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Abstract: We present two case studies how analysis can be used to derive a
hierarchy of models to capture multiscale behavior of materials. The determi-
nation, via Γ–convergence, of the thin film limit of micromagnetism delivers
a reduced two–dimensional model for soft ferromagnetic films which justifies
previously known theories for small fields and extends them to the regime of
field penetration. The analytic evaluation of the quasiconvex envelope of the
microscopic energy density of nematic elastomers allows efficient numerical
computations with finite elements and shows the existence of a new “smec-
tic” phase. In both cases, the numerical solution of the coarse–grained model
is complemented by a reconstruction of the microscopic pattern associated
with the reduced field.

1 Introduction

The behavior of natural and artificial materials is often determined by com-
plex internal patterns spanning several different length scales, from the atomic
to the macroscopic one. Proper understanding of the microstructure, and of
ways to influence it, has often led to progress in the development of new
materials. Classical approaches are based on intuition and experimental evi-
dence, but recently increasing importance has been given to a complementary
approach, based on modeling and simulation. Progress in atomistic molecu-
lar dynamics and ab initio quantum–mechanical simulations deliver precise
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information on the behavior of individual molecules, or of systems where a
relatively small group of atoms is present. However, in many cases the rele-
vant structures arise through collective effects, which involve huge numbers
of atoms. A full quantum–mechanical, or even atomistic, computation of
such systems is clearly unfeasible, and also not desirable from the point of
view of qualitative understanding. It is therefore important to develop and
apply methods which allow one to systematically transform the information
available on the small scales into an effective model which describes the large
scales alone.

In the last decades powerful mathematical tools have been developed to
pass from models on microscopic or mesoscopic scales to macroscopic ones,
within the general framework of weak–convergence methods. The ideas of
Γ–convergence [19, 20, 18], relaxation [15], homogenization [49, 39, 10], qua-
siconvexification [46, 16, 47], Young–measures and compensated compactness
[63, 55], H–measures [56, 33] and their variants provide general techniques
which allow one, in principle, to derive rigorously large–scale effective models
from the microscopic ones. The spectrum of methods is not yet complete,
for example quantum–mechanical effects are still not properly included in
the theory, and even the coupling of mechanical and electromagnetic fields
has not yet been completely clarified. The development of such methods is
a very active and interesting field of research (see, e.g. [57, 1, 44, 31]), which
we do not discuss here.

Successful application of the general abstract methods to specific concrete
model problems is a much more recent development. In the field of solid–
solid phase transitions in crystals, the tools of quasiconvexity deliver sharp
conditions on the compatibility of different phases, and on the possibility of
finding microstructures which realize a given macroscopic average deforma-
tion [4, 13, 47]. Whereas explicit computations have been possible only in
very few cases, the method has proven to have a wider field of applicabil-
ity than phase transitions in crystals, see for example the work on nematic
elastomers discussed below. Application of the same ideas to magnetostric-
tive materials has led to a simple interpretation of experimental data, which
in turn furnishes the theoretical understanding needed to devise improved
experimental devices [22, 58]. Even solids with simple (convex) elastic prop-
erties have a surprisingly complex behavior in nontrivial geometries. The
blistering patterns of compressed thin films can be in a first approximation
modelled by the scalar eikonal equation [34], and fascinating self–similar
folding patterns emerge in a more refined vectorial plate theory [6, 41, 5].
The search for dimensionally reduced theories for the elasticity of thin films
has attracted considerable attention for more than a century. It has been
recently possible to rigorously derive, via Γ–convergence, the limiting two–
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dimensional theory describing resistance to bending of an unstretched film
[51, 30]. A very interesting problem which is still open is how to rigorously
derive a two–dimensional theory which accounts both for bending and for
stretching and provides, in a well–defined sense, an optimal approximation
of the three–dimensional theory.

This paper presents two case–studies in which a mathematically rigor-
ous result on the transition from one scale to another has led to simplified
modeling, easier numerical computation, and improved understanding of the
large–scale effective material behavior. Before presenting the specific exam-
ples we summarize the general approach.

• The separation of scales allows one to derive analytically a reduced
(coarse–grained) problem. This is a mathematical step, based on as-
suming a microscopic model, and rigorously deriving the limiting macro-
scopic model when one parameter, representing the ratio between the
micro and the macro scales, tends to zero.

• The reduced macroscopic problem can be solved numerically in a much
more efficient fashion. This second step, which typically is of computa-
tional nature, requires explicit knowledge not only of the general form
of the model, but also of the parameters, and allows one to compare
quantitatively with experiment. Detailed understanding of the coarse–
grained model and of the kind of convergence used in deriving it from
the microscopic one indicates also which quantities can be computed
robustly.

• From the solution of the coarse–grained problem one can gain some
insight in the fine–scale structure by retracing the steps that led to
its derivation. While this step is often affected by non–uniqueness of
the microscropic pattern corresponding to a given macroscopic state, it
can nevertheless give some heuristic understanding of the small scales,
as well as valuable insight on corrections to the coarse–grained model
coming from the finiteness of the small length scales.

Two specific examples where this strategy been successfully applied to the
derivation of a macroscopic model from a microscopic one are soft magnetic
films and nematic elastomers. In both examples, the mathematical approach
has not only permitted to justify rigorously existing reduced models, but also
led to a better understanding of the material behavior. For soft magnetic
films the rigorous analysis led to a reduced model which extends into the
regime of field penetration, and for nematic elastomers to the discovery of
the “smectic” phase.
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2 Soft magnetic films

Soft ferromagnetic films are of great interest both for applications and as a
model physical system. Their sensitive response to applied magnetic fields
makes them useful for the design of many devices, including sensors and mag-
netoelectronic memory elements. The presence of significant hysteresis with
relatively simple domain structures, together with the availability of a wealth
of experimental and numerical data, makes such films an ideal candidate for
understanding the microscopic origins of magnetic hysteresis. Such phe-
nomena are correctly described by micromagnetism, a nonlocal, nonconvex
variational model which dates back to Landau and Lifshitz [43] and Brown
[11], described in Section 2.1. Direct numerical simulations of micron–size
specimens based on micromagnetics are however beyond the current reach of
scientific computing, due to the broad spectrum of length scales which need
to be resolved simultaneously (see Section 2.1). We focus on the response
to weak external fields of soft films, with parameters scaling as specified in
Section 2.2. Important progress in the conceptual understanding of the equi-
librium patterns in such films was achieved through simplified ad–hoc models
[7, 12]. These models, however, lack a variational formulation (hence hin-
dering efficient numerical simulations) and their connection with the general
theory of micromagnetism has not yet been fully understood. It is therefore
unclear whether these models deliver good approximations to minimizers of
the full energy, and if so in which range of material and geometric parameters
this approximation is valid. The natural mathematical tool to attack these
issues is Γ–convergence [19, 20, 18, 10]. In Section 2.2 we present a rigorous
derivation, via Γ–convergence, of a dimensionally reduced model, and discuss
in which sense the minimizers of the micromagnetic energy converge, as the
film thickness tends to zero, to the solutions of the limiting problem. The
Euler–Lagrange equations coming from the reduced variational problem lead
to the models proposed in [7] and [12] for small fields. Numerical results are
compared with experimental measurements in Section 2.3.

2.1 Micromagnetics

Ferromagnetic materials display a complex microstructure of magnetic do-
mains, walls, Bloch lines and singular points ranging from 100 µm down to
a few nm. The rich source of experimental data and the simple mathemati-
cal formulation makes the analysis of magnetic microstructures an excellent
model problem to develop new mathematical tools for the understanding of
multiscale problems.

Somewhat surprisingly the huge variety of magnetic structures can often
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be understood through minimization of a simple energy functional, which
only involves two material parameters. Let the open bounded set ω ⊂ R

3

represent a magnetic body and let m : ω → R
3 denote its magnetization,

which satisfies the saturation condition |m| = 1. For convenience we shall
extend the magnetization by zero outside ω, so that m : R

3 → R
3 satisfies

|m| = χω, where the characteristic function of ω is defined by χω(x) = 1
if x ∈ ω, χω(x) = 0 if x ∈ R

3 \ ω. We now define the energy associated
to such a magnetization, in suitable non–dimensional units [43, 11] (see also
[36, 8]). The micromagnetic energy depends on the material parameters d
and Q, which are real constants, and on the anisotropy function φ : S2 → R,
which we assume to be smooth.

