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1 Introduction

In many problems of Computer Vision, the unknown is a pair (u, K) with K a
union of (sufficiently smooth) closed curves contained in a fixed open set Q C R?
and u : Q@ \ K — R belonging to a class of (sufficiently smooth) functions. A
variational formulation of some of these problems was given by Mumford and
Shah [14] introducing the functional

F(u,K) :/ |Vu|2dx+cl7-{,1(K)+02/ lu —g|*dz . (1)
Q\K Q\K

In this case g is interpreted as the input picture taken from a camera, u is the
‘cleaned’ image, and K is the relevant contour of the objects in the picture; ¢; and
o are contrast parameters, and H'(K) denotes the total length of K. Problems
involving functionals of this form are usually called free-discontinuity problems,
after a terminology introduced by De Giorgi. They have been intensively studied in
recent times through weak formulations in the framework of the spaces of special
functions of bounded variation (see [10], [9], [2], [5]).

The presence of the unknown surface K leads to numerical problems, and
some kind of approximation of this functional is needed to obtain approximate
smooth solutions. The Ambrosio and Tortorelli approach [3] provides a variational
approximation of the Mumford and Shah functional (1) via elliptic functionals. The
lack of convexity of the limiting functional is overcome by the introduction of an
additional function variable which approaches the characteristic of the complement
of the set K. The approximating functionals have the form

F.(u,v) :/U2|Vu|2da:+cl/(€|VU|2+i(1—U)2) dm+02/ lu—g|*dz, (2)
Q Q de Q

defined on functions u, v such that u,v € H*(2) and 0 < v < 1. The interaction
of the terms in the second integral provide an approximate interfacial energy, as
in the theory of phase transitions for Cahn - Hilliard fluids. This phenomenon had
previously been described in analytic terms by Modica and Mortola [13] in the case
of phase boundaries. The adaptation of the Ambrosio and Tortorelli approximation
to obtain as limits more complex surface energies does not seem to follow easily
from their approach.



Motivated by applications in Computer Vision and Fracture Mechanics, in
this paper we study a variant of the Ambrosio Tortorelli construction by consid-
ering functionals of the form

1
Ge(u,v) :/v2|Vu|dx+cl/(6|VU|2+—(1—1))2) d:c-{—cQ/ lu—g|7"dz, (3)
Q Q 4e Q

where v > 1. Even though the form of these functionals is quite similar to the
previous one, the domain of the limiting functional will be different. In fact, as we
have G.(u,1) < [ |Vu|+calu—g|7 dz, it is clear that the limit of these functionals
will be finite if u € BV (). In fact we prove (Theorem 4.1 and Example 4.6) that
G. converge to functionals related to the function-surface energy

G(u, K) = |Du|(Q\ K) + ¢ / B il
o e T4 Jut —u|

e [ Ju-glde. (@)
Q\K

where |Du|(A) denotes the total variation on A of the distributional derivative

Du, and u™ are the traces of u on both sides of K. We push this approach further,

constructing a variational approximation for a wide class of non-convex functionals

defined on spaces of generalized functions of bounded variation.

The paper is divided as follows. In Section 2 we introduce the spaces of
generalized functions of bounded variation GBV and GSBYV, which are needed for
a weak formulation of the functionals in (1)—(4), and the notion of I'-convergence,
which precises in which sense the convergence of these functionals is understood.
In Section 3 we state the many preliminaries which are needed in the course of
the proof. Section 4 is devoted to the statement and proof of the main result, in
a slightly more general form than above. The proof of the result lies on a lower
bound which is obtained by a new definition of the limit interfacial energy density,
taking into account the interaction of the first two integrals of the approximating
energies G-, and on an upper bound which is obtained by direct construction
and a density result of pairs function-polyhedral surface. Section 5 contains the
statement and proof of the approximation result for general isotropic functionals
with convex bulk energy density and concave surface energy density defined on
GBV.

2 Notation

We use standard notation for Sobolev and Lebesgue spaces. £ will denote the
Lebesgue measure in R" and H#* will denote the k-dimensional Hausdorff measure.
A(Q) and B(Q) will be the families of open and Borel sets, respectively. If p
is a Borel measure and E is a Borel set, then the measure ul_ B is defined as
ul_ B(A) = p(AN B). Let A" CC A be open sets. By a cut-off function between
A" and A we mean a function ¢ € C§°(A) with0 < ¢ <land ¢ =1on A’



2.1 Generalized functions of bounded variation

Let u € L'(Q). We say that u is a function of bounded variation on Q if its
distributional derivative is a measure; i.e., there exist signed measures p; such

that
/umdm: —/ b dp
Q Q

for all ¢ € CL(Q). The vector measure p = (u;) will be denoted by Du. The space
of all functions of bounded variation on € will be denoted by BV (f2).

