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Abstract

In this paper, we present an adaptive multiresolution mesh representation exploring the computational differences
of the CPU and the GPU. We build our representation considering a dense-polygon mesh simplified to a base
mesh which stores the original geometry by means of an atlas structure. For both simplification and refinement
processes, we present a hierarchical method based on stellar operators. During simplification, we compute local
parametrizations to generate charts and an atlas structure to be used later in refinement. Unlike previous appro-
aches, we employ the simplified mesh as our base domain in a novel atlas descriptor using a specialized halfedge
data structure combined with our charts. Finally, we show that our mesh representation can be used to adaptively
control the mesh resolution in CPU-GPU coupled applications, including mesh editing and visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations;
I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data types.

1. Introduction

Polygonal meshes have become the de facto standard rep-
resentation form for surfaces in 3D graphics applications.
This is mainly due to their generality, to recent advances
and popularization of laser scanning technologies, and to
the existence of efficient and numerically robust algorithms
for displaying, editing, smoothing, simplifying, remeshing,
parametrizing, and compressing them [BPK∗07]. Further-
more, dense and complex polygonal models can be rapidly
displayed and processed by newly designed graphics pro-
cessing units (GPUs) [SJP05, SS09, FCS∗10]. However, de-
pending on the goal, the preferred representation could be
parametric [BFK84], implicit [BBB∗97], based on subdivi-
sion [Zor00] or even volumetric [BK03].

A fundamental problem in geometry processing is the
one of converting a surface representation form into another.
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This problem occurs whenever the surface data is gener-
ated or acquired in a representation that cannot be handled
by the intended application, or the representation is not the
more appropriate one [Ede05]. Here, we present a novel sur-
face representation which is suitable for CPU–GPU coupled
computation. The key features of our proposed representa-
tion are two-fold. First, it allows us to adaptively and dy-
namically represent, as well as effectively manipulate, large
and complex surface models. Second, it offers a “minimum”
interface that should be general enough for supporting con-
version from most representation forms. Both features were
made possible by the combination of two well-established
notions in geometry processing: an atlas and a mesh subdi-
vision scheme.

An atlas,A= {(Ui,ϕi)}i∈I , on a surface S⊂ R3 is a col-
lection of charts, (Ui,ϕi), where Ui is a subset of S, called the
chart domain, and ϕi : Ui→ ϕi(Ui)⊆ R2 is a bijective map,
called the chart map, that maps Ui onto a subset, ϕi(Ui), of
R2. The chart domains “cover” S, i.e., S =

⋃
i∈I Ui, and two

or more of them may overlap at the same point in S. A sur-
face equipped with an atlas is called a 2-manifold [Tu07].
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The concept of atlas generalizes the one of parametriza-
tion, and it has been used in the context of texture map-
ping [MYV93], remeshing [RLL∗06], and geometry encod-
ing [SWG∗03]. In all cases, the surface S was assumed to be
represented by a polygonal mesh. Here, we employ the no-
tion of atlas without assuming any particular representation
form for S. Instead, we assume that the atlas is described by
a network of curves on S (i.e., the chart domain boundaries),
and that we can subdivide and compute curves on S.

From a given atlas A on S, we build a polygonal mesh
representation of S. Our construction is based on an adap-
tive subdivision scheme [Vel03] (controlled by the CPU)
and a dynamic tessellation (done on the GPU), aiming at
representing any mesh property with multiresolution. The
resulting representation, which we call Manifolds-for-GPU
(M4G), is a dynamic adaptive surface representation appro-
priate for GPU processing.

The adaptive multiresolution feature of our representation
is particularly suited for progressive visualization [Hop96].
The ability to separate the mesh into parts that must be sam-
pled densely and parts that can be represented by coarse ge-
ometry is also useful for reducing the bandwidth required
for transmitting a surface between different computational
domains (e.g. hard-disk, main memory and GPU memory).

The remaining of this paper is organized as follows: Sec-
tion 4 gives an overview of the M4G representation; Sec-
tion 6 illustrates our representation in the context of visu-
alization, highlighting the light-weight multiresolution data
structure of M4G; Section 8 discusses our representation in
different contexts and concludes our work giving future re-
search directions.

1.1. Contributions

In this paper, we make three contributions in atlas-based
mesh representation. We first introduce an alternative
method to incrementally compute local parametrizations
throughout the simplification process. We use a hierarchical
simplification algorithm based on stellar operators, which
changes the mesh resolution by at most 1-ring neighborhood.
Our choice of operators allows a quad, or tile, coverage of
the mesh and the usage of dual operators for reconstruction.

Next, we extend a well-known data structure, named
halfedge [Män88], to handle multiresolution and the con-
nectivity of the charts generated by each local parametriza-
tion. While the charts are stored regularly in a texture to re-
spect the GPU requirement of data coherence, in the CPU
the charts maintain the connectivity of the simplified mesh
using the halfedge data structure. The resulting atlas pro-
vides an adaptive, multiresolution hierarchy by controlling
how many vertices to use from each individual chart.

