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Abstract

If u ∈ H1(M,N) is a weakly J-holomorphic map from a compact without

boundary almost hermitian manifold (M, j, g) into another compact without

boundary almost hermitian manifold (N, J, h). Then it is smooth near any

point x where Du has vanishing Morrey norm M2,2m−2, with 2m =dim(M).

Hence H2m−2measure of the singular set for a stationary J-holomorphic

map is zero. Blow-up analysis and the energy quantization theorem are es-

tablished for stationary J-holomorphic. Connections between stationary J-

holomorphic maps and stationary harmonic maps are given for either almost

Kähler manifolds M and N or symmetric ∇hJ .

§1 Introduction and statements of results

Let (M, j, g) (respectively (N, J, h)) be a smooth hermitian almost com-

plex manifold with dimension 2m (respectively 2n). Assume further that

(N, h) is compact without boundary and isometrically embedded into some

euclidean Rk via the Nash’s embedding theorem. Denote the Sobolev space

H1(M,N) = {v ∈ H1(M,Rk) | v(x) ∈ N for a. e. x ∈M}.

Definition 1.1. A map u ∈ H1(M,N) is said to be weakly (j, J)-holomorphic

map (or J-holomorphic map for abbreviation) if du preserves the almost com-

plex structures in the sense:

du(j(x)(X)) = J(u)(du(X)), for a. e. x ∈M, ∀X ∈ TxM (1.1)

Note that J-holomorphic maps are higher dimensional natural extensions
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of pseudo-holomorphic curves, which have been very important subjects

and have had so many important applications in four-dimensional geometric

topology, since the pioneering works by Gromov [G]. Moreover, the compact-

nees for pseudo-holomorphic curves was also a very interesting problem from

the analytic point of views (cf [Y] [PW]). In a very recent work, Riviere-

Tian [RT] made the study for j-holomorphic maps from almost complex

4-manifold (M4, j) into algebraic varieties N ⊂ CPn, in connections with C.

Taubes’ works on Seiberg-Witten and Gromov invariants for symplectic 4-

manifolds. In particular, it was proven by [RT] that any locally approximable

j-holomorphic map is smooth away from isolated points.

In this paper we are interested in regularity for weakly J-holomorphic

maps. A point x ∈ M is a regular point for u if there is a r > 0 such

that u ∈ C∞(Br(x), N), here Br(x) denotes the geodesic ball with radius r,

centered at x. It is clear that the set of regular points of u is an open subset

of M , whose complement is called singular set of u. Observe that if x ∈ M

is a regular point, then

lim
r↓0

max{s2−m

∫
Bs(y)

|Du|2|Bs(y) ⊂ Br(x)} = 0 (1.2)

By the regularity theory of minimizing harmonic maps by Schoen-Uhlenbeck

[SU] and for stationary harmonic maps by Hélein [H], Evans [E], Bethuel

[B], we know that the smallness condition (1.2) is also sufficient for smooth-

ness. Although we know (see remark (8.16) of Eells-Lemaire [EL] page 51)

that J-holomorphic maps are not necessarily harmonic maps, our first result

confirms that the same regularity criterion holds for weakly J-holomorphic

maps. We first recall that the condition (1.2) can be expressed in terms of

the Morrey space and recall the following definition (see, e.g. Giaquinta [G]).

Definition 1.2. For p ∈ (1, 2] and an open set Ω ⊂ M , the Morrey space
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Mp,2m−p is defined by

Mp,2m−p(Ω) = {f ∈ L2(Ω) :

‖f‖Mp,2m−p(Ω) ≡ ( sup
Br(x)⊂Ω

rp−2m

∫
Br(x)

|f |p) 1
p <∞}

Now we state our first theorem

Theorem A. There exists an ε0 > 0 such that if u ∈ H1(M,N) is a weakly

J-holomorphic map and satisfies, for Br(x) ⊂M ,

‖Du‖M2,2m−2(Br(x)) ≤ ε0 (1.3)

then u ∈ C∞(B r
2
(x), N).

Our idea to prove theorem A follows from the two new observations: (1)

Under the assumption that u(Br(x)) is contained in a coordinate chart U

of N , we can use the local coordinate frame on U to express J as SO(2n)-

valued function so that the eqn. (1.1) can imply ∆uα = fα, with fα having

a jacobian structure, hence the ideas for proving the regularity theorem for

stationary harmonic maps into spheres (see, [H1] [E] or [CWY]) is applicable

to yield that u is Hölder continuous in B r
2
(x); (2) In general, we can modify

the enlargement idea, due to Hélein [H], to isometrically embed (N, h) into a

higher dimensional manifold (Ñ , h̃) which admits a global smooth orthonor-

mal frame {eα}l
α=1 (l =dim(Ñ)), then we can derive from the eqn. (1.1)

that

div(〈Du, eα(u)〉) = fα(x)gα(x), 1 ≤ α ≤ l

with fα having jacobian structure and gα ∈ H1 ∩ L∞. Hence we can adopt

Bethuel’s idea ([B]) for regularity of stationary harmonic maps into general

target manifolds, see §2 below for details. In this way, we find that the proof

of regularity properties of J-holomorphic maps is very much related to that

of stationary harmonic maps.

3



For m = 1, i.e. M a Riemannian surface. Observe that M2,0 = L2(M)

so that the absolute continuity of
∫ |Du|2 that the condition (1.3) is satisfied

for any x ∈ M , and sufficiently small r > 0. Hence, as a byproduct of

theorem A, we find a new proof of the interior regularity theorem of weakly

pseudo-holomorphic curves by Ye [Y] on his proof of Gromov’s compactness

theorem for pseudo-holomorphic curves (see also Wolfson [W] or Parker-

Wolfson [PW]). More precisely,

Theorem B ([Y]). Assume that M is a compact Riemannian surface without

boundary. If u ∈ H1(M,N) is a weakly J-holomorphic curve. Then u ∈
C∞(M,N).

For m ≥ 2, observe that M2,2m−2 is a scaling-invariant subspace of

L2(M) whose elements behave like L2m(M) from the point of view of scalings.

In §3 below, we introduce a class of J-holomorphic maps u ∈ H1(M,N),

called stationary J-holomorphic maps, which have vanishing first variations

with respect to the domain variations, i.e. for any smooth vector field X on

M with compact support,

d

dt
|t=0

∫
M

|Du(Ft(x))|2 = 0 (1.4)

where Ft : M → M is a parameter family of diffeomorphisms generated by

X . It follows from Proposition 3.2 that any stationary J-holomorphic map

satisfies the energy monotonicity inequality: there is a C0 = C0(M, j, g) > 0

such that

eC0rr2−2m

∫
Br(x)

|Du|2(x) + 2
∫

BR(x)\Br(x)

eC0|y−x||y − x|2−2m| ∂u

∂|y − x| |
2

≤ eC0RR2−2m

∫
BR(x)

|Du|2(x) (1.5)

for any x ∈ M and 0 < r ≤ R ≤ R0 = R0(M, j, g). A direct consequence of

(1.5) is: for any x ∈M and 0 < r ≤ R0,

‖Du‖M2,2m−2(Br(x)) ≤ C0r
2−2m

∫
Br(x)

|Du|2 (1.6)

4



Hence theorem A yields the partial regularity for stationary J-holomorphic

maps, which is an analogy to the partial regularity for stationary harmonic

maps. More precisely,

Theorem C. Suppose that u ∈ H1(M,N) is a stationary J-holomorphic

map. Define

Σ = {x ∈M | lim
r→0

r2−2m

∫
Br(x)

|Du|2 > 0}

Then H2m−2(Σ) = 0 and u ∈ C∞(M \ Σ, N).

