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Abstract
We study Plateau’s problem for two-dimensional parametric inte-
grals

F(X) ::/ F(X, Xy A X,) dudv,
B

the Lagrangian F(z, z) of which is positive definite and at least semi-
elliptic. It turns out that there always exists a conformally parame-
trized minimizer. Any such minimizer X is seen to be Hdolder con-
tinuous in the parameter domain B and continuous up to its bound-
ary. If F possesses a perfect dominance function G of class C? we
can establish higher regularity of X in the interior. In fact, we prove
X € H2?(B,R*)NCY7 (B, R™) for some o > 0. Finally we discuss the

loc
existence of perfect dominance functions.

1 Introduction and main results

Let B™ be the space of bivectors ( = £ An with {,n € R*, n > 2. If
€= (€,€2,...,6", n = (n',n%...,n"), then ¢ = (¢C7F);<p, where (7F :=
Eink — ¢kpi. For n = 3, ¢ = £ A7 is the usual vector product of ¢ and 7,
except that in this case we take ¢ as (¢23,¢3',¢'?), in agreement with the
standard notation.

The norm
1/2

Cle= | D1
i<k
of { = & An can be expressed by the Lagrangian identity

(1.1) € Anl* = € — (€ n)?,
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where ¢ - ) denotes the Euclidean inner product & - = &'np! + .- 4 &2,
This implies

(12) € Al < S(1EP +InP),

and we have equality if and only if [¢]? = |n|? and & - = 0. We can identify
B" with RN, N :=n(n—1)/2. In the sequel we consider Lagrangians F(z, z)
which are positively homogeneous of degree 1 with respect to z, i.e. which
satisfy

(H) F(z,tz) = tF(z,z) forall t>0, (z,2) € R* x RV,

DEFINITION 1.1 A parametric Lagrangian F(x, z) is a function of class
COR™ x RN) satisfying condition (H). Such a Lagrangian is said to be
positive definite if there are two numbers mq and mo with 0 < mq < mg
such that

(D) mi|z| < F(z,z) < mglz| for all (z,z) € R® x RN,

A special Lagrangian of this kind is the area integrand A(z) := |z|. For any
X € HY2(Q,R"), Q C R2, the area functional

Aq(X) = /QA(Xu A Xy) dudv

is well-defined and real-valued, and the same is true for any parametric
variational integral

Fa(X) !Z/F(X,Xu/\Xv)dudv
Q

with a parametric, positive definite Lagrangian F'(z, z). Moreover, condition
(D) is equivalent to myA < F' < myA, and implies
miAq(X) < Fo(X) < maAq(X) for any X € HH?(Q,R").

DEFINITION 1.2 A parametric Lagrangian F' is said to be semi-elliptic on
Q xRN, Q C R, if it is convex with respect to z, i.e. if

(C) F(x,tlzl + t222) S tlF(l‘, Zl) + tgF(l‘, 22)

forti,to €[0,1], ty +ta =1, 2 € Q, 2 € RN. We call F elliptic if for every
Ry > 0 there is some X*(Ry) > 0 such that F — X*(Ry)A is semi-elliptic on
FRO (0) X RN.
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If F is of class C? on R" x (RY — {0}), condition (C) is equivalent to the
assumption that F,,(z,z) is positive semi-definite for z # 0, and therefore
ellipticity of F' means that F,,(z,z) — A\*A,.(2) is positive semi-definite for
all (z,2) € Bg,(0) x (RY —{0}) and some A\*(Rg) > 0.

Since |2| - Azx(2)¢ = [C* — [2[7(2 - ¢)* = |P/¢|? for any 2,¢ € RY,
2z #0, and P}¢ := ¢ — |2|72(2 - (), ellipticity of F' means

(1.3) 12|¢ - Fuo (2, 2)¢ > A (Ro) | P¢)?

for some A\*(Rg) > 0 and any = € Bg,(0) C R*, z,{ € RV, z # 0. Notice
that |P;-C|? = |2|72|C A 2|2 by virtue of (1.1).

DEFINITION 1.3 If F(x,z2) is a parametric Lagrangian, we denote the func-
tion f:R® x R?™ — R defined by

(1.4) f(z,p) := F(z,p1 Apa) for p=(p1,p2) € R" x R* =R
as associated Lagrangian of F'.

Note that a(p) := A(p1 A p2) = |p1 A p2| is the associated Lagrangian of
A. In the terminology of J. Ball (cf. [3], p. 99), a parametric Lagrangian is
semi-elliptic if and only if its associated Lagrangian f is polyconvez. Corres-
pondingly, F' is elliptic if and only if its associated Lagrangian f is strictly
polyconvex, which means that f — A*a is polyconvex for some A* > 0.

Now we formulate the Plateau problem. Let I' be a closed, rectifiable
curve in R”, and denote by B the open unit disk B := {(u,v) : u? +0v? < 1},
which we will use as parameter domain of the competing surfaces X : B —
R*. By C(I') we denote the class of surfaces X € H"?(B,R") whose trace
X |ap on OB is a continuous, weakly monotonic mapping of 9B onto I'. Note
that C(I") is nonempty. Set F := Fp, A := Ap, that is,

(1.5) F(X) ::/BF(X,XU/\Xv)dudv for X € C(T).

Then we call the minimum problem “F — min in C(T")” the Plateau prob-
lem for the parametric variational integral (1.5). In Section 2 we prove the
following existence result.

THEOREM 1.4 If F € CO(R" x RY) satisfies (H),(D), and (C), then there
exists a minimizer X of F in C(I') which is conformally parametrized, i.e.
X € C(T') satisfies

(1.6) F(X) = infery F,
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and
(1.7) |Xu]? = | X%, Xu-X,=0 ae on B.

In [7] we have proved this result assuming that F' is elliptic. We should like
to thank Stefan Miiller who kindly pointed out to us that semi-ellipticity
of F' instead of ellipticity is sufficient for proving existence of a conformal
minimizer. Concerning the preceding results of Sigalov, Cesari, Danskin
(1951-1952), Morrey (1961, 1966) and Reshetnyak (1962), we refer to our
paper [7], pp. 251-252.

The next result is essentially due to C.B. Morrey; we will give a proof
at the end of Section 2.

THEOREM 1.5 Suppose that F € CO(R® x RY) satisfies (H),(D),(C). Then
every conformally parametrized minimizer X of F in C(T') satisfies

X e CO(E, R*")N 00’7(B,R”), v = my/me,

as well as the Morrey condition

2
(1.8) /‘ |VXmevg(1)7/ VX2 dudv
B, (wo) R Br(wo)

for any wo = (ug,v9) € B and 0 <r < R < Ry :=1 — |wg.

REMARKS. 1. To prove (1.8) and continuity of X up to the boundary 9B,
one replaces X locally by a suitable harmonic vector and uses the minimum
property of X, see Section 2. Notice, however, that X € C°(B,R") can
also be inferred from X|y5 € C°(0B,R") and (1.8) alone, without using the
minimum property (1.6); see [6], Lemma 3. This observation may be useful
for proving continuity up to the boundary for stationary surfaces of F in
C(T).

2. In [7] it was shown that minimizers of (1.5) are Holder continuous up
to the boundary under a chord-arc condition on the boundary curve I'. In
[9] we prove higher regularity up to the boundary for minimizers.