Finally, we present a method to combine our connected
structure of charts in the CPU with a boundary-aware struc-
ture of chart interiors in the GPU. This method enables a

subdivision scheme to control the mesh resolution at lower
levels in the CPU and, at the same time, allows the GPU to
further increase the resolution at higher levels.

2. Related Work

Our work falls into two categories: surface representation
and GPU processing. But, since they are very broad areas
with vast literature, we will focus only on the aspects directly
related to our research, namely: surface representation forms
and parametrization, multiresolution structures, and adaptive
tessellation techniques for GPU.

The most general representation for surfaces is a trian-
gle mesh, which is often used for constructing approxima-
tions of arbitrary two-dimensional shapes [Whi40,BPK∗07].
However, many important graphics applications, including
texture mapping, spline-based surface modeling, and char-
acter animation, greatly benefit from a quadrangular struc-
ture. So, many algorithms for generating quadrilateral sur-
face meshes out of triangle ones have been proposed in re-
cent years [KNP07, HZM∗08, BVK10, TPC∗10, DILS∗11].

Smooth surfaces representations are the main alternative
to polygonal meshes. They can represent a surface by stitch-
ing parametric patches together [BFK84], as the zero-level
set of an implicit function [BBB∗97], by a differential at-
las [GH95, YZ04, SXG∗09], or by successively subdividing
a control mesh [CC78, Loo87, Kob00, VZ01]. Smooth sur-
face representations offer higher-order degree of differentia-
bility, which can improve the convergence and accuracy of
numerical computations [YZ04]. They are also much more
compact than polygonal meshes [KL96], and often represent
geometry exactly, which is crucial when meeting functional
and aesthetic requirements [CKJ02]. On the other hand, al-
gorithms for operating on smooth surface representations are
more complex, expensive and prone to numerical problems
than their counterparts for polygonal meshes.

Parametric and implicit representations have been ex-
tensively studied, their advantages are complementary, and
their properties are well-understood [BFK84, BBB∗97].
Manifold-based representations were motivated by the ease
with which a Ck-surface, for any positive integer k or k =∞,
can be represented by an atlas consisting of overlapping
open sets [GH95,YZ04,SXG∗09]. This representation form
is particularly suitable, and superior to the parametric one,
for representing Ck-surfaces, for k ≥ 2, fitted to polygonal
mesh vertices [YZ04]. However, in contrast to parametric
patches, chart maps constructed by the schemes available in
the literature are either not polynomial or yield surfaces with
at least one singular point [SXG∗09]. So, algorithms for han-
dling manifold-based surfaces are even more complex and
expensive than the ones for parametric surfaces.

Subdivision surfaces offer a good compromise between
the generality of meshes and the smoothness degree of
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manifold-based surfaces, with the advantage of being suit-
able for processing [CC78, Loo87, Kob00, VZ01]. The main
drawback of subdivision schemes is that they are designed
to describe smooth surfaces and fall short to represent shape
features and details. Multiresolution surfaces and wavelet
constructions exploit a hierarchy of nested scale spaces to
separate different levels of detail [ZSS97]. The only restric-
tion of this type of representation is the lack of fractional
translation invariance over the surface due to the structure of
basis functions.

In our work, we combine some of the best characteristics
of the above representations for manifold surfaces using an
atlas.

Perhaps the most powerful concept behind the manifold
representation is that it enable us to work locally on a surface
similarly to the two-dimensional Euclidean space. This is
achieved through a parametrization, that establishes a map-
ping of the surface embedded in 3D to a region of the plane.
The parametrization also defines a coordinate system on the
surface. But since this mapping is essentially flattening a
curved surface, inevitably it will cause geometric distortions.
Parametrization methods try to reduce these distortions in or-
der to preserve certain properties, such as angles, distances
and areas [FHR02]. Also, depending on how this mapping is
computed, it can be designed to conform to a canonical re-
gion, such as a regular polygon (therefore constraining the
boundary) or to leave the boundary free as an additional
degree of freedom for distortion minimization [DMA02].
Moreover, because the topology of the surface is, in gen-
eral, different from the plane it is not possible to map the
entire surface without cutting it open. In that respect, the
parametrization methods can be classified into local and
global, that respectively compute the mapping for small sur-
face patches or the entire surface [RLL∗06].

The atlas structure in our representation relies on a net-
work of curves on the surface. Based on the assumption
that we can compute curves across chart domains, as well
as subdivide their boundary curves, we can define an in-
trinsic, curve-based parametrization of each chart. This kind
of parametrization is particularly useful because it naturally
yields a chart map, and allows for a good control of both the
map and the boundary of the region. In addition, it has been
successfully used before for computing geodesic distances in
the context of mesh parametrization [LTD05] and remesh-
ing [SSG03]. Finally, the collection of individual charts,
i.e. the domains and their associated maps, is a piecewise
parametrization for the whole surface. Nonetheless, we can
build our atlas using different parametrization strategies as
discussed in Section 8.

As mentioned before, it is desirable to work with an at-
las structure in which the charts are quadrilateral regions,
at least in terms of the connectivity [BVK10]. Furthermore,
the importance of the decomposition of a surface into a base
domain equipped with a good quadrilateral structure was re-

cently recognized, motivating intense research. For that pur-
pose, quadrilateral base meshing techniques have resorted
to analysis based on spectral methods [MTAD08,HZM∗08],
and alternatively to simplification approaches [TPC∗10] or
other strategies [FP08, dGGDV11]. Our representation em-
ploys a base domain with quadrilateral structure generated
using simplification and triangle pairing [DILS∗11] as ex-
plained in Section 4.