Based on both the energy monotonicity inequality (1.5) and the small

energy regularity theorem A, we find that the blow-up techniques for sta-

tionary harmonic maps developed by Lin [L] can be modified to study the

convergence issues for sequences of stationary J-holomorphic maps.

From now on, we call a nonconstant smooth J-holomorphic map ω :

(S2, j0) → (N, J) as a pseudo-holomorphic S2, here j0 is the standard com-

plex structure on S2. We prove

Theorem D. Let {uk} ⊂ H1(M,N) be stationary J-holomorphic maps

which converges weakly to u ∈ H1(M,N). Then u is a weakly J-holomorphic

map and there exists a closed (2m−2)-rectifiable set Σ ⊂M , with H2m−2(Σ) <

∞, such that

(i) uk → u in H1
loc ∩ C1

loc(M \ Σ, N). In particular, u ∈ C∞(M \ Σ, N).

(ii)
1
2
|Duk|2 dx→ 1

2
|Du|2 dx+ ν

as convergence of Radon measures, for some nonnegative Radon measure ν

on M . Moreover, ν = θH2m−2LΣ for some nonnegative H2m−2-measurable

function

θ(x) = lim
r→0

ν(Br(x))
|Br(x)| ≥ ε20, for H2m−2a. e. x ∈ Σ

5



(iii) For H2m−2 a. e. x ∈ Σ, TxΣ ⊂ R2m is jx-holomorphic (2m− 2)-plane,

i. e. jx(TxΣ) = TxΣ.

(iv) uk �→ u in H1(M,N) ⇔ H2m−2(Σ) > 0. Moreover, there exists at least

one pseudo-holomorphic S2 in (N, J).

The main difference between our proof of theorem D and §2 of [L] is that

we need to verify that the concentration set Σ is j-holomorphic (2m − 2)-

rectifiable set. Once we achieve this, then both the conformality and the

removablity of isolated singularity for pseudo-holomorphic curves (cf. [Y]

[PW]) guarantee that the restriction of a bubble on (TxΣ)⊥ can be lifted to

be a pseudo-holomorphic S2.

It is a very important problem to quantify the density function θ for the

defect measure ν in the content of blow-up analysis for stationary harmonic

maps. In [LR], Lin-Riviere were able to quantify, under that assumption

that N is a standard sphere, θ as the finite sum of energies of harmonic

S2. Likewise, to quantify θ in the content of stationary J-holomorphic maps

is also a problem of great importance, such as Gromov’s compactness for

pseudo-holomorphic curves (cf. [Y] [PW]). For a map v : S2 → N , let

E(v, S2) = 1
2

∫
S2 |Dv|2 denote its Dirichlet energy. In this aspect, we prove

Theorem E. Under the same assumptions and notations as in theorem D.

We have, for H2m−2 a. e. x ∈ Σ, there is 1 ≤ lx ≤ [ν(M)
ε20

] such that

θ(x) =
lx∑

i=1

E(ωi, S
2) (1.7)

for some pseudo-holomorphic S2’s, {ωi}lx
i=1.

The ideas to prove theorem E are based on the observations that on

(TxΣ)⊥ the blow-up sequences are both approximated (j0, J)-holomorphic

maps and approximated conformal maps, with perturbation errors uniformly

small in L2, see §3 below. Therefore, the mixtures of ideas from the proof of
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theorem A with ideas from Sacks-Uhlenbeck [SaU] and Lin-Riviere [LR] can

yield the conclusion.

Note that the obstruction to strong convergence in H1 for stationary

J-holomorphic maps are pseudo-holomorphic S2’s. Therefore, if N supports

no pseudo-holomorphic S2’s, then we can apply the Federer’s dimension re-

duction argument (cf [F]) to prove

Theorem F. Assume that (N, J, h) doesn’t support any pseudo-holomorphic

S2. If u ∈ H1(M,N) is stationary J-holomorphic. Then dimH(sing(u)) ≤
2m− 6. In particular, sing(u) is discrete for m = 3.

The paper is written as follows. In §2, we prove theorem A and C. In

§3, we prove theorem D, E and F. In §4, we discuss the relationship between

J-holomorphic maps and harmonic maps in the case either (M, j, g) and

(N, J, h) are almost Kähler manifolds or ∇hJ is symmetric.
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Centre of Mathematics and Applications, Australian National University. It

was completed while the author visited the Max-Planck Institute for Mathe-

matics in the Sciences, Leipzig. The author wishes to thank both institutions

for their hospitalities. The author would also like to thank Prof. T. Riviere

at ETH and Prof. R. Mazzeo at Stanford for their helpful comments. The

work is partially supported by NSF DMS 9970549.

§2 Regularity for J-holomorphic maps and proof of theorem A

In this section, we prove theorem A. The proof is divided into two cases:

(1) u(Br(x)) is in a coordinate chart of N ; (2) no restriction on u(Br(x)).

It follows from the higher order regularity theory that it suffices to prove u

is Hölder continuous under the smallness assumption (1.3) (see, e.g., [Y]). It

follows from the Morrey decay Lemma [M] that the key step to prove the

Hölder continuity is the following self-improving Lemma.
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Lemma 2.1 There exist ε0 > 0, θ0 ∈ (0, 1
4 ), and C0 > 0 depending only

on (M, j, g) such that if u ∈ H1(M,N) is a weakly J-holomorphic map and

satisfies, for Br(x) ⊂M , ‖Du‖M2,2m−2(Br(x)) ≤ ε0, then

‖Du‖M1,2m−1(Bθ0r(x)) ≤ 1
2
‖Du‖M1,2m−1(Br(x)) + C0r (2.1)

Proof. We proceed it by two cases.

Case 1. There exists a coordinate chart U ⊂ N such that u(y) ∈ U for a.e.

y ∈ Br(x).

Note that this is the type of conditions appeared in Giaquinta-Giusti

[GG]]. For simplicity, we assume x = 0 ∈ M . Since M2,2m−2(Br(0)) is

non-decreasing with respect to r, we may assume that r > 0 is chosen to be

sufficiently small so that there is a normal coordinate system (x1, · · · , x2m) on

Br(0). On U , let (y1, y2, · · · , y2n−1, y2n) denote the coordinate system and

( ∂
∂y1

, · · · , ∂
∂y2n

) denote the coordinate frame field. Using these coordinate

systems, the almost complex structure J can be written as

J(y) =
2n∑

α,β=1

Jαβ(y)
∂

∂yα
⊗ dyβ

for some skew-symmetric (Jαβ(y)) ∈ C∞(U, SO(2n)), and j can be written

as

j(x) =
2m∑

i,k=1

jik(x)
∂

∂xi
⊗ dxk

for some skew-symmetric (jik(x)) ∈ C∞(Br(0), SO(2m)). Moreover,

∂

∂xi
=

2m∑
k=1

jki(x)(j(x)(
∂

∂xk
))