3. Set C(I') := C(T') N C°(B,R™). Then Theorem 1.5 states that every
conformally parametrized minimizer of F in C(T) lies in C(T). In particular,
we have infery) F = infery F.

Following Morrey (see [12], pp. 390-394) we introduce the notion of a
dominance function G(z,p) of a parametric Lagrangian F(z,z). The exis-
tence of suitable dominance functions turns out to be crucial for proving
higher regularity of conformally parametrized minimizers of F in C(T").



PLATEAU’S PROBLEM )

DEFINITION 1.6 (i) Let F(z,z) be a parametric Lagrangian with the associ-
ated Lagrangian f(x,p) = F(z,p1 Ap2), p = (p1,p2) € R®™. Then a function
G : R* xR*™ — R is said to be a dominance function for F if it is continuous
and satisfies the following two conditions:

(D1) f(z,p) < G(,p) for any (z,p) € R* x R",

(D2) f(z,p) = G(z,p) if and only if |p1]* = |p2|?, p1-p2 = 0.

(ii) A dominance function G of the parametric Lagrangian F is called quadra-
tic if

(D3) G(z,tp) = t2G(z,p) for all t > 0, (z,p) € R® x R?",

and it is said to be positive definite if there are two numbers uq, o with
0 < p1 < po, such that

(D4) plpl* < G(z,p) < palpl* for any (z,p) € R* x R*".

(iii) A function G € C°(R" x R®™) N C%(R™ x (R?™ — {0})) is called a
perfect dominance function for the parametric Lagrangian F' if it satisfies
(D1)-(D4) as well as the ellipticity condition

(19) - G:Dp(ajap)ﬂ- Z A(RU)|7T|2 fO’I“ |l‘| S RU (md p, T € R2n7p 7é 07

where A(Ry) > 0 is a number depending only on the parameter Ry > 0.
Condition (1.9) means that

G st (#:P) M > M Ro)mgms, A(Ro) > 0.

Here and in the sequel we use the following convention: Greek indices
a,fB,... run from 1 to 2, and Latin indices 7,k,... from 1 to n. Corres-
pondingly, repeated indices «, 3,... , j,k,... , are to be summed from 1 to
2, or n, respectively.

Let us consider some examples.
The area integrand A(z) = |z| with the associated Lagrangian

(1.10) a(p) == |p1 Ap2| = VIp12[p2|? — (p1 - p2)?

has the perfect dominance function

1 1 1
(1.11) D(p) = 5lpl* = Slp [ + 5 lp2l%, p = (p1,p2).
2 2 2
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The function

G(a,p) 1= 5lpl + Q) - (1 A o)
with Q € C°(R™*,RY) is a dominance function for
F(z,z) = |z| + Q(z) - z.
These are the Lagrangians appearing in capillarity theory.

Every Lagrangian F'(z,z) with the properties (H) and (D) possesses a
dominance function G(z,p) satisfying (D1)-(D4). For example, if f(x,p) =
F(xapl Ap?)a p= (plap2)7 we can take

(1.12) G(z,p) ==
U2 (p) + 3 0m -+ mo L (onf? = o) + (o122,

cf. [11], pp. 571-572. Another choice is

(1.13) G(z,p) == g(z,p)D(p),
where
(5.p) my for z=0 A
z,p) = , z:= .
gnp F(z,z/|z|) for z#0 provp

Denote by IT and IIy, respectively, the following algebraic surfaces in
R .

(1.14) II := {(p1,p2) ER*™ :p; Apy =0},
(1.15) Iy = {(p1,p2) € " : [p1|* = |pa|*, p1-p2 =0}

We note that II NI, = {0}.

The associated Lagrangian f(z,p) of a parametric Lagrangian F'(z, z)
can never be twice differentiable at p = 0 (except if F'(x,.) = 0.) Therefore,
in general, the dominance functions G(z,p) defined by (1.12) or (1.13) are
of class C? on R x (R?" —1I) if we assume that F is of class C? on R" x
(RY —{0}), but we do not have G € C?(R" x R?") except for special cases.

If G € C*(R® x R?") and if the variational integral

(1.16) Go(X) := / G(X,VX) dudv
Q
corresponding to G is conformally invariant, i.e., if Go(X) = G« (X o 1) for

any biholomorphic map 7 : Q* — Q and any simply connected domain €2 in
C = R?, then G has a particular form:
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ProOPOSITION 1.7 (M. Griiter, [5], §2) Let G be continuous and G(z,.) of
class C*(R?") for any x € R™. Then the variational integral Gq is confor-
mally invariant if and only if G is of the form

1 . . . .

(L17)  G(z,p) = 5g5s(#)phpt, + bjk(z) det (¢7,p%),  p’ = (Ph)1<ace,
where gji = gkj, bjr = —brj. Moreover, if G satisfies (D4), then (g;i) is
positive definite; in fact,

201 |€% < gir(x)E€R < 2us)f.

Note that example (1.13) satisfies (D1)-(D4) and that the corresponding
integral Gq is conformally invariant, whereas G is of the form (1.17) (with
gjk = ;1 and bj, = 0) if and only if F(z,2) = w(z)|z|.

The next result is the key to proving higher regularity of conformally
parametrized solutions X € C(I") to Plateau’s problem “¥ — min in C(I")”
since it shows that any such surface is a solution of the minimum problem

(P) G — min in C(T).
(A slightly weaker result was already established in [7], pp. 265-266.)

THEOREM 1.8 Suppose that F € C°(R" x RY) satisfies (H),(D),(C), and
let G be an arbitrary dominance function of F with the corresponding vari-
ational integral G(X) := Gp(X) as defined in (1.16). Then we have:

(1) infc(F) .7: = 1nfc-(F) .F = infc(F) g = 1nfc-(F) g
(ii) Any minimizer of G in C(T") is a conformally parametrized minimizer
of F in C(T).
(iii) Conwersely, any conformally parametrized minimizer of F in C(T') is
a minimizer of G in C(T").
PrOOF: (i) By Theorem 1.4 there exists an X € C(I") satisfying (1.6) and
(1.7). Taking (D1) and (D2) into account it follows that
infer) G < G(X) = F(X) = infer) F <infer) G,
and so we have
infc(F) f = infc(r) g = Q(X)

Because of Theorem 1.5 we now obtain (i), and (iii) is proved by the same
reasoning.
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(ii) Let X be a minimizer of G in C(I"). Then we have
infc(F) .7: S .7:(X) S Q(X) = infc(F) g = infc(p) .F,
and therefore F(X) = infery F. O

Recall from example | 1 | that D(p) = |p|?/2 is a perfect dominance func-
tion of the area integrand A(z) = |z|, and let

(1.18) D(X) ::/BD(VX)dudv: %/B|VX|2dudv

be the corresponding variational integral. Then we have A(X) < D(X), and
the equality sign holds true if and only if the conformality relations (1.7)
are satisfied. Theorem 1.8, in particular, implies the nontrivial result

(1.19) infC(I‘) A= infC_(F) A= infc(p) D= infC_(F) D,

as we had already pointed out in [7].
To carry out the regularity investigation for solutions of problem (P) we
first derive the weak Euler equation for X,

(1.20) 3G(X,$) =0 for all ¢ € H"2(B,R") N L®(B,R")

with

(121)  §G(X,¢) = / (G)(X,VX) - Ve + Go(X, VX) - ] dudo,
B

which is much more pleasant to handle than the weak Euler equation for X
with respect to F,

(1.22) SF(X,$) =0 for all ¢ € H'2(B,R")NL®(B,R")

with

(12 SF) = [ (LX) T6+ L(X.VX) - ¢ duds,
B

although both equations coincide. This fact as well as the equations (1.20)—
(1.23) and some useful properties of Lagrangians h(z,p) which are homoge-
neous of degree 2 in p are proved in Section 3.
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In order to prove higher regularity of solutions of (P) we consider equa-
tion (1.20). We could proceed by Morrey’s well-known method (cf. [12],
§§1.10, 1.11) if G(z,p) had the very special from

| ok
G(z,p) = G5 ()phpl
with sufficiently smooth coefficients G;‘kﬁ (x) such that

G%}(m)fjfkﬂanﬁ > Afjfjﬂana, A > 0.