Independently of the surface representation, very often for
compatibility reasons, it becomes necessary to convert to a
polygonal approximation in order to perform certain tasks,
such as visualization. In these situations, it is desirable to
have a mechanism to produce an adaptive mesh. Examples of
such strategies are the progressive meshes [Hop96] and the
stellar 4K meshes [VG00]. Here we adopt the 4–8 adaptation
scheme [Vel04], which is a variant of the stellar 4K mesh.

Visualization and processing of surfaces has benefited
enormously from the continuous development of graphics
hardware. More specifically, the recent advances in pro-
grammable GPUs have allowed a degree of customiza-
tion never seen before for real-time visualization. The re-
cent results regarding tessellation of surfaces on the GPU
can be divided into techniques that exploit subdivision
schemes [ZHX∗07, SJP05, PEO09, AB08] and general tech-
niques that are targeted for triangle meshes [FFB∗09,
HSH10]. All the above cited methods work with pro-
grammable shaders of the graphics engine, which impose
some restrictions. Other methods work directly on the par-
allel processors of the GPU using CUDA [SS09].

In this paper, we will exploit the tessellator stage recently
introduced in OpenGL 4, which gives us simplicity of im-
plementation and other practical advantages. However, the
GPU tessellator does not allows control on how patches are
triangulated. This implies in restrictions to the connectivity
of the resulting mesh. Thus, as part of our contributions, we
develop a strategy to overcome such limitations of the GPU
tessellation.

3. Background

We first define the problem and outline our solution to then
describe a few concepts used in our mesh representation.

Problem Definition The problem is to obtain an adaptive
multiresolution representation of the same surface in two
different computational units. The first is the CPU, capable
of handling irregular connectivity which is inherited directly
from the static input mesh; the second is the GPU, designed
to deal with regular implicit connectivity in the form of tex-
ture images. The solution we present takes as input a trian-
gulated two-manifold mesh without boundaries and returns
two coupled data structures suitable to work on both units.
This solution allows us to control the mesh resolution in two
cascading level-of-detail processes, each of which attuned to
the differences between the computational units.
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Triquad and 4-k Meshes Our adaptive multiresolu-
tion representation builds on the variable resolution
4-k meshes [VG00] framework. The multiresolution in this
framework is obtained by minimal local modifications com-
bined with a special type of mesh — a triangulated quadran-
gulation (or triquad), where every triangle is uniquely paired
up with another triangle to form a quad which is not neces-
sarily planar.

Stellar Operators In a triangulated manifold, the set of op-
erators that changes the mesh in a minimum local neigh-
borhood are called stellar operators [Vel03]. These operators
are used in our surface representation to simplify, refine and
change the connectivity of the mesh. Figure 1 summarizes
the action of each stellar operator, namely: face weld and its
dual face split; edge weld and its dual edge split; and edge
flip whose dual is itself.

Figure 1: The stellar operators used in our representation.

4. M4G Surface Representation

Our Manifolds-for-GPU (M4G) surface representation con-
sists of two complementary components, which are aligned
with the CPU–GPU coupled computation concept. The first
is a set of independent charts forming an atlas and describ-
ing properties of the surface, such as geometry and nor-
mals. Each chart shares at its boundaries a one-dimensional
curve over the manifold, the minimum surface information
to glue the regions together accordingly to the surface topol-
ogy. This curve interface is used to join the charts assuring
that the two-manifold represented by the M4G atlas does not
contain cracks. Inside each chart, the corresponding surface
region is parametrized separately, assembling a piece-wise
parametrization of the entire surface. This first component
of the M4G representation, explained in Section 4.1, is static
and can be stored as a texture in the GPU.

The second component is dynamic and comprises an
adaptive subdivision scheme based on tilings, more specif-
ically 4–8 tilings [VZ01], covering the surface. Each tile
is associated with a chart of the atlas and its structure is a
pair of triangles forming a topological-square block divided
along one of its diagonals. The surface tiling can be refined
adding more tiles per chart or simplified returning to one
tile per chart at the base multiresolution level. The refine-
ment and simplification procedures create an adaptive mesh
representation based on two stellar operators: edge split and
weld. With each edge-split or edge-weld operation, the man-
ifold resolution increases or decreases, according to regions
of interest. The M4G tiling, further detailed in Section 5.2, is

controlled by the CPU and can be stored as a halfedge data
structure.

The two components of the M4G surface representation
define a multiresolution pyramid with interesting properties.
At the base level, the CPU has global information about the
surface and controls how the tiles, in the form of quadran-
gular patches, will be sent to the GPU. At the top level, the
GPU has local information about the surface and controls
how each patch will be tessellated. This hierarchical rep-
resentation fits the different computational granularities of
both units. On the one hand, the CPU plays the role of a
controller stipulating the minimum subdivision level of the
surface. On the other hand, the GPU works at a finer gran-
ularity pushing forward the subdivision level differently for
each surface region as needed. To illustrate the different as-
pects of our representation, we present a visualization appli-
cation in Section 6 combining both computational paradigms
to adaptively render geometric models.