It can be proven that if v € BV(Q) then the complement of the set of
Lebesgue points S,,, that will be called the jump set of u, is rectifiable, i.e. there
exists a countable family (I';) of graphs of Lipschitz functions of (n — 1) variables
such that H" (S, \ U;>; ;) = 0. Hence, a normal v, can be defined H" *-a.e.
on Sy, as well as the traces u™ of u on both sides of S, as

u®(

z) = lim u(y) dy,
p=0% J{yeB, (2):+(y—z,vu(x))>0}

where f, udy = |B|™! [, udy. '

If w € BV(Q) we define the three measures D%, D/u and D as follows.
By the Radon Nikodym Theorem we set Du = D%u + D*u where D%u << L™ and
D% is the singular part of Du with respect to £L™. D®u is the absolutely continuous
part of Du with respect to the Lebesgue measure, D/u = Dul_S, is the jump
part of Du, and D = D%ul_(Q\ Sy) is the Cantor part of Du. We can write
then

Du = D% + Du + Du.

It can be seen that D/u = (u™ —u™)r,H" 1S, and that the Radon Nikodym
derivative of Du with respect of L™ is the approximate gradient Vu of u.

A function u € LY(Q) is a special function of bounded variation on Q if
D¢u = 0, or, equivalently, if its distributional derivative can be written as

Du=Vul"+ (u" —u )y, H" 'L S,.

The space of special functions of bounded variation on  is denoted SBV ({2). We
will also use the auxiliary spaces

SBVP(Q) = {u € SBV(Q) : |Vu| € LP(Q), H"1(S.) < +00}.

We define the space GBV () of generalized functions of bounded variation
as the space of all functions u € L'(Q2) whose truncations ur = (=T)V (u AT)
are in BV (Q) for any 7' > 0. For such functions we can define Sy, = U;<q Surs
and the approximate gradient and the traces u® as the limits of the corresponding
quantities defined for ur. Moreover, we define the measure [Du| : B(Q) — [0, +00]
as

|D¢u|(B) = sup |Dur|(B) = lim |Dr|(B).
T>0

T—+400



If w € BV(Q) |Du| coincides with the usual notion of total variation of D¢u.
Finally, we set

GSBV(Q={ue GBV(Q) : |D| =0} = {u € L'(Q) : ur € SBV(Q) for all T'}.

For a detailed study of the properties of BV -functions we refer to [2], [11]
and [12]. For an introduction to the study of free-discontinuity problems in the
BV setting we refer to [2].

2.2 Relaxation and ['-convergence

Let (X, d) be a metric space. We first recall the notion of relazed functional. Let
F: X — RU{+0oc}. Then the relaxed functional F of F, or relazation of F, is
the greatest d-lower semicontinuous functional less than or equal to F'.

We say that a sequence F; : X — [—o00,+00] I'-converges to F : X —
[—o0, +00] (as j — +00) if for all u € X we have

(1) (lower limit inequality) for every sequence (u;) converging to u

F(u) < limjinf Fj(uj); (5)

(ii) (existence of a recovery sequence) there exists a sequence (u;) converging to u
such that
F(u) > limsup Fj(u;), (6)
J
or, equivalently by (5),
F(u) = lim Fj (u;). (7)
J

The function F' is called the I'-limit of (F;) (with respect to d), and we write
F =T-lim; F};. If (F}) is a family of functionals indexed by & > 0 then we say that
F. T-converges to F as e — 07 if F' = I-lim;_, o F:, for all (¢;) converging to 0.

The reason for the introduction of this notion is explained by the following
fundamental theorem.

Theorem 2.1 Let F = I'-lim; F}, and let a compact set K C X exist such that
infx F; = infx Fj for all j. Then

Jmin F = liminf F}. (8)
X i X
Moreover, if (u;) is a converging sequence such that lim; Fj(u;) = lim;infx Fj
then its limit is a minimum point for F.

The definition of I'-convergence can be given pointwise on X. It is convenient
to introduce also the notion of I'-lower and upper limit, as follows: let F. : X —
[—00,4+00] and u € X. We define

I-liminf F, (u) = inf{liminf F, (u.) : u. — u}; (9)
e—0t

e—0+



I-limsup F; (u) = inf{lim sup F; (ue) : ue — u}. (10)
e—0t e—0t
If I-liminf, ,o+ Fe(u) = I-limsup,_,o+ F.(u) then the common value is called the
[-limit of (F;) at u, and is denoted by I'-lim,_,4+ F:(u). Note that this definition
is in accord with the previous one, and that F. I'-converges to F' if and only if
F(u) =T-lim,_,o+ F.(u) at all points u € X.

We recall that:

(i) if F = I-lim; F; and G is a continuous function then F'+ G = I'-lim;(F; + G);
(ii) the I'-lower and upper limits define lower semicontinuous functions.

