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QUASICONVEX HULLS IN SYMMETRIC MATRICES

GEORG DOLZMANN

ABSTRACT. We analyze the semiconvex hulls of the subset K in symmetric
matrices given by K = {F € M?*2 : FT = F, |F11| = a,|F12| = b, |Fa2| = ¢}
that was first considered by Dacorogna& Tanteri [Commun. in PDEs 2001]. We
obtain explicit formulae for the polyconvex, the quasiconvex, and the rank-one
convex hull for ac — b2 > 0 and show in particular that the quasiconvex and
the polyconvex hull are different if strict inequality holds. For ac — b> < 0 we
obtain a closed form for the polyconvex and the rank-one convex hull.

1. INTRODUCTION

The central notion of convexity in the vector valued calculus of variations is
quasiconvexity (in the sense of Morrey [14]). Recall that a real valued function f
defined on the space M™*" of all real m x n matrices is quasiconvex if there exists
an open domain 2 in R™ such that

1 1
ﬁ/QW(F)dxg ﬁ/QW(F+D¢>)C1;U

for all F € M™*™ and ¢ € C§°(£2; R™).

In particular motivated by applications to problems in materials science (see,
e.g, [1, 5, 9, 16]), there has been an increasing interest in the mathematical analysis
of variational integrals for which the energy density W is not quasiconvex. If we
assume that W > 0 with K = {X : W(X) = 0} # ), then a typical question is to
characterize the set of all matrices F' such that

1
inf —/ W (Du)dz = 0.
u€W?L > (Q;R™) 12| Jo
u(z)=Fz on 6Q
This set is called the quasiconvex hull of K and it describes in the context of
nonlinear elasticity theory the set of all affine deformations of 02 with arbitrarily
small stored energy. In nice analogy to the definition of the convex hull K€ of a
set, an equivalent characterization of K9° is given by [20]

K ={FeM™": f(F) < sup f(X) Vf:M"™" = R quasiconvex }.
XeK

Despite the fundamental importance of quasiconvex hulls, only very few explicit
examples are available in the literature (see, e.g., [2, 3, 4, 19]). In most of these ex-
amples, the quasiconvex hull coincides with two closely related hulls, the rank-one
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2 GEORG DOLZMANN

convex hull K*¢ and the polyconvex hull KP¢ of K. The definition of these hulls
is analogous to the definition of the quasiconvex hull where one replaces quasicon-
vexity by rank-one convexity and polyconvexity, respectively. Here we say that a
function f : M™*™ — R is rank-one convex if it is convex on all rank-one lines, that
is, the functions ¢(t) = f(F + tR) are convex in t for all FF € M™*" and for all R
with rank(R) = 1. It is polyconvex if there exists a convex function g of the vector
M(F) of all minors of F' with f(F) = g(M(F)). For m = n = 2, the case of interest
in this note, g is a convex function from R® into R with f(F) = g(F,det F'). Since
rank-one convexity is a necessary condition for quasiconvexity and polyconvexity a
sufficient one, it follows that

KI‘C g KqC g KpC.

As a consequence, one obtains a characterization of K¢ for all sets K for which
the rank-one convex and the polyconvex hull coincide. While this identity has
been established in certain cases with high symmetry, it does not hold in general.
Indeed, a nice example of a set in 3 x 2 matrices for which the rank-one convex hull
is different from the quasiconvex hull can be found in [13]. It is an open question
whether K*¢ = K9 for 2 x 2 matrices. A positive answer was recently given in [15]
for the case that K is a subset of the diagonal 2 x 2 matrices. In the proof one
crucially uses the fact that the intersection of the rank-one cone with the diagonal
matrices consists of two lines. The case of symmetric 2 x 2 matrices is already much
more challenging. In this case, the rank-one cone still has a very simple geometric
structure. If one uses the coordinates

_(¢+E
(fﬂ?;()—( n (;_f);

then it is given by the standard cone ¢? = £2 + n?. The methods in [15], however,
do not apply since the set of rank-one directions is not linearly independent. The
geometric insight into the structure of the rank-one cone in symmetric matrices is
also at the heart of the surprising example of a set of five points without rank-one
connections which is the range of the gradient of a Lipschitz function that is not
affine [10].