Definition 2.1 (Micromagnetics). Given an open bounded set ω ⊂ R
3

(the magnetic body) function hext ∈ L1(ω,R3) (the external field), and a
vector field m ∈ L∞(R3,R3) (the magnetization), the three–dimensional mi-
cromagnetic energy is

E
(3D)
d,Q (m, hext, ω) = d2

∫
ω

|∇m|2dx+Q

∫
ω

ϕ(m) dx

+

∫
R3

|hdem|2dx− 2

∫
ω

hext ·mdx , (2.1)

if |m| = χω, and +∞ otherwise. The demagnetizing field hdem = −∇u is
obtained via Maxwell’s equations,

div(−∇u+m) = 0 in R
3 , (2.2)

where the divergence is understood in the sense of distributions. The four
terms in (2.1) are referred to as the exchange, anisotropy, magnetostatic and
external field (or Zeeman) energy, respectively.

To the naive mathematical eye the exchange energy |∇m|2 is the highest–
order term which makes (2.1–2.2) a (nonlocal) lower–order perturbation of
the harmonic map problem. While this point of view is useful to understand
local properties, such as regularity of minimizers, it does not provide much
insight into the complexity of the observed magnetic microstructures. Indeed
much of the microstructure formation is driven by the magnetostatic energy,
and the exchange energy acts primarily as a limiting factor against infinite
refinement. To get a better understanding of the energy functional it is useful
to look at the different energy terms separately.

• The anisotropy energy ϕ(m) favors special directions of the magneti-
zation. Most materials have either uniaxial or cubic symmetry. The
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relative importance of the anisotropy term is measured by the qual-
ity parameter Q, which varies over five orders of magnitude between
different materials. Materials with a low Q, where the magnetization
can rotate easily, are termed soft ferromagnets. In the polycrystalline
Permalloy thin films discussed below, the fine–scale fluctuations in the
crystal orientation result in a very small effective Q. In the following
we shall consider only the homogenized material, which is magnetically
soft, and not discuss the grain structure further.

• The magnetostatic energy |hdem|2 tries to eliminate the (distributional)
divergence of m (see (2.2)). Written out separately for the interior and
the boundary (with outer normal ν) of ω this becomes

divm = 0 in ω m · ν = 0 on ∂ω . (2.3)

This is known as the “principle of pole avoidance”. It favors a mag-
netization which is parallel to the boundary and in particular strongly
disfavors uniform magnetization of the sample.

• The exchange energy |∇m|2 favors uniform or at least slowly–varying
magnetizations. It sets the finest length scale and the properties of the
walls, which in turn influence the larger length scales.

2.2 Thin film limit

We now consider a thin film, i.e. take ω = Ω × (0, t) with t → 0 and |ω|
of order 1. Throughout this section upper–case letters denote quantities
entering the reduced two–dimensional problem. We first outline the general
argument to motivate the definition of the two–dimensional functional, then
state our convergence result.

We consider external fields hext with vanishing out–of–plane component,
which scale linearly with the thickness t, and assume that the material pa-
rameters are such that Q� t and t3 � d2 � t/ ln(1/t). These conditions are
well satisfied in typical Permalloy films, where Q = 2.5× 10−4, t = 0.01 and
d = 0.005 for a typical disk with diameter 1 µm (the length units adopted
here are such that |Ω| is of order 1). We remark that this range includes film
thicknesses over which radically different wall types, from symmetric Néel to
asymmetric Bloch, are to be expected [36].

Our Γ–convergence result is based on the heuristic observation that, in the
limit t → 0, a hierarchical structure emerges in the micromagnetic energy
E(3D). We now discuss the scaling of the various contributions, which is
summarized in Table 2.1. This will motivate our choice of the scaling of
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t m3 magnetostatic
d2/t� t2 ∂m

∂x3
exchange

t2 ln(1
t
) [M · ν] magnetostatic

t2 DivM magnetostatic
Qt� t2 ϕ(m) anisotropy

higher order walls, Bloch lines all energies

Table 2.1: Scaling of the relevant energy terms in (2.1) and their physical
origin.

material parameters and the identification of the relevant energy scaling,
leading to the study of the limit of t−2E(3D).

An out–of–plane componentm3 of the magnetization of order one through-
out the sample determines a magnetostatic contribution of order t. Analo-
gously, magnetization changes along the thickness direction x3 give rise to an
exchange energy of order d2/t � t2. Both are of order lower than t2, hence
turn into sharp constraints in the limit. Therefore we can write m = (M, 0),
where M : Ω → R

2 is the two–dimensional magnetization.
The component of M orthogonal to the lateral boundary ∂Ω of the film’s

cross section leads to a magnetostatic contribution of order t2 ln 1
t

associated
with “poles” proportional to M · ν, where ν is the outer unit normal to
∂Ω. Precisely the same mechanism penalizes jumps [M · ν] of the normal
component of the magnetization across a line of discontinuity of M with
normal ν. These lines of discontinuity arise by approximating domain walls
as sharp interfaces, and since their energy is of order lower than t2, they are
also forbidden in the limit. This explains why in the limiting problem only
in–plane magnetizations occur with discontinuity lines along which M ·ν does
not jump (see Definition 2.2).

At order t2 we find the magnetostatic energy due to “charges” propor-
tional to the in–plane divergence DivM , while anisotropy, walls, vortices,
Bloch lines and cross–ties contribute only at higher order. Thus, with an
external field scaling linearly with the thickness hext = (tHext, 0), hence con-
tributing the energy −t2 ∫

Ω
Hext ·M , we have that, in the limit t → 0, min-

imization of E(3D) within the restricted class outlined above results in an
energetic competition at order t2 between the aligning effect of Hext and the
demagnetizing effects due to DivM . This motivates the following definition
of the reduced energy.

Definition 2.2 (Reduced energy). Given an open bounded set Ω ⊂ R
2

(the magnetic film) and a function Hext ∈ L1(Ω,R3) (the reduced external
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field), the reduced micromagnetic energy is

E(2D)(M,Hext,Ω) =

∫
R3

|Hdem(x)|2dx− 2

∫
Ω

Hext ·M(x)dx (2.4)

if the reduced magnetization M ∈ L∞(R2,R2) obeys

|M | ≤ χΩ , DivM ∈ H−1/2(R2) (2.5)

and +∞ otherwise. The reduced demagnetizing field Hdem is obtained by
solving Hdem = −∇U , ∇2U = 0 outside Ω × {0}, and[

∂U

∂x3

]
= DivM on Ω × {0} (2.6)

where Div denotes the two–dimensional divergence.

The first condition in (2.5) corresponds to the convexification of the unit–
length constraint present in the three–dimensional problem, and the second
one to the requirement that the normal component of M does not jump
across discontinuity lines and the boundary of Ω.

Guided by the heuristic argument illustrated above, we introduce the
following notion of convergence.

Definition 2.3. Given a sequence t(n) → 0, we say that the sequence
{(m(n), h

(n)
ext,Ω × (0, t(n)))} of admissible arguments for E(3D) converges to

the two–dimensional limit (M,Hext,Ω), which is an admissible argument for
E(2D), if

1

t(n)

∫ t(n)

0

m(n)(·, x3)dx3⇀

(
M
0

)
in L2 (2.7)

and
1

t(n)
hext⇀Hext in L2 . (2.8)

We are now ready to state the main result of this Section.

Theorem 2.4 (Γ–convergence). Let {t(n)}, {d(n)} and {Q(n)} be sequences
such that

t(n) → 0 ,
(
d(n)
)2 ln 1/t(n)

t(n)
→ 0 , and

Q(n)

t(n)
→ 0 . (2.9)

Then the reduced two–dimensional energy E(2D) (Definition 2.2) is the Γ–

limit of the rescaled full micromagnetic energy t−2E
(3D)

d(n),Q(n) (Definition 2.1)

with respect to the notion of convergence stated in Definition 2.3.
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Proof. As customary for Γ–convergence results, the proof consists of two
parts. The first one is a lower semicontinuity result, ensuring that E(2D)

evaluated at the limit of a converging sequence is less than or equal to the
lower limit of the energy E(3D) evaluated along the sequence. The second
part consists of a construction guaranteeing that E(2D) provides a sharp lower
bound to the limiting values of E(3D), i.e., that for every admissible argument
M of E(2D), there exists a sequence converging to it such that the upper limit
of E(3D) computed along the sequence is bounded above by E(2D)(M). The
physical intuition which builds upon Table 2.1 plays a crucial role in guiding
the constructive part of the proof, which is given in [25].