Now the J-holomorphic map eqn. (1.1) becomes: ∀1 ≤ α ≤ 2n,

∂uα

∂xi
=

2n∑
k=1

jki(x)(du(j(x)(
∂

∂xk
)))α

8



=
2m∑
k=1

jki(x)(J(u)(
∂u

∂xk
))α

=
2m∑
k=1

2n∑
β=1

jki(x)Jαβ(u)
∂uβ

∂xk
(2.2)

Let ∆g = −∑2m
i,l=1

1√
g

∂
∂xl

(
√
ggli ∂

∂xi
) denote the Laplace-Beltrami operator

on (M, g), here (gli) = g−1. Then we have

Claim 1. In Br(0), for 1 ≤ α ≤ 2n,

−∆gu
α =

1√
g

2n∑
β=1

∑
1≤k<l≤2m

[
∂

∂xk
(
√
g(

2m∑
i=1

glijik(x))Jαβ(u))
∂uβ

∂xl

− ∂

∂xl
(
√
g(

2m∑
i=1

glijik(x))Jαβ(u))
∂uβ

∂xk
] (2.3)

Proof of Claim 1. By taking one more derivative of the eqn. (2.2), we have

−∆gu
α =

1√
g

2n∑
β=1

2m∑
k,l=1

∂

∂xl
(
√
g(

2m∑
i=1

glijki(x))Jαβ(u)
∂uβ

∂xk
)

=
2n∑

β=1

2m∑
k,l=1

1√
g

∂

∂xl
(
√
g(

2m∑
i=1

glijki(x))Jαβ(u))
∂uβ

∂xk

+
2n∑

β=1

2m∑
k,l=1

(
2m∑
i=1

glijki(x))Jαβ(u)
∂2uβ

∂xl∂xk

= I + II

Now we need

Claim 2. g−1j is skew-symmetric, i.e.
∑2m

i=1(g
lijik(x)) = −∑2m

i=1(g
kijil(x))

for any 1 ≤ l, k ≤ 2m.

Proof of Claim 2. Since g is hermitian with respect to j, we have

gkl = g(
∂

∂xk
,
∂

∂xl
) = g(j(x)(

∂

∂xk
), j(x)(

∂

∂xl
))

= jik(x)jpl(x)g(
∂

∂xi
,
∂

∂xp
) = −jki(x)gipjpl(x)
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This is equivalent to g = −jgj. Since j2 = −I2m, we have gj = jg and

g−1j = jg−1. Therefore

(g−1j)t = jt(g−1)t = −jg−1 = −g−1j.

Now it is easy to see that II = 0 and

I = − 1√
g

2n∑
β=1

∑
1≤k<l≤2m

[
∂

∂xl
(
√
g(

2m∑
i=1

glijik(x))Jαβ(u))
∂uβ

∂xk

− ∂

∂xk
(
√
g(

2m∑
i=1

glijik(x))Jαβ(u))
∂uβ

∂xl
]

Hence we obtain the eqn. (2.3).

Since each term in the summation of the right hand side of the eqn. (2.3)

is of the jacobian structure { ∂f
∂xk

∂g
∂xl

− ∂f
∂xl

∂g
∂xk

} for some f, g ∈ H1(Br(0)),

which belongs to the Hardy space H1(Br(0)) by the theorem of [CLMS].

Moreover, it follows from the Poincaré inequality that Du ∈ M2,m−2(Br(0))

implies that u ∈ BMO(Br(0)), and for any 1 < p ≤ 2,

[u]BMO(Br(0)) ≡ sup{ inf
c∈Rk

s−2m

∫
Bs(x)

|u− c| | Bs(x) ⊂ Br(0)}

≤ C‖Du‖Mp,2m−p(Br(0)) ≤ C‖Du‖M2,2m−2(Br(0)) (2.4)

Now we can apply the duality theorem between H1 and BMO (see Fefferman-

Stein [FS]) to prove (2.1) as follows. For y ∈ Bθ0r(0), 0 < s ≤ θ0r, let

Λ = (2θ0)−1 with θ0 to be chosen later, and v ∈ H1(BΛs(y)) be such that,

for any 1 ≤ α ≤ 2n,

∆vα = 0, in BΛs(y) (2.5)

vα = uα, on ∂BΛs(y)

Let w = u − v. Multiplying both sides of the eqn. (2.3) by wα, integrating

it over BΛs(y), and summing over α, we obtain
∫

BΛs(y)

|Dw|2 dx
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=
∑

α,β,i,k<l

∫
BΛs(y)

[
∂

∂xl
(
√
gglijik(x)Jαβ(u))

∂wα

∂xk

− ∂

∂xk
(
√
gglijik(x)Jαβ(u))

∂wα

∂xl
]uβ

≤ C
∑

α,β,i,k<l

[uβ ]BMO(Br(0))·

‖ ∂

∂xl
(
√
gglijik(x)Jαβ(u))

∂wα

∂xk
− ∂

∂xk
(
√
gglijik(x)Jαβ(u))

∂wα

∂xl
‖H1(R2m)

≤ C[u]BMO(Br(0))‖Dw‖L2(BΛs(y))‖D(
√
gg−1j(x)J(u))‖L2(BΛs(y))

Direct calculations show that there is C1 > 0, depending only on g, j, J , such

that

‖D(
√
gg−1j(x)J(u))‖L2(BΛs(y)) ≤ C1(Λs)m + ‖Du‖L2(BΛs(y))

Therefore, it follows from the standard decay estimate for harmonic functions

that we have

s1−2m

∫
Bs(y)

|Du| ≤ s1−2m

∫
Bs(y)

|Dv| + s1−2m

∫
Bs(y)

|Dw|

≤ CΛ−1[v]BΛs(y) + (s2−2m

∫
BΛs(y)

|Dw|2) 1
2

≤ C(Λ−1 + Λms+ Λm−1ε0)[u]BMO(Br(0))

≤ C(θ0 + θ−m
0 s+ θ1−m

0 ε0)[u]BMO(Br(0))

Therefore, by first choosing sufficiently small θ0 > 0 and then choosing much

smaller ε0 > 0, we have

‖Du‖M1,2m−1(Bθ0r(0)) ≤ sup{s1−2m

∫
Bs(y)

|Du| | y ∈ Bθ0r, s ≤ θ0r}

≤ 1
2
‖Du‖M1,2m−1(Br(0)) + Cr

This yields (2.1) and the proof of Case 1 is complete.

