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Dieudonné-Rashevsky type
(revised version: May 2002)

by

Marcus Wagner

Preprint no.: 43 2002





Application of a result of Ioffe/Tichomirov to
multidimensional control problems of Dieudonné-Rashevsky type
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1. Introduction.

a) Abstract control problems with mixed restrictions. We start to investigate an abstract control
problem (P)0 with mixed restrictions:

(P)0 F (x, u) −→ Min ! (1.1)

subject to (x, u) ∈ X × U with (1.2)

G(x, u) = oY ; (1.3)

Hl(x, u) � 0 , 1 � l � w . (1.4)

Together with (P)0, we study a “relaxed” problem (P̃)0 arising from a formal extension of the original control
set U:

(P̃)0 F (x, u) −→ Min ! (2.1)

subject to (x, u) ∈ X × Ũ with (2.2)

G(x, u) = oY ; (2.3)

Hl(x, u) � 0 , 1 � l � w . (2.4)

Let X and Y be Banach spaces; U and Ũ with U ⊆ Ũ — closed subsets of some linear topological space; F ,
G and Hl — mappings with F : X × Ũ → �, G : X × Ũ → Y, Hl : X × Ũ → �.

b) Local relaxability. Following [ 4 : p. 201, Theorem 1, Assumptions b) ] and [ 3 : p. 92, Definition
3.2 ] , we formulate the concept of (local) relaxability of the problem (P)0.

Definition 1.1. We call the problem (P)0 relaxable at the feasible solution (x∗, u∗) with respect to
Ũ ⊇ U iff for any finite subset of feasible controls { u1, ... , ur } ⊂ U and for each sufficiently small δ > 0
there exist a number η > 0 and a mapping v(x, α) : X×�r

+ → Ũ such that the following conditions hold for
all x′, x′′ ∈ B(x∗, η) ⊂ X and α′, α′′ ∈ B(or, η) ∩ �r

+:

1) v(x′, or) = u∗ ;

2)
∥∥ G(x′, v(x′, α′)) − G(x′′, v(x′′, α′′)) − Gx(x∗, u∗)(x′ − x′′) −

r∑
s=1

(α′
s − α′′

s )
(
G(x∗, us) − G(x∗, u∗)

) ∥∥
Y

� δ
( ∥∥ x′ − x′′ ∥∥

X
+

r∑
s=1

∣∣α′
s − α′′

s

∣∣ )
3) F (x′, v(x′, α′)) −

( r∑
s=1

α′
s F (x′, us) +

(
1 −

r∑
s=1

α′
s

)
F (x′, u∗)

)
� δ

(∥∥ x′ − x∗ ∥∥
X

+
r∑

s=1

∣∣α′
s

∣∣ )
4) Hl(x′, v(x′, α′)) −

( r∑
s=1

α′
s Hl(x′, us) +

(
1 −

r∑
s=1

α′
s

)
Hl(x′, u∗)

)
� δ

( ∥∥ x′ − x∗ ∥∥
X

+
r∑

s=1

∣∣α′
s

∣∣ )
,

1 � l � w .
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Moreover, we will say that conditions 3) resp. 4) hold in sharpened form 3)′ resp. 4)′ if one can take the
absolute value on the left-hand side of the corresponding inequalities:

3)′
∣∣∣ F (x′, v(x′, α′)) −

( r∑
s=1

α′
s F (x′, us) +

(
1 −

r∑
s=1

α′
s

)
F (x′, u∗)

) ∣∣∣ � δ
(∥∥ x′ − x∗ ∥∥

X
+

r∑
s=1

∣∣α′
s

∣∣ )
4)′

∣∣∣ Hl(x′, v(x′, α′)) −
( r∑

s=1
α′

s Hl(x′, us) +
(
1 −

r∑
s=1

α′
s

)
Hl(x′, u∗)

) ∣∣∣ � δ
(∥∥ x′ − x∗ ∥∥

X
+

r∑
s=1

∣∣α′
s

∣∣ ) ,

1 � l � w .

c) Statement of Ioffe/Tichomirov’s extremal principle. Necessary first-order optimality condi-
tions for problems (P)0 are given by Ioffe/Tichomirov’s “extremal principle for locally convex problems”
[ 4 : p. 201 f., Theorem 1 ] . We state this theorem in two versions. At first, it is reformulated as a theo-
rem about comparison of the minimal values of problems (P)0 and (P̃)0 (Theorem 1.2.). In case of their
coincidence, the principle reads as separation theorem for convex sets (Theorem 1.3.) (cf. in particular [ 4 :
p. 203 ] ), yielding a Lagrange multiplier rule.

Theorem 1.2. (Comparison of minimal values of (P)0 and (P̃)0 ) Assume that (P)0 together with
its global minimizer (x∗, u∗) satisfies the following conditions:

1) F , G and Hl are continuous in all variables; F and Hl are Fréchet differentiable in x while G is in x

even continuously differentiable. The minimal value is zero: F (x∗, u∗) = 0 .

2) The problem (P)0 is relaxable in the sense of Definition 1.1. at (x∗, u∗) with respect to Ũ.

3) The range Im Gx(x∗, u∗) ⊆ Y forms in Y a subspace with finite codimension.

4) oY is contained in the interior of the set Im Gx(x∗, u∗) + co
{

G(x∗, u)
∣∣ u ∈ U

}
.

Assume further that precisely the first k � w of the mixed restrictions are active in (x∗, u∗), i. e. Hl(x∗, u∗) =
0 , 1 � l � k, and Hl(x∗, u∗) < 0 , (k + 1) � l � w. Then the set C ⊂ �×�k ×Y defined by C =

{ ⎛⎝ τ0 + 〈 Fx(x∗, u∗) , x 〉
τl + 〈 (Hl)x(x∗, u∗) , x 〉

Gx(x∗, u∗)x

⎞⎠ ∣∣∣∣∣
τ0 � 0
τl � 0 , 1 � l � k
x ∈ X

}
+ co

{⎛⎝ F (x∗, u) − F (x∗, u∗)
Hl(x∗, u) − Hl(x∗, u∗)
G(x∗, u) − G(x∗, u∗)

⎞⎠ ∣∣∣∣∣ u ∈ U

}
(3)

is convex with nonempty interior. Consider the cone

R =

{ ⎛⎝ −�0

−�l

oY

⎞⎠ ∣∣∣∣∣
� > 0
�l > 0 , 1 � l � k

}
⊂ �×�k ×Y . (4)

If the intersection C ∩ R is nonempty then it holds inf (P̃)0 < inf (P)0. �

Remarks. 1) The theorem was originally stated for the case U = Ũ and under little more general
assumptions: It still holds for “strong local minimizers” (x∗, u∗) [ 4 : p. 201 above ] and functionals F und
Hl being “regularly locally convex in x” at the point x∗ [ 4 : p. 188 ] .