Remark 2.5. In the thin film limit, the unit length constraint on the mag-
netization vector is lost. Indeed, the non–convex constraint |m| = χω of the
full magnetostatic problem is replaced by the weaker, convex constraint

|M | ≤ χΩ (2.10)

in the reduced problem. This is due to the fact that, at small thicknesses,
the energy cost of in–plane, divergence–free fluctuations of the magnetization
vector is small (in fact, zero at order t2).

Remark 2.6. If the external field Hext is a smooth gradient (this includes
e.g. the typical case Hext = const on Ω), then the functional E(2D) depends
on M only via the surface charge σ = −DivM , and it is strictly convex in
σ. Indeed,

∫
R3 |Hdem|2 dx is a quadratic functional of σ and an integration by

parts shows that
∫

Ω
Hext ·M dx is a linear functional of σ.

The stationary pointsM of the functional (2.4) satisfy the Euler–Lagrange
equations

Hdem +Hext = λM and λ (1 − |M |) = 0 (2.11)

in ω, where λ(x) ≥ 0 is the Lagrange multiplier associated with the point-
wise constraint |M(x)| ≤ 1. At zero external field, minimization of (2.4)
gives Hdem = 0 (pole avoidance), and hence DivM = 0 (flux closure). This
corresponds to the model proposed by van den Berg [7]. In this case, (2.11)
implies λ = 0. Increasing the external field strength, one first encounters a
regime in which Hdem +Hext remains zero. This is the field–expulsion regime,
which corresponds to the model proposed by Bryant and Suhl [12]. At higher
fields, no such solution is possible, and one obtains λ > 0, |M | = 1 at least
in part of the domain. In these regions the magnetization M is uniquely
determined by the Euler–Lagrange equation (2.11). The regions of Ω where
λ(x) > 0 are those where the induced field is unable to cancel the external
field (i.e., the external field penetrates the sample).
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Remarks 2.5 and 2.6 indicate that the reduced problem E(2D), or equiva-
lently (2.11), is a convex, quadratic problem, which can be efficiently solved
numerically, obtaining a unique solution for DivM for each external field
Hext. Since DivM determines Hdem uniquely, also the regions of field pene-
tration and the magnetization inside these regions are uniquely determined
through (2.11). This would conclude the first part of our program: a simple
limiting functional has been derived, which can be easily minimized numeri-
cally, and which delivers the robust quantities of the problem, namely, DivM
throughout the sample, the region of field penetration, and the magnetization
M inside this region.

We shall now move to the final part of our program, i.e., to the recon-
struction of the non–robust quantities entering the original problem from the
solution of the reduced one. In particular, the key quantity of interest if the
magnetization M outside the region of field penetration.

Remark 2.7. The set of regular in–plane vector fields of unit length and
with given surface charge is large in the following sense: For any regular M0

which obeys (2.10) there exist many regular M of unit length with the same
surface charge: DivM = DivM0. Indeed, we may write M = ∇⊥ψ + M0

where ∇⊥ψ = (−∂ψ/∂x2, ∂ψ/∂x1) and the continuous function ψ(x) on Ω
solves the boundary value problem

|∇⊥ψ +M0| = 1 in Ω, (2.12)

ψ = 0 on ∂Ω. (2.13)

Condition (2.10) ensures the existence of a solution to (2.12–2.13). One can
generate many solutions by imposing the additional condition ψ = 0 on an
arbitrary curve contained in Ω.

A selection criterion among the minimizers of (2.4) based on further min-
imizing suitably defined wall and Bloch line energies should emerge from
an asymptotic development of the micromagnetic energy functional to order
higher than two in the film thickness, but this is not attempted here (see
Section 2.4).

2.3 Numerical results and comparison with experiment

The simplified structure of the two–dimensional limiting problem permits an
efficient numerical solution. Minimization of E(2D) only delivers the diver-
gence of M , not the full vector field. A direct experimental determination
of the same quantity, for a comparison, is however difficult. Therefore, af-
ter having computed the divergence by computing one of the minimizers of
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Figure 2.1: Numerical results: gray–scale plots of the vertical component
of magnetization for different values of the external field Hext. The direction
of the external field is indicated by the arrow in the second plot.

E(2D) with length less than or equal to one, in a second step we determine
a magnetization field which has unit length and the given divergence, using
the heuristic selection criterion discussed below. The result is then compared
with experiment.

The first computational step is a convex (though degenerate) variational
problem. We solve it using an interior point method (see [27] for details).
For the second step, we recall that the solution of (2.12–2.13) is not unique.
However there is a unique viscosity solution (see e.g. [28]), which can be
computed efficiently using the level–set method [53].

The numerical scheme above selects one of the many minimizers M . The
selection principle implicit in this scheme is similar to the one proposed by
Bryant and Suhl [12]. It appears to pick a minimizer with as few walls as
possible. Thus it is not unlike the more physical selection mechanism of
minimizing wall energy, which one can see as a higher–order correction to
(2.4).

Figure 2.1 shows the predictions of our numerical scheme for a square
film of edge–length one, subject to a monotonically increasing uniform field
applied along the diagonal. The comparison of our predictions with the
response of two Permalloy (Ni81Fe19, Js = 1.0 T) square samples of edge
lengths L = 30 and 60 µm and thicknesses D = 40 and 230 nm, respectively,
as observed in a digitally enhanced Kerr microscope (see Figures 2.2 and 2.3)
shows a very good agreement between theory and experiment.
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Figure 2.2: Observed domain patterns on Permalloy square films with
side 60 µm, and thickness 230 nm. The gray–scale represents the vertical
component of the magnetization. Courtesy of R. Schäfer, IFW Dresden.

2.4 Discussion

The reduced model derived in the previous sections is able to capture the
experimentally observed behavior in a broad range of material and geometric
parameters. It determines the micromagnetic energy to principal order, and
the associated robust physical quantities that are expected to have little or
no hysteresis — the charge density, the region of field penetration, and the
magnetization in the penetrated region.

A natural counterpart to the broad applicability of the model is its de-
generacy, which limits the predictive power. The reconstruction procedure
outlined above provides a specific magnetization pattern which is consistent
with experimental observations, but a rigorous mathematical justification of
the selection criteria has not yet been presented. The degeneracy is strictly
connected to the disappearance of the exchange energy, and to the loss of the
constraint of unit length. The derivation of a model in which this degener-
acy is lifted, through inclusion of higher–order corrections to the energy, will
most probably involve an analysis of the domain walls. As discussed in [36],
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Figure 2.3: Observed domain patterns on Permalloy square films with side
30 µm and thickness 40 nm. Courtesy of R. Schäfer, IFW Dresden.

different wall types are expected to be present in the range of thicknesses in
which our theory applies. Therefore we expect that a reduction in the de-
generacy of the theory will be accompanied by a partitioning of its range of
applicability into a number of separate components, each requiring a different
analytic treatment. Complete results of this nature are not yet available, but
progress towards overcoming some of the key obstacles has been reported.
On the one hand, the structure of the Néel walls has been elucidated, includ-
ing the logarithmic tails, at least for the 180◦ case [24, 45]. Progress on the
mathematical treatment of cross–tie walls is reported in [26]. Closely related
variational problems concerning energies where the higher–gradient still sur-
vives as a singular perturbation have been studied in [3, 40, 52]. The related
issue of the conservation of the constraint |M | = 1, which mathematically is a
compactness issue, has also been successfully addressed in various singularly
perturbed variational problems mimicking micromagnetism [2, 23, 38, 37].
A different class of refinements of the theory presented here would aim at
including hysteresis and, in general, dynamic effects. The reduction to two
dimensions of the Landau–Lifshitz–Gilbert equations of micromagnetic dy-
namics has been addressed, for example, in [32].