Case 2. Modification of Hélein construction for global orthonormal frames
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In order to push forward the ideas from the Case 1, we need to find

an alternative to replace the local coordinate frame on the target manifold

(N, h). For this purpose, we modify the construction of global frames by

Hélein [H] to our setting. First recall from [H] that there always exists a

compact without boundary Riemanian manifold (Ñ , h̃), with dimension l >

2n, and a totally geodesic isometric embedding Φ : (N, h) → (Ñ , h̃) such that

there is a tubular neighborhood U, ⊂ Ñ , of Φ(N) with the property that the

tangent bundle T Ñ restricted to U is trivial. Therefore, we may assume that

there is an orthonormal frame field {eα}l
α=1 which spans T Ñ |U . Now observe

that the isometry Φ : (N, h) → (Φ(N), h̃|Φ(N)) naturally pushes the almost

complex structure J on N forward to give an almost complex structure J̃ on

Φ(N). In fact, J̃ can be defined as follows: for any y = Φ(x) ∈ Φ(N) and

ṽ = (dΦ)#(v) ∈ TyΦ(N), J̃y(ṽ) ≡ (dΦ)#(Jxv). Then

J̃2
y (ṽ) = J̃y((dΦ)#(Jxv)) = (dΦ)#(J2

x(v)) = −(dΦ)#(v) = −ṽ

Hence J̃ is an almost complex structure on Φ(N). Moreover, the metric

h̃|Φ(M) is hermitian with respect to J̃ . In fact, for any y = Φ(x) ∈ Φ(N) and

X̃ = (dΦ)#(X), Ỹ = (dΦ)#(Y ) ∈ TyΦ(N), we have

h̃(y)(X̃, Ỹ ) = h(x)(X,Y ) = h(x)(JxX, JxY )

= h̃(y)((dΦ)#(JxX), (dΦ)#(JxY )) = h̃(J̃y(X̃), J̃y(Ỹ ))

Now, it is easy to see that ũ = Φ(u) ∈ H1(M,Φ(N)) is a weakly J̃-

holomorphic map. In fact, for a. e. x ∈M and X ∈ TxM , we have

dũ(jx(X)) = (dΦ)#(du(jx(X))) = (dΦ)#(J(u)(du(X))

= J̃(ũ)(d(Φ(u))(X)) = J̃(ũ)(dũ(X)) (2.6)

Now we extend J̃ from T (Φ(N)) to T Ñ |Φ(N) as follows. Let T Ñ |Φ(N) =

T (Φ(N)) + (T (Φ(N)))⊥, here (T (Φ(N)))⊥ ⊂ T Ñ |Φ(N) denotes the normal
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bundle of Φ(N). Hence any vector field v ∈ T Ñ |Φ(N) is uniquely written as

v = v1 + v2, with v1 ∈ T (Φ(N) and v2 ∈ (T (Φ(N)))⊥. Now we extend J̃ by

setting

J̃(v) = J̃(v1)

It is clear that J̃ : T Ñ |Φ(N) → T Ñ |Φ(N) is a smooth linear transform whose

restriction to T (Φ(N)) is the almost complex transform pushed forward from

J .

It suffices to prove (2.1) for ũ, since Φ is an isometry map. Now we can

use the orthonormal frame field {eα}l
α=1 and its dual cotangent frame field

{e∗α}l
α=1 to express J̃ as

J̃(y) =
l∑

α,β=1

Jαβ(y)eα(y) ⊗ e∗β(y)

for some matrix-valued function (Jαβ) ∈ C∞(M,Rl×l). As in the case 1, we

assume that x = 0 and Br(0) ⊂ M is a geodesic ball so that the eqn. (2.6),

see also the eqn. (2.2), yields

∂ũ

∂xi
=

2m∑
k=1

jki(x)dũ(j(x)(
∂

∂xk
))

=
2m∑
k=1

jki(x)(J̃ (ũ)(
∂ũ

∂xk
)

=
2m∑
k=1

l∑
β=1

jki(x)〈 ∂ũ
∂xk

, eβ(ũ)〉J̃(ũ)(eβ(ũ))

=
2m∑
k=1

l∑
β=1

jki(x)〈 ∂ũ
∂xk

, eβ(ũ)〉Jαβ(ũ)eα(ũ)

Therefore, in Br(0), we have, for 1 ≤ α ≤ l,

〈 ∂ũ
∂xi

, eα(ũ)〉 =
2m∑
k=1

l∑
β=1

jki(x)Jαβ(ũ)〈 ∂ũ
∂xk

, eβ(ũ)〉 (2.7)
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For 1 ≤ α ≤ l, define Yα = (〈 ∂ũ
∂x1

, eα(ũ)〉, · · · , 〈 ∂ũ
∂x2m

, eα(ũ)〉) : Br(0) → R2m.

Then direct calculations, combined with the skew symmetricity of gj, imply

−divgYα =
1√
g

2m∑
k,i=1

∂

∂xk
(
√
ggki〈 ∂ũ

∂xi
, eα(ũ)〉)

=
∑
β,i

∑
p<k

gkijpi(x)Jαβ(ũ)(〈 ∂ũ
∂xp

,
∂(eβ(ũ))
∂xk

〉 − 〈 ∂ũ
∂xk

,
∂(eβ(ũ))
∂xp

〉)

+
1√
g

∑
β,i

∑
p<k

[〈eβ(ũ),
∂

∂xk
(
√
ggkijpi(x)Jαβ(ũ))

∂ũ

∂xp
〉

− 〈eβ(ũ),
∂

∂xp
(
√
ggkijpi(x)Jαβ(ũ))

∂ũ

∂xk
〉] (2.8)

Observe that each term in the summation of the right hand side of the

eqn. (2.8) is of the form ( ∂f
∂xk

∂g
∂xi

− ∂f
∂xi

∂g
∂xk

)h for some f, g ∈ H1(Br(0))

and h ∈ L∞(Br(0)) ∩ H1(Br(0)). Therefore, the eqn. (2.8) is similar to

the harmonic map equation into general target manifolds, written under the

optimal gauge frame (see, e.g., [B]). We can then modify the argument of [B]

to prove (2.1). To make the paper short, we only sketch a slightly simpler

proof as follows. Since we can handle the effect of (g, j) in eqn. (2.8) the

same way as in Case 1. For simplicity, we assume that g is the euclidean

metric and j is the standard almost complex structure on R2m. Therefore,

the eqn. (2.8) reduces to

−divYα =
∑

β

∑
i<k

Jαβ(ũ)(〈 ∂ũ
∂xi

,
∂(eβ(ũ))
∂xk

〉 − 〈 ∂ũ
∂xk

,
∂(eβ(ũ))
∂xi

〉)

+
∑

β

∑
i<k

〈eβ(ũ),
∂(Jαβ(ũ))

∂xi

∂ũ

∂xk
− ∂(Jαβ(ũ))

∂xk

∂ũ

∂xi
〉 (2.9)

For y ∈ Bθ0r(0) and 0 < s ≤ θ0r, let Λ = (2θ0)−1 and η ∈ C1
0 (B2Λs(y)) be

such that 0 ≤ η ≤ 1, η ≡ 1 on BΛs(y), and |Dη| ≤ C
Λs . Denote ũy,2Λs =

1
|B2Λs(y)|

∫
B2Λs(y)

ũ. For 1 ≤ α ≤ l, consider 〈D(η2(ũ − ũy,2Λs)), eα(ũ)〉.
Then it follows from the standard Hodge decomposition theorem (cf. [MT])

that there exist Fα ∈ H1
0 (B2Λs(y)) and Gα ∈ L2(B2Λs(y), R2m) such that
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div(Gα) = 0 and

〈D(η2(ũ− ũy,2Λs)), eα(ũ)〉 = DFα +Gα, in B2Λs(y) (2.10)

‖DFα‖Lp(B2Λs(y)) + ‖Gα‖Lp(B2Λs(y)) ≤ Cp‖Dũ‖Lp(B2Λs(y)) (2.11)

for any 1 < p ≤ 2. Since div(Gα) = 0 and Fα|∂B2Λs(y) = 0, we have∫
B2Λs(y)Gα ·DFα = 0. Therefore, Gα can be estimated as follows