From (i) we get that in the computation of our I'-limits we can drop all
d-continuous terms. Remark (ii) will be used in the proofs combined with approx-
imation arguments.

For an introduction to I'-convergence we refer to [8]. For an overview of I'-
convergence techniques for the approximation of free-discontinuity problems see

[5]-

3 Preliminaries

In the following Q will denote a bounded open set in R™ with Lipschitz boundary.

We denote by W(Q) the space of all functions w € SBV(Q) satisfying the
following properties:

(i) 1" (B \ Su) = 0

(ii) Sy, is the intersection of (2 with the union of a finite number of pairwise
disjoint (n — 1)-dimensional simplexes;

(iii) w € Wh>=(Q\ S,,) for every k € N.

The following result is due to Cortesani and Toader [7] (see also [6]).

Theorem 3.1 (Strong approximation in SBV?) Let u € SBV?(2) N L>®(1).
Then there exists a sequence (w;) in W(Q) such that w; — u  strongly in L*(9),
Vw; = Vu  strongly in L*(Q,R™), limsup,_, , . [|wj]lec < ||ullec and

limsup/ ¢(wj+,w;,1/wj)d7-l"_1 S/ dluT uT, vy) dH !
Sw; Su

Jj—+oo

for every upper semicontinuous function ¢ : R x R x S"~! — [0, +00) such that
é(a,b,v) = ¢(b,a, —v), for every a,b € R and v € S"*.

The next result is a particular case of a theorem by Bouchitté, Braides and
Buttazzo [4], and deals with relaxation in BV of isotropic functionals.

Theorem 3.2 (Relaxation in BV') Let g : R — [0, +00] be a lower semicontinuos
function with

4
lim &

0)=0 =1
9(0)=0,  lim == =1,



and such that the map t — g(|t|) is subadditive and locally bounded. Let F :
BV (Q) — [0, +00] be defined by

/|Vu|dac+/ g(lut —u~)dH™™ if we SBV?(Q)NL>®(Q)
Q Su

otherwise in BV (Q)

Then the relazation of F with respect to the L' (Q)-topology is given on BV (Q) b
the functional

:/ |Vu|dac+/ g(lut —u|)dH" + |Du|(Q).
Q Su

The following lemma is a commonly used tool (see [5]).

Lemma 3.3 (Supremum of measures) Let p : A(2) — [0,+00) be an open-set
superadditive function, let X € M1 (), let 1; be positive Borel functions such that

A) > [, abidX for all A € A(Q) and let op(x) = sup; ¢i(x). Then p(A) > [, ¢ dX
for all A € A(Q).

We finally include a ‘slicing’ result by Ambrosio (see [1]). We introduce first
some notation. Let £ € S"~1, and let II¢ := {y € R™: (y,&) = 0} be the linear
hyperplane orthogonal to {. If y € II; and £ C R™ we define E; , = {t € R :
y+1t& € E}. Moreover, if u : Q@ — R we set ug , : Q¢ ,y = R by ue () = u(y +t§).

Theorem 3.4 (a) Let u € BV(Q). Then, for all £ € S™! the function ug,
belongs to BV (Q¢ ) for H" *-a.a. y € Il¢. For such y we have

ug () = (Vu(y + 1), &) for a.a. t € Q¢ (11)
={teR: y+t£ €S,}, (12)
v(t+) = ut(y + t€) or v(tx) = uT(y + t), (13)

according to the cases (vy,&) > 0 or (v, &) <0 (the case (v, &) = 0 being negligi-
ble). Moreover, we have

[ D%l Ae a1 () = (D" 8)(4) (14)

for all A € A(Q), and for all Borel functions g
[ ¥ swanw= [ gl gan. (15)

I LESy, Su

(b) Conversely, ifu € L'(Q) and for all € € {e1,...,e,} and for a.e. y € Il¢
Ugy € BV () and

| 1Due, Qe 1) < 4o, (19)

I
then v € BV (Q).



4 The main result

Using the space GBV defined in the previous section, it is possible to give a weak
formulation for problems as in (1) and (4), which has been successfully used to
obtain solutions of free-discontinuity problems (see [2]). In what follows we drop
the term containing [ |u — g|* dz, which is of lower order, and does not affect the
form of the I'-limit, and we generalize the form of the functional (3).

Theorem 4.1 Let W : [0,1] — [0,+00) be a continuous function such that
W(z) = 0 if and only if x = 1, and let ¢ : [0,1] — [0,1] be an increasing lower
semicontinuous function with ¥(0) = 0, ¥(1) = 1, and ¥(t) > 0 if t # 0. Let
G. : LY(Q) x LY(Q) = [0, +o<) be defined by
1
/(¢(v)|w| FIW) +elVel) do if v € HY(9)
Q
G.(u,v) = and 0 <v <1 a.e.