3 Nematic elastomers

The elastic properties of weakly cross–linked nematic chains display in an
experimentally accessible setting the fascinating consequences of the non–
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quasiconvexity of an elastic energy density in nonlinear elasticity and its
application to the mathematical modeling of rubber–like materials.

As first predicted by Golubović and Lubensky [35], isotropic gels prepared
by cross–linking liquid polymers with a nearby nematic phase are, at least in
some cases, close to a transition to an anisotropic phase, characterized by the
coupling of elastic deformations to the alignment of the nematic director (see
Figure 3.1). The elastic energy is in this case approximately minimized by all
volume–preserving uniaxial deformations of given magnitude, independently
of the orientation of the principal stretch directions [9, 59, 61]. These states
form the zero set of a suitably defined microscopic energy W . Furthermore,
all states with smaller stretches can be obtained by combining zero–energy
states with different orientations in different parts of the domain, i.e., by
using mixtures of pure states [59, 61].

The microscopic model involves therefore multiple energy–minimizing
states, which can be combined on a small scale to obtain many more low–
energy macroscopic deformations. In the effective macroscopic model the
fine–scale oscillations are averaged out in the kinematics, but correctly ac-
counted for in the energetics. Deducing such a macroscopic model amounts to
determining the quasiconvexification of the microscopic energy. The macro-
scopic model, which is free from oscillations, is used to compute numerically
a macroscopic deformation field. A possible microscopic representation of the
macroscopic deformation is then recovered by “inverting” the quasiconvexi-
fication procedure. The organization of the following sections follows closely
the mentioned line of thought. In Section 3.1 we present the derivation of
the microscopic energy, whose quasiconvexification is then obtained in Sec-
tion 3.2. Finite–element numerical computations are discussed in Section
3.3, together with the results on the microscopic deformation obtained with
the mentioned inversion procedure. In Section 3.4 we discuss the issue of
attainment, i.e. of whether structures on an infinitesimal scale in large parts
of the domain are necessary in order to minimize the given energy, or if there
is a configuration with the same energy where infinite refinement occurs only
along the boundary, or not at all. Finally, in Section 3.5 we discuss critically
our results and the validity of the adopted microscopic model.

3.1 Microscopic model

Nematic elastomers are formed by cross–linking polymeric chains which are
subject to nematic ordering in a certain temperature range. Nematic order-
ing, which is typical of elongated, rod–like molecules, means that the rota-
tional invariance of the isotropic liquid is broken and molecules align their
axis in some direction n. In an elastomer, where the mesogens cannot spa-
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Figure 3.1: Schematic representation of the deformation mechanism. In the
isotropic phase (left panel) the polymer can be imagined as a Gaussian coil
with attached side mesogens, whose orientation is random. In the nematic
phase (right panel) the mesogens have a tendency to align, and this induces a
uniaxial deformation of the coil. The director n, in non–chiral liquid crystals,
does not have an orientation and should therefore be identified with −n.

tially rearrange, the orientation process is coupled to a uniaxial deformation
of the polymeric chain along n (see Figure 3.1).

Elastomeric solids are characterized by a small shear stiffness, which de-
rives mainly from entropic effects, whereas the resistance to compression is
much larger. We follow common practice and model them as incompress-
ible materials, i.e., from now on we assume that the elastic energy density
is infinite for all deformations which are not volume–preserving. The free
energy which governs the response to shears can be computed from statis-
tical mechanics. The probability distribution giving the likelihood that an
isotropic polymer chain has end–to–end span described by the vector R is,
in the Gaussian approximation,

Pisotropic(R) =

(
3

2πL

)3/2

exp

(
− 3

2L
|R|2

)
, (3.1)

where L is a measure of the the length of the polymer chains. Assume
now that the polymer network is affinely deformed, and let F be the de-
formation gradient. The corresponding elastic free energy, of entropic na-
ture, is obtained by averaging the logarithm of Pisotropic(FR) with respect to
Pisotropic(R), i.e.

Wisotropic(F ) = −kBT 〈lnPisotropic(FR)〉Pisotropic(R) =
1

2
kBT |F |2 + c (3.2)
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and corresponds to the standard neo–hookean elasticity of rubber. In (3.2)
and below, c denotes a constant which does not depend on F , and hence has
no effect on the elastic properties and can be safely ignored. Similarly, since
we will be working at constant temperature, the Boltzmann factor kBT/2
will be dropped in what follows.

In nematic elastomers, the chains have a preferred orientation, since ex-
tension parallel to n is more likely than in other directions. More precisely,
one gets

Pn(R) =

(
3

2πL

)3/2

exp

(
− 3

2L
Ri(U

−2
n )ijRj

)
(3.3)

where
Un = a1/6

[
Id + (a−1/2 − 1)n⊗ n

]
(3.4)

corresponds to a uniaxial stretch along n. The coefficient a ∈ (0, 1) mea-
sures the effect of local ordering on the elastic properties, and clearly the
isotropic case is recovered for a = 1 (this corresponds either to zero nematic
ordering, or to zero coupling between the nematic ordering and the elastic
deformation). Let n0 denote the value of n at cross–linking, which we as-
sume to be done in a perfectly ordered state, i.e. with n0 and a constant
across the sample (effects of weak disorder in the cross–linking configuration
will be discussed in Section 3.5). We are interested in the elastic proper-
ties of the material after cross–linking. Since the chain distribution in the
melt has been frozen, the probability distribution remains Pn0. The free en-
ergy at given director n and deformation gradient F̃ is then obtained by the
quenched average

W̃BTW(F̃ , n) = −kBT 〈lnPn(F̃R)〉Pn0 (R)

=
1

2
kBT TrU−2

n F̃U2
n0
F̃ T + c

=
1

2
kBT TrU−2

n (F̃Un0)(F̃Un0)
T + c . (3.5)

The energy (3.5) was first obtained by Bladon, Terentjev and Warner (BTW)
in [9]. Using this energy BTW predicted soft elastic response and microstruc-
ture (stripe domains) originating from the non–quasiconvexity ofWBTW; such
predictions have been verified experimentally [42]. However, the experimen-
tal results do not show ideally soft response, but rather exhibit both a stress
threshold and a small resistance at small stretches, on a scale much smaller
than kBT but still measurable. This observation led to a theoretical search
for corrections to (3.5), the main candidates being higher gradient energies
(penalizing sharp changes in the director direction n) and disorder in the
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cross–linking configuration. Various corrections to WBTW have been pro-
posed in the literature [59, 62, 29, 60] and will be discussed in Section 3.5
below. The last expression in (3.5) emphasizes the high symmetry of the
problem which can be obtained by choosing as reference configuration the
stress–free state of the ideal isotropic “high–temperature” phase, which dif-
fers from the actual cross–linking configuration by a uniaxial stretch Un0 .
From now on we consider the strain with respect to this new reference config-
uration, F = F̃Un0 . Choosing kBT/2 as energy units, and adding a suitable
constant, one gets

WBTW(F, n) = TrU−2
n FF T − 3 = a−1/3

[|F |2 − (1 − a)|F Tn|2]− 3 (3.6)

for volume–preserving deformations F , and infinity if detF 
= 1.
Minimizing locally over unit vectors n corresponds to replacing |F Tn| with

the largest singular value of F . Indeed, due to the full rotational symmetry
of this problem, the energy can only depend on the singular values of F ,
which we denote by λ1 ≤ λ2 ≤ λ3 (their squares are the eigenvalues of F TF
and FF T ). One then gets

Wne(F ) =

{
a−1/3λ2

1(F ) + a−1/3λ2
2(F ) + a2/3λ2

3(F ) − 3 if detF = 1

+∞ else
(3.7)

which constitutes the starting point of our analysis.
We first present a simple argument which illustrates, in a special case,

the origin of the experimentally–observed stripe domains from an ener-
getic point of view. Consider a macroscopic deformation gradient F =
diag(a1/6, µ, a−1/6/µ), with a1/6 < µ < a−1/3. By definition, Wne(F ) > 0,
but one can find a sequence of zero–energy deformations which converge
(weakly in W 1,2) to u(x) = Fx. The construction uses a decomposition of
the domain in equally spaced layers in which the deformation gradient takes
the values

F± = F ± δe2 ⊗ e3 =

⎛
⎝a1/6 0 0

0 µ δ
0 0 a−1/6/µ

⎞
⎠ (3.8)

where δ is chosen so that Wne(F±) = 0. A short calculation shows that this
is possible if and only if a1/6 ≤ µ ≤ a−1/3. We emphasize that it is possible
to find a Lipschitz function whose gradient only takes the values F+ and F−
precisely because F+−F− is a rank–one matrix. The boundary of the region
where the gradient equals F+ has normal e3 (see Figure 3.2). It can be ex-
pected that for some deformation gradients more complicated constructions
can lead to smaller energy than the one obtainable by a simple laminate.
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Figure 3.2: Approximation of an affine deformation by a sequence of oscil-
lating functions (see text).

