0. When the algorithm reaches a spa-
tial resolution below the sizes of B1 and B0, it will discover that
f(B1) ⊂ U0, which proves that z ∈ A(∞). In the general case,
let Un = f−1(Un−1). Then z ∈ Un for some n since by hypoth-
esis z ∈ A(∞). By induction, the algorithm certifies that every
point in Un−1 is in A(∞). In particular, there is a small box Bn−1
around f(z) totally contained in Un−1. Since Un−1 is open and
f is continuous, there is a small box Bn around z totally contained
in Un such that f(Bn) ⊆ Bn−1. When the algorithm reaches a
spatial resolution below the sizes of Bn and Bn−1, it will prove that
z ∈ A(∞).

The case z ∈ K is harder. If K has no interior, then J = K =
C\A(∞), and so the algorithm correctly classifies z ∈ K by failing
to prove that z ∈ A(∞). WhenK has an interior, we need an analog
of U0 to bootstrap the classification of points in the interior of K.
For this, we assume that there is an attracting period orbit in K.
Then there is a set of small open discs around the points in this
orbit that is invariant under f . Using this set follows a continuity
argument quite similar to the one given above.

This argument fails when J is parabolic for instance and we may
end up with a gray K. See Fig. 6.

6. APPLICATIONS

Images of Julia sets that you can trust

The prime application for the quadtree that our algorithm computes
is generating digital images of Julia sets that you can trust, like
the ones in Fig. 5. A quadtree computed down to level L naturally
gives a 2L× 2L digital image over Ω = [−R,R]× [−R,R] simply
by painting the leaves of the quadtree with their color. However,
the resolution of the image need not be the same as the resolution
of the quadtree. When the resolution of the image is greater than
the resolution of the quadtree, we get “blocky” images, like some
of the images shown in Figs. 10–15. When the resolution of the
image is smaller than the resolution of the quadtree, we get subpixel
information that can be used in two ways: paint the pixel gray if
at least one quadtree leaf below the image resolution is gray, or
paint the pixel with the average color of the quadtree leaves below
it. The first method was used in the images shown in this paper. The
second method gives sharper anti-aliased images and was used in
the panorama mentioned in footnote 4. Both kinds of images can
trusted in the sense that the white region is contained in A(∞), the
black region is contained inK, and the gray region contains J . For a
finer classification, when a pixel has both white and black subpixels,
we can certify that the pixel contains a part of J .

We can generate a digital image of the Julia set in any rectangular
region of interest Q of the complex plane by traversing the quadtree
using Q as a filter, that is, by visiting only the nodes that intersect Q.
However, even if Q is smaller than Ω, we still need to compute the
quadtree over the whole of Ω.

Point and box classification

A simple quadtree traversal can robustly classify a point z ∈ C as in
A(∞) or in K, unless it lands in the gray region. If a point z lands
in a gray cell near the border of the gray region, one can frequently
classify it correctly by locating f(z) with an additional quadtree
traversal. Classification by quadtree traversal is easily extended to
entire boxes, though naturally large boxes will not be classified at
all if they straddle the gray region.



8 • L. H. de Figueiredo, D. Nehab, J. Stolfi, and J. B. Oliveira

Area of filled Julia sets

Following Milnor [Milnor 2006, App. A], the area of the filled
Julia set K can in principle be computed using Gronwall’s theo-
rem [Gronwall 1415] applied to the inverse Böttcher map ψ, which
satisfies

ψ(w2) = ψ(w)2 + c

Because of this conjugation, the Laurent series of ψ near∞ has the
form

ψ(w) = w
(

1 +
a2
w2

+
a4
w4

+
a6
w6

+ · · ·
)

where the coefficients are given recursively by

a2 = − c
2

a2n =
1

2
(an−a2n)−

∑
2≤j<n
j even

aja2n−j a2n+1 = 0

Gronwall’s area theorem says that the area of K is then

π(1− |a2|2 − 3|a4|2 − 5|a6|2 − · · ·)

This series converges slowly but truncating it gives upper bounds
for the area of K.

When K has an interior and so has non-zero area, we can use
our quadtree to find both lower and upper estimates for the area
of K: The area of the black region gives a lower estimate and the
combined area of the black and gray regions gives an upper estimate.
Fig. 7 (top) shows a graph of these estimates for −1.25 ≤ c ≤ 0.25
using quadtrees of level 19. The graph also shows the upper bounds
computed with 100000 terms of the series, following Milnor. One
can barely see the difference between the lower bound and the upper
bound computed from the quadtrees, but one can see that our upper
bonds are better than the ones obtained from the series, especially
for c < −0.75, that is, in the period-2 circular bulb. Fig. 7 (bottom)
shows the absolute error bounds between these estimates. They are
low in the middle of the main cardioid, reach a local peak at the
bifurcation points c = 0.25, c = −0.75, and c = −1.25, and are
again locally low in the middle of the period-2 circular bulb.