+o0 otherwise.

Then there exists the I'-lim. o G-(u,v) = G(u,v) with respect to the L'(Q) x
LY(Q)-convergence, where

/ |Vu| dz +/ g(Jut —u™|)dH"™ + |Du|(Q) if u€ GBV(Q)
G(u,v) = N .

andv =1 a.e.

400 otherwise,

and
9(z) == min {Y(x)z + 2ew(z) : 0 <z <1}, (17)

with cw (z) = 2fwl VW (s)ds.

The proof of the theorem above will be a consequence of the propositions in
the rest of the section . Before entering into the details of the proof, we define also
a ‘localized version’ of our functionals as follows:

1
/ (¢(v)|Vu| + EW(U) +E|V’U|2) de if u,v€ HY(Q)
A
G:(u,v, A) = and 0 <v <1a.e.

+o00 otherwise.

and

[ vuldo+ [ glut - umhanet+ Do)
A S.NA

G(u,v, A) ifue GBV(2) and v =1 ae.

400 otherwise,



for any A € Q bounded open set.

Remark 4.2 By the assumptions on ¢ and W, it can be easily proved that g
satisfies the following properties

(i) g is increasing, g(0) = 0 and

lim g(z) =2cw (0) = 4/0 VW (s) ds;

z—+o0
(i) g is subadditive, i.e.
g(z1+22) < g(z1) +9(22)  Vzi, 2 € RT

(iii) g is Lipschitz-continuous with Lipschitz constant 1;
(iv) g(2) < z for all z € Rt and

lim M

z—0t 2

v) for any T > 0 there exists a constant ¢y > 0 such that z < e¢r g(2) for all
z €10,T).

Proposition 4.3 Let n = 1. Then G(u,v) < I-liminf, g+ G:(u,v) for all u,v €
LY(Q).

Proor. It suffices to consider the case in which the right-hand side is finite.
Let 5 — 0%, uj = uw and v; = v in L'(2) be such that lim;_, ;o G, (uj,v;) =
I-lim inf, o+ Ge(u,v). Up to passing to subsequences we may suppose

uj = u, and v; = v a.e. (18)

We have
/ W(vj)dx < cej;
Q

hence, by the continuity of W, for any n > 0 £'({z € @ : W(v(z)) > n}) =
lim;_, o0 £ ({z € Q@ : W(vj(x)) > n}) = 0. We conclude that W (v) = 0 a.e., i.e.
v=1a.e.

By simplicity, suppose that Q = (a, b) (otherwise we split € into its connected
components). We now use a discretization argument similar to the one used in the
proof of [3]. Let N € N and consider the intervals

(k—1)
N

k
I}i,:(a-i— (b—a),a-{—N(b—a)), ke{l,., N}
Up to passing to subsequences we may suppose that

lim infwv;
J—rtoo Ik



exists for all N € N and k € {1,..,N}. Let z € (0,1) be fixed and consider the set

f:f_{kE{l ,N}: lim 1nfvj<z}

Jj=rtoo Ik

Note that for any (a,3) interval in R and for any w € H'(a,3) we have, by
Young’s inequality,

/BGW(w) +6|w'|2) dz > 2/ VW )| da > 2‘/

e w(a)

VW (s) ds‘.

From this inequality we deduce, arguing as in [3], that

1
(2 VWG ds) i < lim G, (u05) <+
. j—+oo
Then
#Jy <C
with C independent of N. Hence, up to a subsequence, we may suppose
T = {k, kT }

with L independent of N, and up to a further subsequence that there exist S =
{t1,..,tL} C [a,b] such that

N
lim = =t
N—+o00 N ¢

for any i € {1,..,L}. For every n > 0 we have
IN C Sy =S+ [=n,1]
for all k € J§, and for N large enough. Then
liminf G, (uj,v;) > liminf G, (uj,v;,Q\ Sy)

j——+oo j——+oo
L

+hm1anG (uj,vj, (ti = n,ti + 1))

]—>00.