In general, G, (z, p) will be singular at least at p = 0, and this is the essential
difficulty we have to overcome. In particular, rank-one convexity of G(z,p)
with respect to p will not imply Garding’s inequality

/ Gpp(X, VX))V GV dudv > \D($) — Ao / 16|12 dudv
B B

for ¢ € ﬁl’Q(B,R”); in fact, Gpp(X,VX) is not defined at points w € B
where VX (w) = 0. For this reason we impose the additional assumption
that F' possesses a perfect dominance function G, and we prove in Section
4 the following regularity result:

THEOREM 1.9 Suppose that F satisfies (H),(D),(C), and that F possesses
a perfect dominance function G. Then any conformally parametrized mini-
mizer X of F in C(T) is of class HE;S(B,R”) NCY7(B,R™) for some o > 0.

Presently it is not clear to us whether or not any elliptic, positive defi-
nite parametric Lagrangian of class C?(R® x (RY — {0})) possesses a per-
fect dominance function. However, in [12], p. 391, Morrey has sketched
the construction of a rank-one convex dominance function G* of class C?
on R x (R*® — {0}) for an elliptic positive definite parametric integrand
F* € C*(R* x (RV — {0})). This remarkable result enables us to ex-
hibit an interesting class of parametric Lagrangians F' having perfect dom-
inance functions which is much larger than the trivial class of functions
F(z,z) = |z| + Q(z) - z with supg» |Q| < 1. In fact we have

THEOREM 1.10 Let F* € C*(R* x (RN — {0})) satisfy (H),(D) and (1.3).
Then for

(1.24) k> ko(Rg) = maX{Z(m2 —\* (Rg)), —m1/2}
the parametric Lagrangian F defined by
(1.25) F(x,z) :=kA(z) + F*(x, 2)
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possesses a perfect dominance function. In particular, any conformally para-
metrized minimizer of

]:(X):/ F(X, X, AN X,) dudv,
B

where F' is of the form (1.25), is of class Hfo’z(B,]R") N cHo(B,RY).

If A*(Rp) > mqo we can choose k = 0 in (1.24) to obtain a perfect dominance
function for F*(X) := [ F*(X, X, A X,) dudv, which leads to

COROLLARY 1.11 Let F* be a Lagrangian as in Theorem 1.10 and let X €
C(I') be a conformally parametrized minimizer of F* with Ry := ||XHCO(§ RnY-

If X*(Rg) > ma, then X € H**(B,R") N C-7(B,R™).

loc

PrOOF OF THEOREM 1.10: Morrey’s construction which is carried out
in detail and investigated further in [8] yields a dominance function G* €
C%(R™ x (R?™ — {0})) for F’* which satisfies (D1)—(D4) and the estimate

T Gpplz,p)m > —ko|m|? for all 7€ R, (z,p) € R* x (R*" — {0}).

Set G(z,p) := kD(p) + G*(x,p). Then G is of class C*(R® x (R?" — {0}))
and satisfies (D1)—(D4). Furthermore, for p # 0 we have

- Gpp(xap)ﬂ' = k|ﬂ'|2 +me G;p(map)ﬁ Z (k - ]{70)|7T|2,
hence G is a perfect dominance function for F' since k — kg > 0. O

It remains an open problem to show that the branch points wy = (ug, vg)
of a conformally parametrized minimizer of F are isolated in B or even in

B.

We finally mention that also Morrey had envisioned a regularity result
for minimizers of specific parametric variational problems (cf. [11], p.570,
[12], pp. 363-364). However, we do not see how his method indicated in
[12], p.364, would lead to X € C'7(B,R"). Yet we should like to mention
that we were in many ways inspired by Morrey’s approach in [12].

2 Existence of minimizers

We now establish the existence of conformally parametrized solutions X to
the Plateau problem “F — min in C(I')” as stated in Theorem 1.4.
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PROOF OF THEOREM 1.4: (i) For € > 0 we consider the functional
F¢: HY?(B,R") — R defined by F¢(X) := F(X) +¢D(X). Introducing the
nonparametric Lagrangian f€(z,p) := f(z,p) + €|p|?/2 we have

F(X) = / f4(X,VX)dudv.
B
Since f¢(x,p) is polyconvex and therefore quasiconvex in p and satisfies

1 1
56|10|2 < foap) < 5ma + e)|p|?,

the functional F¢ is (sequentially) weakly lower semicontinuous on the space
H'Y2(B,R"), cf. [1], and satisfies

eD(X) < F(X) < (mg + €)D(X) for any X € H"?(B,R").

For X € C(I') we have X(0B) =TI, and a suitable Poincaré inequality yields
||X||%2(B’Rn) < ¢yD(X) for any X € C(T") and some constant ¢y > 0, whence
HX“%II,?(B,Rn) < €12 4 ¢p) Fé(X) for any X € C(T). Now we choose a
sequence of surfaces X; € C(I') with

lim; 00 F(X;) = infery F© =: d(e).

Since F€ is conformally invariant, we can assume that the sequence { X} sat-
isfies a three-point condition, i.e., there are three different points wq, wo, w3 €
0B and three different points Py, P, P3 € I' such that X;(wy) = Py,
k = 1,2,3, for any 7 € N. Passing to an appropriate subsequence again
denoted by {X;}, we obtain X; — X¢ in H'?(B,R") as j — oo, and
X;lop—XClop in C°(OB,R") as j — oo for some X¢ € C(T); cf. for in-
stance [4], vol. I, Section 4.3. Then we obtain

(21) Xe(wk) = Pk, k= 1,2,3,

and d(e) < F(X) < liminf; ,, F(X;) = d(e), whence F(X¢) = d(e) =
infery €. That is, X minimizes 7€ in C(I'), and we in particular obtain
OF¢(X¢,n) = 0 for the inner variation of F¢ at X€¢ for every vector field
n € C'(B,R?). Since F is parameter invariant, we have 9F(X¢,n) = 0, and
thus it follows that 9D(X¢,n) =0 for any n € C'(B,R?). This implies the
conformality relations

(2.2) X2 = |XE)?, XS -XE=0 ae. in B,
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and so we also have A(X¢) = D(X°).
By assumption (D) we obtain (my + €)D(X€) < F¢(X°¢), and for any
Z € C(I") we have

FX) =d(e) < F(Z) <maA(Z) + €D(Z) < (ma + €)D(Z).
Since (mg + €)(my + €)=t < mg/my for any € > 0, we arrive at

D(X) < 22D(Z) for any Z € C(I).
mq

There is a minimal surface Y € C(T"), and the isoperimetric inequality yields
47D(Y) < L4(T), where L(T') denotes the length of T; see [4], vol. I, Section
6.3. Thus we obtain

(2.3) | X 2By < ¢(m, ma,T)

for some constant ¢ depending only on mq,mo, and L(T).
(ii) By (2.1) and (2.3) there is some sequence of numbers ¢; — 0 and a
function X € C(T"), such that

X% ~ X in HY(B,R") and
(2.4)
X s = X|pp in C°(OB,R") as j — oo.