2) If the equality inf (P)0 = inf (P̃)0 holds then the intersection C ∩ R is empty, and there exists a
hyperplane separating properly the convex sets C und R. (This case will occur, in particular, if condition 2)
can be fulfilled with Ũ = U.) Then we arrive at a set of first-order necessary optimality conditions collected
in the following theorem.

Theorem 1.3. (Extremal principle for (P)0 ) Let the problem (P)0 together with its global minimizer
(x∗, u∗) satisfy all conditions 1) – 4) of Theorem 1.2., and let inf (P)0 = inf (P̃)0 hold. Then there exists a
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nontrivial collection of multipliers λ0 > 0, λ1 � 0, ... , λw � 0 and y∗ ∈ Y∗, satisfying together with (x∗, u∗)
the maximum condition (M), the canonical equation (K) as well as the complementarity conditions (C):

(M) : λ0

(
F (x∗, u) − F (x∗, u∗)

)
+

w∑
l=1

λl

(
Hl(x∗, u) − Hl(x∗, u∗)

)
+ 〈 y∗ , G(x∗, u) − G(x∗, u∗) 〉 � 0

∀u ∈ U ;

(K) : λ0 〈Fx(x∗, u∗) , x 〉 +
w∑

l=1

λl 〈 (Hl)x(x∗, u∗) , x 〉 + 〈 y∗ , Gx(x∗, u∗)x 〉 = 0 ∀x ∈ X ;

(C) : λl Hl(x∗, u∗) = 0 , 1 � l � w .

Proof. By Theorem 1.2., the equality inf (P)0 = inf (P̃)0 implies the existence of a hyperplane(
λ0, λ1, ... , λk, y∗ ) ∈ (

� × �k ×Y
)∗ which separates properly the convex sets C and R defined above.

This leads to the variational inequality

λ0

[
τ0 + 〈Fx(x∗, u∗) , x 〉 +

r∑
s=1

αs

(
F (x∗, us) − F (x∗, u∗)

) ]
+

k∑
l=1

λl

[
τl + 〈 (Hl)x(x∗, u∗) , x 〉

+
r∑

s=1
αs

(
Hl(x∗, us) − Hl(x∗, u∗)

) ]
+

〈
y∗ , Gx(x∗, u∗)x +

r∑
s=1

αs

(
G(x∗, u) − G(x∗, u∗)

) 〉
� −λ0 �0 −

k∑
l=1

λl �l (5)

for all τ0 � 0, τl � 0, x ∈ X, r � 1, αs � 0 with
r∑

s=1
αs = 1, us ∈ U, �0 > 0, �l > 0, 1 � l � k, 1 � s � r.

The conditions λ0 � 0, λl � 0, 1 � l � w, (M) and (K) are immediate consequences of this inequality if the
collection of multipliers is completed by λl = 0 for (k + 1) � l � w. Then (C) holds too. As in [ 4 : p. 90 f. ] ,
the occurence of the regular case λ0 > 0 can be derived from condition 4) of Theorem 1.2. �

d) Outline and aim of the paper. Multidimensional control problems of Dieudonné-Rashevsky type
are characterized by the presence of first-order PDE restrictions of the shape ∂xi(t)/∂tj = gij(t, x(t), u(t)).
Obviuosly, Theorems 1.2. and 1.3. cannot be applied immediately to this kind of problems since ImGx(x∗, u∗)
is of infinite codimension in the corresponding function spaces. In Section 2 we will show how to overcome
this principal difficulty: We replace (P)0 by an enlarged problem which is related closely enough with the
original one but satisfies the assumption about codimension. This procedure leads to an ε-extremal principle
for the original problem. In Section 3, this result is applied to Dieudonné-Rashevsky type problems. In
our general framework, the ε-optimality conditions known before for this kind of problems are reproduced.
Additionally, we observe as a new condition that the multiplier y∗ associated with the equality restrictions
must annihilate a specific subspace Ỹ ⊂ Y .

e) Notations. C
k,n(Ω), L

n
p (Ω) and W

k,n
p (Ω) (1 � p � ∞) denote the spaces of n-dimensional vector

functions on Ω whose components are k-times continuously differentiable resp. belong to Lp(Ω) or to the
Sobolev space of Lp(Ω)-functions with weak derivatives up to kth order in Lp(Ω). Instead of C

k,1(Ω), we
write shorter C

k(Ω). Functions of the space C
k,n
◦ (Ω) are additionally subjected to a zero boundary condition.

For the classical as well as for the weak partial derivatives of xi by tj we use the same notation: xi ;tj . δv

denotes the Dirac measure supported on v. A family µ = {µt | t ∈ Ω } of probability measures µt ∈ rca (K ,

BK ) acting on the σ-algebra BK of the Borel sets of K is called (a representative of) a generalized control on
K iff for any continuous function f ∈ C0(Ω×K) the function hf : Ω×K → � with hf(t) =

∫
K

f(t, v) dµt(v)
is measurable [ 2 : p. 23 ] . The generalized controls form equivalence classes by identifying two families µ′,
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µ′′ iff µ′
t ≡ µ′′

t a. e. on Ω. The set of all generalized controls is denoted by YK. The set YK is convex
[ 2 : p. 25 ] and, assuming compactness of K, sequentially compact in an appropriate topology [ 6 : p. 391,
Theorem 4 ] . The abbreviation “(∀) t ∈ A” reads as: “for almost all t from A” resp. “for all t from A except
some Lebesgue null set”. Finally, o denotes the zero element resp. the zero function of the actual space.