> liminfe(z )/ |u| dt
o\S

j——+oo 17
L
+ > liminf G, (uj, v, (t; —n,ti +1)).  (19)
= Jj—+oo
With fixed i € {1,..., L}, we focus our attention on the term G-, (u;,v;, (t; —
n,t; +1)). By definition and by (18), we have that for any § > 0 there exist



x1, T2 € (t; —n,t; +n) such that

lim wu;(z = < ess-inf w4+,
im (@) u(z1) ss- Inf_ ¢
lim wj(z2) = wu(ws) > ess-sup u—J,
oo (ti=n,ti+n)
]BIJZIOO vj(z1) = JLHEOO vj(z2) = 1. (20)

Let x' € [1, 2] be such that v;(«}) = inf[,, 4, v;. Then we obtain the following
estimate:

Ge; (uj, vz, (i —m,ti +1)) > GS](U’JJUJJ T1,732))
> ‘/ udm‘-l—?/ W (v;)|vj| da
> Y(vi(@)))|uj(xa) — uj(@1)]
vj(z1) vj(z2)
VW (s)ds + 2 VW (s)ds
”J(z )
> téf%fu{ (1)lugr2) = uj<x1>|
vj(21) vj(22)
(/ VW ds+/ Niii ds)}
(21)

Letting j — +o00 and taking into account (20), we get

liminf G, (uj,v;, (t; — n,t; + 1))

j—+oo
> inf {w(t)‘ess sup u — ess- inf u—2(5 +4/ Va4 ds
te[0,1] (ti—n,ti+n) (ti—n,ti+n)

Thus, by the arbitrariness of § > 0,

liminf Ge, (uj, vj, (i —n,ti + 1)) > g(ess— sup u — ess- inf u) (22)
e (ti—n,ti+n) (ti—n.ti+n)

Now we turn back to the estimate (19). Since sup; G, (u;,v;) < +o0, by (19) we
get the equiboundness of fQ\S |uj| dt. Hence u € BV(2\ S;) and, by (19) and

(22),
L

liminf G¢ . (uj,v;) > ¥ (z)|Dul(2\ S)) + ess- sup w — ess-inf wu 23
liminf e, (u,v5) 2 ()| Dul(2\ 5) ,Zlg(w sup = gss-inf_ u). (29

10



By the arbitrariness of 7, we deduce that u € BV (Q2\ 5), i.e., since S is finite,
u € BV (). Then, letting n — 0 in (23), we get

L
liminf G, (uy,07) > ()| Dul( @\ $) + 3 g(fu* —u”|(t)
> $(2)|Dul(@\ S) + D (9wt —u |O) AvEIt —u 1), (24)

teSy

Finally, letting z — 1 in (24) we obtain the required inequality, since g(¢) < ¢. [

We recover, now, the n-dimensional analogue of the previous inequality, by
using Theorem 3.4.

Proposition 4.4 Letn € N. Then G(u,v) < TI'-liminf, o+ G.(u,v) for allu,v €
LY(Q).

PROOF. In the following we will use the notation G' = I'-liminf,_,¢+ G-.
Let £ € S"~! be fixed and let II¢ be the hyperplane through 0 orthogonal to
€. For any u € LY(Q), A € A(Q), y € Il we set

Agy = {tER:y+1E€ A}, ugy(t) i=uly + )
In particular, if u € H'(Q), we get
ugy (t) := (Vu(y + ), &)
For any u,v € H*(2), 0 < v < 1, we have, by Fubini’s Theorem,
G:(u,v, A)
= [ [ (e @mu e

FIW (uly + 1)) + <[ Voly + ) dedi™ = (y)

v

/ (d}(vgy(t))lugyl + %W(’Ugy(t)) + 5|véy(t)|2) dt 1™ ()
e J Agy

| Gelueyrvgdgy) a7 ), (25)
¢
where G, is defined by

1 .
/(¢(v)|u'| FIW) ") dt Euw € HI(D
Ge(u,v,I) = ! and0<v <1

+00 otherwise,

11



for any u,v € L*(I) and I C R open and bounded.
Let €; — 0 and let u; — u, v; — v in L'(Q2) be such that
liminf G, (u;,v;) < . 26
lim inf G (uj, v5) < +00 (26)
Then uj, v; € H*(Q), 0 < vj <1 ae. and, as in the proof of Proposition 4.3,
v = 1 a.e. Moreover, by Fubini’s Theorem, (uj)ey — ugy, (vj)ey — 1 in L*(Qgy)
for H" t-a.a. y € Il;.
Thus by Proposition 4.3 and by Fatou’s Lemma we get

liminf G, (uj,v;, A)

J—+oo

> 1 . f . ) 7 . ,A dr}_[nfl

> [ BTG (e () Aey) 40

> [ (] wlder [ gl - g+ 107 () a0 o)
He Ay Sug, NAgy

(27)

Let T > 0 and set
ur = (=T)V (uAT).

Since ¢ is increasing, it is clear that we decrease the last term in (27) if we substitute
u by ur. Moreover, since up € L*(R2), with ||ur|lew < T, by Remark 4.2(v), we
have

lug —up| < er g(Jug —ugl)

for a suitable constant ¢r depending only on 7. Then, by (26) and (27), we have
/ |Dur|(Aey) dH™ () < +oo.
e

Thus, applying Theorem 3.4, we get that up € BV () and, by the arbitrariness
of (u;) and(vy),

G'(u,1,4) Z/AKVUT,f)Id%L/ 9(luz —uz )| (vu, O dH ™" +[(Dur, £)|(4)

SunA
(28)
for all A € A(Q2) and € € S™ L.
Consider the superadditive increasing function defined on A(Q2) by

v(4) := G'(u, 1, A)
and the Radon measure

Ai=L"LQ+ g(juf —ugp ) H ™ L Syy + |Dur).