Therefore, d(0) := infer) F satisfies d(0) < F(X) < liminf;, F(X9),
since F is (sequentially) weakly lower semicontinuous on H“?(B,R") (be-
cause f(x,p) := F(z,p1 Ap2) is polyconvex (and therefore quasiconvex) and
satisfies 0 < f(z,p) < ma|p1 Ap2| < malp|?/2, see [1]). From F(Z) < F¢(Z)
for any Z € C(I') we infer that d : [0,00] — R is nondecreasing. Therefore,
lim,_, 1 d(€) exists, and we have

d(0) < lime,1od(e) = lime_, 19 F(X),

and (2.3) implies lime_, 1o F¢(X€) = lim._, ;¢ F(X€). On the other hand, we
have F¢(X€) < F(Z) for any Z € C(I'), and therefore lim._, o F(X€) <
lim, 10 F(Z) = F(Z), whence lim,_, ¢ F(X¢) < d(0). We conclude that

d(0) = infer) F = F(X) = lime 40 F(X) = lime 10 F(X),

and, consequently, X is a minimizer of F in C(T).
(iii) Now we prove that X is conformally parametrized. In fact, since
X minimizes F in C(T"), we have F(X) < F(X%). Adding ¢;D(X) to both
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sides, it follows that 7% (X) < F(X%) 4 ¢;D(X). On the other hand, X
minimizes F% in C(T'), and so we also have F% (X%) < F%(X). Conse-
quently, 79 (X%9) < F(X) + ¢;D(X), and therefore, ¢;D(X) < ¢;D(X),
which implies D(X%) < D(X) for any j € N. Thus we obtain the inequal-
ity limsup;_,, D(X%) < D(X). Because of (2.4) we also have D(X) <
liminf; .o D(X%), and so we arrive at lim; ,o, D(X%) = D(X). On ac-
count of (2.4) it follows that lim;_, e [| X — X||g12(grn) = 0, and we can
infer the conformality relations
X =|X,*, X, -X,=0ae on B

from (2.2). This completes the proof of Theorem 1.4. O

PROOF OF THEOREM 1.5: Define Z € C(T') by Z(w) := X (w) for
w e B—Q,and Z(w) := H(w) for w € Q, where Q := B,(wp), H— X €
H"2(Q,R"), and AH =0 in Q. Then F(X) < F(Z), and according to (D),
By (1.2) and (1.7) we have
1 2 1 2
Aq(X) = 2 \VX|* dudv, Aq(H) < 2 |\VH|” dudv,
Q Q

and so we obtain

(2.5) m1/ |V X |2 dudv ng/ |VH|? dudv.
Q Q

Setting ¢(r) := fBr(wo) |V X|? dudv we can apply (1.7) again to obtain

r 27r1
o(r) =2 / / Lixy(p,0)2 do,
o Jo P

if X (p,0) denotes the transform of X to polar coordinates p,f about the
pole wy € B. Hence ¢/ (r) = 2r~! f027r | Xg(r,0)|? df for almost all r € (0, R),
and a well-known inequality states that

2w
/ |VH|2dudv§/ |Hy(r,0)|% db.
B, (wo) 0

13
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Since X (r,.) = H(r,.) is absolutely continuous for almost all r € (0, R) we
infer from (2.5) that o(r) < (2y) 'r¢'(r) a.e. on (0, R), and therefore
d

Sl p(r)] 20 ae on (0,R).

Thus r~2Yp(r) is nondecreasing on (0, R], and we obtain
o(r) < (r/R)*p(R) for 0 <r <R,

which proves (1.8). Morrey’s “Dirichlet growth theorem” (cf. [12], Theorem
3.5.2) implies that X € C%7(B,R"). Since X|sp is continuous, a reasoning
due to Morrey finally yields X € C°(B,R"); see [12], §4.3, or the proof of
Theorem 9.4.2. ]

3 Estimates for homogeneous functions, and the
weak Euler equation

LEMMA 3.1 Suppose that h € C*(R" x (R*® — {0})) and that h(z,p) is
positively homogeneous in p of degree two. Then we have:

(i) hy(x,p), hea(x,p) are positively homogeneous in p of degree two, hy(z,p),
hpe(2z,p) are positively homogeneous in p of degree one, and hy,(x,p)
is positively homogeneous in p # 0 of degree zero. Consequently, h,
hay hgzy hpy hype, are continuous in R™ X R2™ with

h(z,0) =0, hg(x,0) =0, hye(x,0)=0,
(3.1)
hyp(z,0) =0, hpy(z,0) =0

for all z € R™, and hy,, is bounded and continuous on R" x (R?" —{0}).

(1) There are constants co(Rp),c1(Ro),c2(Ro) > 0, such that for |z| < Ry
and for p € R* x R?™ we have

(3.2) |h(z,p)| + |ha (2, p)| + |hao(z,p)| < co(Ro)lp|”,
(3.3) |hop (2, 9)| + [Bper (2, )| < 1 (Ro)lpl,

and if p# 0, then

(3.4) |fepp (2, p)| < c2(Ro).
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PROOF: Assertion (i) is obvious. Since the functions h(z,p), hy(z,p), ... ,
hyp(x,p) are bounded on the compact set

{(z,p) ER" x R*" : |z| < Ry, |p| = 1},

we infer (3.2)—(3.4) from the corresponding homogeneity properties of h(z, p),

-5 hpp(@, p). U
In the following we deduce a Lipschitz condition for h,, which is beneficial
for the derivation of the weak Euler equation. An analogous argument will
be used in our regularity proof in Section 4.

LEMMA 3.2 Let h(z,p) € C2(R® x (R — {0})) be positively homogeneous
in p of degree two. Then we have for (z,p), (z',p") € R* x R2"™ with |z|, |2'| <
RU?