Indeed, we will prove below that a second iteration of the above construction
is always optimal for this energy (Theorem 3.1), and then characterize the
set of matrices F where a single iteration is sufficient (Theorem 3.3).

3.2 Quasiconvexification

In this section we give a mathematical formulation of the foregoing construc-
tions. We start with some definitions. We say that a probability measure on
3 × 3 matrices ν = µ1δF1 + µ2δF2 is a first–order laminate with average F
if µ1F1 + µ2F2 = F and rank(F1 − F2) = 1. Here δF denotes a Dirac delta
concentrated on the matrix F . Laminates of order k with average F are then
defined as the set of probability measures obtained from laminates of order
k−1 replacing any δFj

with a first–order laminate with average Fj. We have
seen above that laminates offer a natural way to reduce the energy by using
complex deformation patters. The optimal energy which can be obtained
with laminates is called the lamination convex envelope, and is defined as
φlc(F ) = inf〈φ, ν〉, where the infimum is taken over all laminates with aver-
age F (we denote by φ a generic energy density, and use W for the specific
expressions which concern nematic elastomers).

Laminates are very useful but also very special constructions, and it is
therefore natural to ask whether other constructions can further reduce the
energy. The optimal result is the quasiconvex envelope, defined by

φqc(F ) = inf
y∈W 1,∞

{
1

|Ω|
∫

Ω

φ(∇y(x))dx : y(x) = Fx on ∂Ω, det∇y(x) = 1

}
.

(3.9)
It turns out that for the case of interest here φqc = φlc and second–

order laminates are sufficient. In order to better elucidate the mathematical
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structure of the problem, we consider a generalization of the above energy,

W (F ) =

⎧⎨
⎩
(
λ1(F )

γ1

)p

+

(
λ2(F )

γ2

)p

+

(
λ3(F )

γ3

)p

− 3 if detF = 1

+∞ else

(3.10)

where γ1 ≤ γ2 ≤ γ3 are given positive constants, with γ1γ2γ3 = 1 and
p ≥ 2. The energy (3.7) of nematic elastomers is recovered by choosing
p = 2, γ1 = γ2. The energy W is nonnegative, and it vanishes only for
matrices F which have singular values (γ1, γ2, γ3), i.e.

W (F ) = 0 iff F ∈ SO(3)diag(γ1, γ2, γ3)SO(3) . (3.11)

The quasiconvexification of W has been obtained by DeSimone and Dolz-
mann in [21], and later extended by Šilhavý in [54].

Theorem 3.1 ([21]). Let W be given by (3.10). Then,

W qc(F ) =

{
g̃(λ3(F ), λ−1

1 (F )) if detF = 1

+∞ else
(3.12)

where g̃ : (0,∞)2 → R is the convex nondecreasing function given in (3.19).

Proof. The proof is based on constructing a polyconvex function which lies
below W , and therefore gives a lower bound to W qc, and comparing with
upper estimates obtained by constructing laminates. Here we outline the
main ideas, using a slight variant of the original argument.

We first describe in general our strategy for evaluating the quasiconvex
envelope of a function φ. The starting point is to obtain good candidates
for the polyconvex envelope φpc, which is the largest polyconvex function less
than or equal to φ. Recall that a function φ : R

3×3 → R is polyconvex if there
exists a convex function h : R

19 → R such that φ(F ) = h(F, cof F, detF ), and
that φpc ≤ φlc. Given finitely many polyconvex functions {zi}, all functions
φ such that φ(F ) = η({zi(F )}), with η convex and nondecreasing in its
arguments, are also polyconvex. An appropriate set of variables {zi} may
be suggested by the structure of the problem. If one can write φ(F ) =
η({zi(F )}), the largest convex and nondecreasing function η̃ less than or
equal to η provides a polyconvex function φ̃(F ) = η̃({zi(F )}) not larger than
φ(F ), which is a lower bound for the quasiconvexification φqc. If one can
further show that φlc(F ) ≤ φ̃(F ), then φ̃ is the polyconvex and lamination
convex envelope of φ. Finally, due to a result by Müller and Šverák [48], φ̃
is also the quasiconvex envelope of φ.
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We now apply this general strategy to our specific problem. Since the
function

ψ(F ) = χ1(detF ) , χ1(x) =

{
0 if x = 1

+∞ else
(3.13)

is polyconvex, W qc(F ) is infinite unless detF = 1. Therefore we only need
to consider matrices with determinant equal to one. Due to its full rotational
symmetry, the energy W (F ) only depends on the singular values of F , which
are the natural variables in which the problem should be cast. These can
in turn be expressed in terms of convex functions of F and cof F , hence of
polyconvex functions of F . Indeed, the largest singular value is given by

s(F ) = λ3(F ) = max
|e|=1

|Fe| (3.14)

and is therefore a convex function of F . The inverse of the smallest can be
written as

t(F ) =
1

λ1(F )
= max

|e|=1
| cof Fe| (3.15)

and is a convex function of cof F . The intermediate singular value is then
recovered by the volume constraint, λ2 = t/s. We thus write W (F ) =
g(s(F ), t(F )), where g : (0,∞)2 → R is given by

g(s, t) =

(
1

tγ1

)p

+

(
t

sγ2

)p

+

(
s

γ3

)p

− 3 . (3.16)

By computing the Hessian matrix one can easily see that g is convex in s
and t, however it is not increasing. More precisely,

∂g

∂s
= psp−1γ−p

3 − ptps−p−1γ−p
2 (3.17)

is nonnegative if and only if s2 ≥ tγ3/γ2, and

∂g

∂t
= ptp−1s−pγ−p

2 − pt−p−1γ−p
1 (3.18)

is nonnegative if and only if t2 ≥ sγ2/γ1. The significance of these conditions
is best understood with reference to Figure 3.3. The range of s and t (as
functions of F , with detF = 1) is given by 0 < 1/t < t/s < s, and it
corresponds to the region between the two thick parabolas. The internal
region between the two thin parabolas, denoted by S, is the one where both
derivatives are positive. In the region I1 we have ∂sg < 0, and therefore the
largest nondecreasing function below g is given by g evaluated on the common
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Figure 3.3: The phase diagram for the relaxed energy. The left panel shows
the different phases and phase boundaries (see Eq. (3.19)). The right panel
shows the rank–one directions in the phase diagram which correspond to
keeping one singular value fixed. First the energy in the regions I1 and the
I2 is constructed, by taking the value on the boundary with S (at fixed t in
I1, at fixed s in I2). The construction in L is done by continuing from the
boundaries of I1 and I2 along lines of constant λ2 = t/s.

boundary between I1 and S, i.e. g̃(s, t) = g((tγ3/γ2)
1/2, t). Analogously in

the region I2 we get g̃(s, t) = g(s, (sγ2/γ1)
1/2). Finally, since g(γ3, 1/γ1) = 0

(and g ≥ 0 everywhere), in the whole region L we get g̃ = 0. We conclude
that the highest nondecreasing function below g is given by

g̃(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g(s, t) in S, i.e. s2 ≥ tγ3/γ2 and t2 ≥ sγ2/γ1

2

(
t

γ2γ3

)p/2

+

(
1

γ1t

)p

− 3 in I1, i.e. t ≥ 1/γ1 and t ≥ s2γ2/γ3

2

(
1

sγ1γ2

)p/2

+

(
s

γ3

)p

− 3 in I2, i.e. s ≥ γ3 and s ≥ t2γ1/γ2

0 in L, i.e. s ≤ γ3 and t ≤ 1/γ1 .

(3.19)
One can then easily check that g̃ is still convex (see [21] for details), and

therefore φ̃ = g̃(s(F ), t(F )) is polyconvex and it provides a lower bound for
the quasiconvex envelope of W .