4.1. Building the M4G Atlas

Although we think of the M4G atlas as a representation-
independent, abstract entity, we need to make it “concrete”
in order to compute the chart domain boundary curves and
chart maps. This computation is obviously representation-
dependent. Therefore, for the purpose of this paper, we work
with a surface representation that is a dense triangle mesh
M. The first step to build the M4G atlas is to partition the
domain. This reference mesh, called M0, corresponds to a
coarse mesh computed by decimation of M. There are vari-
ous ways to reduce the number of elements of M using local
operators, such as vertex removal or edge collapse [Hop96].
For simplicity, we use the 4-K method [VG00] (decimating
M to approximately 0.5%) which has the property of con-
serving the vertices of the original mesh. For the rest of the
paper, we will refer to M as the dense mesh and M0 as the
associated base mesh.

5. Adaptive Multiresolution Mesh Representation

We follow the idea of minimum modifications to construct
our surface representation in two complementary methods.
We start by simplifying an input dense-polygon mesh storing
the induced parametrization in a simple way, as detailed in
section 5.1. Then the triangles of the coarse mesh are paired
to form tiles, producing a hierarchical 4-k mesh, explained
in section 5.2. The result is a triquad mesh equipped with
information of the input mesh. This information produces
two coupled data structures, explained in section 5.3, used
to reconstruct the surface in section 5.4.

5.1. Simplifying the Mesh

The simplification method we use follows the four-face clus-
ter algorithm described in [Vel01]. The idea is to apply only
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stellar weld operators to the mesh, altering its resolution in
a minimal way. More specifically, only the 1-ring neighbor-
hood of faces of the vertex being removed (in red in figure 1)
will change. As a consequence, the boundary vertices and
edges of this 1-ring region, or its link, remain intact.

In our scenario we use a combination of edge flips and
face or edge welds to perform the simplification process. The
edge flip operator can change the surface drastically and it is
only applied to better approximate the original surface; or
to match the vertex degree requirement for simplification. In
the first case, the flip is used to choose an interior edge when
performing an edge weld operator. While in the second, the
flip is used to reduce the degree of a vertex selected to be
removed enabling a weld operator. In both cases we estimate
the error of performing the operator using the quadric error
metric [GH97]. Our simplification method uses only flip and
weld operators, later we explain how to use the split operator
for adaptive-resolution refinement.

On each step of the simplification process, the removed
vertex is parameterized on the simplified face (in case of a
face weld) or edge (in case of an edge weld) using an ex-
ponential mapping. This induces a hierarchical parametriza-
tion of the surface that is maintained throughout simplifica-
tion, i.e. vertices that have been mapped to a face in pre-
vious simplification steps are re-mapped to the current face
using barycentric coordinates. The resulting multiresolution
parametrization is similar to MAPS [LSS∗98], but it is sim-
pler to implement and achieves better results due to the lo-
cality of the stellar simplification operators (see figure 2 for
an example of a simplified mesh).

(a) (b) (c)

Figure 2: The head of the Kikito scanned model (a) is sim-
plified using stellar operators to 2% of the original mesh (b)
and 0.08% in the final coarse mesh (c).

After completing the simplification process (we decimate
to approximately 0.1% of the original mesh), the resulting
mesh is our base domain with the dense mesh parametrized
locally on top of it. There are two important properties in this
parametrization. First, the pre-image of every vertex of the
dense mesh is a point whose coordinates are barycentric co-
ordinates with respect to the vertices of a base-mesh face or
edge. Second, the base-mesh vertices are, in fact, vertices of
the original mesh. We use these properties later to construct
our atlas descriptor.

5.2. Building the Tiles

The result of simplifying the input mesh is an equivalent
triangulated two-manifold mesh. In order to use the stellar
refinement operators to attain multiresolution, we need to
cover the entire simplified mesh with tiles, that is, pairs of
triangles forming quads. To that end we use a graph match-
ing idea similar to the one described in [DILS∗11].

The idea is to pair triangles by finding a maximum weight
perfect matching on the dual graph of the triangulated mesh.
This matching is guaranteed to exist in meshes without
boundaries and finding it is equivalent to pairing all mesh tri-
angles in such a way that every triangle belongs to only one
pair (see an example in figure 3). To compute the matching,
we define a function that assigns a weight to each edge of
the dual graph, or mesh edge. These weights are used to find
a maximum weight perfect matching on the (weighted) dual
graph, i.e. a perfect matching whose sum of edge weights of
paired triangles is maximum over all perfect matchings.

Figure 3: The head of the Kikito coarse mesh is covered with
tiles using triangle pairing. The result is our base quad mesh.

In our scenario we use the weights to obtain a tile cover-
age suitable to be used as an atlas structure, considering one
chart for each tile. Instead of a function that values planarity
of the paired triangles, we use a function that penalizes over-
lapping of neighboring tiles. Our weight function first ranks
possible tiles by orthogonality; and then by “manifoldness”,
i.e. the weight is set to zero if the corresponding edge has
one vertex of degree 3. This penalty feature is concerned
with the reconstruction of the original surface on top of each
tile, avoiding the case of pairing two triangles incident to a
degree-3 vertex and generating possible geometry overlaps.