2. Enlargement of the original problem and its consequences.

a) Statement of problems (P)ε and (P̃)ε. Let the abstract problems (P)0 and (P̃)0 under the assumptions
of Sect. 1. a) be given. Assume further that the minimal value of (P)0 is finite: (−∞) < inf (P)0 < (+∞).
Choosing a number ε > 0 and a closed subspace Ỹ ⊆ Y, we state the following enlarged problems (P)ε and
(P̃)ε:

(P)ε : F̃ (x, z, u) := F (x, u) − inf (P)0 −→ Min ! F̃ : X × Ỹ × U → � ; (6.1)

G̃(x, z, u) := G(x, u) + ε z = oY ; G̃ : X × Ỹ × U → Y ; (6.2)

H̃l(x, z, u) := Hl(x, u) � 0 ; H̃l : X × Ỹ × U → � , 1 � l � w ; (6.3)

H̃w+1(x, z, u) := −ε
(
F (x, u) − inf (P)0

)
� 0 ; H̃w+1 : X × Ỹ × U → � . (6.4)

In completely analogous manner, (P̃)ε is defined after replacing U by Ũ everywhere in (6.1) – (6.4). For
ε = 0, one comes back, up to a constant in the cost functionals, to the original problems.

Remark. By presence of the additional mixed restriction H̃w+1(x, z, u) � 0, on the one hand the
coincidence of the minimal values of (P)0 and (P)ε is ensured, and on the other hand, the coincidence of the
minimal values of (P)ε and (P̃)ε is enforced.

Theorem 2.1. Let a problem (P)0 together with its global minimizer (x∗, u∗) satisfy only the assumption
1) of Theorem 1.2. Then it follows: For every number 0 < ε < 1 and every closed subspace Ỹ ⊆ Y with
Im Gx(x∗, u∗) + Ỹ = Y, the triple (x∗, oY, u∗) forms a global minimizer of (P)ε, the minimal value of (P)ε

ist zero, and the problem (P)ε satisfies together with (x∗, oY, u∗) the assumptions 1), 3) and 4) of Theorem
1.2.

Proof. By assumption 1), it holds for all feasible solutions (x, u) of (P)0: F (x, u) � F (x∗, u∗) = 0 .
Since H̃w+1(x, z, u) = −ε F (x, u) � 0 it follows:

(x, z, u) is feasible in in (P)ε =⇒ F̃ (x, z, u) = F (x, u) � 0 ; (7.1)

(x, oY, u) is feasible in (P)ε ⇐⇒ (x, u) is feasible in (P)0; (7.2)

(x∗, oY, u∗) is a global minimizer of (P)ε ⇐⇒ (x∗, u∗) is a global minimizer of (P)0; (7.3)

inf (P)ε = inf (P)0 = 0 . (7.4)

The assumptions about continuity and differentiability of the data of (P)0 carry over to (P)ε. Thus assump-
tion 1) of Theorem 1.2. is satisfied for (P)ε. Further, we assumed above that it holds Y = ImGx(x∗, u∗)+Ỹ =
Im G̃(x,z)(x∗, oY, u∗) having codimension zero. Obviously, (P)ε thus satisfies assumptions 3) and 4) of The-
orem 1.2. since oY is an interior point of Im G̃(x,z)(x∗, oY, u∗) + co

{
G̃(x∗, oY, u)

∣∣ u ∈ U
}

= Y . �

Theorem 2.2. Let a problem (P)0 together with its global minimizer (x∗, u∗) satisfy only assumptions
1) and 2) of Theorem 1.2.: (P)0 is relaxable at (x∗, u∗) with respect to Ũ. Assume further that the sharpened
condition 3)′ from Definition 1.1. holds. Then it follows: For every number 0 < ε < 1 and every closed
subspace Ỹ ⊆ Y with Im Gx(x∗, u∗) + Ỹ = Y, the triple (x∗, oY, u∗) forms a global minimizer of (P)ε,
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the minimal value of (P)ε is zero, the problem (P)ε is relaxable at (x∗, oY, u∗) with respect to Ũ, and (P)ε

satisfies together with (x∗, oY, u∗) all assumptions 1) – 4) of Theorem 1.2.

Proof. From Theorem 2.1. we know that (P)ε and (x∗, oY, u∗) satisfy the assumptions 1), 3) and 4)
of Theorem 1.2. It is only the relaxability property which remains to prove. In order to do this, we fix a
subset { u1, ... , ur } ⊂ U and a number 0 < δ < 1 . We keep then the number η > 0 from the relaxability
conditions for (P)0 and define the mapping ṽ(x, z, α) : X× Ỹ×�m

+ → Ũ by ṽ(x, z, α) = v(x, α) already given
from (P)0. Then for all x′, x′′ ∈ B(x∗, η) ⊂ X ; z′, z′′ ∈ B(oY, η) ∩ Ỹ ⊂ Y and α′, α′′ ∈ B(or, η) ∩ �r

+ it
holds:

1) ṽ(x′, z′, or) = v(x′, or) = u∗ ; (8)

2)
∥∥ G̃(x′, z′, ṽ(x′, z′, α′)) − G̃(x′′, z′′, ṽ(x′′, z′′, α′′)) − G(x,z)(x∗, oY, u∗)T

(
x′ − x′′

z′ − z′′

)
−

r∑
s=1

(α′
s − α′′

s )
(
G̃(x∗, oY, us) − G̃(x∗, oY, u∗)

) ∥∥
Y

=
∥∥ G(x′, v(x′, α′)) + ε z′ − G(x′′, v(x′′, α′′)) − ε z′′ − Gx(x∗, u∗) (x′ − x′′) − ε (z′ − z′′)

−
r∑

s=1
(α′

s − α′′
s )

(
G(x∗, us) − G(x∗, u∗)

) ∥∥
Y

� δ
( ∥∥ x′ − x′′ ∥∥

X
+

r∑
s=1

∣∣α′
s − α′′

s

∣∣ )
� δ

( ∥∥ x′ − x′′ ∥∥
X

+
∥∥ z′ − z′′

∥∥
Y

+
r∑

s=1

∣∣α′
s − α′′

s

∣∣ ) ; (9)

3) F̃ (x′, z′, ṽ(x′, z′, α′)) −
( r∑

s=1
α′

s F̃ (x′, z′, us) +
(
1 −

m∑
s=1

a′
s

)
F̃ (x′, z′, u∗)

)
= F (x′, v(x′, α′)) −

( r∑
s=1

α′
s F (x′, us) +

(
1 −

r∑
s=1

α′
s

)
F (x′, u∗)

