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Abstract

Recently in Castellani-Guili (J. Optim. Th. Appl., 147 (2010),
157-168), it has been showed that the proof of the existence result
for quasimonotone Stampacchia variational inequalities developed in
Aussel-Hadjisavvas (J. Optim. Th. Appl., 121 (2004), 445-450) can be
adapted to the case of equilibrium problem. This proof was based on
KKM techniques.
In this paper we define and study the so-called quasi-equilibrium prob-
lem, that is an equilibrium problem with a constraint set depending of
the current point. Our main contribution consists of an existence result
combining fixed point techniques with stability analysis of perturbed
equilibrium problems.

1 Introduction

The equilibrium problem, (EP) in short, is defined as follows. Given
a real Banach space X, a nonempty subset K of X and a bifunction f :
X ×X → R, (EP) consists of

(EP ) find x ∈ K such that f(x, y) ≥ 0 ∀y ∈ K.

Problem (EP) has been extensively studied in recent year (see e.g. [16,
17, 23, 21, 22]). A recurrent theme in the analysis of the conditions for
the existence of solutions of (EP) is the connection between them and the
solutions of the so-called Convex Feasibility Problem, to be denoted (CFP),
which turns out to be convex under suitable conditions on f and which
corresponds to a sort of dual formulation of (EP),

(CFP ) find x ∈ K such that f(y, x) ≤ 0 ∀y ∈ K.
∗Université de Perpignan Via Domitia, Lab. PROMES UPR CNRS 8521, France,

e-mail: aussel@univ-perp.fr
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It was proved in [23] that if f is lower semicontinuous in the first argument,
convex in the second one and it vanishes on the diagonal of K × K, then
every solution of (CFP) is a solution of (EP), and moreover both solution
sets trivially coincide under pseudomonotonicity of f . Bianchi et al. in [9]
extended this inclusion under a weak continuity property of the bifunction,
and they obtained an existence result for (EP), adapting the existence result
for variational inequality proposed by Aussel et al. in [6].
The classical example of equilibrium problem is the variational inequality
problem, which is defined as follows: a Stampacchia variational inequality
problem (VIP) is formulated as

(V IP )
find x ∈ K such that there exists x∗ ∈ T (x)
with 〈x∗, y − x〉 ≥ 0, ∀ y ∈ K,

where T : X → 2X
∗

is a set-valued operator, X∗ is the dual space of X and
〈·, ·〉 denotes the duality pairing between X and X∗. So, if T has compact
values, and we define the representative bifunction fT of T by

fT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉,

It follows that every solution of the Equilibrium Problem associated to fT
and K is a solution of the Variational Inequality Problem associated to T
and K, and conversely. Now, the CFP associated to fT is equivalent to

find x ∈ K such that 〈y∗, y − x〉 ≥ 0, ∀ y ∈ K, y∗ ∈ T (y)

which is known as Minty variational inequality problem (or dual variational
inequality problem).

We denote by S(T,K) and M(T,K) the solution sets of the Stampacchia
and Minty variational inequality problems respectively.

Recently, it was showed in [24, 20, 11, 12] that any equilibrium problem
for which f is lower semicontinuous in the first argument, convex in the
second one, monotone, and vanishes on the diagonal of K × K, can be
reformulated as a variational inequality. Castellani et al. in [10] extended
these results to the pseudomonotone and quasimonotone case. In this work
we extend them to the quasi-equilibrium problem.

We consider next the problem which is our main object of interest in this
paper. The quasi-equilibrium problem, (QEP) in short, is defined as follows.
Given a set-valued map K : X → 2X and a bifunction f : X × X → R,
(QEP) consists of

(QEP ) find x ∈ K(x) such that f(x, y) ≥ 0, ∀y ∈ K(x).

The associated Minty quasi-equilibrium problem (to be denoted QMEP),
consists of

(QMEP ) find x ∈ K(x) such that f(y, x) ≤ 0, ∀y ∈ K(x).
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We denote by QEP(f,K) and QMEP(f,K) the sets of solutions of the quasi-
equilibrium and Minty quasi-equilibrium problem, respectively.

One of the main reasons for studying quasi-equilibrium problems lies
in the relation between them and quasi-variational inequalities (see Section
3.2), which mirrors the well known relation between equilibrium problems
and variational inequalities. Quasi-variational inequalities are themselves
relevant because they encompass certain problems of interest in various fields
of application, which do not fall within the scope of variational inequalities.
Perhaps the most important instance of this situation is the generalized Nash
equilibrium problem, which models a large number of real life problems
in Economics and other areas (see e.g. [14], [27] and references therein).
The reduction of generalized Nash equilibrium problems to quasi-variational
inequalities has been analyzed, e.g., in [2] and [27]. Existence results for
problem (QEP ) can be found in [19] and references therein.