In this paper, we show how the geometry of the rank-one matrices in the space
of all symmetric matrices can be used to characterize the semiconvex hulls in an
interesting test case. Following Dacorogna& Tanteri [7], we define the set K for
constants a, b, ¢ > 0 by

K={FeM*?.FT = F, |F11| = a,|Fi2| = b,|Fa| = c}.

Before we state our main result, we define the lamination convex hull K'¢ of a
set K which is well-adopted to constructions and of importance in the proof of
Theorem 1.1 below. Motivated by the observation that Fy, Fy € K with rank(F; —
F5) =1 implies that the line segment AF} + (1 — X)Fz, A € [0,1], belongs to K™,
we set

o0
ch — U K(i),

i=0
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where K9 = K and
K = KOUlF=AR +(1-NF F, K, e KV,
rank(F; — F») =1, A € (0,1)}.
By definition, K'¢ C K. We are now in a position to state the main result of this
paper.
Theorem 1.1. Let

_ _ (T Y . _ _ _
K_{F_<y Z>.|:c|—a, ly| = b, |z|—c}

with constants a, b, ¢ > 0. Then
KP¢ = {FE K¢:(x—a)(z+c)<y®> =1, (z+a)(z—c) ng—bQ}.
Moreover, the following assertions hold:
i) If ac — b> < 0 then
K® =K'“=K"*={FeK: |y|=b}.
i) If ac — b* > 0 then K = K' = K = K9 and
K*={F e K" : (r—a)(z—c) > (jyl - b)",
(x+a)(z+¢) > (lyl —b)*}.

Remark 1.2. It is an open problem to find a formula for the quasiconvex hull of
K in the case ac — b < 0.

Remark 1.3. A short calculation shows that the additional inequalities in the def-
inition of K'° are true for all F € KP¢ if ac — b> = 0 and that consequently
K' = KP°. This was already shown in DacorognaéTanteri [7]. The authors also
obtained the formula for K'° in the case ac—b* < 0 and observed that K'° is always
contained in the intersection of the convex hull of K with the exterior of the two
hyperboloids (x — a)(z +¢) = y*> — b% and (z + a)(z — ¢) = y* — b2. However, they
did not identify the latter set as KP€.

The rest of the paper is organized as follows: We derive the formula for the
polyconvex hull of K in Section 2. The formulae for the lamination convex hulls in
statements i) and ii) in the theorem are obtained in Sections 3 and 4, respectively.
Section 5 finally contains the proof for the representation of the quasiconvex hull
for ac — b* > 0.

2. THE POLYCONVEX HULL OF K.

Among the different notions of convexity, polyconvexity has the most similari-
ties with classical convexity. One instance is the following representation for the
polyconvex hull KP¢ (see [19]),

(2.1) KP = {F e M>?: (F,det F) € K°},
where

K ={(F.detF): Fe K} C R’
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By definition, K consists of symmetric matrices, and therefore K and K¢ are con-
tained in a four-dimensional subspace of R?. We restrict our calculations to this
subspace by the identifications

a —a a —a a —a a —a
K = cl,l ¢c|,l—<cl,{—-c|,l c],l c|,|—-c],|—-c
b b b b —b —b —b —b

and
I?: {(m,z,y,mz—yQ) : (1.7271/) € K}

We denote the eight points in K by fi,...,fs-

Since K is a finite set, K¢is a polyhedron in R*, which is the intersection of
a finite number of half spaces. Moreover, on each face of K° we must have at
least four points in K that span a three-dimensional hyperplane in R*. A short
calculation shows that the following list of six normals completely describes the
convex hull of K:

n1 = (¢,a,0,—1), ng = (—c¢,a,0,1,),

ns = (¢, —a,0,1), ny = (—¢,—a,0,-1),
ns :(0707170)7 Ne :(0707_]-70)‘
It turns out that the hyperplanes defined by ny,...,n4 contain six points in K,

<f4,n1> = <f8;n1> = —3ac+ b’ <ac+ b’ = <fian1>a i ¢ {4,8},
(f3,m2) = (fr,m2) = =3ac — b* < ac—b* = (fi,n2), i & {3,7},
(fa,m3) = (fo,n3) = =3ac —b* < ac— b = (fi,n3), i¢{2,6},
<f1,n4> = (fs,m) = —3ac+ b’ <ac+ b’ = (fi,m), i ¢ {1,5},
and that the faces of the polyhedron defined by ns and ng contain four points,
(fisns) = —b<b={(fi,ns), i=1,2,3,4,j=586,7,8,
(fisme)y = —b<b={(fi,ne), =5,6,7,8j=1,234.