We now show that this bound is optimal, i.e. that the same energy
can be reached by laminates. Again, the special choice of variables s and
t makes the computation easy. Indeed, by rotational invariance it suffices
to consider only diagonal matrices. Fix F = diag(µ1, µ2, µ3), and consider
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Fδ = F + δe1 ⊗ e2. The matrices Fδ have detFδ = 1, µ3 as a singular value,
and |Fδ|2 = |F |2 + δ2. Let (ξ1, ξ2, µ3) be the singular values of Fδ. Since
ξ2
1 + ξ2

2 = µ2
1 + µ2

2 + δ2 and ξ1ξ2µ3 = 1, it is clear that by choosing a suitable
δ one can reach a given pair (ξ1, ξ2) if and only if |ξ1 − ξ2| ≥ |µ1 − µ2|, and
the determinant constraint ξ1ξ2µ3 = 1 is satisfied. Then F is the average
of a first–order laminate supported on F±δ, and φlc(F ) ≤ φ(Fδ) = φ(F−δ).
Therefore in the (s, t) plane one can construct laminates along lines which
keep one singular value constant, i.e. lines parallel to each coordinate axis,
and lines which go through the origin as shown in Figure 3.3. The right panel
shows the paths used to construct optimal laminates: constant s lines inside
I1, constant t lines inside I3, and constant s/t lines inside L. Since the line
segments used in L have one end point on the common boundary with I1, I3
and since these points already represent laminates, the resulting construction
in L is a second–order laminate. This concludes the proof that W lc = W pc.
The fact that the quasiconvex envelope also coincides with them requires a
delicate treatment of the volume constraint, for which we refer to [21].

Remark 3.2. For p = 2 and γ1 = γ2 = a1/6, the relevant case for nematic
elastomers, phase I2 is absent, and (3.19) reduces to

g̃(s, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a−1/3

t2
+
a−1/3t2

s2
+ a2/3s2−3 in S, i.e. s2 ≥ ta1/2

2a1/6t+
a−1/3

t2
− 3 in Sm, i.e. t ≥ a1/6 and t ≥ a1/2s2

0 in L, i.e. t ≤ a1/6

(3.20)
(see also Figure 3.7 below). We name Sm (“Smectic”) the intermediate phase
I1 due to its peculiar mechanical behavior (see [14]).

In the construction above we used first laminates for I1 and I3, and sec-
ond laminates for L. A natural question, which was posed and only partially
answered in [21], is to ask whether the second laminates are really needed in-
side L. The following theorem gives a characterization of the set of gradients
where first laminates are sufficient.

Theorem 3.3. Let F be a matrix in phase L, i.e. such that γ1 ≤ λ1(F ) ≤
λ3(F ) ≤ γ3. There is a first–order laminate with average F supported on the
set {W (F ) = 0} if and only if

λ1(F ) ≤ γ2 ≤ λ3(F ) . (3.21)

Proof. If F can be obtained as a simple laminate, we can write F = M+a⊗b,
with W (M) = 0. By rotational invariance we can assume M to be diagonal,
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and since it has zero energy M = diag(γ1, γ2, γ3). We use an extension of
the argument given in [21] for the γ1 = γ2 case, and consider a unit vector v
orthogonal to e3 and to b. Then Fv = Mv, but since v is a linear combination
of e1 and e2, |Mv| ≤ γ2, it follows that

λ1(F ) = min
|n|=1

|Fn| ≤ |Fv| = |Mv| ≤ γ2 . (3.22)

Analogously, taking w as a unit vector orthogonal to e1 and b, we get γ2 ≤
λ3(F ). This concludes the proof of the first implication.

It remains to show that every matrix in phase L obeying (3.21) can be ob-
tained as a first–order laminate supported on zero–energy matrices. Consider
F = diag(µ1, µ2, µ3) with γ1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ γ3. The matrices

Fδ = F + δ(e1 cos θ + e3 sin θ) ⊗ e2 =

⎛
⎝µ1 δ cos θ 0

0 µ2 0
0 δ sin θ µ3

⎞
⎠ (3.23)

all have unit determinant. The matrix Fδ has singular values (γ1, γ2, γ3) if
and only if the two conditions TrF T

δ Fδ =
∑

i γ
2
i , Tr cof F T

δ cof Fδ =
∑

i γ
−2
i

are satisfied. Equivalently, ∑
i

µ2
i + δ2 =

∑
i

γ2
i (3.24)

and ∑
i

µ−2
i + δ2(µ2

3 cos2 θ + µ2
1 sin2 θ) =

∑
i

γ−2
i . (3.25)

The first equation can always be solved for δ. The second one can then be
solved for θ provided that

µ2
1 ≤

∑
γ−2

i −∑µ−2
i∑

γ2
i −

∑
µ2

i

≤ µ2
3 . (3.26)

The first inequality is equivalent to

0 ≤ −µ2
1

∑
i

γ2
i +

∑
i

γ−2
i + µ4

1 − µ−2
1 = µ−2

1

∏
i

(µ2
1 − γ2

i ) , (3.27)

which in turn gives µ1 ≤ γ2. Analogously, the second inequality gives µ3 ≥
γ2.

Remark 3.4. For γ1 = γ2, the relevant case for nematic elastomers, the
condition (3.21) is equivalent to λ1(F ) = γ1. In turn, this indicates that first
laminates are sufficient in phase Sm, up to the boundary with L, whereas
second laminates are needed inside L.
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3.3 Finite–element computations

In this section we present our numerical computations with the quasicon-
vexified energy W qc on a model problem, whose geometry and material pa-
rameters correspond to experiments reported in the literature. The loading
process consists in stretching in a direction orthogonal to the director at
cross–linking n0 = e3 a thin, flat rectangular sheet of size l1 × l2 × l3. In
our numerical simulations, we choose a typical value a = 0.5, which gives a
spontaneous stretch a−1/3 = 1.26. Moreover we considered a fixed thickness
l1 = 0.1l3 and an aspect–ratio l2/l3 = 3 (we also performed simulations with
l2/l3 = 1, see below). Lengths are here measured in the reference configu-
ration, which is the stress–free configuration of the high–temperature phase
described by a = 1 [this corresponds to the change of variables mentioned
before (3.6)]. The initial configuration is the stress–free one (in the low tem-
perature phase, i.e. for a = 0.5) with director parallel to n0 = e3, hence it
is deformed with respect to the reference configuration by the affine uniaxial
strain Ue3. The aspect ratio in the initial configuration is thus 3a1/2 ∼ 2.12.
In the experiment, the two faces orthogonal to e2 are glued to two pieces
of rigid material (clamps), which are then pulled away from each other. In
our simulation, on those faces we impose Dirichlet boundary conditions. The
stretch s is the distance between the clamps (in direction 2) in units of its
initial value. We always work with zero tractions on the unclamped part of
the boundary. Computations have been performed on a Sun workstation by
implementing a user–defined constitutive law in a commercial finite–element
software package (Abaqus). The high degeneracy of the energy (especially
in phase L, see below) requires inclusion of a small regularizing perturba-
tion. Details of the numerical procedure and of the regularization have been
described in [14].

Figure 3.4 shows the reactive force exerted by the clamps plotted against
the imposed displacements. These results show the existence of a “window”
of liquid–like behavior, where the force is zero within the resolution of our
simulation. We shall prove later (Theorem 3.7) that, at least in a smaller
window, the energy (and hence the reaction force) is exactly zero.

Several experiments [42, 64] report formation of microstructures in the
central part of the sample. This is explained by the fact that, in this region,
the energy is reduced by forming small–scale oscillatory patterns with alter-
nating shears, as discussed at the end of Section 3.1. To identify the part of
the sample where this happens, we plot the so–called microstructure index

IM =
1

λ1
− a1/2λ2

3 (3.28)

which is positive in phases L and Sm, and negative in phase S. Hence, IM > 0
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Figure 3.4: Force versus strain curve (crosses joined by the full line). The
diamonds joined by the dotted curve are results obtained for aspect–ratio 1
(i.e. l2 = l3). The black dot marks the configuration which is presented in
more detail below. The two vertical lines mark the boundary of the liquid
phase as obtained with the analytic construction in Theorem 3.7.
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Figure 3.5: Plot of the microstructure index IM for different stretches.
From top to bottom, s = 1.31, s = 1.38, and s = 1.46. Only the quarter
of the sample in the first quadrant is plotted, the rest is symmetric. The
clamped boundary is the one on the right side in this figure, the lower–left
corner represents the center of the sample.
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Figure 3.6: Microstructure index IM and resolution in microstructures at
stretch 1.38.

characterizes regions where the macroscopic deformation is achieved by a
mixture of different microscopic deformations. Figure 3.5 shows a density
plot of IM for different stretches. The striking result is that a region exhibiting
microstructure survives even at large stretches, around the mid–point of the
boundary. We now discuss in more detail the results for a representative
value of the stretch (s = 1.38, see the central panel of Figure 3.5 for the
resulting deformation).

