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A SHORT PROOF OF THE SELF-IMPROVING
REGULARITY OF QUASIREGULAR MAPPINGS

DANIEL FARACO AND XIAO ZHONG

ABSTRACT. We provide a short proof of a theorem, due to Iwaniec
and Martin [9] and Iwaniec [8], on the self-improving integrability
of quasiregular mappings.

1. INTRODUCTION

Let 2 C R" be an open set and K a constant greater than 1. Then
a mapping f € W"(Q, R") is said to be K-quasiregular if

loc

(1.1) |IDf(z)|" < KJ(z, f) ae xz€Q

where |D f(z)| is the operator norm of the matrix D f(x), the differen-
tial of f at the point z, and J(z, f) is the Jacobian of f. The theory
of quasiregular mappings is a central topic in modern analysis with
important connections to a variety of topics as elliptic partial differen-
tial equations, complex dynamics, differential geometry and calculus of
variations [13] [10].

A remarkable feature of quasiregular mappings is the self-improving
regularity. In 1957 [2], Bojarski proved that for planar quasiregular
mappings, there exists an exponent p(2, K) > 2 such that quasiregu-
lar mappings a priori in W12 belong to WP for every p < p(2, K).
In 1973, Gehring [6] extended the result to n-dimensional quasicon-
formal mappings (homeomorphic quasiregular mappings) and proved
the celebrated Gehring’s Lemma. A bit later, Elcrat and Meyers [4]
proved that Gehring’s ideas can be further exploited to treat quasireg-
ular mappings and partial differential systems.

The higher integrability result admits dual version. In two outstand-
ing papers, Iwaniec and Martin [9] (for even dimensions) and Iwaniec
[8] (for all dimensions) proved the following theorem.

Theorem 1.1. There exists two numbers q(n, K) < n < p(n, K) such
that for every q,p € (q(n, K), p(n, K)) every mapping f € W, 2(Q, R")
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such that (1.1) holds belongs to W,2P(Q,R"™). Moreover, for each o €

loc

Ce(Q) we have the Caccioppoli type inequality
H‘PDqu < Cy(n, K)||f ® V‘PH%

where ® denotes the tensor product.

The proofs in [8] have been simplified and are nicely presented in
[10]. The key point is to prove the Caccioppoli inequality for a range
of p smaller than n. Actually, in the case ¢ < n, the constant C,(n, K)
in the Caccioppoli inequality can be chosen independent of q. Then
applying the Poincaré inequality, one infers that | D f|? satisfies a weak
reverse Holder’s inequality. Then Gehring’s lemma can be applied to
verify the L9+ integrability of | D f| with some § = §(n, K) > 0. The
exponent will eventually exceed n by iterating the process, and the
theorem is proved. The detailed argument is in [10, chapter 14].

We remark here that the Caccioppoli inequality can be employed
studying removable sets for bounded quasiregular mappings, see [10,
Theorem 17.3.1].

The proof in [9] and [8] for the Cacciopoli inequality is very deep. A
whole theory about non-linear commutators, non-linear Hodge decom-
positions and other topics is developed. The even dimensional situation
is almost as complicated.

In this note, we give a short proof of Theorem 1.1. The proof is
self-contained and surprisingly simple. Our approach is inspired by the
paper of Lewis [12]. We construct a Lipschitz continuous test-function
by using a point-wise inequality for the Sobolev functions in terms of
the maximal functions. More precisely, it is well known that for any
mapping g € C5°(2, R"),

(1.2) /QJ(x,g) dx = 0.

An easy approximation argument shows that (1.2) is still true if g €
Wy ™(Q,R"). Of course, (1.2) is generally not true if we only assume
that g € W&’q(Q,R”) for some ¢ < m. In order to use the equality
(1.2), which is the essential point of the argument, we modify one
of the coordinate function of g, say ¢, by truncating it in terms of
the maximal function of |Dg| and construct a new function, which
is Lipschitz continuous in 2. Then the equality (1.2) is true for the
modified mapping.

Several variations of this idea have been used to treat different prob-
lems, see [3], [14], [11]. The method seems to be very effective when
dealing with problems involving exponents below the natural ones.
This technique will be further exploited to settle the problem of self-
improving regularity in the class of mappings of finite distortion [5].
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The building block is the following well-known point-wise estimates
for the Sobolev function, whose proofs rely on an argument due to

Hedberg [7].