12



Fixed a sequence (&;);en, dense in S™~!, we have, by (28),

%MZAWM

for all i € N, where

[(Vur(z),&)| L™ ae. on
Yi(z) = ¢ [(vu(z), &)l |D¢ur| a.e. on \ Sy,

(o (), &) H*! ae. on Sy,
Hence, applying Lemma 3.3, we get
G'(u,1,A) > / |Vur|dz + / g(|ut —up]) dH"™" + |Dur|(4)  (29)
A Supn
for all A € A(2). In particular
G'(u,1,Q) > /Q |Vur|dz +/ g(lug —ug|) dH"™ + | D ur|(). (30)
up
Finally, by the arbitrariness of T' > 0, v € GBV () and the thesis follows letting
T — 400 in (30). O

Proposition 4.5 We have ['-limsup,_, o+ Ge(u,v) < G(u,v) for all u,v € L* ().

PRrOOF. It suffices to prove the inequality for v = 1 a.e. Since we will use
density and relaxation arguments, we divide the proof into five steps, passing from
a particular choice of u to the general one. In the following we will use the notation
G" =T-limsup,_,o+ G-.

Step 1. Suppose that u € W(Q) and

Su=QNK

with K a (n —1)-dimensional simplex. Up to a translation and rotation argument,
we can suppose that K is contained in the hyperplane II := {z,, = 0}. Set

h(y) :==u"(y) —u"(y), Y€ Su

By our hypotheses on u, h is regular on S.; hence, fixed § > 0, we can find a
triangulation {7;}Y, of S, such that

|h(y1) — h(y2)| <9 ifyi,y2 €T

13



Let hs : S, — R be defined as

h(;(y) =2z yeE Ti,
where z; := min {h(y) : y € T;}. Since ||h — hs|lc < J, by Remark 4.2 (iii), we
have that

/ o(hs(y)) dH L < / o(h(y) dH + 6H 1 (S,).
Su

Su

Let ., realize the minimum in (17) for z = z;. Fixed n > 0, there exists T'(n) > 0
such that

mm{ATowP+wqm)mzveH%mevmy:@“vuqz1}gcwu%)+n

(31)
for all T > T'(n) and for any i = 1,.., N. Let v(z;,-) realize the minimum in (31).
Forr >0,e >0and i€ {1,.., N}, set

B, = {(y,t) €N:yel,, |t< r} and T7 := {y €T;: dy,oT;) > 6},

and let ¢! : R(™Y — R be a cut-off function between T¢ and T; such that

(3

V4|l < Ce™!. Fix a sequence (&) such that lim. o4 %= =0, set T := T'(n)e +
&, and define

1 if (y,t)€Q\Br.
UE(yat) = { . . .
de(y)vi(t) + (1 —oi(y) if yeTy |t <T:,

Tz, if |t| < és
vi(t) =
v(zi, ‘tl%&) it & <|t| < Te.

where

We have that (v.) € H*(2) and v. — 1 in L'() as € — 0+. Hence, we get

/Gwmu-W@»m (32)
= 3 [ ) (o ) e

+2 / / eIV 6L () Plares = 1 + 2 (ve(y,1))) e aH" " (y)

+;/Ti\Tf /g:(s|v¢;(y)|2‘v(zh |t] —fa) _1‘2
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v' (z,-, =& ; EE) ‘2) dtdH™ *(y)
L Ly aran )

< ﬁ:/;2/0T(|v’(z,-,t)|2+W(v(z,-,t))) dt dH" " (y)

N
ZHTH(Su) + c(n) Y H TN T)

i=1

N
Z / ow (22,) AH" L (y) + 27H" 1 (S.) + O(e).

+§|¢i(y) :

Lok

We now construct a recovery sequence u.. Let

21 T, <t < =&
Ge(z1,22,t) = 4 BE(E+ &) + a1 [t <&
22 &<t < T
and set
u(y,t) |t| > T.
U’E(yat) = B
e (uly, ~To),uly, 1), 1) o < T

It can be easily verified that u. € H'(Q) and u. — u in L'(Q) as ¢ — 0F.
Moreover, we have

[ porvuae < 2/5/5 Fe V. T) = uly. =Tl e ()

+/ Vu| dz + cHP= (T \ TF) + O(c)
Q\Bts

N
[ vulda+ Y [ vt - @) an )+ 0)
=1 i
(33)
Letting, now, € tend to 0T, we obtain, by (32) and (33),

G”(ua 1) < limsup Gs(usa Us)

e—0t

N
/Q Vulde+ 3 /T (=Tl + 2o (a) 1) e

15



IN

N
[ 1vulds+ 3 [ vt + 20w @) an ) + et + 0
= [ vuldat [ ghsw)an ) +cn+ )
Q Sy

< /Q |V dz + /5 ot | A )+ e + ).