In Figure 3.6 we show a possible resolution of the deformation gradient
using first–order laminates (as done in the construction described in Section
3.2). We choose rank–one connected matrices F± such that (F+ + F−)/2
agrees with the local in–plane macroscopic deformation. The “sticks” in the
figures indicate the local orientation of the nematic director n, and have been
obtained by plotting the eigenvector of F+F

T
+ corresponding to the largest

eigenvalue, i.e. the largest one among all vectors F+e with |e| = 1. As was
clear from the previous figures, microstructure is present only in the white
region around the central part of the clamp. Indeed, the director n equals
e3 close to the clamp, whereas it equals e2 in the center of the sample. The
microstructure covers the intermediate regime. Finally, in Figure 3.7 we
display the distribution in the phase diagram of the points explored by the
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Figure 3.7: Macroscopic phase diagram and phase distribution at s = 1.38.
The three regions are defined in Remark 3.2. Only the region λ2

3 ≥ 1/λ1 ≥
λ

1/2
3 can be attained (due to the volume constraint).

numerically computed macroscopic deformation gradient. The row of points
in phase Sm corresponds to the white region in the previous figures.

3.4 Attainment results

The mathematical analysis of the microscopic energy of nematic elastomers
allows one to understand and to reproduce in numerical simulations experi-
mentally observed microstructures. The success of this approach motivates a
further investigation of the mathematical origin of such microstructures. In
particular, we consider two paradigmatic boundary–value problems, namely,
affine Dirichlet conditions in Section 3.4.1 and the mixed boundary condi-
tions which mimic the experimental setup in Section 3.4.2. The implications
of these results on the understanding of experiments on nematic elastomers
are then discussed in Section 3.5.

3.4.1 Attainment and non–attainment for Dirichlet boundary
conditions

In this section we discuss the question of whether there exist Lipschitz func-
tions u with affine boundary conditions u(x) = Fx and with zero microscopic
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energy, i.e. whether for a given F such that W qc(F ) = 0 the infimum

inf
y∈W 1,∞

{
1

|Ω|
∫

Ω

W (∇y(x))dx : y(x) = Fx on ∂Ω, det∇y(x) = 1

}
, (3.29)

which is zero by the definition of W qc, is in fact attained [W was defined in
(3.10)]. The answer only depends on the singular values of F , and not on the
domain Ω. This issue was first investigated by Dacorogna and Tanteri in [17].
We give here an independent, complete characterization of the attainment
set, based on a general construction by Müller and Šverák.

Theorem 3.5. Let F be in the phase L, i.e.

γ1 ≤ λ1(F ) ≤ λ3(F ) ≤ γ3 , (3.30)

and such that W (F ) > 0. Then the infimum in (3.29) is attained if and only
if γ1 < λ1(F ) and λ3(F ) < γ3.

Proof. By rotational invariance, we may assume that F is a diagonal matrix,
F = diag(µ1, µ2, µ3), with µ1 ≤ µ2 ≤ µ3. We first show that the infimum is
not attained if µ3 = γ3. Suppose otherwise. Then there exists a Lipschitz
map u with W (∇u) = 0 a.e., and u = Fx on ∂(0, 1)3. Then,

γ3 =

∫
(0,1)3

e3 · ∇ue3 dx ≤
∫

(0,1)3
λ3(∇u) dx = γ3 (3.31)

Therefore equality holds in this chain of inequalities, and since |(∇u)e3| ≤
λ3(∇u) = γ3 we get (∇u)e3 = γ3e3. It follows that

u(x1, x2, x3) = F (x1, x2, 0)T + γ3x3e3 = Fx (3.32)

Hence W (∇u) = W (F ) > 0, a contradiction. If instead µ1 = γ1, we need
to consider the cofactor matrix, which like the gradient itself is a null La-
grangian. Therefore its integral depends only on the boundary values, and

1

γ1
=

∫
(0,1)3

e1 · (cof ∇u)e1 dx ≤
∫

(0,1)3
λ−1

1 (∇u) dx ≤ 1

γ1
(3.33)

so that we can conclude as before.
To prove attainment in the case γ1 < µ1 ≤ µ3 < γ3, we use a spe-

cial case of a more general theorem by Müller and Šverák [48], which
is stated below in Theorem 3.6. In our application, K is given by
K = SO(3)diag(γ1, γ2, γ3)SO(3), and we only need to construct an in–
approximation with F ∈ U1. In order to do so, we choose

U1 = {F : detF = 1, γ1 < λ1(F ) ≤ λ3(F ) < γ3} (3.34)
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and we define iteratively

Ui+1 = Ui

⋂{
F : λ1(F ) < γ1 +

1

i
, λ3(F ) > γ3 − 1

i

}
. (3.35)

The only thing that remains to be checked is that Ui is contained in the
rank–one convex hull of Ui+1. This is however an immediate consequence of
our construction in Section 3.2.

Before concluding this Section, we state the result regarding the con-
straint detF = 1 which has been used in the construction above.

Theorem 3.6 ([48]). Let Σ = {F ∈ M3×3 : detF = 1}, and let K be a
subset of Σ. Suppose that Ui is an in–approximation of K, i.e. the Ui are
open in Σ, uniformly bounded, Ui is contained in the rank–one convex hull of
Ui+1, and Ui converges to K in the following sense: if Fi ∈ Ui and Fi → F ,
then F ∈ K. Then, for any F ∈ U1 there exists a Lipschitz solution of the
partial differential inclusion

Du ∈ K a.e. in Ω

u(x) = Fx on ∂Ω .

3.4.2 Attainment for a Dirichlet–Neumann problem

We now explore the attainment question for the experimentally relevant case
of Dirichlet boundary conditions prescribed only on two opposite faces of
a thin rectangular sheet. We will show that, for a large range of imposed
stretches, zero energy can be attained by deformations whose gradients take
only finitely many values.

Theorem 3.7. The problem

W (∇u) = 0 a.e., u(x) = diag(γ1, tγ2, γ3)x for x2 = ±l2 (3.36)

has a piecewise affine solution in Ω = (−l1, l1)× (−l2, l2)× (−l3, l3) such that
∇u takes only 4 different values for any t in the interval

1 ≤ t ≤ 1 +
γ3 − γ2

γ2

l2 −AR0l3
l2

, (3.37)

where

AR0 =
γ2 + γ3

2γ2

(√
1 +

4γ2γ3

(γ2 + γ3)2
− 1

)
. (3.38)
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Proof. It is sufficient to construct v(x2, x3) such that v(±l2, x3) = ±tγ2l2e2 +
γ3x3e3. Then one takes u(x) = γ1x1e1 + v(x2, x3). Figure 3.9 shows the
regions where ∇v is constant, in the (x2, x3) plane. In the two regions de-
noted by A, which contain the portion of the boundary where the Dirichlet
condition is imposed, we have ∇v = FA = diag(γ2, γ3). In the central re-
gion C, we have ∇v = FC = diag(γ3, γ2). In the regions denoted by B,
∇v = ei(φ+θ)diag(γ2, γ3)e

−iθ, where eiθ denotes the matrix corresponding to
a counterclockwise rotation by θ. The necessary conditions for the construc-
tion are that FA − FB and FB − FC are rank–one matrices, i.e.

det(FA − FB) = det(FB − FC) = 0 , (3.39)

and that the corresponding rank–one directions have a suitable orientation
(i.e. one should also check that they are compatible with the global geometry
displayed in Figure 3.9). Eq. (3.39) is equivalent to

cos(φ+ 2θ) = 0 , cosφ =
4γ2γ3

(γ3 + γ2)2
, (3.40)

which has two pairs of opposite solutions, which we denote by (±φ,±θ1) and
(±φ,±θ2). It remains to check that the corresponding rank–one direction
have the relative orientation shown in the figure. Consider one of them,
(φ, θ1). Let ψAB and ψBC be the (uniquely defined) angles in (0, π) such
that (FA − FB)(cosψAB, sinψAB) = (FB − FC)(cosψBC , sinψBC) = 0 (ψAB

and ψBC are the angles formed by the segments PR and PQ with the e2
axis, respectively). If ψBC ≥ ψAB this solution is appropriate for B+ (i.e.
the part of B which is contained in the first and third quadrant). If instead
ψBC ≤ ψAB, this solution is appropriate for B−. In both cases, (−φ,−θ1)
gives a solution for the other half of B. The same reasoning applies to
(±φ,±θ2), hence we have two solutions.