(3.5) (2, p") = hp(@,p)| < c2(Ro)lp" — pl + c1(Ro)pllz" — .
PROOF: In order to verify (3.5) we use the estimate

|hp(,’L‘,p) - hp(,’l,‘,,pl)| < |hp(xap) - hp(xlﬂp” + |hp(xl,p) - hp(,’L‘l,p,)|.
From (3.3) we infer

|hp(z,p) — hy(z',p)| < ‘521; |hpe (€, D) ||z — 2] < e1(Ro)lpllz — 2'|.
S1ivo

Secondly, if 0 & [p,p'] :=={p+tLAp:0 <t <1}, where Ap:=p’' —p, we have

hy(a',p') = hp(a', p) = /01 %hp(w',er tAp) dt,
whence
|hp(z',p") = hy(2', p)| < /01 |hpp (2, p + tAP)| dt | Ap),
and by (3.4) we obtain

(36) |hp($l,p,) - hp(xlap” S 02(R0)|p, _p|a
if 0 & [p,p']. If 0 € [p,p'] we choose p. and p. with 0 < € < €, such that
0 ¢ [pe,pl], pe — pand p. — p' as e = 0. Then we get

|hp(2', ) — hp(2, pe)| < ca(Ro)lpe — pel,
and by continuity of h,(z',.) we again arrive at (3.6), which also proves
(3.5). O
Now we derive the weak Euler equation for any bounded minimizer X of
the variational integral associated with a homogeneous integrand.
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PROPOSITION 3.3 Let h € C?(R™ x (R?" — {0})) be positively homogeneous
of degree two, and let

H(X) = /Bh(X, VX) dudy

be the corresponding functional. Then for any surface X € H“?(B,R") N
L>*(B,R") and any ¢ € ﬁl’Q(B,R”) N L (B,R™) we have
lim ¢~ [H(X + ) — H(X)] = SH(X. ).
where dH(X, ¢) is defined by
IH(X, @) = /B[hp(X, VX) - Vo+ hy(X,VX) - | dudv.

If, in addition, X is a minimizer of H in C(T), then H(X,¢) = 0.
As an immediate consequence we obtain

COROLLARY 3.4 Let G € C?*(R" x (R?™ — {0})) satisfy (D3). Then any
bounded minimizer X of G in C(T') satisfies (1.20).

PROOF OF PROPOSITION 3.3: Let 0 < |¢|] < 1, and set for some fixed
wE B
z(t) == X(w) + eto(w), p(t) == VX (w) + etVo(w) for te€]0,1].
Then we have |2(t) — z(0)| < |e[[¢(w)], and |p(¢) — p(0)] < |e][Vp(w)] for all
te0,1], and
) — h(2(0), p(0))]
1

e '[a(x(1),p(1
= ¢ h(z(1),p(1)) = h(z(1),p(0)] + [l (1),p(0)) — h(w(0),p(0))]
1

1
= /th(ﬁﬁ(l),p(t))dt-v¢(w)+/ he (z(t),p(0)) dt - p(w).

0

)
1

Setting Ry := supp | X| + supp |$| we obtain

\e_l[h(x(l),p(l)) - h(w(O),p(U))]
~[hp(2(0),p(0)) - Vep(w) + ha ((0), p(0)) - p(w)]

< / Iz B ((0), p(0)) [V ()]

+/ |ha (), p(0)) = ha((0), p(0))[|p(w)] dit
0

el {c2(Ro) [V (w) | + c1(Ro) [ VX (w) |V p(w)]|h(w))]
+eo(Ro)|¢(w)[| VX (w)[*}

IN
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by virtue of Lemma 3.2 and the inequality

| (2(t), p(0)) — ha((0), p(0))] < |e] co(Ro)|p(0)|?

which immediately follows from Lemma 3.1.
Thus we arrive at

e H(X + ed) — H(X)] — H(X, ¢)|
< lel{eatRo) [ Vo) dudo + ci(Ro) [ 19X (0)|[V60) ()| duo

+cU(R0)/B|VX(w)|2|¢(w)|dudv}.

Letting € tend to zero we obtain the first assertion.

If X is a minimizer of H in C(T"), then H (X + ep) — H(X) > 0 because
X +ep € C(T) for all € € R, and therefore lim g e ! [H (X +ep) —H(X)] = 0.
This proves the second assertion. O

LEMMA 3.5 Suppose that G € C?*(R" x (R?" —TI)) is a dominance function
of a parametric Lagrangian F with the associated Lagrangian f € C?(R™ x
(R?™ —TI)). Then we have

(37) Gfl?(xap) = fm($7p)7 Gp(ﬂj,p) = fp(xap)v pr(]?,p) = fpz($,p)
for (z,p) € R* x Iy, and
(3.8) Gpp(@,p) = fpp(z,p) for (z,p) € R" x (Ily — {0}).

In particular, if G € C*(R* x (R?" — {0})) and if X € H'}(B,R*) N
L>°(B,R") is conformally parametrized then

(3.9)  OF(X,¢) = 3G(X,¢) forall ¢ H-*(B,R")NL®(B,R"),
where 6G(X, ¢) and §F (X, @) are given by (1.21) and (1.23), respectively.
PROOF: Since G is a dominance function of ' we have

(3.10) G(z,p) — f(z,p) > 0 on R® x R*", and
(3.11) G(z,p) — f(z,p) = 0 on R" xII.

Property (3.11) together with (3.1) in Lemma 3.1 applied to h := G and
h := f, respectively, imply

(312) Gx(xap) = fx(xap) on R" x HO,
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and (3.10) together with (3.11) yield Gp,(z,p) — fp(x,p) = 0 for all (z,p) €
R™ x TIp, which leads to Gpg(z,p) — fpz(z,p) = 0 for all (z,p) € R* x II,.
Finally we get Gpp(z,p) — fpp(z,p) > 0 for (z,p) € R x (IIp —{0}), again by
(3.10) and (3.11), since IINIIy = {0}. The last assertion follows from (3.7). O

4 The proof of higher regularity

An important tool for proving higher regularity of conformally parametrized
solutions to Plateau’s problem is the following result due to Morrey (see [12],
Lemma 5.4.1).

PROPOSITION 4.1 Let Q be a domain in R?, define R(Q2) > 0 by meas ) =
TR2(Y), and let q be a function of class L'(Q) such that there are numbers
My >0 and 8 > 0 with

(4.1) / |q(u, v)| dudv < My r®
Qr(wo)

for all wy € R?, r > 0, and Q,.(wp) := QN B, (wy).

Then, for any z € ]31’2(0) and any k € N, the functions qz* are of class
LY(2), and for any v € (0,0) there is a number My(B,v), independent of z,
such that

42 [l dudo < MMV gy B0
r (W0

for all wy € R?, r >0, v € (0,8), and k € N.

[e]
REMARK. Clearly, an analogous result holds for any z € H?(2, R"), but
the constants M; may now depend on n, too.

In the next result, let 2 be the disk B,(0), p > 0, and set
1
O (wn) i= 2N Bylwn), Da(a) i [ [Vaf? dudo
Q

PROPOSITION 4.2 Suppose that there are constants M > 0, (B > 0, and
rg > 0, such that

(4.3) / \Vz|? dudv < Mr? for wy € Q,r € (0,79).
QT(U)O)



PLATEAU’S PROBLEM 19

Then, for My := max{M, 27’aﬁDQ(Z)} we obtain

(4.4) / V2|2 dudv < Mor” for wy € R2,r > 0.
Q. (wo)
PrROOF: (i) Let wy € Q. If rg < r we have

B
/ V2| dudv < 2Dq(z) < 2 (L> Dao(z) < Myr?,
Qr (wo)

To

and for 0 < r < 7o, the inequality [, (wo) |V 2|2 dudv < Myr® follows from
(4.3).