∫
B2Λs(y)

|Gα|2 =
∫

B2Λs(y)

Gα〈D(η2(ũ − ũy,2Λs)), eα(ũ)〉

= −
∫

B2Λs(y)

Gα ·D(eα(ũ))η2(ũ− ũy,2Λs)

≤ C‖Gα ·D(eα(ũ))‖H1‖η2(ũ− ũy,2Λs)‖BMO

≤ C‖Gα‖L2(B2Λs(y))‖D(eα(ũ))‖L2(B2Λs(y))[ũ]BMO(Br(0))

≤ C‖Gα‖L2(B2Λs(y))‖Dũ‖L2(B2Λs(y))[ũ]BMO(Br(0))

This yields

‖Gα‖L2(B2Λs(y)) ≤ Csm−1‖Dũ‖M2,2m−2(Br(0))[ũ]BMO(Br(0)) (2.12)

To estimate Fα, we define three auxillary functions F 1
α ∈ H1(B2Λs(y)), F 2

α ∈
H1

0 (B2Λs(y)), and F 3
α ∈ H1

0 (B2Λs(y)) as follows.

∆F 1
α = 0, in B2Λs(y), F 1

α|∂B2λs(y) = Fα|∂B2Λs(y) (2.13)

∆F 2
α =

∑
β

∑
i<k

Jαβ(ũ)(〈 ∂ũ
∂xi

,
∂(eβ(ũ))
∂xk

〉 − 〈 ∂ũ
∂xk

,
∂(eβ(ũ))
∂xi

〉) (2.14)

∆F 3
α =

∑
β

∑
i<k

〈eβ(ũ),
∂(Jαβ(ũ))

∂xi

∂ũ

∂xk
− ∂(Jαβ(ũ))

∂xk

∂ũ

∂xi
〉 (2.15)

It follows from (2.9), (2.13)-(2.15) that Fα =
∑3

i=1 F
i
α. It follows from the

estimate for harmonic functions, we have

s1−2m

∫
Bs(y)

|DF 1
α| ≤ CΛ−1(Λs)1−2m

∫
B2Λs(y)

|DF 1
α| (2.16)
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To estimate F 2
α, we first recall the dual characterization for the Lp norm

of gradient of functions in W 1,p
0 (B2Λs(y)). For p ∈ (1, 2], denote p′ = p

p−1 .

Then we have, for any f ∈W 1,p
0 (B2Λs(y)),

‖Df‖Lp(B2Λs(y)) ≤ C sup{
∫

B2Λs(y)

Df ·Dg :

g ∈W 1,p′
0 (B2Λs(y)), ‖Dg‖Lp′(B2Λs(y)) ≤ 1}

Now let p ∈ (1, 2m
2m−1 ) so that p′ > 2m. Then for any g ∈ W 1,p′

0 (B2Λs(y))

with ‖Dg‖Lp′(B2Λs(y)) ≤ 1, we have
∫

B2Λs(y)

DF 2
α ·Dg =

∫
B2Λs(y)

∆F 2
αg

=
∑

β,i<k

∫
B2Λs(y)

Jαβ(ũ)g(〈 ∂ũ
∂xi

,
∂(eβ(ũ))
∂xk

〉 − 〈 ∂ũ
∂xk

,
∂(eβ(ũ))
∂xi

〉)

≤ C
∑

β,i<k

‖〈∂(Jαβ(ũ)g)
∂xi

,
∂(eβ(ũ))
∂xk

〉 − 〈∂(Jαβ(ũ)g)
∂xk

,
∂(eβ(ũ))
∂xi

〉‖H1

· ‖ũ‖BMO(Br(0))

≤ C
∑

β

‖Dũ‖L2(B2Λs(y))‖D(Jαβ(ũ)g)‖L2(B2Λs(y))[ũ]BMO(Br(0))

By the Sobolev inequality and the Hölder inequality, we have

‖g‖L∞(B2Λs(y)) ≤ C(Λs)1−
2m
p′ , ‖Dg‖L2(B2Λs(y)) ≤ C(Λs)m− 2m

p′

Hence

‖D(Jαβ(ũ)g)‖L2(B2Λs(y))

≤ C(‖Dg‖L2(B2Λs(y)) + ‖g‖L∞(B2Λs(y)))‖Dũ‖L2(B2Λs(y))

≤ C(1 + ‖Dũ‖M2,2m−2(B2Λs(y)))(Λs)
m− 2m

p′

Therefore, by taking super over all such g’s, we obtain

(Λs)1−2m

∫
B2Λs(y)

|DF 2
α| ≤ (Λs)

p−2m
p ‖DF 2

α‖Lp(B2Λs(y))

≤ C‖Dũ‖M2,2m−2(Br(0))[ũ]BMO(Br(0))

≤ Cε0[ũ]BMO(Br(0)) (2.17)
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Similarly, one can prove

(Λs)1−2m

∫
B2Λs(y)

|DF 3
α| ≤ Cε0[ũ]BMO(Br(0)) (2.18)

Putting (2.16), (2.17) and (2.18) together, we get

s1−2m

∫
Bs(y)

|DFα| ≤ CΛ−1(Λs)1−2m

∫
B2Λs(y)

|Dũ|

+ CΛ2m−1ε0[ũ]BMO(Br(0))

This, combined with the estimate (2.12) for Gα, implies

s1−2m

∫
Bs(y)

|Dũ| ≤ CΛ−1(Λs)1−2m

∫
B2Λs(y)

|Dũ|

+ CΛ2m−1ε0[ũ]BMO(Br(0))

Since

max{(Λs)1−2m

∫
B2Λs(y)

|Dũ|, [ũ]BMO(Br(0))} ≤ ‖Dũ‖M1,2m−1(Br(0))

we obtain, by taking over all y ∈ Bθ0r(0) and 0 < s ≤ θ0r,

‖Dũ‖M1,2m−1(Bθ0r(0)) ≤ C(θ0 + θ1−2m
0 ε0)‖Dũ‖M1,2m−1(Br(0))

This, with the help of suitable choices of θ0 and ε0, yields

‖Dũ‖M1,2m−1(Bθ0r(0)) ≤ 1
2
‖Dũ‖M1,2m−1(Br(0))

Therefore (2.1) is proved and the proof of Lemma 2.1 is complete.

Completion of proof of theorem A.

Since ‖Du‖M2,2m−2(Br(x)) ≤ ε0, it follows that for any y ∈ B r
2
(x) and

s ∈ (0, r
2 ), one has ‖Du‖M2,2m−2(Bs(y)) ≤ ε0. Hence (2.1) implies, for any

y ∈ B r
2
(x)

‖Du‖M1,2m−1(B
θk
0 r

(y)) ≤ 2−k‖Du‖M1,2m−1(B r
2
(y)) +

C0r

1 − θ0
(2.18)
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This yields that there is α0 ∈ (0, 1) such that

s1−2m

∫
Bs(y)

|Du| ≤ C0s
α0 , ∀y ∈ B r

2
(x), 0 < s ≤ r

4

Hence the Morrey decay Lemma implies that u ∈ Cα0(B r
2
(x), N). One

can apply the higher order regularity (see, e.g., [Y]) to conclude that u ∈
C∞(B r

2
(x), N).