In view of the representation (2.1) for the polyconvex hull and the formulae for the
normals, this implies that all points in KP¢ must satisfy the convex inequality

(2.2) lyl < b
as well as the additional inequalities
cr +az — (vz —y?) < ac+ b —cx +az+ (zz —y?) < ac — b,
cx —az + (vz —y?) < ac—b?, —cx —az — (zz —y*) < ac + b,
which we can rewrite as
03 —@m@E-0 < Pl @+a-0 < y2-,
(z—a)(z4+¢c) < y* =07, —(z+a)(z+c) < —y* + b
We now assert that this system of inequalities is equivalent to the conditions
(2.4) lz| <a, fz]<e, |yl <D

describing the convex hull of K and two additional inequalities

(2.5) (x+a)(z—c) <y’ =bv*, (x—a)(z+c)<y*—-0"
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This proves the formula for the polyconvex hull of K. In fact, the sum of the two
upper and the two lower inequalities in (2.3) implies

az <ac and —az<ac,
and the sum of the two left and the two right inequalities, respectively, gives
cx<ac and —czx<ac.

Therefore |z| < ¢ and |z] < @ and this proves that (2.2) and (2.3) imply (2.4) and
(2.5). Conversely, if the convex inequalities |z| < a, |2z] < ¢, and |y| < bin (2.4) hold,
thenx—a <0, z—c < 0 and —y?+b* > 0. Consequently —(z—a)(z—c) < —y?+b%.
Similarly, we have z-+a > 0, z+c¢ > 0 and thus —(z+a)(z+c) < —y?+b?, as asserted.
This concludes the proof of the formula for KP¢ for all parameters a, b, ¢ > 0.

3. THE LAMINATION CONVEX HULL OF K FOR ac — b% < 0.

We now turn towards proving the formula for K'° and we assume first that
ac —b? < 0. We let

A={FeK°: |y| =b}.
In this case, none of the matrices in A with y = b is rank-one connected to any

of the matrices in A with y = —b, and the assertion follows essentially from the
following locality property of the rank-one convex hull.

Proposition 3.1 ([10, 11, 12, 17]). Assume that K is compact and that K*® con-
sists of two compact components C; and Cy with C1 N Cy = 0. Then

K*=(KNnCy)"U(KNCy)™.

Clearly, all elements in A can be constructed using the rank-one connections be-
tween the four matrices in K with y = b and y = —b, respectively. The observation
is now that the polyconvex hull is not connected, since KP*N{F : |y| < e} = for
€ > 0 so small that €2 < b?> — ac. Indeed, summation of the two inequalities in the
definition of KP¢ implies ac — zz > b> — y? or, equivalently, 0 > ac — b% + y2 > zz.
Thus necessarily either > 0 and z < 0 or < 0 and z > 0. In the former case the
first inequality cannot hold since

(z—a)(z+e) <y’ b & 0<2(2+4+c¢)—az<ac—b+y* <O0.
In the latter case the second inequality is violated. We may now apply Proposition
3.1 and we conclude that K'¢ = K™ = A.
4. THE LAMINATION CONVEX HULL OF K FOR ac — b > 0.
Assume now that ac — b? > 0, and let A be given by
A={FeK": (z—a)(z—c) > (lyl —b)> (z+a)(z+c) > (lyl —b)?*}.