(ii) Suppose now that wy & Q = B,(0), and set wy =: poe’®, wi =: pe’o,
where 0 < p < pg. Then, for any r > 0, we have

Q(wy) = QN Br(wy) C QN By(wy) = O (wl),

whence

/ |Vz|2dudv < / |Vz|2 dudv < Mr?,
Q,-(’u)o) Q,- wa
taking (i) into account. O

Thus we can always pass from a “restricted Morrey condition” (4.3) as
proved in Theorem 1.5 to a global Morrey condition (4.4) for q := |VX|?,
which was assumed in Proposition 4.1.

Now we turn to the

PROOF OF THEOREM 1.9: Step 1: X € HIZ(;CQ(Q,R”).

To prove this we operate with the well-known technique of Lichtenstein and
Nirenberg estimating the difference quotients A, VX in L2 (B, R?"). Let us
first recall some definitions and some fundamental facts (cf. [13]). Pick some
unit vector e € R? and some h € R, h # 0, and define the shifted function
Zp(w) and the difference quotient ApZ(w) by Zp(w) := Z(w + he) and
AnZ = h7'Zy, — Z), respectively. If Z is defined on B, and if Q := B,(0),
0<p<1,lh| <1—p,then Z; and A\, Z are defined on Q. Let D,, and D, be
the partial derivatives with respect to v and v, i.e. V = (D,, D,). Then we
have (ALVZ)(w) = (VALZ)(w), and (VZ)p(w) = VZ,(w), for w € Q =
B,(0) and |h| < 1—p. Furthermore, if Z € H"?(Bg), Br := Br(wy) CC B,
and |h| < hg :=1 — |wg| — R, then

1AL Z | L2(Br) < I1DuZ | 12 and lim || ApZ — DuZ||rx(pg) = 0,

Brijn)
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provided that e = e; = (1,0), and if e = e3 = (0, 1), then the corresponding
relations hold with D,, replaced by D,,.

If Z)Y € L?(B,R") and if Z or Y has compact support in B, then for
the L2-inner product

(Z2,Y) ::/Z-Ydudv ::/ Z Y dudv
R2

we have the following “rule of integration by parts”:
(Z,ArY) = —(A_pZ,)Y) if |h| < 1.

4

Moreover, we have the “product rule”

AW(Z-Y) = (DRZ) Y + Zn - DY = (AnZ) - Yy + Z - AY.

Now we choose some “friend” n € C2°(Bar(wo)) on a disk By, (wg) CC B
with 0 <n <1,p=1on By (wp), and |Vn| < 2/r on the annulus Ty, :=
Ba,(wg) — By (wp), V1 =0 on R2 — Th,..

Then

(4.5) ¢:=—A h(*ApX), |B <1,

is an admissible test vector for the weak Euler equation
/B (G)(X,VX) - Ve + Gu(X, VX) - ] dudv = 0,
and “integration by parts” yields
/ (ARG (X, VX)] - Vn? 2p X] dudo
= - / [ALGH(X,VX)] - (AR X) dudw.

Since V[?ApX] = n?°VALX + 2nVn/A, X, we obtain

(4.6) / [ALGH(X,VX)] - VALX dudv = Jy + Ja
with

Joi= — / [ALGp(X,VX)] - 20V, X dudv,
(4.7)

Jy = —/[Ath(X,VX)]-nQAthudv.
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Now we study the “dangerous” term [A,Gp(X,VX)] - n?VALX :

MGy (X,VX) = 1[Gy(X0, VX0) = Gy(X, VX))
(48) = 16,(X0, VX)) ~ Gy(X, VX))
+%[GP(X, VX)) — Gp(X, VX)].

We want to rewrite these expressions at some point w € By, (wyp). To this
end we set

2(0) := X(w), (1) := Xp(w), p(0):=VX(w), p(1):=VXy(w),
z(s) == sz(1) + (1 = 5)z(0), p(s) := sp(1) + (1 — 5)p(0).

Then i(s) = a(1) - 2(0) = hAnX(w), p(s) = p(1) - p(0) = hVARX (w),
and we obtain

{[AGH(X, VX)] -V An X } ()
/ G ((5), VXn(w)) ds 2, X (1) (w) VA X ()
1[Gy (X (1), p(1) = Gyl(X (), p(0))] - VAKX (w).

If p(s) # 0for 0 < s < 1, the function g(s) := Gp(X (w), p(s)) is continuously
differentiable on [0, 1], and we obtain

hHGH(X (w),p(1)) — Gp(X (w), p(0))]

1
(4.10) -4 st (X (w), p(s)) ds
/ Gy (X (w),p(5)) V21, X () ds,

and the ellipticity condition (1.9) implies

B (G (X (w), p(1)) — Gy(X (w), p(0)] - VALX (w)
(4.11) > ARo)[VARX (w)P,

where R := ||XH(;0(§ gny 18 finite by virtue of Theorem 1.5.
If p(0) = p(1), we have

(VARX)(w) = (ApVX)(w) = h™ [VXp(w) = VX (w)] =0,

21
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and so (4.11) is trivially satisfied.

If p(0) # p(1), but p(sp) = 0 for some sy € [0,1], we choose some
¢ € R?" with |¢| = 1 and ¢ L p(1) —p(0), and we form pc(s) := p(s) + € for
s €[0,1], € > 0. Then p.(s) # 0 for 0 < s < 1 and € > 0, because, otherwise,
we had pc(s1) = 0 for some (s1,€) € [0, 1] x [0,00) whence p(s1) = —e(, and
therefore p(s1) — p(so) = —eC. This implies

—e=—€[¢|? = (- [p(s1) = p(s0)] = (51 = s0)¢ - [p(1) = p(0)] = 0,
a contradiction. Thus we can replace (4.10) by
1
h™HGp(X (w), pe(1)) =Gy (X (w), pe(0))] = /0 Gpp(X (w), pe(s))V AR X (w) ds,
since pe(s) = p(s) = hVAR X (w), and by (1.9) we obtain
B Gy (X (), pe(1)) = Gp(X (w), pe(0))] - VARX (w) > A(Ro)|VARX (5)[*

for any € > 0. If we let € tend to zero, p¢(s) tends to p(s), and since G, (z,p)
is continuous on R™ x R?" (see Lemma 3.1), we obtain inequality (4.11),
which is now established for any w € By, (wy).

On account of Lemma, 3.1 it follows that

(4.12) |Gpa(2(s), VXR(w))| < e1(Ro)|VXp(w)],
whence
1
| / G (a(s), VX5 (w)) ds 25, X (w)? (w) VA3, X (w)
0
< 1 (Ro)n* (w)| VX (w)|| A X (w)||[VALX (w)| a.e. on By, (wp).
In conjunction with (4.9) and (4.11) this inequality implies
/ [ALGH(X, VX)) - n*VALX dudv
(4.13) > A(RU)/n2|VAhX|2dudv
—Cl(Ro) /772|VXh||AhX||VAhX|dudU.

Moreover, we infer from Lemma 3.1 that

(4.14) |Gpp(X(w),p)| < e2(Rp) if p#0,
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and by (4.10) we obtain
hHGH(X (w), VXR(w)) = Gp(X (w), VX (w))]] < e2(Ro)[VARX (w)],

if 0 € [p(0),p(1)], and the same approximation argument as before implies
that this estimate remains valid if 0 € [p(0), p(1)].
On account of (4.12) and of

h G (X (w), VXh (w)) — Gp(X (w), VX (w))]
/ Gy (), ¥ X1 (1) A1 X () ds,
it follows that

WM Gp(Xh(w), VXh(w)) — Gp(X (w), VX (w))]
< a(Ro)|[VXn ()| AnX (w)].