The result of the matching algorithm is a triangulated
mesh with all triangles paired, or a triquad mesh. The paired
triangles form quad tiles that are used in our representation
to change the surface resolution adaptively. Moreover, the
tiles are also used as charts in a coupled regular structure.

5.3. Multiresolution Data Structures

With the techniques described so far, we have simplified an
input dense mesh, storing local parametrizations, and paired
the simplified triangles, grouping parametrizations pairwise.
The output is a triquad base mesh equipped with information
from the input mesh, which suffices to build our multiresolu-
tion representation of the mesh through two data structures.
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The first is a halfedge-based data structure in the CPU
specialized to represent the collection of all parametriza-
tions, i.e. our atlas, and to support stellar operators, i.e. our
adaptive mesh. We start by constructing the regular halfedge
data structure from the triquad base mesh, but classifying
halfedges in two types: boundary and interior. Each dual-
graph edge not chosen when pairing base-mesh triangles
(see section 5.2) corresponds to a base edge in the bound-
ary of a chart, which generates two boundary halfedges.
Each dual-graph edge chosen by the pairing corresponds to
a base edge in the interior of a chart, generating two inte-
rior halfedges. Figure 4 (center) shows an example of bound-
ary halfedges (in brown) and interior halfedges (in blue). We
classify the halfedges by making each triangular face point
to its interior halfedge, which avoids the need for additional
data structure space.

After classification, we store on each halfedge an index to
the chart that contains it, and two positions on the parameter
domain: start and end. The parameter domain of a chart is
a unit-square region, illustrated in figure 4 (right), respect-
ing the texture-mapping design of the GPU. The start and
end positions are stored as two (u,v) coordinates. This in-
dex and position coordinates are important to ensure a one-
to-one correspondence between mesh and atlas. Finally, we
store on each vertex a resolution level (set to 0 for base-
mesh vertices) to control the mesh adaptivity. This is done
similarly to the 4-8 subdivision method [VZ01] but, instead
of a 4-8 mesh with smooth subdivision control, we have a
4-k mesh with a parameter domain per tile. Remarkably, the
subdivision scheme works exactly in the same way.

Figure 4: The base mesh (left) is converted to a specialized
halfedge data structure (center) and a collection of regular
charts (right), one for each base-mesh quad face.

The second data structure is a set of charts, mentioned
above, in both the CPU and the GPU computed using the lo-
cal parametrizations and the triquad base mesh. The bound-
ary edges of a quad face are mapped to the unit square, and
the parametrization on each edge is transferred from its lin-
ear domain (see section 5.1) to each side of the square. This
produces duplicates of edge parametrizations (each bound-
ary edge is shared by two charts) but it amounts for a small
additional storage on the total data structure. The replica-
tion of chart boundaries is important to guarantee that the re-
sulting adaptive tessellation in the GPU is crack-free, while
maintaining texel-fetching coherence.

The interior of a chart is obtained by triangle ras-
terization using ordinary scan conversion, similar to
MCGIM [SWG∗03]. We rasterize vertex attributes, such as
geometry and normals (see examples in figure 4), of the
dense 3D triangles inside a chart (one vertex inside is enough
to consider a triangle inside) into a 2D image. This image is
cropped to the unit square and yields our chart domain (we
discretize it in a 33×33 image). Finally, the affine interpo-
lation along the edge lying between two neighboring charts
(a 1D image also discretized with 33 pixels) is used to aver-
age the values around the boundary of the two charts. Both
chart boundaries are updated to the average value ensuring a
correct overlap of attributes. It is interesting to note that this
average is not necessary for chart corners, since the base-
mesh vertices are the original dense vertices and the average
would consider k equal vertices of degree k.

The two data structures coupled produce our multiresolu-
tion representation. The original surface is approximated us-
ing the specialized halfedge and set of charts, allowing not
only the CPU but also the GPU to control the reconstruction.

5.4. Reconstructing the Surface

The adaptive 4–8 structure in the M4G tiling is responsible
to determine the edges (vertices) of the current mesh that
can be split (welded). Initially, the internal edges, i.e. each
diagonal edge paired inside a tile, are the only edges that can
be used to refine the current mesh. None of the initial ver-
tices in M0 can be welded and are set to be at level zero. The
split operation inserts a new vertex at the next proper level i
inside the corresponding tile, generating the next mesh Mi
and changing the configuration of that tile (see an exam-
ple in Figure 5). Analogously, the weld operation removes
a vertex from inside a tile. Stellar subdivision refinement
and simplification procedures induce a variable-resolution
lattice, where the coarse (dense) mesh is the source (sink)
node. Any cut in this graph is an adapted mesh and, since
the M4G pyramid contains initially a semi-regular forma-
tion, it is not necessary to store the whole graph, only the
current mesh is required to walk anywhere in the multireso-
lution pyramid [Vel04]. Moreover, the adaptive stellar subdi-
vision operators enforce an invariance of one level maximum
difference between adjacent faces. This feature produces a
smooth resolution transition when adapting the mesh.