The paper is organized as follows. First in Section 2 we describe the main
notation and give some preliminary results and comments concerning the
mainly used concepts, in particular the upper sign property of a bifunction.
Section 3 is devoted to the study of the relationship between (QEP) and
(QMEP) on one side and between (QEP) and a variational reformulation
on the other hand. Finally in Section 4 we prove an existence result for
quasi-equilibrium problem (QEP) using fix point techniques.

2 Preliminaries

All along the paper, X stands for a real Banach space, X∗ for its topo-
logical dual and 〈·, ·〉 for the associated duality product. The subsets S∗

and B∗ stands respectively for the unit sphere and unit ball S∗ = {x∗ ∈
X∗; ‖x∗‖ = 1} and B∗ = {x∗ ∈ X∗; ‖x∗‖ ≤ 1} of the dual space X∗.

First, recall that a bifunction f : X ×X → R is said to be

- quasimonotone on a subset K if, for all x, y ∈ K,

f(x, y) > 0⇒ f(y, x) ≤ 0,

- properly quasimonotone on a subset K if, for all x1, x2, · · · , xn ∈ K,
and all x ∈ co({x1, x2, · · · , xn}), there exists i ∈ {1, 2, · · · , n} such
that

f(xi, x) ≤ 0,

- pseudomonotone on a subset K if, for all x, y ∈ K,

f(x, y) ≥ 0⇒ f(y, x) ≤ 0.
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Clearly, pseudomonotonicity of f implies properly quasimonotonicity of f ,
and the latter implies quasimonotonicity of f .

Let us recall that a function h : X → R is said to be:

- quasiconvex on a convex subset K if, for all x, y ∈ K and all z ∈ [x, y],

h(z) ≤ max {h(x), h(y)}

- semistrictly quasiconvex on a convex subset K if h is quasiconvex on
K and

h(x) < h(y)⇒ h(z) < h(y), ∀z ∈ [x, y[

for all x, y ∈ K.

In the sequel, we will sometimes use the following assumptions on the
considered bifunctions:

(H1) f(x, x) = 0 for all x ∈ K,

(H2) f(x, ·) is semistrictly quasiconvex for all x ∈ K,

(H3) f(x, ·) is lower semicontinuous for all x ∈ K.

Our forthcoming stability analysis will be based on the following weak con-
tinuity property for bifunctions:

Definition 2.1. A bifunction f is said to have the upper sign property at
x ∈ K if for every y ∈ K the following implication holds:(

f(xt, x) ≤ 0, ∀ t ∈ ]0, 1[
)
⇒ f(x, y) ≥ 0, (1)

where xt = (1− t)x+ ty.

The above definition is inspired by the analoguous upper sign-continuity
for set-valued map, originated in [18], and given as follows

T : X ⇒ X∗ is said to be lower sign-continuous at x ∈ DomT
if, for any v ∈ X, the following implication holds:(

∀t ∈ ]0, 1[, inf
x∗t∈T (xt)

〈x∗t , v〉 ≥ 0

)
⇒ inf

x∗∈T (x)
〈x∗, v〉 ≥ 0

where xt = x+ tv.

A local version of the upper sign property of a bifunction has been considered
in [11] by setting that f has the local upper sign property at x if (1) holds
for every y in a certain neighbourhood B(x, ρ) of x, with ρ > 0. Clearly
the upper sign property implies the local upper sign property. Actually,
as shown in the forthcoming lemma, the upper sign property and its local
counterpart coincide under mild assumptions.
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Lemma 2.1. Let K be a nompty convex subset of X and f be a bifunction
satisfying (H1) and the following property:{

for every x, y1 and y2 ∈ X, one has

f(x, y1) ≤ 0 and f(x, y2) < 0 ⇒ f(x, zt) < 0, ∀t ∈ ]0, 1[.
(2)

Then f has the local upper sign property on K if and only if f has the upper
sign property on K.

Proof. Let us suppose that f has the locally upper sign property on K (with
r > 0) and let y ∈ K be such that f(xt, x) ≤ 0, for every xt = tx+ (1− t)y,
t ∈ ]0, 1[. Then one immediately has that for every t ∈ ]0, 1[, f(zt, x) ≤ 0
where zt = tx+ (1− t)z with z = 3r/4x+ 1/4y ∈ B(x, r) ∩K. Now by the
local upper sign property f(x, z) > 0. This implies that f(x, y) > 0 because
otherwise, together with (H1) and property (2) a contradiction occurs. 2

Remark 2.1. As it can be easily shown, any bifunction satisfying assump-
tion (H2) also verifies property (2). It is in particular the case when f = fT
is a representative bifunction of a set-valued map T .