By symmetry, we may suppose in the following arguments that y > 0. Then this
set is described by three types of inequalities, namely the stripes

(4.1) ol <a, |l <e, Jyl<b
defining the convex hull of K, the hyperboloids
(4.2) (z—a)(z+0¢) <y’ =0, (x+a)(z—c) <y’ -1
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in the definition of KP¢, and the cones

(4.3) (z—a)(z—c) > (y—b)?* (z+a)(z+c)>(y—b)

v=(5 )

Since A is compact, it suffices to prove that all points X € A that satisfy equality in
at least one of the inequalities in the definition of A can be constructed as laminates.
To see this, assume that X lies in the interior of A. The idea is to split X along
a rank-one line in two rank-one connected matrices X+ that satisfy equality in at
least one of the inequalities in the definition of 4. We set

To simplify notation, we write

t~ =sup{t < 0: X + tw ® w satisfies one equality in A},
tT =inf {t > 0: X + tw ® w satisfies one equality in A}.

By assumption, t~ < 0 < tT and we define X* = X + t*w ® w. Then X =
(t— Xt —t"F*)/(tT —t7) and it suffices to show that X* are contained in K¢

Assume thus that X € A satisfies equality in at least one inequality in the
definition of .A. We have to prove that this implies X € K¢, This is immediate for
the convex inequalities |z| < a, |y| < b, and |z| < ¢. For example, if £ = a, then by
(4.2) |n| = b and by symmetry we may assume that 7 = b. Then (4.1) implies that
¢ =MXe+ (1= MN)(—c) for some X\ € [0,1] and thus

X:A(Z 2>+(1—/\)<Z _g) <‘; 2)—(‘2 _2)22062@62.

The argument is similar for |¢| = ¢. Finally, if |n| = b and n > 0, then
(&,m) € conv {(a, c), (-a,c), (a,—c), (—a, —c)},
and therefore X € K,
Assume next that X lies on the surface of one of the cones
(z—a)(z—c) > (y—b)?* (z+a)z+c)>(y—b)

These cones are the rank-one cones centered at points in K, and we may suppose
that X is contained in the rank-one cone C; given by
a b 2
C’lz{F:det[F— b e ]:(x—a)(z—c)—(y—b) :0};
the argument is similar in the other case. The cone C) intersects the part of the
boundary of the convex hull of K that is contained in the plane {y = —b}, which
by the foregoing arguments is contained in K(?). We will show that X belongs to

a rank-one segment between a point G in this intersection and the point F} € K,
where F7 and G are given by

F1:<Z 2) and G:(_fb ‘2) 7 < a, |7 < c.

This implies X € K®) C K. In order to prove this fact, let

_ _(a=¢& b-n
R_Fl—F_<b_n c_€>.
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By assumption, det R = 0, and we seek a t € R such that

_(a+tla=¢& b+tb—n) \ _
Fotil= ( btb—1) c+tlc—E) >—G'

This implies

B 20
= b
and thus
2b(a — —
g Maz9 e
b—mn b—mn
Clearly T < a and we only have to check that T > —a, or equivalently
a,a-¢
b~b—n

To establish this inequality, we subtract the equality (z — a)(z —¢) = (y — b)? in
the definition of C; from the inequality (z + a)(z — ¢) < y? — b? in the definition of
KP¢ and we obtain that X satisfies

2a(¢ —¢) < (=2b)(b— ).
Therefore, again in view of the definition of C1,
b—n a—¢§

and this proves the bounds for Z; the arguments for Z are similar. Since G € K
we conclude

It remains to consider the case that X € A satisfies equality in one of the inequalities
defining the one-sheeted hyperboloids. Assume thus that

(E+a)(C—c)=n" - b

The idea is to use the geometric property of one-sheeted hyperboloids H already
observed by Sverdk [19], namely that for each point F on H there exist two straight
lines intersecting at F' that are contained in H, and that correspond to rank-one
lines in the space of symmetric matrices. More precisely, we seek solutions w =
(u,v) € St of

X+tweweH or (€+tu?+a)(+tv? —c) = (n+ tuv)? — b°.
This is equivalent to the quadratic equation
u? (¢ — ¢) + v* (€ + a) = 2uwn.