Thus, by (4.8), we arrive at
| ARG (X, VX)|(w) < e1(Ro) [V Xp(w)|| Ap X (w)] + ca(Ro) [V ARX (w))]

a.e. on By, (wy). Therefore we can estimate J; by
< B [ 201901960120 X P dudo

(4.15) +c2(Rp) / 2n|Vn||VALX || ApX | dudv.
In order to estimate Jo we write

ApG2(X,VX) = b7 Gy (Xp, VX)) — Go(X, VX)]
= h G (Xp, VX)) — Go(X, VX)) + h G (X, VX)) — G (X, VX)]

/ Goalz VXh)Aths+/ Gap(X,p(s))VALX ds.

By Lemma 3.1 we have

|G:v:v(x(s)a VXh(w))|
|Gap(X (w), p(s))]

a.e. on By, (wyp), and thus it follows that

co(Ro) |V X (w)[?

<
< a(Ro)lp(s)] < ci(Ro)[[VX (w)] + [V X (w)]]

|| < co(Ro)/n2|vxh|2|AhX|2dudv

(4.16) +e1(Ro) / 2|V ARX|[IVX| + [V X0 (]| AnX | dudo.
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Now we recall that |Vn| < 2/r. Then we infer from (4.6), (4.13), (4.15),
(4.16), that
A(Ro)/n2|VAhX|2dudv
< 2a(R0) [ IV 0K T 20X duds
+§cZ(R0)/n|AhX||VAhX|dudv+ %cl(Rg)/n|VXh||AhX|2dudv
+co(R0)/n2|VXh|2|AhX|2dudv+01(R0)/n2|VX||AhX||VAhX|dudv.
Using the estimate 2ab < ea” + ¢ 1b? for € > 0, we obtain
A(Rg)/n2|VAhX|2dudv
< e/n2|VAhX|2dudv
+c*(R0,e)[/n2|VX|2|AhX|2dudv+/n2|VXh|2|AhX|2dudv
42 / |AhX|2dudv]
Ty

for some constant ¢*(Rg,€) depending only on Ry and €. By choosing € :=
A(Rp)/2 we can absorb the term € [ 7%VALX|? dudv by the left-hand side
of this inequality. Multiplying the result by 2/A(Ry) and setting

(4.17) .1 ::/n2|VX|2|AhX|2dudv, J" ::/n2|VXh|2|AhX|2dudv,
it follows on account of

(4.18) / IARX 2 dudv < 2D(X) for |h] < 1
Toy

that

(4.19) /772|VAhX|2 dudv < ¢(Ro)[J' + J" +r *D(X)] for |h| < 1,

where the constant ¢(Ry) depends only on Ry.

In order to estimate J’ and J” we apply Proposition 4.1 to ¢ := |VX?,
or to ¢ := |[VX,|?, and to Q := B,,(0) with 0 < py < 1. For this purpose we
note that, by Theorem 1.5,

2
/ VX[ dudv < (£) 7/ VX2 dudv
By(Co) R/ JBa(co)
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if (o eQ,and 0 < p < R <1 — pp, and therefore also

2
/ (VX dudv < (£) 7/ IV X4 |2 dudv
By(Co) R JBr()

if (o €9, 2|h|<1—py,and 0 < p < R <271 - pp). Then we obtain for
R:=2'1-p), €N, || <R M:=2RD(X), 0<p<R,
that

/ VX |2 dudv < Mp?, / |V X3,|? dudv < Mp*?,
B,(¢o) B,(¢o)
and all the more so for ©,((o) := Q2N B,((o),
/ |VX|? dudv < Mp*?, / VX3 |? dudv < Mp*?.
Qp(ﬁo) Qp( 0)

By Proposition 4.2 it follows that

/ VX |2 dudv < Myp??, / |V X3,|? dudv < Mgp*
QP(CO) Qp o

for all ¢p € R? and all p > 0, |h| < 271(1 — py), if we set

My :=2R™D(X) = 2M.
Thus the assumptions of Proposition 4.1 are fulfilled for Q = B,;(0), R(Q?) =
po, ¢ = |VX|? or [VX,|%, B8 =2y and z := n/\, X, we get

max{/ VX 2 lnA, X|? dudv,/ IV X3 2 nAn X |? dudv}
25 (¢o)

Q25 (Co

< MMy p)/? p?1 =7/ / IV(nARX) |2 dudv, My = My(2y, 7).
Q

for all (; € R? and all p > 0.
Suppose now that By, (wo) C B,,(0) = £, po € (0,1), and choose (p =
wp, p = r. Then we obtain for v* := 2y — v/2

J+J" < e / IV (n2, X)) |2 dudv

for some number ¢* > 0 independent of r and h provided that |h| <
(1 — po ). Since V(nApX) = nVALX + (Vn)AyX, it follows that

IV(nALX)|? < 202 VARX 2 + 80 2| AL X |2,

25
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and thus we arrive at

J +J" < 4t /n2|VAhX|2dudv+ 160*7"_2+7*/ |ALX |2 dudv.
T27‘

On account of (4.18) we finally see that
(4.20) J 4+ J" < dctr” /772|VAhX|2 dudv + 32¢*r =2t D(X),

if |h| < 1. Let us choose r so small that c*r?" < [8¢(Rp)]~" and insert the
estimate (4.20) of J' 4+ J” into (4.19). Then we obtain

(4.21) /n2|VAhX|2dudv < ¢(r)D(X) for |h| <1,

where the constant ¢(r) depends on 7, py, Ry and the other constants related
to G, but not on h. Hence

/ IVALX|? dudv < ¢(r)D(X) for |h| < 1.
Br(wo)

If we set e = e; or eq, respectively, and let h tend to zero, we infer that the
weak derivatives VD, X and VD, X exist and are of class L?(B,(wg), R");
in fact, we obtain

(4.22) / |V2X|? dudv < 2¢(r)D(X).
B, (wo)

A covering argument leads to X € H1203(B , R™). This concludes the first part
of our regularity proof.

Step 2: X € CY°(B,R") for some o € (0,1).
To prove this result, we insert instead of (4.5) a slightly modified test
vector into the weak Fuler equation

/ (Gy(X, VX) - Vo + Go(X, VX) - ¢ dudv = 0,
B

namely ¢ := —n?A_p /A, X, where the “friend” 7 has the same properties as
in Step 1. We obtain

/ (X, VX) - V[=n2A_pApX] duds

(4.23) = / Gu(X,VX) -’ A_p AL X dudv.
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Let £ € R" be an arbitrary constant vector which will be fixed later on. We
can write A_pApX = A (AR X =€) and

AP (DX = O] = P A_p (DX = &) + (A_pm®) (AnX — &) _p;
therefore
V- Ay X] = —A_ V[P (AR X — )] + VI(A_pn®) (Ap X — &) _p)-

Inserting this expression into (4.23) it follows that Iy = I + I3, where we
have set

L o= / (A Gy(X, VO] - AV (84X — O]} dudo,
b=~ [ GX.VX) - V(B (80X = €)-s] dud,
Iy = /Gx(X,VX)-nzAhAthudv.