We now focus on one of them, with sign chosen so that ψBC ≥ ψAB. The
boundary condition is satisfied if and only if

tl2γ2 = γ3P2 + γ2(l2 − P2) (3.41)

where P2 is the e2 coordinate of the point P where the regions A and C touch.
From the uniqueness of the elongation along e2 (which is a consequence of
the fact that ∇u is a gradient field),

γ3P2 + γ2(l2 − P2) = γ3Q2 + (FB)22(R2 −Q2) + γ2(l2 − R2) , (3.42)

we then get, since |(FB)22| ≤ γ3 and Q2 ≤ R2, that P2 ≤ R2, i.e. ψAB ∈
(0, π/2) (a more refined analysis indicates that 0 ≤ ψAB ≤ π/2 ≤ ψBC ≤ π
for both solutions).
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It remains to check that the entire construction can be fitted inside the
domain. The topology displayed in the first panel of Figure 3.8 can be realized
if and only if B+ lies entirely in the part of Ω in the first quadrant, i.e. if
and only if

0 ≤ min(Q2, P2, R2) ≤ max(Q2, P2, R2) ≤ l2 . (3.43)

By a slight change in the connectivity of the domains, the first condition can
actually be removed. Indeed, at least one of the two topologies of Figure 3.8
can be realized under the weaker condition

0 ≤ P2 ≤ R2 ≤ l2 . (3.44)

Since R2 − P2 = l3 cotψAB, this is possible only if the aspect ratio obeys

AR =
l2
l3

≥ AR0 = cotψAB , (3.45)

where a straightforward computation gives for AR0 the expression (3.38).
Then, from (3.41) we get a solution for

t− 1 =
γ3 − γ2

γ2

P2

l2
(3.46)

i.e. for

1 ≤ t ≤ 1 +
γ3 − γ2

γ2

AR− AR0

AR
(3.47)

We finally compare the present construction with our numerical experi-
ment, using the parameters from Section 3.3, i.e. γ2 = γ

−1/2
3 = a1/6 = 2−1/6

and l2/l3 = 1 and 3. Then, one obtains tmax(AR = 3) � 1.347 and
tmax(AR = 1) � 1.212, which are both indistinguishable from the numer-
ically obtained threshold within the numerical resolution (see Figure 3.4).
The corresponding deformation for aspect ratio 3 is displayed in Figure 3.9.

3.5 Discussion and perspectives

In the previous sections we have presented a complete mathematical and
numerical analysis of the predictions of the BTW model for stretching ex-
periments on nematic elastomeric sheets. We now discuss the main results
we have obtained, with particular attention to the possibility of comparing
with experiment, with the aim not only to assess the general method but
also to validate the specific assumptions we have made.
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Figure 3.8: Construction of an energy minimizer u whose gradient takes
finitely many values. The left panel shows the case where the first inequality
in (3.44) is satisfied, the right panel a case where it is not satisfied (see
Section 3.4.2 for details).

Figure 3.9: Construction of an energy minimizer u whose gradient takes
finitely many values. The upper panel shows the reference configuration,
the lower one the deformed configuration (see Section 3.4.2 for details). The
figure has been drawn with l3/l2 = 3, a = 1/2.
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We have shown that, up to a critical stretch, the material behaves as
a liquid, in the sense that there is no reaction force to stretching, and the
energy is constant. This has been shown both numerically, computing with
finite elements based on the quasiconvexified energy, and analytically, by
explicitly constructing functions on which the microscopic energy vanishes.
The solutions constructed through the two approaches are different, and
indeed there is a huge degeneracy: for stretches inside the liquid window
there is a continuum of possible zero–energy solutions. This degeneracy has
been lifted in the numerical procedure by adding an ad hoc regularizing term,
which, however, has no physical justification. It is therefore natural to ask
whether a more realistic selection mechanism could be obtained to single out
the experimentally observed solution. From the point of view mentioned in
the introduction, in this problem the robust quantities, which should not be
largely affected by small perturbations, are the total energy and its derivative
(the force of Figure 3.4). The deformation pattern and the microstructure
are instead expected to be significantly affected by small perturbations.

We focus first on the robust quantity, the force, and observe that the
general feature of a liquid–like response at small stretches, which is certainly
the most interesting experimental result on these materials, is reproduced by
the present theoretical approach. However, differences emerge in the details.
Indeed, the small stiffness observed in experiments is missed by the BTW
model, which gives exactly zero force at small strains.

Non–robust quantities, as for example the local microstructure, give a dif-
ferent picture. For example, at small strains the numerical solution predicts
microstructure formation in all of the sample, whereas the analytical solution
predicts no microstructure. One standard way to raise degeneracies is to in-
clude higher–order singular perturbations, either in the form of higher–order
gradient terms or of surface–energy terms. However, this would immediately
lead to the conclusion that the explicit construction of Section 3.4.2, with
few interfaces, has lower energy than the solution with very fine structures of
Section 3.3, which is in contrast with the experimental observation of fine–
stripe patterns. A different, and probably more specific mechanism needs
therefore to be considered.

A correction to the BTW energy which, in principle, can account for
all the mentioned effects was proposed by Verwey, Warner, and Terentjev in
1996 [59, 61]. They suggested that in computing the average of Eq. (3.5) one
should also average over fluctuations of a in the cross–linking configuration.
By expansion of the product TrU−2

n FU2
n0
F̃ T and using the definition of Un
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one gets

TrU−2
n F̃U2

n0
F̃ T = |F̃ |2 + (a− 1)|F̃ Tn|2 + (a−1 − 1)|F̃n0|2

+(2 − a− a−1)(nF̃n0)
2 (3.48)

which then needs to be averaged over the distribution of a. The special
symmetry present in WBTW is only recovered if 〈1/a〉 = 1/〈a〉. However, it
is still possible to eliminate one of the terms in (3.48) by choosing a suitable
reference configuration. More precisely, we write

F̃ = Fb1/6
[
Id + (b−1/2 − 1)n0 ⊗ n0

]
(3.49)

substitute into (3.48), expand, and choose b so that the coefficient of |nFn0|2
vanishes, i.e.

b =
〈 1

a
〉 − 1

1 − 〈a〉 . (3.50)

Minimizing over n, and choosing b1/3kBT/2 as energy units, we get

WVWT(F ) = λ2
1(F ) + λ2

2(F ) + 〈a〉λ2
3(F ) − β|Fn0|2 (3.51)

where

β =
〈a〉〈 1

a
〉 − 1

〈 1
a
〉 − 1

(3.52)

is a nonnegative parameter which characterizes the strength of the anisotropy.
This energy reduces to the BTW one if β = 0, i.e. if the distribution of a is
a Dirac delta. The energy WVWT is no longer invariant under rotations, and
indeed states where the elongation direction is close to n0 are favored. The
consequences of the new term in (3.51) have been analyzed within a restricted
geometry in [59, 61], to which we refer for a more detailed discussion. We
only observe here that replacing WBTW with WVWT does not change at all
the structure of the problem, since no additional gradients are included.
However, the explicit computation of the quasiconvex envelope is a much
harder problem for the non–isotropic WVWT than it was for WBTW. A full
mathematical treatment of WBTW, including computation of the quasiconvex
envelope, is, in our opinion, one of the most interesting open questions in the
mathematical analysis of nematic elastomers.
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