Letting n and ¢ tend to 0, we obtain the required inequality. _
In order to use the same construction as above in the case S, = QN

(Uf\il KZ-), with M > 1, we now show that we can replace (u.) by a new se-

quence (i) such that 4. # u only in a small neighbourhood of K. To this end we
again use a cut-off argument. Set

K. ={yell:dy,K) <e}

and let ¢. : R"™! — R be a cut-off function between K and K. with |V |e <
ce~!. Define

Ue(y, 1) = ¢ (Yue(y, 1) + (1 — ¢ (y))uly,t)  (y,t) € Q.
We have

ﬂg(y,t) = us(yat) if (yat) € By,
Ue(y,t) =u(y,t)  if (y,t) € A\ K. x (-1, T¢). (34)

/ V.| da g/ V| da
Q\Br, O\K. % (=T:,T.)

+/QQ(KE\K) /TE (|V¢s(y)||us(y,t) —u(y,t)|) dtdH" (y)

—T.
T
+/m(KE\K) /TE (¢s(y)|Vus(y,t)l
+(1 = 6. () [Vuly, 1)) dt dH" (y)
TE n—1
< /Q|Vu|d:c+c?7-l (K \ K) + Ofe).

Thus

limsup/ |V115|dx:/ |Vu| dz,
e—0+ JO\Br, Q

and, by (34), we still have

lim sup G, (e, v:) < G(u, 1) + ¢(n + 9).

e—0+
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Step 2. If u € W(Q) with S, = QN (Uf\il KZ-), we can generalize in a very
natural way the construction of the recovery sequences 4. and v, in Step 1, since
this construction modifies v and v only in a small neighbourhood of each sets Kj;.

Step 3. Let u € SBVZ(Q2) N L>®(Q). Then, applying Theorem 3.1 with
#(a,b,v) = g(Ja — b]), there exists a sequence (w;) € W(Q) such that

w; — uin L'(Q), and limsup G(w;,1) < G(u,1).

Jj—+oo
Then, by the previous steps and by the lower semicontinuity of G

G"(u,1) < liminf G"(w;,1) < liminf G(wj,1) < G(u,1).
Jj—+o0 Jj—+o0
Step 4. Since g satisfies the hypotheses of Theorem 3.2, the relaxation with
respect to L (Q2)-topology of the functional

G(u,1) if we SBV*(Q)NL>(Q)
F(u) :=
+00 otherwise in BV (12)

is given by o
Fu) = G(u,1)

for all w € BV (Q). Then by the previous steps and by the lower semicontinuity of
G" we get _
" (u,1) < F(u) = Glu, 1)

for any u € BV ().
Step 5. We recover the general case by a truncation argument. Let u €
GBV(Q) and let uj = (—j) V (u A j). Then

lim G(u;,1) = G(u,1).

j—+oo

Since u; — u in L'(Q) we get the thesis by the lower semicontinuity of G”. [

Example 4.6 We illustrate with a few simple examples the behaviour of the
function g, given by (17), with different choices of 1.

. The terms ”bulk energy” and ”surface energy” refer to the first and second
terms in Equation (17) and what is meant by interaction between the two at each
value of z is relative contributions of these terms to g(z) at that z.

Let W (v) = (1 —v)?/4, so that cw (z) = (1 — x)?/2. We then have

(a) if (v) = v? then g(2) = |2 /(1 + |2]);

(b) if ¥(v) = v then g(z) = { |2 = (%/4) if]z] <2

1 if 2] > 2;
©@itu) ={§ S

1 otherwise, then g(z) = min{|z|,1}.
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We see that the ‘bulk term’ and of the ‘surface term’ (i.e. the first and the
second term in (17)) play different roles in these examples. Note that in (a) we
always have interaction between these two terms (i.e. both terms contribute to
the value g(z)) contrary to what happens in the Ambrosio Tortorelli case. The
interaction also occurs in (b) for |z| < 2. Note moreover that in the third case the
minimal z in the definition of g(z) does not vary with continuity at z = 1.

5 Approximation of general functionals

In this section we show how Theorem 4.1 can be used to obtain an approximation
of general (isotropic) energies defined on GSBV by a double limit. The set Q will
be a bounded open subset of R™ with Lipschitz boundary.