7. CONCLUSION

Extension to higher-degree polynomials

It is easy to extend our algorithm to handle complex polynomials
of any degree d ≥ 2: we just need an explicit escape radius for it
and a reliable way to compute a bounding box for the image of a
rectangular cell. The rest of the algorithm remains intact.

Douady [1994] gives

R =
1 + |ad|+ · · ·+ |a0|

|ad|

as an escape radius for the polynomial adzd + · · ·+a0, when d ≥ 2.
(This result is easily proved along the same lines as in §2.) For the
classic quadratic polynomials z2 + c, this gives 2 + |c|, which is
just slightly greater than max(|c|, 2) given in §2. Stroh [1997] gives
smaller escape radius in the general case. However, the exact value
of the escape radius does not matter much because orbits converge
exponentially to∞ once they go beyond the escape radius. Fig. 8
shows two examples of Julia sets for the cubic map f(z) = z3 + c
computed with our algorithm. For these c, R = 2.5 suffices. As
Fig. 9 shows, in general cubic Julia sets can have an interior and be
disconnected.

The natural computational tool for computing a bounding box
for the image f(A) of a cell A is interval arithmetic [Moore 1966;

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4

milnor
upper bound
lower bound

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4

error

Fig. 7. Area of the filled Julia set for −1.25 ≤ c ≤ 0.25 computed with
our algorithm: lower and upper bounds (top), absolute error bounds (bottom).

Moore et al. 2009]. Cell mapping using interval enclosures is the
basis for robust algorithms for reasoning about discrete dynamical
systems [Michelucci and Foufou 2006; Paiva et al. 2006].

Several good interval libraries exist [Kreinovich ] and can be
easily used to evaluate polynomial expressions on rectangles A
in the plane, automatically giving a rectangle that contains f(A).
The evaluation is done robustly in floating-point arithmetic with
directed rounding to guarantee reliable enclosures. This avoids the
need for an error analysis like the one given in §5, which is fortunate
because, for polynomials of degree d, we would be limited to about
53/d levels if we insisted on error-free computations with standard
double-precision floating-point arithmetic.

The enclosures computed with interval arithmetic are always
correct but rarely tight. This is not a problem for our algorithm
because the enclosures decrease linearly as the cells decrease in size
and we do not perform function iteration, and so are not subject to the
wrapping effect that plague some interval methods. For the quadratic
map, f(z) = z2 + c, the bounding box computed with interval
arithmetic is tight and can replace the ad hoc procedure given in §4,
Step 2. This is a consequence of a more general result: when all
variables in an expression appear exactly once, interval arithmetic
computes the best bounds [Moore et al. 2009, Theorem 6.2].



Images of Julia sets that you can trust • 9

Fig. 8. Cubic Julia sets for f(z) = z3 + c when c = 0.38 (left) and
c = 0.41 (right).

Fig. 9. A disconnected cubic Julia set with interior: f(z) = z3 + az + b.

Future work

From the gray region in the quadtree it is simple to extract lower
and upper estimates for the diameter and for the box dimension of
Julia sets. It would be interesting to compare these estimates with
the upper bound given by Ruelle [1982]:

dimH(J) = 1 +
|c|2

4 log 2
+ higher-order terms

and also with the numerical results of Saupe [1987].
We intend to adapt our algorithm for approximating Julia sets

of rational functions, especially of Newton’s method for solving
polynomial equations. The main difference is that∞ is no longer
an attracting fixed point and so there is no exterior and no region on
which to bootstrap the method. We hope to be able to find trapping
zones around the zeros directly from the cell graph, instead of having
to explicitly find and give those regions to the algorithm. Strongly
connected components of the cell graph will probably play a key
role here [Michelucci and Foufou 2006; Paiva et al. 2006].

ACKNOWLEDGMENTS
Preliminary results of this research were presented at SCAN 2002
and at the Dagstuhl-Seminar on Algebraic and Numerical Algo-
rithms and Computer-assisted Proofs in 2005. This research started
when J. B. Oliveira was visiting the Visgraf laboratory at IMPA
during its summer post-doctoral program in 2002. Visgraf is spon-
sored by CNPq, FAPERJ, FINEP, and IBM Brasil. The authors are
partially supported by CNPq research grants.

REFERENCES

BLANCHARD, P. 1984. Complex analytic dynamics on the Riemann sphere.
Bulletin of the American Mathematical Society 11, 1, 85–141.

BRANNER, B. 1989. The Mandelbrot set. See Devaney and Keen [1989],
75–105.