Lemma 1.2 (Point-wise inequalities for the Sobolev functions). Let
u e WP(R"),1 < q < oo, and let x and y be Lebesque points of u such
that x € By = B(xo,7). Then

(1.3) |u(e) — up,| < erM([Vulxas,))(xo)
(1.4)  Ju(z) —u(y)| < clz —y|(M(|Vu])(z) + M([Vul)(y)),

where ¢ = ¢(n) > 0, xg is the characteristic function of the set E, vp,
is the average of v over By = B(xo,7) and Mh is the Hardy-Littlewood
mazimal function of h.

Naturally one asks what the exact values of ¢(n, K) and p(n, K) are.
The answer is known in the planar case only. In 1993, Astala [1] proved
the Gehring-Reich conjecture: the exponents ¢(2, K) and p(2, K) are
I?—f:l and [?—I_(l, respectively. For the higher dimensional cases, there are
no good estimates for these thresholds. Unfortunately, our proof does
not improve the existing results in this respect.

2. THE PROOF

As explained in the introduction, it is clear that our task is to
prove the Caccioppoli inequality with a uniform constant for exponents
smaller than n. That is, we need to prove that there is ¢(n, K) < n
such that for any ¢(n, K) < ¢ < n if f € W,5%(Q, R") satisfies (1.1)
then

(2.1) / eDf|7dr < C(n, K) / f ® V|t da,

for all test-functions ¢ € C§°(Q2). Clearly we may assume that ¢ €
C(By), By = B(xg,r) €, and ¢ > 0.

We will approximate the first component f; of f suitably. Let u =
f1p and extend it to be zero in R™ \ By. Then u € W14(R"). Denote
for A > 0,

F\={x € B(xg,r): M(g)(z) < X and z is a Lebesgue point of u},

where g = |pDf|+ |f ® V| in By and g = 0 in R" \ By. It is easy
to show that u is cA-Lipschitz continuous on the set £y U (R"\ By) for
¢ = ¢(n) > 1. Indeed, suppose that z,y € F). Since |Vu| < ¢(n)g,
then it follows from (1.4) that

u(x) — u(y)| < cle—yl(M(|Vul)(z) + M(|Vul)(y))

(2.2) < clz —y[(M(g)(x) + M(g)(y))
< cA|x —yl.
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If v € Fy and y € R"\ By, set p = 2dist(z,R" \ B(xo,r)). Since
{z € B(z,p) - u(x) = 0} = |B(x, p) N (R"\ Bo)| = ¢(n)|B(z, p)|, the
Poincaré inequality yields

[UB ()] < c(n)p|Vu|pe,p < coMg(z) < ez —y|
Thus by (1.3),

lu(z) — u(y)| = [u(@)] < [u(z) = up@p| + U@
(2.3) < cpM(|Vul)(z) + cA|z — y|
< cpMg(z) + cAlz — y| < cAlz —yl.

If x,y € R"\ By, then the claim is clear. Since all the other cases follow
by symmetry, it follows that «|p,umm\B,) is Lipschitz continuous with
the constant cA. We extend u FyU(R™ Bo) b0 a Lipschitz continuous func-
tion uy in R™ with the same constant by the classical McShane exten-
sion theorem. Then we consider the mapping f = (ux, @ f2, ©f3, .. 0.fn)-
Since f € W'licq(ﬂ, R"), an easy approximation argument shows that if
q 2 n— 17

/ J(z, fr)de =0,
Q

and hence,

(2.4) / J(x, pof)de < —/ J(z, fr) dx
Fy Q\FX
Now |fiVy| < C(n)|f @ V| and |V(¢fi)| < c¢(n)g. Putting these
estimates together with (2.4) and expressing the Jacobian as a wedge
product of differential forms, we obtain that

[ ez [ ot [ 1revde.