Since v = 0 and v = 0 are only solutions for £ = —a and { = ¢, respectively, we may
assume that u, v # 0. In this case there are two solutions for the ratio 7 = u/v,
given by
ntb

p— c )

T1,2 =
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The strategy is now to split X into two points X+ along one of these rank-one lines
that satisfy equality in at least two of the inequalities in the definition of A. Let

t~ =sup{t < 0: X + tw ® w realizes two equalities in A},
tT =inf {t > 0: X + tw ® w realizes two equalities in A}.
By assumption, t~ < 0 < t* and we define X* = X + t*w ® w. In view of the
foregoing arguments, the matrices X * belong either to K3 or to the intersection
H of the two hyperboloids,
H = {F:(@+a)(z—c)=y* -, (x—a)(z+¢) =y* - b*}.

The formula for the lamination convex hull is therefore established if we show that
H C K. By symmetry it suffices again to prove this for all F' € H with y > 0.
Now, if F € H, then

az=cx, and 2xz—ac=y?—0b.

Thus the intersection of the two hyperboloids can be parameterized for y > 0 by
a c
15»—)(0\/j t2+ac—b2,t,o\/j\/t2+ac—b2), oe{xl}, t>0.
c a

We may assume that o = 1. In this case the inequality (z —a)(z —¢) > (y — b)? in
the definition of A is equivalent to (ac —b?)(b—t)? < 0 and this implies ¢ = b, and
thus F € K, if ac—b? > 0. If ac— b?> = 0, then the intersection of the hyperboloids
coincides with the rank-one line between

a b —a -—b —a b a —b
(b c)m(_b _c>, or ( ' _c>and<_b )

and consequently F' € K1), This proves the formula for the lamination convex
hull.

5. THE QUASICONVEX HULL OF K FOR ac — b> > 0.

It remains to prove that for ac — b > 0 all points in KP¢\ K¢ can be separated
from K (or equivalently from K!¢) with quasiconvex functions. Recall that by
Remark 1.3 the quasiconvex and the polyconvex hull coincide for ac — b> = 0. We
may therefore assume in the following that ac — > > 0. We divide the proof of
this assertion into three steps. First we show that the additional inequalities in the
definition of K'¢ are only active for #, z > 0 or z, 2 < 0. Then we construct a
sufficiently rich family of quasiconvex functions that separates points from K, and
finally we prove the theorem.

5.1. Reduction to the case z, y, z > 0. By symmetry we may always assume
that y > 0. In this case the formula for K'° contains the additional inequalities

(5.1) (z+a)(z+¢) > (y-b)?% (z-a)(z-c)>(y—-b)
Assume for example that F' € KP¢ with < 0 and z > 0. The inequalities in (5.1)
can be rewritten as
(x ta)(zxc) > b —y? +2y° — 2by.
It follows from F' € KP° that —(z + a)(z — ¢) > b? — y?. The foregoing inequalities

are thus true if
(x+ta)(z£c)>—(x+a)(z—c)+2y* — 2by
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is satisfied. The equation with the minus and the plus sign are equivalent to
(5.2) 2r(z—¢)+2y(b—y) >0 and 2z(z+a)+2y(b—y) >0,

respectively. Since by assumption z < 0, z < ¢, and y € [0,b], the first inequality
in (5.2) holds and this implies the first inequality (5.1). Similarly, the second
inequality in (5.2) is true in view of z > 0 and & > —a, and consequently the
second inequality in (5.1) follows.

5.2. Construction of quasiconvex functions. From now on we assume that
x,y,z > 0 and that © # a, 2 # c and y # b (see Section 4). We need to show
that all points in KP¢ with (z —a)(z — ¢) < (y — b)? can be separated from K by

quasiconvex functions. This will be done using the Sverdk’s remarkable result that
the functions

(F) = |det F'| if the index of F is £,
gt = 0 otherwise,

are quasiconvex on symmetric matrices, see [18]. Here the index of the symmetric
matrix F' is the number of its negative eigenvalues.