§3. Blow-up analysis for J-holomorphic maps and proof of theorem D, E, F

In this section, we will prove theorem D, E, and F. As mentioned in §1,

the two key ingredienst such as the small energy regularity theorem A and

the energy monotonicity inequality (1.5) make it possible to adapt the ideas

from [L] to our settings.

Definition 3.1. A weakly J-holomorphic map u ∈ H1(M,N) is said to

be stationary if, in addition to (1.1), it is a critical point of the Dirichlet

energy with respect to domain variations: for any smooth vector filed X

with compact support,

d

dt
|t=0

∫
M

|D(u(Ft(x))|2 = 0 (3.1)

where Ft is one parameter family of diffeomorphisms of M generated by X .

It is readily seen (see, e.g., Price [P]) that (3.1) is equivalent to the first

variational formula:
∫

M

|Du|2divg(X) − 2〈du(∇g
ei
X), du(ei)〉 = 0 (3.2)

for any smooth vector field X with compact support, here ∇g denotes the

Levi-Civita connection on M and divg denotes the divergence and {ei}2m
i=1

is an orthonormal frame field with respect to g. Therefore, one has the

following energy monotonicity inequality for stationary J-holomorphic maps

(see, e.g. Price [P]).
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Proposition 3.2. For m ≥ 2. Let u ∈ H1(M,N) be a stationary J-

holomorphic map. Then there exist R0 > 0, C0 > 0 depending only on

(M, g) such that

eC0RR2−2m

∫
BR(x)

|Du|2 − eC0rr2−2m

∫
Br(x)

|Du|2

≥ 2
∫

BR(x)\Br(x)

eC0|y−x||y − x|2−2m| ∂u

∂|y − x| |
2 (3.3)

for any x ∈M , 0 < r ≤ R ≤ R0.

Proof. Since M is compact, the injectivity radius R0 is positive. For any

x0 ∈ M , there is a normal coordinate system on the geodesic ball BR0(x0)

such that x(x0) = 0, and

max{|g(x) − g0|, |dg|(x)} ≤ C0|x|, ∀x ∈ BR0

where g0 is the euclidean metric on BR0 . For any Y ∈ C∞
0 (BR0 , R

2m), (3.2)

implies

|
∫

BR0

|Du|2div(Y ) − 2
∑
i,j

〈 ∂u
∂xi

,
∂u

∂xj
〉Y j

i |

≤ C0

∫
BR0

|x||Y (x)||Du|2(x) (3.4)

here div denotes the divergence with respect to g0. Now, by choosing Y (x) =

η(|x|)x for suitable cut-off function η ∈ C1
0 ([0, R0]), one obtains (3.3) from

(3.4).

Now we start to prove theorem D, E, and F.

Proof of theorem D.

Without loss of generality, we may assume that there is u ∈ H1(M,N)

such that uk → u weakly in H1(M,N) and

1
2
|Duk|2(x) dx → µ ≡ 1

2
|Du|2(x) dx + ν (3.5)
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as convergence of Radon measures for some nonnegative Radon measure

ν ≥ 0. Let ε0 > 0 be given by theorem A. Define the concentration set

Σ ⊂M by

Σ = ∩r>0{x ∈M | lim inf
k→∞

ear2
r2−2m

∫
Br(x)

|Duk|2 ≥ ε20} (3.6)

Then the monotonicity inequality (3.3) implies that Σ is closed, and the

Vitali’s covering lemma, combined with the fact that M is compact without

boundary, implies

H2m−2(Σ) ≤ C sup
k

∫
M

|Duk|2 <∞ (3.7)

It follows from both theorem A and corollary 3.3 that we may assume that,

for any l ≥ 1, uk is bounded in Cl
loc(M \Σ, N) and uk → u in Cl

loc(M \Σ, N)

as well. It is clear that (3.3) implies that for any x ∈M , ear2
r2−2mµ(Br(x))

is monotonically nondecreasing with respect to r, for 0 < r ≤ r0. Hence

Θ2m−2(µ, x) = lim
r→0

r2−2mµ(Br(x))

exists for all x ∈M and is upper semicontinuous. Moreover, there is a C0 > 0

depending on supk

∫
M

|Duk|2 such that

Σ = {x ∈M | ε20 ≤ Θ2m−2(µ, x) ≤ C0}

Therefore, µLΣ is absolutely continuous with respect to H2m−2 and

µLΣ = Θ2m−2(µ, ·)H2m−2LΣ (3.8)

since it follows from Federer-Ziemmer [FZ] that

Θ2m−2(|Du|2 dx, y) ≡ lim
r→0

r2−2m

∫
Br(x)

|Du|2 = 0, for H2m−2 a. e. y ∈ Σ

we obtain, for H2m−2 a. e. x ∈ Σ,

Θ2m−2(ν, x) = Θ2m−2(µ, x) ≥ ε20, and ν = Θ2m−2(ν, ·)H2m−2LΣ
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where Θ2m−2(ν, x) = limr→0 r
2−2mν(Br(x)). Note that uk doesn’t converge

to u in H1(M,N) if and only if

0 < ν(M) =
∫

Σ

Θ2m−2(ν, x) dH2m−2 ≤ ε20H
2m−2(Σ) ⇔ H2m−2(Σ) > 0

Now we want to prove that if H2m−2(Σ) > 0 then Σ is (2m− 2)-rectifiable

and we can blow-up uk near Σ to get a pseudo holomorphic S2. Since µ

has positive and finite Θ2m−2-density everywhere on Σ, one can apply either

the abstract rectifiablity theorem of D. Priess [Pd] or follow the elegant di-

rect proof of Lin [L] to conclude the (2m − 2)-rectifiablity of Σ. Here, we

would like to present a third proof. It is based on the generalized varifold

approach and the extended version of Allard’s rectifiablity theorem on vari-

folds with controlled first variations [A]. This approach was outlined by Lin

[L1] and Lin-Wang [LW] in a related context. For details, one may refer

to [LW]. For any x0 ∈ M , consider the geodesic ball BR0(x0). Recall that

V ∗
2m−2(BR0(x0)), the space of generalized (2m − 2)-varifolds, consists of all

nonnegative Radon measures V on BR0(x0) ×A2m−2, here

A2m−2 = {A ∈ S2m | tr(A) = 2m− 2, −(2m− 2)I2m ≤ A ≤ I2m}

where S2m denotes the space of symmetric 2m×2mmatrices and I2m denotes

the identity matrix of order 2m. For V ∈ V ∗
2m−2(BR0(x0)), ‖V ‖ = π#(V )

is its weight, where π : BR0(x0) ×A2m−2 → BR0(x0) is the first component

projection map, and its first variation is defined by

δV (X) =
∫

BR0 (x0)

DX : AdV (x,A), ∀X ∈ C1
0 (BR0(x0), R2m) (3.9)

where : denotes the scalar product on R2m×2m. For a subset G ⊂ BR0(x0),

‖δV ‖(G) = sup{|δV (X)| : X ∈ C1
0 (BR0(x0), R2m), spt(X) ⊂ G} <∞

If ‖δV ‖ << ‖V ‖, then the Resiz representation theorem implies that there

is a generalized mean curvature H ∈ L1
‖V ‖(BR0(x0), R2m) such that

δV (X) =
∫

BR0 (x0)