Now from the definition of fT one clearly has the following equivalence
for any set-valued map T : X → 2X

∗

T is upper sign-continuous at x⇔
{
fT has the upper

sign property at x.
(3)

As a direct consequence of the classical Ky Fan intersection theorem [15]
one can deduce an existence result for CFP (f,K).

Corollary 2.1. Let K be weakly compact and f be a properly quasimono-
tone equilibrium bifunction such that for every x ∈ K the subset {y ∈
K : f(x, y) ≤ 0} is weakly closed. Then CFP (f,K) is nonempty.

Proof. It follows the same lines as in [13, Th. 5.1]. Indeed, observe first
that [∩x∈KF (x)] ⊂ CFP (f,K), where, for every x ∈ K, F (x) stands for
the set F (x) = {y ∈ K : f(x, y) ≤ 0}. On the other hand, the proper
quasimonotonicity of f can be reformulated as

∀x1, . . . , xn ∈ K, ∀x ∈ conv{x1, . . . , xn}, x ∈ ∩ni=1F (xi),

which is classically expressed as F being a KKM map. The result follows
now immediately by applying the Ky Fan intersection theorem. 2

Let us end this section with an elementary result on the set CFP (f,K).

Proposition 2.1. Let K be a convex and closed subset of X and f : K ×
K → R be a bifunction. If f satisfies (H2) and (H3) then CFP (f,K) is
convex and closed.
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Proof. Let x1, x2 ∈ CFP (f,K), t ∈ [0, 1] and y ∈ K. Since f(y, x1) ≤ 0,
f(y, x2) ≤ 0 and f satisfies (H2), it holds that f(y, tx1 + (1 − t)x2) ≤ 0.
So tx1 + (1 − t)x2 ∈ CFP (f,K) for all t ∈ [0, 1], proving the convexity of
CFP (f,K).

Now consider a sequence (xn)n ⊂ CFP(f,K) converging to x̄. Since K
is closed, it follows that x̄ ∈ K. For every y ∈ K, one has f(y, xn) ≤ 0 for
all n ∈ N and thus by (H3) f(y, x̄) ≤ 0, thus proving that x̄ ∈ CFP (f,K).
2

3 Problem relationships

3.1 Canonical inclusions between (QMEP) and (QEP)

The relations between the solution set M(T,K) and S(T,K) respectively
of the Minty and Stampacchia variational inequalities has been extensively
studied in the literature (see e.g. [4] for a recent survey), in particular
because they play an important role in the proofs of stability and existence
results. Our aim in this short subsection is to precise this relations but in
the context of quasi-equilibrium problem.

Proposition 3.1. Let f : X ×X → R be any bifunction and consider the
following conditions:

i) f has the upper sign property on X

ii) QMEP (f,K) ⊆ QEP (f,K) for all set-valued map K : X → 2X with
convex values.

iii) QMEP (f, [x, y]) ⊆ QEP (f, [x, y]) for all x, y ∈ X.

Then i) ⇒ ii) ⇒ iii) and the three conditions are equivalent if f satisfies
(H1) and (H2).

Proof. i) ⇒ ii) Immediate. Indeed let K : X → 2X be a set-valued map
with convex values and take x ∈ QMEP(f,K). For any y ∈ K(x) and any
t ∈ ]0, 1[ one clearly has f(tx + (1 − t)y, x) ≤ 0 and the conclusion follows
by the upper sign property of f .
Assume now that iii) holds and suppose that f doesn’t have the upper sign
property on X. Therefore, one can find x, y ∈ X such that f(x, y) < 0 and
f(tx + (1 − t)y, x) ≤ 0, for all t ∈ ]0, 1[. Hence, we get from (H1) and (2)
that f(x, xt) < 0. Clearly x ∈ QMEP(f, [xt, x]), so that x ∈ QEP(f, [xt, x]),
implying that f(x, xt) ≥ 0, which is a contradiction. 2

As a direct consequence of Theorem 3.1, we obtain a sufficient condition
for the upper-sign continuity of a set-valued map in terms of the inclu-
sions between the solution sets of the Minty and Stampacchia defined by
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the set-valued map on intervals thus providing a refinement of analoguous
relationship given for upper semicontinuity (see [28]).

Corollary 3.1. Let T : X → 2X
∗

be a set-valued map with compact values,
and K be a convex subset of X. If M(T, [x, y]) ⊆ S(T, [x, y]) for all x, y ∈ K
then T is upper sign-continuous on K.