One of the main advantages of the stellar subdivision is
that the adaptive mechanism can be completely general. The
adaptation function is defined on complementary coverings
of the mesh by quadrilateral regions, one for simplification
associated with the star of weld vertices and another for re-
finement associated with the star of split edges. The function
ranks each region accordingly to an arbitrary criterion eval-
uated over the interior of the region. The adaptation is done
by establishing a threshold on the scalar range of rank val-
ues. The CPU adaptation is implemented through two heaps,
one for simplification and another for refinement.
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Figure 5: Illustrative example of the 4–8 structure with the
corresponding vertex levels. The M4G tiling is refined (from
left to right) creating intermediary adaptive meshes. At each
resolution level, only a set of edges can be split (with a cir-
cle) and a set of vertices can be welded (with a cross).

The M4G tiling resulting from the CPU adaptation con-
stitutes the minimum subdivision level imposed to the GPU.
Thanks to the subdivision operator one-level invariance, it
is possible to create a correspondence between the current
adapted mesh and a restricted quadtree that is mapped to the
GPU. From the current resolution, the GPU is free to refine
the mesh further with a different adaptation criterion, as long
as this criterion is consistent at the edges. This guarantees
that the resulting adaptive tessellation will be crack-free.

Note the complementary nature of our CPU–GPU adap-
tation mechanism: the CPU adaptation has access to
global surface information and is evaluated over the two-
dimensional region on the interior of patches, while the GPU
adaptation has only access to local patch information and is
evaluated over their boundaries.

Figure 6 shows three examples of minimum subdivisions
stipulated by the CPU (without any further subdivisions
done by the GPU). The first (a) is the initial tiling coverage
of the triquad mesh M0. The second (b) and third (c) show
subsequent refinements increasing the minimum subdivision
level propagated across the mesh.

(a) (b) (c)

Figure 6: Three basic tiles (a) are refined progressively from
right to left (b), showing that the 4–8 subdivision transition
is smooth (with maximum one level difference). Refining the
neighborhood also affects the three tiles (c).

To specify the patches, the CPU uses a subset of vertices
and edges from Mi as representatives of a GPU patch (the 7
possible configurations are shown in Figure 7). Initially, the
interior edge (or the vertex generated by splitting it) repre-
sents one patch. After a split operation at any border edge,
the tile is considered to be 4 patches (as if all border edges
were split). This configuration changes the representation to

the four new interior edges. These interior edges are treated
as new tiles and the process restarts.

Figure 7: Adaptive M4G structure. While the two basic tile
configurations (left) in the CPU are sent to the GPU as one
patch, the next five (right) are sent as 4 patches. The ele-
ments (vertex or edge) in the CPU data structure represent-
ing a patch in the GPU data buffer are denoted with a square.

The required information to bind the CPU–GPU compu-
tation is the patch data of Mi. This data consists of the para-
metric coordinates (u,v) in the M4G atlas, the size of the
patch (s) in the parametric domain and a patch codification
(c) describing the minimum and maximum subdivision lev-
els for each edge of the patch and its interior. And option-
ally, a chart index i depending on how the atlas is stored on
the GPU. Since the 4–8 subdivision structure ensures a level
transition of at most 1, the minimum subdivision level can be
only 0 or 1 and results in a crack-free reconstruction. Addi-
tionally, the maximum level is used to control the resolution
transition across the mesh. Because the M4G tiling is only
topological, each patch can be encoded as one vertex with
four attributes: (u,v), s and c. The surface properties at each
patch, e.g. geometry and normals, are read from the M4G
atlas as needed.

The combined data structures with patch definitions and
subdivision rules constitute our adaptive multiresolution rep-
resentation. Figure 9 illustrates a model reconstructed from
its base triquad mesh (coarsest resolution) to arbitrary mesh
resolutions. Note that different parts of the mesh are at dif-
ferent resolutions defined by either the CPU or the GPU.

The basic adaptation mechanism is shown in Algorithm 1
following the above description of the M4G representation.
After initializing the CPU and GPU components (lines 1 and
2), the algorithm enters in a loop with two inter-dependent
components: the M4G tiling adaptation in the CPU (line 6)
and the patch tessellation in the GPU (line 4). Because of the
different granularities of the adaptation, the GPU patches are
only updated (line 8) when the CPU adaptation changes (line
7). Observe that any external data (line 5), such as mouse
or simulation events, can be used to influence the adapta-
tion through the rank functions. Note also that complement-
ing the tessellation, any processing can be performed by the
GPU on the resulting elements (line 4), such as drawing or a
numeric simulation.
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Figure 8: Example application of the Bimba dataset with variable mesh resolution. The surface features of the reconstructed
mesh is revealed (from left to right) as the control plane (in red) moves from top to bottom.

(a) (b) (c) (d)

Figure 9: Final reconstruction of the Kikito statue: its base
triquad mesh (a) is adaptively refined from bottom to top in
the CPU (b); the head of the model is further refined in the
GPU (c); and in (d) a more detailed refinement is imposed
by the CPU. Boundary edges (in brown) and interior edges
(in blue) denote the patches resolution level on each stage.