)
�

∣∣∣F (x′, v(x′, α′)) −
( r∑

s=1
α′

s F (x′, us) +
(
1 −

r∑
s=1

α′
s

)
F (x′, u∗)

) ∣∣∣
� δ

( ∥∥ x′ − x∗ ∥∥
X

+
r∑

s=1

∣∣ α′
s

∣∣ )
� δ

(∥∥ x′ − x∗ ∥∥
X

+
∥∥ z′

∥∥
Y

+
r∑

s=1

∣∣α′
s

∣∣ )
; (10)

4) H̃l(x′, z′, ṽ(x′, z′, α′)) −
( r∑

s=1
α′

s H̃l(x′, z′, us) +
(
1 −

r∑
s=1

α′
s

)
H̃l(x′, z′, u∗)

)
= Hl(x′, v(x′, α′)) −

( r∑
s=1

α′
s Hl(x′, us) +

(
1 −

r∑
s=1

α′
s

)
Hl(x′, u∗)

)
� δ

( ∥∥ x′ − x∗ ∥∥
X

+
r∑

s=1

∣∣ α′
s

∣∣ )
� δ

(∥∥ x′ − x∗ ∥∥
X

+
∥∥ z′

∥∥
Y

+
r∑

s=1

∣∣α′
s

∣∣ )
, 1 � l � w ; (11)

Finally, from the sharpened condition 3)′ we may conclude that

H̃w+1(x′, z′, ṽ(x′, z′, α′)) −
( r∑

s=1
α′

s H̃w+1(x′, z′, us) +
(
1 −

r∑
s=1

α′
s

)
H̃w+1(x′, z′, u∗)

)
= −ε

(
F (x′, v(x′, α′)) −

( r∑
s=1

α′
s F (x′, us) +

(
1 −

r∑
s=1

α′
s

)
F (x′, u∗)

))
� ε

∣∣∣F (x′, v(x′, α′)) −
( r∑

s=1
α′

s F (x′, us) +
(
1 −

r∑
s=1

α′
s

)
F (x′, u∗)

) ∣∣∣
� ε δ

(∥∥ x′ − x∗ ∥∥
X

+
r∑

s=1

∣∣α′
s

∣∣ ) � δ
(∥∥ x′ − x∗ ∥∥

X
+

∥∥ z′
∥∥

Y
+

r∑
s=1

∣∣α′
s

∣∣ ) . (12)

Summing up, we proved that the problem (P)ε is relaxable at (x∗, oY, u∗) with respect to Ũ. �

Remarks. 1) From the proof it can be seen that, under assumptions of Theorem 2.2., the sharpened
form of the relaxability condition 3)′ holds for (P)ε too.
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2) If in Theorems 2.1. resp. 2.2. the closed subspace Ỹ ⊂ Y is chosen in such a way that Im Gx(x∗, u∗)+
Ỹ �= Y has only finite codimension > 0 in Y then fulfillment of assumption 4) of Theorem 1.2. for (P)ε must
be tested directly.

b) The ε-extremal principle for (P)0. Now, let us consider a problem (P)0 which satisfies the
assumptions of Theorem 1.2. only in part and then apply Ioffe/Tichomirov’s extremal principle to the
related problem (P)ε.

Theorem 2.3. Let a problem (P)0 together with its global minimizer (x∗, u∗) satisfy only the assumption
1) of Theorem 1.2. Assume further that precisely the first k � w of the mixed restrictions are active in
(x∗, u∗), i. e. Hl(x∗, u∗) = 0 , 1 � l � k, and Hl(x∗, u∗) < 0 , (k + 1) � l � w. Let be given a number
0 < ε < 1 and a closed subspace Ỹ ⊆ Y with Im Gx(x∗, u∗) + Ỹ = Y. If (P)ε is relaxable at its feasible
solution (x∗, oY, u∗) with respect to Ũ then problem (P)ε satisfies together with (x∗, oY, u∗) all assumptions
1) – 4) of Theorem 1.2. Then the set Cε ⊂ �×�k ×�×Y defined by Cε = (13)

{ ⎛⎜⎝
τ0 + 〈 Fx(x∗, u∗) , x 〉
τl + 〈 (Hl)x(x∗, u∗) , x 〉
τw+1 − ε 〈Fx(x∗, u∗) , x 〉

ε z + Gx(x∗, u∗)x

⎞⎟⎠
∣∣∣∣∣∣∣∣

τ0 � 0
τl � 0 , 1 � l � k
τw+1 � 0
(x, z) ∈ X × Ỹ

}
+ co

{ ⎛⎜⎝
F (x∗, u) − F (x∗, u∗)

Hl(x∗, u) − Hl(x∗, u∗)
−ε

(
F (x∗, u) − F (x∗, u∗)

)
G(x∗, u) − G(x∗, u∗)

⎞⎟⎠
∣∣∣∣∣∣∣ u ∈ U

}

is convex with nonempty interior. Further, the equality inf (P̃)ε = inf (P)ε holds such that the intersection
Cε ∩ R with the following cone R is empty:

R =

{ ⎛⎜⎝
−�0

−�l

−�w+1

oY

⎞⎟⎠
∣∣∣∣∣∣∣

�0 > 0
�l > 0
�w+1 > 0

}
⊂ �×�k ×�×Y. (14)

Proof. By Theorem 2.1. we are allowed to apply Theorem 1.2. to problem (P)ε. Since in (P)0 precisely
the first k � w of the mixed restrictions are active in (x∗, u∗), in (P)ε precisely the first k � w and the
last of the mixed restrictions are active in (x∗, oY, u∗): H̃l(x∗, oY, u∗) = 0 , 1 � l � k , H̃l(x∗, oY, u∗) < 0 ,
(k + 1) � l � w , and H̃w+1(x∗, oY, u∗) = 0 . The set Cε and the cone R from Theorem 1.2. take on the
described shape for (P)ε. Since the case inf (P̃)ε < inf (P)ε cannot occur (see the remark after definition of
(P)ε ), Theorem 1.2. tells out that the intersection Cε ∩ R must be empty. �

Theorem 2.4. Let a problem (P)0 together with its global minimizer (x∗, u∗) satisfy only assumptions
1) and 2) of Theorem 1.2.: (P)0 is relaxable at (x∗, u∗) with respect to Ũ. Assume further that the sharpened
condition 3)′ from Definition 1.1. holds and that precisely the first k � w of the mixed restrictions are active
in (x∗, u∗), i. e. Hl(x∗, u∗) = 0 , 1 � l � k, and Hl(x∗, u∗) < 0 , (k + 1) � l � w. Now, let be given a
number 0 < ε < 1 and a closed subspace Ỹ ⊆ Y with Im Gx(x∗, u∗) + Ỹ = Y. Then problem (P)ε satisfies
together with (x∗, oY, u∗) all assumptions 1) – 4) of Theorem 1.2., and for the sets Cε and R defined above
in Theorem 2.3. it holds: Cε is convex with nonempty interior, and the intersection Cε ∩ R is empty since
inf (P̃)ε = inf (P)ε .