Proof. Observing that, for all x, y ∈ K, S(T, [x, y]) = QEP(fT ,K) and
M(T, [x, y]) = QMEP(fT , [x, y]), one can deduce that QMEP (fT , [x, y]) ⊆
QEP (fT ,K). Therefore, by Proposition 3.1, fT has the upper sign property
on K and thus, according to (3), T is upper sign-continuous on K. 2

3.2 Variational formulation of equilibrium problems

As quoted previously, any Stampacchia variational inequality can be
reformulated as an equilibrium problem, thanks to the use of the represen-
tative bifunction fT . This subsection is devoted to the study of the reverse
transformation and more precisely, given a bifunction f and a subset K,
to give sufficient conditions under which the solution set EP (f,K) of the
equilibrium problem coincides with the solution set of a certain Stampacchia
variational inequality.

Associated to a convex subset K of X and a bifunction f : X ×X → R,
we define the set-valued map N : K → 2X

∗
as

N(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ Lf (x)},

where Lf (x) stands for the sublevel set Lf (x) = {z ∈ K : f(x, z) ≤ 0}.

Proposition 3.2. Let K be a convex subset of X and f : X × X → R be
a quasimonotone bifunction. Then the set-valued map N is quasimonotone
on K.

Proof. Let x and y be two elements of K and x∗ ∈ N(x) be such that
〈x∗, y−x〉 > 0. From the definition of N one gets that f(x, y) > 0, and hence
f(y, x) ≤ 0 by quasimonotonicity of f . Now since x is an element of Lf (y),
one has 〈y∗, x− y〉 ≤ 0 for all y∗ ∈ N(y), proving that N is quasimonotone.
2

Following a technique used in [7], let us define now a normalized version of
the set-valued map N by D : K → 2X

∗
:

D(x) =

{
conv(N(x) ∩ S∗) if x /∈ arg minX f(x, ·)

B∗ otherwise.

By the same proof as in [5, Lemma 3.1], one can prove that if f satisfies
(H1) and (H2) then one has 0 /∈ D(x), for all x /∈ arg minX f(x, ·).
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Proposition 3.3. Let K be a convex subset of X and f : X ×X → R be a
quasimonotone bifunction satisfying (H1), (H2)and (H3). If int (Lf (x)) 6= ∅
for any x /∈ arg minX f(x, ·), then EP (f,K) = S(D,K).

Proof. If x ∈ EP (f,K) then x is actually a minimizer of f(x, ·) on K.
Now, if x ∈ arg minX f(x, ·) then 0 ∈ D(x), i.e., x ∈ S(D,K). On the
other hand, if x /∈ arg minX f(x, ·) then, in view of the first order necessary
optimality condition in quasiconvex programming (see Theorem 4.1 in [8]),
there exists x∗ ∈ D(x) such that x is a solution of S(D,K).
Conversely, assume that x ∈ S(D,K). If 0 ∈ D(x) then x belongs to
arg minX f(x, ·), so that f(x, y) ≥ 0 for all y ∈ K, i.e., x ∈ EP (f,K).
Now if 0 /∈ D(x) then there exists a non zero element x∗ of N(x) such that
〈x∗, y − x〉 ≥ 0, for every y ∈ K and thus, according to the sufficient opti-
mality condition given in [7, Corollary 4.5], one gets that x is a minimizer
of f(x, ·) and thus x ∈ EP (f,K). 2

4 Existence of quasi-equibriums

Contrary to the proofs used for quasimonotone variational inequalities in
[6], for quasimonotone equilibrium problems in [11] and for quasi-equilibrium
problems in [19] which are based on KKM techniques, the existence results
proposed in the forthcoming Theorem 4.1 is proved by mixing a Kakutani
fixed point theorem with an adapted study of the stability (regularity) of
the solution set (map) of a perturbed Convex Feasible Problem.

So let us first consider the following perturbation of the Convex Feasibil-
ity Problem: let K : Rm → 2R

n
be a set-valued map and f : Rn × Rn → R

a bifunction. Then for any µ ∈ Rm, we define

(CFPµ) find x ∈ K(µ) such that f(y, x) ≤ 0 ∀y ∈ K(µ).

Let us denote by CFP (f,K(·)) the solution map which associates to any µ
the solution set CFP (f,K(µ)) of problem (CPPµ). The following proposi-
tion, which is an adaptation of Proposition 4.4 in [4], gives sufficient condi-
tions for the set-valued map CFP (f,K(·)) to have a closed graph.