BRAVERMAN, M. 2005. Hyperbolic Julia sets are poly-time computable.
Electronic Notes in Theoretical Computer Science 120, 17–30.

BRAVERMAN, M. AND YAMPOLSKY, M. 2009. Computability of Julia sets.
Algorithms and Computation in Mathematics, vol. 23. Springer-Verlag,
Berlin.

DELLNITZ, M. AND HOHMANN, A. 1997. A subdivision algorithm for
the computation of unstable manifolds and global attractors. Numerische
Mathematik 75, 3, 293–317.

DEVANEY, R. L. AND KEEN, L., Eds. 1989. Chaos and Fractals: The
Mathematics behind the Computer Graphics. Proceedings of Symposia in
Applied Mathematics 39. AMS.

DOUADY, A. 1994. Does a Julia set depend continuously on the polynomial?
In Complex Dynamical Systems: The Mathematics Behind the Mandelbrot
and Julia Sets, R. L. Devaney, Ed. Proceedings of Symposia in Applied
Mathematics 49. AMS, 91–138.

GRONWALL, T. H. 1914/15. Some remarks on conformal representation.
Annals of Mathematics 16, 1-4, 72–76.

HSU, C. S. 1987. Cell-to-cell mapping: A method of global analysis for
nonlinear systems. Springer-Verlag.

HSU, C. S. 1992. Global analysis by cell mapping. International Journal of
Bifurcations and Chaos 2, 4, 727–771.

KEEN, L. 1989. Julia sets. See Devaney and Keen [1989], 57–74.
KREINOVICH, V. Interval software. http://cs.utep.edu/

interval-comp/intsoft.html.
MICHELUCCI, D. AND FOUFOU, S. 2006. Interval-based tracing of strange

attractors. International Journal of Computational Geometry & Applica-
tions 16, 1, 27–39.

MILNOR, J. 2006. Dynamics in one complex variable, Third ed. Annals of
Mathematics Studies, vol. 160. Princeton University Press.

MOORE, R. E. 1966. Interval Analysis. Prentice-Hall.
MOORE, R. E., KEARFOTT, R. B., AND CLOUD, M. J. 2009. Introduction

to interval analysis. SIAM.
PAIVA, A., DE FIGUEIREDO, L. H., AND STOLFI, J. 2006. Robust vi-

sualization of strange attractors using affine arithmetic. Computers &
Graphics 30, 6, 1020–1026.

PEITGEN, H.-O. AND RICHTER, P. H. 1986. The Beauty of Fractals:
Images of complex dynamical systems. Springer-Verlag.

PEITGEN, H.-O. AND SAUPE, D., Eds. 1988. The Science of Fractal Images.
Springer-Verlag.

RETTINGER, R. 2005. A fast algorithm for Julia sets of hyperbolic rational
functions. Electronic Notes in Theoretical Computer Science 120, 145–
157.

RETTINGER, R. AND WEIHRAUCH, K. 2003. The computational complex-
ity of some Julia sets. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing (STOC 2003). ACM, 177–185.

RUELLE, D. 1982. Repellers for real analytic maps. Ergodic Theory and
Dynamical Systems 2, 1, 99–107.

SAMET, H. 1984. The quadtree and related hierarchical data structures.
Computing Surveys 16, 2, 187–260.

SAUPE, D. 1987. Efficient computation of Julia sets and their fractal dimen-
sion. Physica D 28, 3, 358–370.

STROH, C. M. 1997. Julia sets of complex polynomials and their implemen-
tation on the computer. M.S. thesis, University of Linz.

http://cs.utep.edu/interval-comp/intsoft.html
http://cs.utep.edu/interval-comp/intsoft.html


10 • L. H. de Figueiredo, D. Nehab, J. Stolfi, and J. B. Oliveira

Fig. 10. Levels 0 to 14 of adaptive approximation of the Julia set for c = −1.

Fig. 11. Levels 0 to 14 of adaptive approximation of the Julia set for c = −0.12 + 0.30 i.



Images of Julia sets that you can trust • 11

Fig. 12. Levels 0 to 14 of adaptive approximation of the Julia set for c = −0.12 + 0.60 i.

Fig. 13. Levels 0 to 14 of adaptive approximation of the Julia set for c = −0.12 + 0.74 i.



12 • L. H. de Figueiredo, D. Nehab, J. Stolfi, and J. B. Oliveira

Fig. 14. Levels 0 to 14 of adaptive approximation of the Julia set for c = i.

Fig. 15. Levels 0 to 14 of adaptive approximation of the Julia set for c = −0.25 + 0.74 i.


	Introduction
	Julia sets
	Computing images of Julia sets
	Our algorithm
	Discussion
	Applications
	Conclusion