Proposition 5.1 Let W and ¢ be defined as in Theorem 4.1, let f : [0, 4+00) —
[0, +00) be a convex and increasing function satisfying

lim m

t—=4o0o0 t

=1, (35)
and let G. : L' (Q) x LY(Q) — [0, +00) be defined by
/ () F(vu) + éW(v) FeVoP) de ifu,v € HY(®)
G (u,v) = “ and 0 <v <1 a.e.

+o00 otherwise.

Then there exists the I'-lim. o G- (u,v) = G(u,v) with respect to the L'(Q) x
LY(Q)-convergence, where

/ f(Vu|)dz +/ g(Jut —u™|)dH ™" + |Du|() ifu € GBV(Q)

Q Su

G(u,v) = and v =1 a.e.
400 otherwise,

and g is defined in (17).

PROOF. The estimate for the I'-liminf can be performed as in Proposition
4.3, noting that in (21) we obtain, by Jensen’s inequality,

Guy 5,03, 147 2 0o — £ (LI g [ ol

Z2 —I1 1

from which the lower bound can be easily obtained taking into account (35). The
rest of the proof can be obtained following Propositions 4.4 and 4.5. [l
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Remark 5.2 Let K >0 and N > 2, let
O=as<a; < <an =1, 0=bny <bn_1---<by =K,

and let f and W be as in the previous proposition. Then there exists ¢ satisfying
the hypotheses in Theorem 4.1 such that, if G. : L*(2) x L'(Q) — [0,+00) is
defined by

/(¢(v)f(|Vu|) + gww) +5K|Vv|2) dr if w,ve HY(Q)
G:(u,v) = . and 0 <v <1 a.e.

~+00 otherwise,

then the thesis of the previous proposition holds with g : [0, +00) — [0, +00) given
by

g(z) = min{a;z + b;}.
In fact, in this case the formula for g can be easily inverted, obtaining v as the
piecewise constant function given by ¢(0) = 0 and

V(&) =a;  if e (bis1/2) < €< ey 1(i/2),
where ¢y is defined in Theorem 4.1.

Proposition 5.3 Let W be as in Theorem 4.1. Let o, 9 : [0,+00) — [0,+00) be
functions satisfying

(i) ¢ is convex and increasing, lim;_, o ©(t)/t = +00;

(ii) 9 is concave, lim;_,q+ ¥(t)/t = +00.

Then there exist two increasing sequences of functions (v;) and (), and a
sequences of positive real numbers (k;), converging to sup ¥, such that if we define

k.
/ (5@)es(Vul) + LW @) + ke Vo) do - if w0 € H'(9)
. Q
G (u,v) = and 0 <v <1 a.e.

+00 otherwise,
(36)
then for every j € N there exist the limits

I- lim GY(u,v) =: G’ (u,v)
e—0t

I- lim G'(u,v) = lim G7(u,v) = G(u,v)
Jj—+oo J—rtoo

with respect to the L'(Q) x L'(Q)-convergence, where

/90(|Vu|)dm+/ I(ut —u ) dH" ' ifu e GSBV(Q)
Q Sy

G(u,v) = andv =1 a.e.

+o00 otherwise.
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PROOF. Let ¢, : [0, 4+00) — [0, +00) be functions of the form
9;(2) = min{Alz + BI},

with 0 = Aé <-- < A; = j converging increasingly to ¥, and let ¢; : [0, +00) —
[0,+00) be convex increasing functions with

i P t) _

to4oo ¢ ’

converging increasingly to ¢. Let k; = max ;.

Set g; = ¥,/4, K; = kj/j and f; = ¢;/j. By the previous remark, ap-
plied with ¢ = g;, f = f; and K = Kj, we can find ¢ =: 1; such that if
we let G4 : L1(Q) x LY(Q) — [0, +00) be defined by (36) then there exists the
[-lim. 04+ GZ(u,v) = G’(u,v) with respect to the L'(Q) x L!({2)-convergence,
where

/ @;(|Vu|)dz +/ O;(Jut —u™|)dH"™! + j|Du|(Q)
. Q Su
G’ (u,v) = ifue GBV(Q) and v =1 a.e.

400 otherwise.

Since the functionals GY converge increasingly to G, they also I'-converge to G as
j — +o0. 0

Remark 5.4 If ¢ is convex and even, ¢ is concave and even, and

lim M— lim @:M,

t—+oo ¢ t—ot 1

then there exist (p;), (¢;) and (k;) such that the functionals G7 defined above
I'-converge with respect to the L'(Q) x L!(Q)-convergence to

/ o(|Vul)dz +/ I(jut —u” [)dH" " + M|Du| ()
Q S
G(u,v) = ifue GBV(Q) and v =1 a.e.

+o00 otherwise.

The proof can be obtained directly from Remark 5.2, using the approximation
argument of Proposition 5.3.
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