Proposition 4.1. Let f : Rn ×Rn → R be a bifunction and K : Rm → 2R
n

be a set-valued map which satisfy the following properties

i) f verify (H3);

ii) for all sequence {yn} ⊂ Rn converging to y ∈ Rn and such that
lim infn→+∞ f(yn, x) ≤ 0, one has f(y, x) ≤ 0;

iii) K is closed, lower semicontinuous and convex valued, with int(K(µ)) 6=
∅, for all µ ∈ domK.

8



Then the solution map CFP (f,K(·)) is closed.

In order to prove the above proposition let us recall from [1] and [4] the
following interesting properties.

Proposition 4.2. [1, Prop. 3.2] Let S be a subset of X and (Sn)n be a
sequence of convex subsets of X. Assume that int(Sn) 6= ∅ for all n and that
int(S) 6= ∅. Then i)⇒ ii) where

i) w− lim supn Sn ⊂ S ⊂ lim infn Sn

ii) w− lim supn Sn ⊂ S, int(S) ⊂ lim infn int(Sn) and S is convex.

Proposition 4.3. [4, Lemma 4.1] Let C and (Cn)n be a convex set and a
sequence of convex subsets of Rn such that C ⊂ lim infn int(Cn). If int(C) 6=
∅ and int(Cn) 6= ∅, for all n ∈ N, then for each y ∈ int(C) there exists
n0 ∈ N such that y ∈ int(Cn), for all n ≥ n0.

Proof of Proposition 4.1. Let ((µn, xn))n ⊂ GrCFP (f,K(·)) be a sequence
converging to (µ, x). Since K is closed, one has that x ∈ K(µ).

We claim that any y ∈ int(K(µ)) belongs to int(K(µn)) for n large
enough. Observe that, according to the lower semicontinuity of K, K(µ) ⊂
lim infn→+∞K(µn). Since the setsK(µ) andK(µn) are convex with nonempty
interior, it follows from Proposition 4.2 that

y ∈ int(K(µ)) ⊂ K(µ) ⊂ lim inf
n→+∞

int(K(µn)),

and thus the claim is now a consequence of Proposition 4.3.
Since, for all n we have xn ∈ CFP (f,K(µn)), it follows that

f(y, xn) ≤ 0,

and therefore f(y, x) ≤ 0, by property (H3). Now, for any y ∈ K(µ) there
exists a sequence (yn)n ⊂ int(K(µ)) converging to y. So

f(yn, x) ≤ 0, for any n large enough.

By assumption ii) on the bifunction f , one has that f(y, x) ≤ 0 and therefore
x ∈ CFP (f,K(µ)). 2

Remark 4.1. An analoguous to property i) of the bifunction f in Proposi-
tion 4.1 was introduced in [1, 4] for set-valued mappings, and it was called
dually lower semicontinuity in [4].

We are now in a position to establish our existence result for quasimono-
tone quasi-equilibrium problems.
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Theorem 4.1. Let f : Rn×Rn → R be a bifunction, C a nonempty convex
compact subset of Rn and K : C → 2C be a set-valued map, and suppose
that the following properties hold:

i) the map K is closed and lower semicontinuous, with convex values,
and int(K(x)) 6= ∅ for all x ∈ C,

ii) f has the upper sign property on C,

iii) int(K(x)) 6= ∅ for all x, and for all x, y ∈ X and all sequence (yn)n ⊂
X converging to y it holds that

lim inf
n→+∞

f(yn, x) ≤ 0 ⇒ f(y, x) ≤ 0,

or, for all x, y ∈ X and all sequences (xn)n, (yn)n ⊂ X converging to
x, y respectively, it holds that

lim inf
n→+∞

f(yn, xn) ≤ 0 ⇒ f(y, x) ≤ 0,

iv) f is properly quasimonotone and satisfies (H2) and (H3).

Then the quasi-equilibrium problem QEP (f,K) admits at least a solution.

Proof. Since f is properly quasimonotone and K(x) is nonempty, con-
vex and compact, it follows from Corollary 2.1 that CFP (f,K(x)) 6= ∅
for all x ∈ C. Now the map CFP (f,K(·)) : C → 2C is closed and has
convex and closed values by Propositions 4.1 and 2.1. Hence, due to the
compactness of C, this solution map is upper semicontinuous. Now accord-
ing to the Kakutani Fixed Point Theorem (see e.g. [25]), we conclude that
the map CFP (f,K(·)) admits at least a fixed point x, or in other words
x ∈ CFP (f,K(x)). By Proposition 3.1(i) we get that x ∈ EP (f,K(x)),
and therefore x is a solution of QEP (f,K). 2
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