Proof. This can be proven in complete analogy to Theorem 2.3. while the applicability of Theorem
1.2. to (P)ε is now justified by Theorem 2.2. �

Under the assumptions of Theorem 2.3. resp. Theorem 2.4., the separation theorem 1.3. can be applied
to (P)ε. In result of this, we receive the following set of necessary optimality conditions for (P)0 and (x∗, u∗)
depending now on the choice of 0 < ε < 1 and Ỹ ⊆ Y:
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Theorem 2.5. (ε-extremal principle for (P)0 ) Let the assumptions of Theorem 2.3. or Theorem
2.4. be fulfilled for a problem (P)0 and its global minimizer (x∗, u∗). Assume further that inf u∈U F (x∗, u) is
finite. Then there exists a nontrivial collection of multipliers λ0(ε, Ỹ) > 0, λ1(ε, Ỹ) � 0, ... , λw(ε, Ỹ) � 0
and y∗(ε, Ỹ) ∈ Y∗, satisfying together with (x∗, u∗) the ε-maximum condition (M)ε, the canonical inequality
(K)ε as well as the complementarity conditions (C)ε:

(M)ε : ε + λ0(ε, Ỹ)
(
F (x∗, u) − F (x∗, u∗)

)
+

w∑
l=1

λl(ε, Ỹ)
(
Hl(x∗, u) − Hl(x∗, u∗)

)
+ 〈 y∗(ε, Ỹ) , G(x∗, u) − G(x∗, u∗) 〉 � 0 ∀u ∈ U ;

(K)ε :
∣∣∣ λ0(ε, Ỹ) 〈Fx(x∗, u∗) , x 〉 +

w∑
l=1

λl(ε, Ỹ) 〈 (Hl)x(x∗, u∗) , x 〉

+ 〈 y∗(ε, Ỹ) , Gx(x∗, u∗)x 〉
∣∣∣ � ε

∥∥ x
∥∥

X
∀x ∈ X ;

(C)ε : 〈 y∗(ε, Ỹ) , z 〉 = 0 ∀ z ∈ Ỹ ; λl(ε, Ỹ)Hl(x∗, u∗) = 0 , 1 � l � w .

Proof. From Theorem 1.3. we deduce the existence of multipliers λ0 > 0, λ1 � 0, ... , λw � 0,
λw+1 � 0 and y∗ ∈ Y∗ which satisfy together with (x∗, oY, u∗) the maximum condition, canonical equation
and complementarity conditions in relation to the problem (P)ε. (These multipliers will already depend on
ε and Ỹ what is not reflected in the notation.) We define:

λ0(ε, Ỹ) = λ0

/ (
λ0 +

w∑
l=1

λl + λw+1 +
∥∥ y∗ ∥∥

Y∗ + λw+1 ·
∣∣ inf

u∈U
F (x∗, u)

∣∣ + λw+1 ·
∥∥ Fx(x∗, u∗)

∥∥
X

)
;

λl(ε, Ỹ) = λl

/ (
λ0 +

w∑
l=1

λl + λw+1 +
∥∥ y∗ ∥∥

Y∗ + λw+1 ·
∣∣ inf

u∈U
F (x∗, u)

∣∣ + λw+1 ·
∥∥ Fx(x∗, u∗)

∥∥
X

)
,

1 � l � w ;

λw+1(ε, Ỹ) = λw+1

/(
λ0 +

w∑
l=1

λl + λw+1 +
∥∥ y∗ ∥∥

Y∗ + λw+1 ·
∣∣ inf

u∈U
F (x∗, u)

∣∣ + λw+1 ·
∥∥ Fx(x∗, u∗)

∥∥
X

)
;

y∗(ε, Ỹ) = y∗ / (
λ0 +

w∑
l=1

λl + λw+1 +
∥∥ y∗ ∥∥

Y∗ + λw+1 ·
∣∣ inf

u∈U
F (x∗, u)

∣∣ + λw+1 ·
∥∥ Fx(x∗, u∗)

∥∥
X

)
. (15)

Then from the maximum condition from Theorem 1.3. it follows:(
λ0 − ε λw+1

) (
F (x∗, u) − F (x∗, u∗)

)
+

w∑
l=1

λl

(
Hl(x∗, u) − Hl(x∗, u∗)

)
+ 〈 y∗ , G(x∗, u) − G(x∗, u∗) 〉 � 0 ∀u ∈ U =⇒

λ0

(
F (x∗, u) − F (x∗, u∗)

)
+

w∑
l=1

λl

(
Hl(x∗, u) − Hl(x∗, u∗)

)
+ 〈 y∗ , G(x∗, u) − G(x∗, u∗) 〉 � ε · λw+1 · inf

u∈U
F (x∗, u) � −ε · λw+1 ·

∣∣ inf
u∈U

F (x∗, u)
∣∣ ∀u ∈ U =⇒

λ0(ε, Ỹ)
(
F (x∗, u) − F (x∗, u∗)

)
+

w∑
l=1

λl(ε, Ỹ)
(
Hl(x∗, u) − Hl(x∗, u∗)

)
+ 〈 y∗(ε, Ỹ) , G(x∗, u) − G(x∗, u∗) 〉 � −ε ∀u ∈ U . (16)

This proves condition (M)ε. The canonical equation from Theorem 1.3. reads as

(
λ0 − ε λw+1

) 〈Fx(x∗, u∗) , x 〉 +
w∑

l=1

λl 〈 (Hl)x(x∗, u∗) , x 〉 + 〈 y∗ , Gx(x∗, u∗)x 〉 = 0 ∀ (x, z) ∈ X × Ỹ .