This basic algorithm can be extended to further exploit
the granularities of the CPU–GPU adaptation. For instance,
if the external data is changing slowly, it is not necessary to
evaluate the CPU adaptation at every step and this can be
estimated based on the rate of change of the data. Moreover,
the CPU can do an interval calculation to predict the upper
and lower bounds of the adaptation in the GPU and control it
by changing the M4G tiling minimum/maximum levels ac-
cordingly.

6. Applications

Multiresolution meshes have a wide variety of applications,
from real-time collision detection and rendering to high-
definition multi-scale texture mapping. Multiresolution with

Algorithm 1 Basic CPU–GPU adaptation.

1: Initialize CPU adaptation
2: Setup GPU patches
3: loop
4: GPU tessellation and processing
5: Get external data
6: CPU simplify/refine
7: if M4G Tiling changes then
8: Update GPU patches
9: end if

10: end loop

adaptivity is even better positioned than fixed resolution con-
trol, since it can be applied to regions of interest in the mesh
rather than the entire mesh. Here, we describe three illustra-
tive applications of our mesh representation.

After the applications, we discuss our atlas and tiling data
structures providing an assessment of the M4G surface rep-
resentation.

CPU–GPU adaptation The first application uses the new
GPU tessellator control and evaluation shaders (introduced
in OpenGL 4) to visualize scanned models converted to our
M4G representation. We use two complementary adapta-
tion criteria for defining the CPU and GPU mesh resolu-
tion. For the CPU, we have used a Laplacian-based crite-
rion to rank simplification vertices with small discrete cur-
vature variation. And for the GPU, we have used a LOD-
based criterion, which tessellates more edges close to a given
plane and tessellates the interior of the patches using the
average tessellation level of opposite edges. Although not
challenging in terms of performance (all results are real-
time independent of subdivision and tessellation levels), the
surface reconstruction can be as close to the original sur-
face as the parametrization of each chart is. The geodesics-
based parametrization gives interesting results as a proof-of-
concept for the tested models. On the flip side, the geodesics-
based boundary computation, explained in Section 4.1, al-
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lows two important characteristics of the visualization ap-
plication: a simple and efficient implementation of the M4G
tiling approach in the CPU; and a coupled GPU implemen-
tation using tessellator shaders. It is clear, from the choices
used for this example application, that the M4G surface rep-
resentation is capable of multiresolution adaptive tessella-
tion, both in the CPU and GPU, for generic scanned models.

One illustrative example of the GPU tessellation using the
M4G atlas and controlled by the CPU is shown in Figure 8.
In this figure, the Bimba dataset features are revealed inter-
actively by moving the plane controlling the level-of-detail
(in red) from top to bottom. Another illustrative example,
this time with both CPU and GPU adaptation, appears in
Figure 10. In this example, the Botijo model is shown with-
out adaptation (left), with only CPU adaptation (middle) and
with both CPU and GPU adaptation (right). A last example
is shown in Figure 11, where the Christ dataset is increas-
ingly adapted from far to close, showing a zoom-in view-
dependent coupled LOD-based adaptation.

Figure 10: Example of the CPU–GPU coupled visualization
of the Botijo dataset. The base mesh (left) is refined adap-
tively to a certain level (middle) in the CPU, generating a
4–8 mesh. Finally this mesh is further refined from middle
to top (right) in the GPU.

Cascading Level-of-Detail The first application aims to
render hundreds of meshes using level-of-detail (LOD) at
the same time in the CPU, with adaptive refinement as in
figure 9b, and in the GPU, with view-dependent tessellation
refinement. Figure 12 illustrates this cascading LOD applied
to a checkerboard of meshes rendered in real-time.

Fine-detail Editing The second application uses the atlas
structure to add details to a mesh by creating extra charts.
These charts are combined with the regular charts to create
a projection effect of the editing. Figure 13 shows this fine-
detail editing of the word 3-torus in a model, regions close to
the word (inner ring bottom) are at higher resolution than far
regions (outer rings top) defined by the CPU and the GPU.

Figure 12: The Bimba model is adaptive refined in both the
CPU and the GPU (top) to be visualized with LOD (bottom).

Figure 13: The 3-torus model is edited using adaptive refine-
ment (top) to then be rendered in full detail (bottom).

7. Results and Discussion

Our test platform is an Intel Core i7 2600 CPU with 16GB
of RAM and an nVidia GeForce GTX 560 Ti GPU with
1GB. We have constructed our adaptive multiresolution rep-
resentation for a large number of models. The entire pre-
computational pipeline is automatic and takes less than 15
minutes to complete per model, where simplification and
matching are the most expensive steps.

Table 1 summarizes the conversion pipeline for several
models. The simplification followed by matching transform
the model’s dense mesh in a triquad base mesh. After match-
ing, the rasterization step creates each chart to be packed in
an atlas structure. This structure comprehends all surface at-
tributes, such as geometry, normals and height-map editing,
stored as a 32-bit per-channel atlas texture per attribute in
the GPU. Atlas efficiency measures the amount of signifi-
cant information in the pixels of each texture. The packing
step organizes the charts in a matrix form close to a square,
which may leave several chart slots empty inside the final at-
las, reducing atlas efficiency. The replication of boundaries
inside charts also slightly reduces the atlas efficiency.
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Figure 11: LOD-based application example of the Christ dataset simulating a zoom in the middle of the statue (from left to
right). Note the increase in creases appearing in the mantle.