〈H,X〉 d‖V ‖, ∀X ∈ C1
0 (BR0(x0), R2m) (3.10)
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Now, for the above sequence {uk}, we associate a sequence of generalized

varifolds Vuk
∈ V ∗

2m−2(BR0(x0)) as follows. For x ∈ BR0(x0), define A(uk)(x)

by

A(uk)(x) = I2m − 2
Duk ⊗Duk

|Duk|2 (x), if |Duk|(x) �= 0

= I2m−2, if |Duk|(x) = 0

and Vuk
(x,A) = δA(uk)(x)(A)1

2 |Duk|2(x) dx for (x,A) ∈ BR0(x0) × A2m−2,

here δA(uk)(x) denotes the delta mass centered at A(uk)(x). Then we have

‖Vuk
‖ = 1

2 |Duk|2(x) dx. Moreover, (3.4) implies

|δVuk
(X)| ≤ C0

∫
BR0 (x0)

|x− x0||X(x)| d‖Vuk
‖ (3.11)

for any X ∈ C1
0 (BR0(x0), R2m). Therefore the generalized mean curvature

Hk = δVuk

‖Vuk
‖ ∈ L∞

‖Vuk
‖(BR0(x0), R2m) and

|Hk|(x) ≤ C0|x− x0|, ∀x ∈ BR0(x0) (3.12)

Now, we can assume that there is a V ∈ V ∗
2m−2(BR0(x0)) such that Vuk

→ V

and

‖Vuk
‖ → ‖V ‖ = µ ≡ 1

2
|Du|2(x) dx + ν

It is clear that (3.12) implies that H = δV
‖V ‖ ∈ L∞

‖V ‖(BR0(x0), R2m) and

|H |(x) ≤ C0|x− x0|, ∀x ∈ BR0(x0) (3.13)

Now V is a generalized (2m − 2)-varifold with bounded first variation. We

can slightly modify the proof of theorem 4.9 of [LW] to obtain

Claim. V L{x ∈ BR0(x0) |0 < Θ2m−2(‖V ‖, x) <∞} = V LΣ is a (2m− 2)-

rectifiable varifold.

In fact, since the Resiz representation theorem implies that V = Vx‖V ‖
for some measurable function Vx with values in the space of probability

measures on A2m−2, we have for H2m−2 a. e. x ∈ Σ,

Θ∗,2m−2(Σ, x) = lim sup
r→0

r2−2mH2m−2(Σ ∩Br(x)) ≥ 2−2m−2

22



Θ2m−2(‖V ‖, ·), Vx are H2m−2 approximately continuous at x

lim
r→0

r2−2m

∫
Br(x)

|H | d‖V ‖ = |H(x)|Θ2m−2(‖V ‖, x) <∞

Now for any ri → 0, we can find a subsequence r′i → 0 such that the rescalings

of V , Dx,r′
i
(V ), satisfy

Dx,r′
i
(V ) → VxH

2m−2LT

for a (2m− 2) plane T ⊂ R2m, according to the geometric Lemma 2.4 of Lin

[L] which is applicable to our setting due to the fact that only the energy

monotonicity inequality (3.3) is required. Moreover,

‖δ(VxH
2m−2LT )‖ = lim

i→∞
‖δ(Dx,r′

i
(V ))‖

= lim
i→∞

(r′i)
3−2mDx,r′

i
‖δV ‖

= lim
i→∞

r′i
∫

Br′
i
(x)

|H | d‖V ‖
r′i

2m−2 = 0

Hence the constancy theorem for varifolds (cf. Simon [S]) implies that Vx =

δT and T is unique, i.e. independent of the choices of r′i. Therefore, V LΣ is

(2m− 2)-rectifiable and Σ is a (2m− 2)-rectifiable set.

We now assumeH2m−2(Σ) > 0 and need to extract a pseudo-holomorphic

S2 by suitably rescaling uk near points of Σ. The idea is very close to that

of Lin [L] on bubbling of harmonic S2 for stationary harmonic maps, but

with the difference that we need to consider the rescalings of both j, g at

the mean time, and show that the bubbling plane is a j0-holomorphic plane.

Here, we again only sketch it.

First, pick up a generic point x0 ∈ Σ such that Θ2m−2(|Du|2 dx, x0) = 0,

the tangent plane Tx0Σ exists, and Θ2m−2(ν, ·) is H2m−2 approximately con-

tinuous at x0. From now on, we identify Tx0Σ = {(0, 0)} × R2m−2 and

(Tx0Σ)⊥ = R2 × {(0, · · · , 0)}. Let BR0(x0) be the geodesic ball centered at
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x0, for any ri ↓ 0 and any x ∈ BR0r−1
i

, defineDx0,ri(x) = x0+rix and ũi(x) =

uki(x0 + rix), gi = g ◦ Dx0,ri , ji = (Dx0,ri)∗j (i.e. for any Y ∈ TxBR0r−1
i

,

ji(x)(Y ) = d(Dx0,ri)−1 ◦ j ◦ dDx0,ri(Y )). Then, ũi : (BR0r−1
i
, ji, gi) →

(N, J, h) is a J-holomorphic map. It is clear that we may assume that

gi → gx0 and ji → jx0 in C2 norm. Moreover, by the Cauchy diagonal

process, we may assume that there is ki → ∞ such that ũi → constant

weakly in H1. The small energy regularity theorem A implies ũi → constant

in C1
loc(B2 \ {(0, 0)} ×R2m−2, N). Moreover,

|Dũi|2 dx→ ν∗ ≡ Θ2m−2(ν, x0)H2m−2L({(0, 0)} ×R2m−2) (3.14)

and the geometric Lemma 2.4 of [L] implies

lim
i→∞

2m∑
l=3

∫
B2

|∂ũi

∂xl
|2 = 0 (3.15)

Hence, the Fubini’s theorem, the weak L1-estimate for the Hardy-Littlewood

maximal function, and the small energy regularity theorem A imply that

there is xi
2 ∈ B2m−2

1
4

such that ũi is smooth near (0, 0, xi
2) and

lim
i→∞

max
0<r≤ 5

4

r2−2m

∫
B2m−2

r (xi
2)

dx2

∫
B2

1

2m∑
l=3

|∂ũi

∂xl
|2dx1 = 0 (3.16)

Now we can find δi > 0 and xi
1 ∈ B2

1
2

such that

max
x1∈B2

1
2

δ2−2m
i

∫
B2

δi
(x1)×B2m−2

δi
(xi

2)

|Dũi|2 =
ε20

C(m)
(3.17)

is achieved at xi
1. Here C(m) > 0 is to be chosen later. It is easy to see that

δi → 0 and xi
1 → 0. Now, let vi(y) = ũi((xi

1, x
i
2)+δiy), j̃i = (D0,δi)∗(ji), and

g̃i = gi ◦D0,δi . It is clear that vi : (BRi , j̃i, g̃i) → (N, J, h) is J-holomorphic,

here Ri = R0
riδi

. Moreover,

lim
i→∞

sup
0<R<Ri

R2−2m

∫
B2m−2

R

∫
B2

Ri

2m∑
l=3

|∂vi

∂xl
|2 = 0 (3.18)
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sup
i

sup
0<R<Ri

R2−2m

∫
BR

|Dvi|2 ≤ C0 (3.19)

and
∫

B2
1×B2m−2

1

|Dvi|2 =
ε20

C(m)