(17)
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Inserting z = oY into (17), we arrive at the separate condition(
λ0 − ε λw+1

) 〈Fx(x∗, u∗) , x 〉 +
w∑

l=1

λl 〈 (Hl)x(x∗, u∗) , x 〉 + 〈 y∗ , Gx(x∗, u∗)x 〉 = 0 ∀x ∈ X =⇒

λ0 〈Fx(x∗, u∗) , x 〉 +
w∑

l=1

λl 〈 (Hl)x(x∗, u∗) , x 〉 + 〈 y∗ , Gx(x∗, u∗)x 〉

= ε λw+1 〈Fx(x∗, u∗) , x 〉 � ε · λw+1 ·
∥∥ Fx(x∗, u∗)

∥∥
X
· ∥∥ x

∥∥
X

∀x ∈ X (18.1)

and, after replacing x by (−x)

− λ0 〈Fx(x∗, u∗) , x 〉 −
w∑

l=1

λl 〈 (Hl)x(x∗, u∗) , x 〉 − 〈 y∗ , Gx(x∗, u∗)x 〉

� −ε · λw+1 ·
∥∥ Fx(x∗, u∗)

∥∥
X
· ∥∥ x

∥∥
X

∀x ∈ X . (18.2)

From both together, the following inequalities result:∣∣∣ λ0 〈Fx(x∗, u∗) , x 〉 +
w∑

l=1

λl 〈 (Hl)x(x∗, u∗) , x 〉 + 〈 y∗ , Gx(x∗, u∗)x 〉
∣∣∣

� ε · λw+1 ·
∥∥ Fx(x∗, u∗)

∥∥
X
· ∥∥ x

∥∥
X

∀x ∈ X =⇒∣∣∣ λ0(ε, Ỹ) 〈Fx(x∗, u∗) , x 〉 +
w∑

l=1

λl(ε, Ỹ) 〈 (Hl)x(x∗, u∗) , x 〉

+ 〈 y∗(ε, Ỹ) , Gx(x∗, u∗)x 〉
∣∣∣ � ε

∥∥ x
∥∥

X
∀x ∈ X . (19)

This is the “canonical inequality” (K)ε. The first condition in (C)ε comes again from (17) by inserting x = oX

while the other conditions can be derived from the complementarity conditions (C) for the multipliers λl,
1 � l � w, from Theorem 1.3. The proof is complete. �

Remark. From condition (C)ε it turns out that in order to find a multiplier y∗(ε, Ỹ) �= o, one has to
satisfy the assumption Im Gx(x∗, u∗) + Ỹ = Y in Theorems 2.3. resp. 2.4. with a proper subspace Ỹ �= Y .

3. ε-extremal principles for control problems of Dieudonné-Rashevsky type.

a) Statement of the problems. In this Section, we investigate multidimensional control problems (S)0 of
following type:

(S)0 F (x, u) =
∫

Ω

f0(t, x(t), u(t)) dt +
∫

Ω

f1(t, x(t)) dγ(t) −→ Min ! (20.1)

subject to (x, u) ∈ (
C0,n(Ω) ∩ W 1,n

p (Ω)
) × Lnm

p (Ω) with (20.2)

G(x, u) =
(
xi; tj − uij

)
ij

= oLnm
p (Ω) ⇐⇒ xi; tj (t) = uij(t) (∀) t ∈ Ω ∀ i, j ; (20.3)

u ∈ U = { u ∈ Lnm
p (Ω)

∣∣ u(t) ∈ K (∀) t ∈ Ω } ; (20.4)

x(t0) = on for fixed t0 ∈ ∂Ω . (20.5)

The corresponding Young measure relaxed problem is

(S̃)0 F (x, µ) =
∫

Ω

∫
K

f0(t, x(t), v) dµt(v) dt +
∫

Ω

f1(t, x(t)) dγ(t) −→ Min ! (21.1)

subject to (x, µ) ∈ (
C0,n(Ω) ∩ W 1,n

p (Ω)
) × YK with (21.2)

G(x, µ) =
(
xi; tj −

∫
K

vij dµt(v)
)

ij
= oLnm

p (Ω) ⇐⇒ xi; tj (t) =
∫

K

vij dµt(v) (∀) t ∈ Ω ∀ i, j ; (21.3)

µ ∈ Ũ = YK ; (21.4)

x(t0) = on for fixed t0 ∈ ∂Ω . (21.5)
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Problems of type (S)0 resp. (S̃)0 were studied e. g. in [ 5 ] and [ 10 ] for the case γ = o (“deposit problems”)
as well as in [ 8 ], [ 9 ] and [ 11 ] for the case γ �= o (“extended deposit problems”). We state the

Basic assumptions about the data of (S)0 resp. (S̃)0:
(V1) Let n � 1, m � 2 and m < p < ∞. Ω ⊂ �m is a compact closure of a domain with C

2-boundary.
(V2) The functions f0(t, ξ, v) : Ω × �

n × �nm → � and f1(t, ξ) : Ω × �
n → � are continuous with

respect to all its arguments and continuously differentiable in ξ. γ ∈ rca (Ω , B ) is a signed regular
measure acting on the σ-algebra BΩ of the Borel sets of Ω.

(V3) K forms a convex, compact subset of �nm.
(V4) The problem (S)0 admits a feasible solution.

Remarks. 1) The state variables x of (S)0 will be treated is individual functions, namely, by (V1),
we can identify them with the uniquely determined continuous representatives of their W

1,n
p (Ω)-equivalence

classes.

2) We assumed higher smoothness of ∂Ω in order to get a proper subspace Ỹ ⊂ Lnm
p (Ω) satisfying the

condition from Theorems 2.1. resp. 2.2. via Helmholtz-Weyl decomposition of the space L
nm
p (Ω).

3) The problems (S)0 and (S̃)0 belong to the class of abstract problems of type (P)0 resp. (P̃)0. To see
this, let be X = { x ∈ C

0,n(Ω) ∩ W
1,n
p (Ω)

∣∣ x(t0) = on }, U ⊂ L
nm
p (Ω), Ũ = YK and Y = L

nm
p (Ω). Then

the inclusion U ⊆ Ũ holds in the sense of the embedding which associates with a function u(t) : Ω → �
nm

the Young measure { δu(t) } . The cost functionals F (x, u) and F (x, µ) as well as the mappings G(x, u) and
G(x, µ) are in analogous correspondence.