We decompose I; into I; = I + I}, where

I = /[AhGp(X, VX)]-7*’VALX dudv,

o= /[AhGp(X, VX)) 2nVn(ApX — €) dudv.
By (4.13) we have

15 > A(Bo) [ P19 80X dudo — cr(Ro) [ 219 X4 20X [V 20X dudo,
and analogously to (4.15) it follows that
1< a(R) [ 2009919 X01 40X 20X - ¢l dudo
+ea(Ro) [ 2090V 80 X180 = €] dudo.

From I] = —I{ + I, + I3 we then infer

(4.24) A(Ro) / DIV ARX 2 dudv < T + T + ¢1 (Ro)[Is + I5] + e2(Bo) s,
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where we have set

Iy = /772|VXh||AhX||VAhX|dudv,
I = / || [V X || 2 X || A X — €] duc,
Iy = /277|V77||VAhX||AhX—§|dudv.

Now we estimate I5. To this end we introduce A! i and N2 i as the difference-
quotient operators A_j with respect to e; and es, i.e., we “symbolically”
have
Dy =D;=1limA',, D,=D,=1limA?,.
k—0

k—0
Then we have Iy = lim;_,g Ié“, where
o= [5G (6 V0] (o) (BhX = -] dudo
+ [1836,2(X, T (AP ) (21X = €)-4] dudo,

Similarly to (4.15) we obtain

2
I < ek / VXl ALXIA Pl (AnX — €)_4| dudv
j=1

2
tea(Ro) Y / VXA P | (Dn X — €| dudb.
=1

Because of Step 1 we have VX € Hllo’z(B,R”) N L (B,R") for any s €

[1,00), and therefore [VAIX| — |[VD;X| and |VX,||AX| — |VX||D;X]|
in L2 (B) as k — oo. This leads to

loc
Bl < (o) [ [VXPIA P80 — &) duds
+ea(Ra) [ (VXN P80 X =€) dudo,
Since |G (X, VX)| < ¢o(Ro)|VX|?, we furthermore obtain

13| < co(Ro)/n2|VX|2|AhAhX|dudv.
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Inequality (4.24) then implies
A(Ry) / IV AR X |2 dudv
< olro)| [ [VXPIA PB4 X =)l dudo
+ [ IVXN DX = )] duds
+/772|VX|2|AhAhX|dudv
+/772|VXh||AhX||VAhX|dudv
+ [ 201Val19 X120 X1 84X — €] duds
+ [ 20/ValIT 80 X120 X — €] dudo

for some constant ¢(Ry) depending on Ry, but independent of h.

We apply this inequality to A,ll with the constant & € R and to A%
with the constant £, € R", add the resulting inequalities and let & tend to
zero. Then it follows that, for some new constant ¢*(Ry),

A(Ro)/n2|V2X|2dudv
< (o)l [ IV XPITX] duds
+/77|V77||V2X||VX — C| dudv
+ [ ATAlIVXPI9X ~ O] duds),

where C' = (&1, &) denotes an arbitrary vector of R?". Since |Vn| < 2/r and
ab < ea? + (4¢)~'b? for any € > 0, we infer that

A(Rp) /772|V2X|2dudv

1
< c*(Rg)[e/n2|V2X|2dudU+ E/n2|VX|4dudU

-2

4
+e/n2|V2X|2dudv+ .

+/n2|VX|4dudv+4r2/
TQT‘

/ VX — C|? dudv
T27‘

VX — C|2dudv].
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Choosing € > 0 so small that 2ec*(Ry) < A(Rp)/2, we can absorb all terms
on the right-hand side which involve [ 1?|V?X|? dudv by the left-hand side,
thus obtaining

. udv < udv
4.25 V2X % dud VX |? dud
B (wo)

<o (o)l [

VX | dudv + M/ VX — C| dudv],
BQT(WO)

T27'

provided that By, (wy) CC B. Now we choose C' as the mean value of VX on
Ty, = Bay(wy) — Br(wp), i.e. C := UCT% VX dudv. By Poincaré’s inequality
we obtain

(4.26) / VX — C|? dudv < Kp 7“2/ |V2X|? dudv
TQT TQT‘

for some number Kp > 1 independent of r € (0,1 — |wg|). Since X €
H2*(B,R"), we have X € Hllo’i(B,R") for any s > 2, and by Holder’s

loc
inequality we get

0
/ VXt dudv < / IVX[*? dudv | (meas By, (wp))'°.
Ba, (wo) B, (wo)

Choose § € (0,1/2), 0 < po < R < 1, and set ro := 27 (R — py), and
K(R,0) := (47T)1_6HVX”iW(BR(o),R?”)'

Then we have

(4.27) / VX! dudv < K(R,8)r*~%
Bz (wo)

for w € By, (0) and 0 < r < rg. Denote by x(Rp) the number
k(Ro) := " (Ro)Kp,

which only depends on Ry. Then (4.25)-(4.27) imply

(4.28) / IV2X 2 dudv < n[ / IV2X |2 dudv + K (R, 8)r*~%
B,-(’LU()) Tor
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for wy € B,,(0), 0 < r < ro. Now we “fill the hole” in Ty, = Ba,(wo)—B,(wp)
by adding K/fBr('LUO) |[V2X|? dudv to both sides of (4.28). Multiplying both

1

sides of the resulting inequality by (1 4+ k), we arrive at

(4.29) / IV2X |2 dudv < 6, [ / \V2X|? dudv + K (R, 8)r? 2

B (wo) Ba, (wo)
for wy € By, (0) and 0 < r < 1o, where ¢ is some fixed number with § €
(0,1/2), and y = Op(Ry) denotes the constant 0y := k(k+ 1)1 € (0,1). We
choose some number 7 with 2§ < 7 < 1, and set

0 := max{f,2 2"} €(0,1),
= log 0 . 020

o = 2log 2 >0, ie. 8 =277,

Pro— [9_1K(R, 6)—1(27 _ 1)]1/(7’—2(5).

Then
w(r) = / |V2X|? dudv + 277
Br(wo)
is nondecreasing for r € (0, 7] and satisfies
w(r) < fw(2r) for 0 <r <r;:=min{re,r*}.

For any r € (0,7) there is a j € N such that 277r; < r < 277+, whence
§7 =227 < (r/r1)??, and

w277 ) < w2772 < 02w(2773r)

< W w(2r) < w(2r)(r/r)%.

wir) <
<

This implies

20
V2 X2 dudv] <1>

™

/ |V2X % dudv < [(2r1)* 7 +/
Br(wo) BQT(WO)

for wy € By, (0) and 0 < r < ry. If we set

M*(po, R) := 27 [(2r0)* ™ + / |V2X|? dudv],

Br(0)

it follows that

(4.30) / |V2X|? dudv < M*(po, R)r*°
BT(U)O)

31
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for all wy € B,,(0) and all » € (0,7), where r1 = r1(po, R). Morrey’s
“Dirichlet growth theorem” then implies VX € C%7(B,,(0), R?"), and thus
we have proved that X € C1?(B,R") for some o > 0. O
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