We begin by calculating the intersection of the boundary of the cone (x —a)(z —
¢) > (y — b)? with KP¢ for fixed y € [0,b). This intersection can be parameterized
by

y ct+(y—0?/(t—a) b’ c
and we write ¢ — F(y,t) or t — F,; for simplicity. A short calculation shows that

|Iy| = (ac — b*)(b —y)/(bc) > 0. We define quasiconvex functions f, ; on the space
of all symmetric matrices by

fy7t(F):.90(F_Fy7t)7 ye [Oab)ate-[ya

and show first that f,; = 0 on K. In order to do this, it suffices to prove that all
the matrices of the form F' — F(y,t) with F' € K are not positive definite. In fact,

o () ) ). ten,=[Las M2l

det[( :Sb ilc) ) _Fy7t] :(a_t)(ic_c)+(y_b)2_(ib—y)2SO,

and thus all matrices of the form F' —F), ;, with F' € K and Fi; = a are not positive
definite. Moreover,

—a +b P —a—t +b—vy
[ +b  +e ) y7t]_ +b—y ic—c—% ’
and consequently all the matrices X = F' — F, ; with F' € K and F; = —a satisfy

X171 <0 and are therefore not positive definite.

5.3. Separation of points from K'° with quasiconvex functions. Recall that
we assume that

X=<f7 Z) with €7, (> 0and £ £ a, (£ e, £b.
We have to show that all matrices X € KP¢ with
(5.3) (E—a)(¢—c)<(n—0)°

can be separated from K by a quasiconvex function. We will achieve this by an-
alyzing different regions for { which are related to the intersection of K9¢ with
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(x-a)(z+c)=y? —b*

(x—a)( z—6)=(y—b)2

il
s

(x+a)(z+c)=(y-b)

(x+a)(z—c)=y?>—b?

FIGURE 1. The polyconvex hull (bounded by the thick solid lines)
and the quasiconvex hull (the intersection of the four hyperbolic
arcs) of K in the plane {y =n > 0}.

the plane y = 7. In this plane, the intersection of K9¢ with the quadrant z > 0
and z > 0 is bounded by the three hyperbolic arcs (x — a)(z — ¢) = (p — b)? and
(x £ a)(z F¢) = n? —b*. In the following we consider four different regions for
& > 0 which are defined by the points where two of these hyperbolic arcs intersect
(see Figure 1). More precisely, the hyperbola (z — a)(z — ¢) = (n — b)? inter-
sects the hyperbola (z + a)(z — ¢) = n* — b? for ;1 = an/b and the hyperbola
(x —a)(z+c¢) =n? = b* for x5 = a+ b(n — b)/c. The four cases now correspond to
Ee[0,z1], £ € (x1,22), £ = xa, and & € (x2,a), respectively. We begin with the
last case first.
Case a) Assume that £ > a +b(n—0b)/c. If (¢ —a)(( +¢) <n? —b?, then

b —n? c(b* —n?) _ on
>—ct— "t > T2
(> —c+ pp: > —c bl b) b
We define
b(n—b) —a—>bn—>0)/c 0
GW:F(nva+ ¢ )7ZZ‘X_G(77:<£ 0(17 )/ C_cn/b>a

then Z is positive definite and in view of Section 5.2 the function go(F — G)
separates X from K'¢. On the other hand, if (£ —a)(¢ + ¢) > n? — b?, then X does
not belong to KP°.

Case b) Assume that £ = a+ b(n — b)/c. We assert that in view of (5.3) we may
find an 7 € I,, = (an/b, ) such that

2=x-F00)= (07 o e w )

is positive definite. This follows easily since X is positive definite if and only if
&>7T and

_ (=t

C_

In view of (5.3) we can choose T < & close enough to  such that the latter inequality
holds. Therefore we can separate X from K¢ with the function go(F — F(n,T)).

>0 or (T—a)((—c)—(n—-"0)%<0.
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Case ¢) Assume that ¢ € (an/b,a + b(n — b)/c). The conclusion follows as in
case b), since we can choose by continuity = € (an/b,f) such that X — F'(n,Z) is
positive definite.

Case d) Assume that & € [0,an/b]. We assert that no point in KP¢ satisfies
(5.3). If (5.3) holds, then

b
(>ct 01—
a

However, for

_p)2
e=5=" and z:E:c-i-Lv )
b T—a

the inequality (z + a)(z — ¢) < n? — b? is satisfied with equality. If

_ )2
M and (>c+ (717[)),

b T—a

then (¢ +a)(¢ —¢) > n? — b?, a contradiction. This concludes the proof of the
theorem.

€<
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