Let us state now the enlarged problems (S)ε and (S̃)ε:

(S)ε F̃ (x, z, u) =
∫

Ω

f0(t, x(t), u(t)) dt +
∫

Ω

f1(t, x(t)) dγ(t) − inf (S)0 −→ Min ! (22.1)

subject to (x, z, u) ∈ (
C

0,n(Ω) ∩ W
1,n
p (Ω)

) × Ỹ × L
nm
p (Ω) with (22.2)

G̃(x, z, u) =
(
xi; tj + ε zij − uij

)
ij

= oLnm
p (Ω) ⇐⇒ xi; tj (t) + ε zij(t) = uij(t) (∀) t ∈ Ω ∀ i, j ; (22.3)

H̃1(x, z, u) = −ε
(∫

Ω

f0(t, x(t), u(t)) dt +
∫

Ω

f1(t, x(t)) dγ(t) − inf (S)0
)

� 0 ; (22.4)

u ∈ U = { u ∈ Lnm
p (Ω)

∣∣ u(t) ∈ K (∀) t ∈ Ω } ; (22.5)

x(t0) = on for fixed t0 ∈ ∂Ω . (22.6)

(S̃)ε F (x, z, µ) =
∫

Ω

∫
K

f0(t, x(t), v) dµt(v) dt +
∫

Ω

f1(t, x(t)) dγ(t) − inf (S)0 −→ Min ! (23.1)

subject to (x, z, µ) ∈ (
C0,n(Ω) ∩ W 1,n

p (Ω)
) × Ỹ × YK with (23.2)

G(x, z, µ) =
(
xi; tj + ε zij −

∫
K

vij dµt(v)
)

ij
= oLnm

p (Ω) ⇐⇒ xi; tj (t) + ε zij(t) =
∫

K

vij dµt(v)

(∀) t ∈ Ω ∀ i, j ; (23.3)

H1(x, z, µ) = −ε
(∫

Ω

∫
K

f0(t, x(t), v) dµt(v) dt +
∫

Ω

f1(t, x(t)) dγ(t) − inf (S)0
)

� 0 ; (23.4)

µ ∈ Ũ = YK ; (23.5)

x(t0) = on . (23.6)

Here Ỹ (�= { o } ) is some closed subspace of L
nm
p (Ω).

Proposition 3.1. (Coincidence of minimal values) Consider the problems (S)0, (S̃)0, (S)ε and (S̃)ε

under assumptions (V1) – (V4).
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1) For every number 0 < ε < 1, for every closed subspace Ỹ ⊆ L
nm
p (Ω) and for any n � 1 it holds:

inf (S)0 = inf (S)ε = inf (S̃)ε.

2) If the function f0(t, ξ, v) is convex in v for all fixed (t, ξ) ∈ Ω × �
n then it holds for any n � 1:

inf (S)0 = inf (S̃)0 . If convexity of f0(t, ξ, v) in v fails then the equation inf (S)0 = inf (S̃)0 still holds for
n = 1.

Proof. 1) is an immediate consequence of the definition of (S)ε resp. (S̃)ε. 2) is a well-known fact
(cf. [ 7 : S. 127 ] ). �

Proposition 3.2. (Relaxability) Under assumptions (V1) – (V4), both problems (S̃)0 and (S̃)ε are
relaxable at every feasible solution (x∗, µ∗) resp. (x∗, z∗, µ∗) with respect to their own control set Ũ = YK.
In both cases, the sharpened condition 3)′ from Definition 1.1. holds.

Proof. Consider at first a feasible solution (x∗, µ∗) of (S̃)0. Given a number 0 < δ < 1, a collection of
generalized controls µ1, ... , µr ∈ YK and numbers 0 � αs � η = 1/r, 1 � s � r, we define

v(x, α) =
r∑

s=1
αs µs +

(
1 −

r∑
s=1

αs

)
µ∗ ∈ YK . (24)

Then obviously the relaxibility condition 1) holds. Conditions 2) and 3)′ are satisfied since the left-hand
sides of the inequalities vanish because of linearity of F (x, µ) and G(x, µ) in the generalized control variables.

In the same way, given some feasible solution (x∗, z∗, µ) of (S̃)ε, a number 0 < δ < 1, generalized controls
µ1, ... , µr ∈ YK and numbers 0 � αs � η = 1/r, 1 � s � r, we define

v(x, z, α) =
r∑

s=1
αs µs +

(
1 −

r∑
s=1

αs

)
µ∗ ∈ YK . (25)

Noting that G(x,z)(x∗, z∗, µ∗)(x′, z′) =
(
x′

i; tj
+ ε z′ij

)
ij

, the relaxability conditions 1), 2) and 3)′ will follow
as before. 4) can be derived from 3)′ since∣∣∣ H1(x′, z′, v(x′, α′)) −

( r∑
s=1

α′
s H1(x′, z′, µs) +

(
1 −

r∑
s=1

α′
s

)
H1(x′, z′, µ∗)

) ∣∣∣
=

∣∣−ε
∣∣ · ∣∣∣ F (x′, z′, v(x′, α′)) −

( r∑
s=1

α′
s F (x′, z′, µs) +

(
1 −

r∑
s=1

α′
s

)
F (x′, z′, µ∗)

) ∣∣∣ . � (26)

Remark. In both problems, condition 3)′ still holds whether a constant is subtracted in the cost
functionals.

b) A complement for the subspaces Im Gx(x∗, u∗) resp. Im Gx(x∗, µ∗). For any feasible solution
(x∗, u∗) of (S)0 resp. (x∗, µ∗) of (S̃)0 it holds:

Im Gx(x∗, u∗) = Im Gx(x∗, µ∗) = cl
( { z ∈ L

nm
p (Ω)

∣∣ ∃x ∈ W
1,n
p (Ω) : x(t0) = on , zij = xi; tj ∀ i, j } )

. (27)

Then the space L
nm
p (Ω) admits the following decomposition:

Proposition 3.3. (Helmholtz-Weyl decomposition of L
nm
p (Ω) ) Assuming (V1), the space L

nm
p (Ω)

can be decomposed into the direct sum Im Gx(x∗, u∗) + Ỹ where

Ỹ =
(
cl Lm

p (Ω)

({ z ∈ C
∞,m
◦ (Ω)

∣∣ div z(t) = 0 (∀) t ∈ Ω } ) )n
. (28)

[ 1 : p. 114, Theorem 1.2. ] �
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c) The ε-extremal principles for (S)0 and (S̃)0.