Table 1: Details of our multiresolution mesh representation.
For each tested model, we show the number of vertices (#v)
and triangles (# t) of the original dense mesh and the simpli-
fied base mesh, the number of charts (#c) in the atlas struc-
ture, the size of the atlas in pixels and its efficiency (eff.).

Model
Dense Mesh Base Mesh Atlas Structure

#v # t #v # t #c size eff.

Bimba 192 K 384 K 338 672 336 627×594 86.7%
Gargoyle 97 K 194 K 182 360 180 462×429 85.2%
3-torus 16 K 34 K 71 150 75 297×297 86.9%
Kikito 75 K 150 K 66 128 64 264×264 93.9%

Our specialized halfedge data structure is used from the
initial state of our multiresolution representation to the fi-
nal full-resolution state in the CPU. The data structure is dy-
namic and expands as the mesh resolution increases. The ad-
ditional storage compared with a regular halfedge data struc-
ture is 6 bytes per halfedge (2B for the chart index and 4B
for the start and end positions) and 1 byte per vertex for the
resolution level.

We express geometric accuracy in our multiresolu-
tion representation as Peak Signal-to-Noise Ratio (PSNR),
following MCGIM [SWG∗03]. The PSNR, PSNR =
20 log10(peak/dist), is computed using the peak as the
bounding box diagonal of the dense mesh and dist as the
Hausdorff distance between the dense mesh and each mul-
tiresolution mesh from level 0 (base mesh) to 10 (full-
resolution mesh). The level-10 mesh has approximately the
same number of vertices and triangles of the dense mesh.
Figure 14 shows the measured PSNR for each tested model.

Analyzing the PSNR results, the highest resolution recon-
struction of the Gargoyle model is 8.9dB lower than using
MCGIM (see [SWG∗03, figure 14]). The geometry accuracy
is lower given the fact that our chart domains are square re-
gions and we do not have an optimization step. On the flip
side, our packing step is more efficient and simpler; we have
a final atlas image more suitable to GPU-based applications;

Figure 14: Precision of our multiresolution representation.

and the accuracy of our charts can also be improved by a
similar optimization procedure.

Compared against MAPS [LSS∗98], our simplification
step is based on more atomic operations, i.e. stellar opera-
tors, that can reproduce both PM [Hop96] and MAPS sim-
plification. Our full-resolution reconstruction ranges from
0.5% maximum error (for the 3-torus model) to 0.3% (for
the Bimba model), improving on the remeshing tolerance of
MAPS. In contrast with MAPS, our reconstruction uses the
inverse set of atomic operators, allowing the connection we
present between the CPU and the GPU resolution control.

8. Conclusions

We describe a mesh representation that changes its resolu-
tion in a dynamic and adaptive way. The multiresolution
representation builds on an explicit atlas-based parametriza-
tion of the static input surface using a novel simplification
method. The duals of the simplification operators are used
in the reconstruction method from coarse to fine resolution.
The atlas combined with dual operators leads to a multireso-
lution mesh representation efficient to both the CPU and the
GPU. We demonstrate the practical use of our representation
in three applications: CPU-GPU adaptation; rendering hun-
dreds of meshes with LOD; and editing a small part of an
adaptive mesh.
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Future Work Although we have focused on CPU-GPU
coupled computation, our multiresolution representation
should specialize to either computational unit using the pre-
sented data structures. One CPU specialization is to maintain
the irregular domain of each chart, instead of rasterizing it to
a regular domain, improving reconstruction accuracy.

Our framework has great potential for practical applica-
tions and a wide perspective for continuing development, as
our list of topics for future work indicates.

In that respect, we plan to extend this research in the fol-
lowing directions:

• Evaluate other ways to construct the M4G representation
from dense triangle meshes. This includes both alterna-
tive methods to generate the base mesh, such as quadri-
lateral simplification, surface segmentation and manual
patch layout, as well as, different types of local and global
parametrization algorithms.
• Exploit the characteristics of particular surface types,

such as subdivision surfaces, sketch-based and procedu-
ral models, that can be directly evaluated on the GPU.
• Investigate the implementation of multiresolution sur-

faces that can be used for compression and level-of-detail
editing.
• Augment the multiresolution representation with a

mesostructure layer defined by surface normal modula-
tion.
• Develop applications that take advantage of joint

parametrizations of the M4G atlas, such as surface mor-
phing and animation.
• Study more complex and effective adaptation functions,

targeted to different applications, such as view and texture
dependent mechanisms.
• Integrate numerical simulation over the surface using

GPGPU techniques.
• Work with very high resolution scanned models, such as

the David model from Digital Michelangelo project and
also with huge 3D datasets generated by structure-from-
motion reconstruction, where the model can be an entire
city with millions of points. Within this context our frame-
work could pave the way of a comprehensive multireso-
lution representation with flexible adaptation mechanism
suitable for giga-elements models.
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