Fy Q\F Fy

This inequality holds for all A > 0. Then, we multiply it by A=*7¢ for
some € > 0, which will be determined later. We integrate with respect
to A over (0,00), and finally change the order of integration to obtain
that

0o Mg(z)
/ o"J(z, f)/ A dMdx < c(n) / g"l/ A" “dNdx
Q Mg(z) Q 0

(2.5) +/ |f®V<p\g”1/ A d)\dx) :
0

Mg(x)
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We use the quasiregularity of f which so far have not been used. It
follows that

/ " DfI"M(g) “dx < C(n)K/ |f @ Velg" ' M(g)~ da
Q Q

ec(n)K
1—¢€ Q

(2.6)

9" M(g)' d

From now on we only use Holder’s inequality and the Hardy-Littlewood
maximal theorem to conclude the proof by choosing suitable small e.
On one hand we have that

Dflle))"<d Df["||p"M(g)~ dw) ™" ( | M(g)"~ da)’
/ﬂ(\ flleh) xs(/\ £l 2) / )

(2.7 < cl)( [ IDAPIIel"M o) da)% (| g da)?,
where we have used the Hardy-Littlewood maximal theorem
(2.8) /M )" dx < c(n )/ " dx,

where the constant ¢(n) > 0 can be chosen such that it does not depend
on € if 0 < e < 1. Now we observe that we may assume that

(2.9) / g de < 2 / (IDS|ll)" < de.

Otherwise the Caccioppoli inequality (2.1) holds with the constant
¢(n, K) = 1. Thus it follows from (2.7) that

(2.10) / ¢ dr < cn) / IDfI"o|" M (g)~ da.

On the other hand, we estimate the right hand side of (2.6) by
Hoélder’s inequality and (2.8). By (2.10) and (2.6),

/g”_sdl’ﬁc(n)/ [Df[*|"M(g)™ dx
Q Q

) n—e g —nie n—e g n;izl
(2.11) < C(n)K(/Q |f @ V| dx) (/Qg )

€
’I’L*Ed
1—6/99 v

Then we conclude the proof by choosing 0 < € < 1 small enough such
that ¢(n)Ke/(1 —¢) < 1/2.

+c(n)K

REFERENCES

[1] Astala, K. Area distortion of quasiconformal mappings. Acta Math. 173 (1994),
no. 1, 37-60.

[2] Boyarski B. V. Generalized solutions of a system of differential equations of
first order and of elliptic type with discontinuous coefficients. (Russian) Mat.
Sb. N.S. 43(85) (1957) 451-503



DANIEL FARACO AND XIAO ZHONG

Dolzmann, G.; Hungerbiihler, N.; Miiller, S. Uniqueness and maximal regular-
ity for nonlinear elliptic systems of n-Laplace type with measure valued right
hand side. J. Reine Angew. Math. 520 (2000), 1-35.

Meyers, N. G.; Elcrat, A. Some results on regularity for solutions of non-linear
elliptic systems and quasi-regular functions. Duke Math. J. 42 (1975), 121-136.
Faraco, D.; Koskela, P.; Zhong, X. In preparation.

Gehring, F. W. The LP-integrability of the partial derivatives of a quasicon-
formal mapping. Acta Math. 130 (1973), 265-277.

Hedberg, L. I. On certain convolution inequalities. Proc. Amer. Math. Soc. 36
(1972), 505-510.

Iwaniec, T. p-harmonic tensors and quasiregular mappings. Ann. of Math. (2)
136 (1992), no. 3, 589-624.

Iwaniec, T.; Martin, G. Quasiregular mappings in even dimensions. Acta Math.
170 (1993), no. 1, 29-81.

Iwaniec, T.; Martin, G. Geometric function theory and non-linear analysis.
Oxford Mathematical Monographs. The Clarendon Press, Oxford University
Press, New York, 2001.

Koskela, P.; Zhong, X. Hardy’s inequality and the size of the boundary. To
appear in Proc. AMS.

Lewis, J. L. On very weak solutions of certain elliptic systems. Comm. Partial
Differential Equations 18 (1993), no. 9-10, 1515-1537.

Rickman, S. Quasiregular mappings. Springer-Verlag, Berlin, 1993.

Zhong, X. On nonhomogeneous quasilinear elliptic equations. Dissertation,
University of Jyvaskyla, Jyvaskyla, 1998. Ann. Acad. Sci. Fenn. Math. Diss.
No. 117 (1998), 46 pp.

DANIEL FARACO. MAX-PLANCK-INSTITUTE FOR MATHEMATICS IN THE SCI-
ENCES, INSELSTR. 22 - 26 04103 LEIPZIG / GERMANY
E-mail address: faraco@mis.mpg.de

XIAO ZHONG. DEPT. OF MATHEMATICS AND STATISTICS, MATHEMATICS
P.O. Box 35 (MAD) FIN-40014 UN1v. OF JYVASKYLA FINLAND
E-mail address: zhong@maths. jyu.fi