Theorem 3.4. (ε-maximum principle for (S)0 ) Consider the problem (S)0 together with its global
minimizer (x∗, u∗) under assumptions (V1) – (V4). After replacing the cost functional by F (x, u)−F (x∗, u∗),
the ε-extremal principle (Theorem 2.5.) can be applied: For every number 0 < ε < 1 and for every closed
subspace Ỹ ⊂ L

nm
p (Ω) with Im Gx(x∗, u∗) + Ỹ = L

nm
p (Ω) there exist multipliers λ0(ε, Ỹ) > 0 and y∗(ε, Ỹ) ∈

L
nm
q (Ω), p−1 + q−1 = 1, satisfying

(M)ε : ε + λ0(ε, Ỹ)
∫

Ω

(
f0(t, x∗(t), u(t)) − f0(t, x∗(t), u∗(t))

)
dt

+
∑
i,j

∫
Ω

(
uij(t) − u∗

ij(t)
)
dy∗

ij(ε, Ỹ)(t) � 0 ∀u ∈ U ;

(K)ε :
∣∣∣ λ0(ε, Ỹ)

∫
Ω

( f0 )x(t, x∗(t), u∗(t))Tx(t) dt + λ0(ε, Ỹ)
∫

Ω

( f1 )x(t, x∗(t))Tx(t) dγ(t)

+
∑
i,j

∫
Ω

xi; tj (t) dy∗
ij(ε, Ỹ)(t)

∣∣∣ � ε · ∥∥ x
∥∥

W 1,n
p (Ω)

∀x ∈ W
1,n
p (Ω) : x(t0) = on ;

(C)ε :
∑
i,j

∫
Ω

zij(t) dy∗
ij(ε, Ỹ)(t) = 0 ∀ z ∈ Ỹ .

Proof. After subtraction of the minimal value in the cost functional, (S)0 satisfies condition 1) of
Theorem 1.2. From Proposition 3.2. we know that (S)ε is relaxable at (x∗, u∗) with respect to Ũ. Therefore,
Theorems 2.3. and 2.5. can be applied (the latter due to compactness of K and continuity of f0 in v). Thus
the above described set of necessary optimality conditions will hold. �

Theorem 3.5. (ε-maximum principle for (S̃)0 ) Consider the problem (S̃)0 together with its global
minimizer (x∗, µ∗) under assumptions (V1) – (V4). After replacing the cost functional by F (x, µ)−F (x∗, µ∗),
the ε-extremal principle (Theorem 2.5.) can be applied: For every number 0 < ε < 1 and every closed subspace
Ỹ ⊂ L

nm
p (Ω) with Im Gx(x∗, µ∗) + Ỹ = L

nm
p (Ω) there exist multipliers λ0(ε, Ỹ) > 0 and y∗(ε, Ỹ) ∈ L

nm
q (Ω),

p−1 + q−1 = 1, satisfying

(M)ε : ε + λ0(ε, Ỹ)
∫

Ω

∫
K

f0(t, x∗(t), v)
[
dµt(v) − dµ∗

t (v)
]
dt

+
∑
i,j

∫
Ω

∫
K

vij

[
dµt(v) − dµ∗

t (v)
]
dy∗

ij(ε, Ỹ)(t) � 0 ∀µ ∈ YK ;

(K)ε :
∣∣∣ λ0(ε, Ỹ)

∫
Ω

∫
K

( f0 )x(t, x∗(t), v) dµ∗
t (v)Tx(t) dt + λ0(ε, Ỹ)

∫
Ω

( f1 )x(t, x∗(t))Tx(t) dγ(t)

+
∑
i,j

∫
Ω

xi; tj (t) dy∗
ij(ε, Ỹ)(t)

∣∣∣ � ε · ∥∥ x
∥∥

W 1,n
p (Ω)

∀x ∈ W
1,n
p (Ω) : x(t0) = on ;

(C)ε :
∑
i,j

∫
Ω

zij(t) dy∗
ij(ε, Ỹ)(t) = 0 ∀ z ∈ Ỹ .

Proof. After changing the cost functional, (S̃)0 satisfies condition 1) of Theorem 1.2. By Proposition
3.2., condition 2) of Theorem 1.2. holds too, and the relaxability condition for the cost functional holds even
in sharpened form. In order to enlarge the problem (S̃)0 one has to take from the beginning U = Ũ = YK

and inf (S̃)0 = F (x∗, µ∗) (thus, with respect to (S̃)0, the problems (S)ε and (S̃)ε become identical). Now, all
assumptions of Theorem 2.4. and, for the same reasons as before, also of Theorem 2.5. are satisfied. �

Remarks. 1) Under assumptions of Theorem 3.1., 2), the existence of a global minimizer of (S)0 is
guaranteed.
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2) Theorems 3.4. and 3.5. generalize the ε-maximum principles known before, e. g. [ 8 : p. 225, Theorem
3.1. ] , [ 9 : p. 313, Theorem 3.1. ] and [ 10 : p. 171, Theorem 2.3. ] since they contain the additional condition
(C)ε for the multiplier y∗ associated with the equality restriction.

Corollary 3.6. Choosing in Theorems 3.4. and 3.5. the subspace Ỹ =
(
cl Lm

p (Ω)

({ z ∈ C∞,m
◦ (Ω)

∣∣
div z(t) = 0 (∀) t ∈ Ω } ) )n, the condition (C)ε reads as follows:

y∗(ε, Ỹ) ∈ cl
( { z ∈ L

nm
q (Ω)

∣∣ ∃x ∈ W
1,n
q (Ω) : x(t0) = on , zij = xi; tj ∀ i, j } )

with p−1 + q−1 = 1 . (29)

Proof. By Proposition 3.3., the above described subspace Ỹ satisfies the assumption in Theorems
3.4. resp. 3.5. Property (29) is an immediate consequence of [ 1 : p. 116, Lemma 2.1. ] . �
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