≥ max{
∫

B2
1(y)×B2m−2

1

|Dvi|2 |y ∈ B2
Ri
} (3.20)

For a ∈ B2
Ri−1 ×B2m−2

1 , η1 ∈ C∞
0 (B2

1), and η2 ∈ C∞
0 (B2m−2

1 ), we define

Fi(a) =
∫

B2
1×B2m−2

1

|Dvi|2(y + a)η1(y1)η2(y2) dy1 dy2

Then the stationarity identities (3.2) and (3.4) imply, for 3 ≤ k ≤ 2m,

|∂Fi(a)
∂ak

− 2
2m∑
l=1

∫
B2m

2

∂vi

∂yl

∂vi

∂yk

∂(η1η2)
∂yk

| ≤ Cδi

∫
B2m

2

|Dvi|2 → 0 (3.21)

This implies, by choosing C(m) sufficiently large, that
∫

B2
2×B2m−2

2

|Dvi|2(y1 + b, y2) dy1dy2 ≤ ε20 (3.22)

for all b ∈ B2
Ri−1. Therefore, theorem A yields

‖vi‖C2(B2
Ri−1×B2m−2

7
4

) ≤ C(ε0)

and we can assume that there is a map v ∈ C1(B2m−2
3
2

×R2, N) such that

vi → v, in C1
loc(R2 ×B2m−2

3
2

, N)

It is easy to see that v : (R2m, j0, g0) → (N, J, h) is a J-holomorphic map,

∂v

∂yk
= 0, ∀3 ≤ k ≤ 2m

so that v(y) = v(y1, y2) : R2 → N , and (3.19)-(3.20) imply

ε20 ≤
∫

R2
|Dv|2 <∞ (3.23)
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Now we need to show: R2 = (Tx0Σ)⊥ is jx0-holomorphic plane (i.e. j0(R2) =

R2). Once this is proven. Then we know that v : (R2, jx0 , gx0) → (N, J, h)

is a pseudo-holomorphic map, which can be lifted to become a pseudo-

holomorphic map from S2 to N by either the removable singularity theorem

by [Y] [PW] or our corollary B. Suppose not, then jx0(R2) ∩ R2 = {0}.
For simplicity, we assume that jx0 = j0 is the standard complex struc-

ture and gx0 = g0 is the euclidean metric on R2m. Hence { ∂
∂y1

, ∂
∂y2

} is

an orthonormal basis of R2. Moreover, there are λ1, λ2 ∈ (−1, 1) and

e⊥1 , e
⊥
2 ∈ Tx0Σ = {(0, 0)} ×R2m−2 such that

j0(
∂

∂y1
) = λ1

∂

∂y2
+ e⊥1

j0(
∂

∂y2
) = λ2

∂

∂y1
+ e⊥2

Note that 〈Dv, e⊥1 〉 = 〈Dv, e⊥2 〉 = 0. Therefore,

∫
R2

| ∂v
∂y1

|2 + | ∂v
∂y2

|2 =
∫

R2
|J(v)(

∂v

∂y1
)|2 + |J(v)(

∂v

∂y2
)|2

=
∫

R2
|dv(j0( ∂

∂y1
))|2 + |dv(j0( ∂

∂y2
))|2

= λ2
1

∫
R2

| ∂v
∂y2

|2 + λ2
2

∫
R2

| ∂v
∂y1

|2

≤ max{λ2
1, λ

2
2}

∫
R2

| ∂v
∂y1

|2 + | ∂v
∂y2

|2 (3.24)

where we have used the fact that J is an isometry and v is J-holomorphic

in the first two identities. Hence

(1 − max{λ2
1, λ

2
2})

∫
R2

|Dv|2 ≤ 0

This yields
∫

R2 |Dv|2 = 0, since 1−max{λ2
1, λ

2
2} > 0. We get a contradiction.

Note that this argument also implies that, for H2m−2 a. e. x0 ∈ Σ, Tx0Σ is

jx0-holomorphic, i.e. jx0(Tx0Σ) = Tx0Σ. The proof of theorem is complete.
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Proof of theorem E.

Suppose that x0 ∈ Σ satisfies: (1) Θ2m−2(|Du|2 dx, x0) = 0; (2) Tx0Σ =

{(0, 0)}×R2m−2; (3) Θ2m−2(ν, ·) is H2m−2-approximately continuous at x0.

Since (1)-(3) holds for H2m−2 a.e. in Σ, it suffices to prove (3.24) holds at

such a x0. Recall from the process to obtain the first bubble in the proof

of theorem 3.4 that we can choose ri ↓ 0 such that ũi(·) = uki(Dx0,r0(·)) :

(BR0r−1
i
, ji ≡ (Dx0,ri)

∗j, gi ≡ g◦Dx0,ri) → (N, J, h) is J-holomorphic. More-

over, it follows from (3.15) that there is a xi
2 ∈ B2m−2

1
4

such that (3.16)

holds. For wi(y) = ũi((0, xi
2) + y), a ∈ B2

1 × B2m−2
1 , η1 ∈ C∞

0 (B2
1), and

η2 ∈ C∞
0 (B2m−2

1 ), consider

Gi(a) =
∫

B2
1×B2m−2

1

|Dwi|2(y + a)η1(y1)η2(y2) (3.25)

Then, similar to (3.21), we have, for 3 ≤ k ≤ 2m,

|∂Gi

∂ak
− 2

2m∑
l=1

∫
B2m

2

∂wi

∂yl

∂wi

∂yk

∂(η1η2)
∂yk

| ≤ Cri

∫
B2m

2

|Dwi|2 → 0 (3.26)

so that we can apply the Allard’s strong constancy Lemma ([A1]) as in [L]

or Lin-Riviere [LR] or [LW] to conclude that

lim
i→∞

‖E(wi(·, y2), B2
1) − Θ2m−2(ν, x0)‖L1(B2m−2

1 ) = 0 (3.27)

where E(wi(·, y2), B2
1) =

∫
B2

1
|Dwi|2(y1, y2) dy1 Now, we apply the Fubini’s

theorem and the weak L1-estimate for the Hardy-Littlewood maximal func-

tion again to obtain a yi
2 ∈ B2m−2

1
4

, which may be different from xi
2, such

that

lim
i→∞

|E(wi(·, yi
2), B

2
1) − Θ2m−2(ν, x0)| = 0 (3.28)

and (3.16) holds with ũi, xi
2 replaced by wi and yi

2. Now we can repeat the

process for the first bubble as many times as possible to extract all bubbles,

{ωl}lx0
l=1, for some 1 ≤ lx0 ≤ [Θ

2m−2(ν,x0)
ε21

], such that

lim
i→∞

E(wi(·, yi
2), B

2
1) ≥

lx0∑
l=1

E(ωl, S
2) (3.29)
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where ε1 depends only on N (cf. [Y] or [PW]) and is given by

ε21 = inf{E(ω, S2)|ω ∈ C∞(S2, N) is nonconstant pseudo-holomorphic map}

Therefore, (3.24) is proven if we show that (3.29) is an equality.

First, by an induction argument on lx0 , it suffices to prove (3.29) for

lx0 = 1 (cf. [DT] (m = 1) and [LR] [LW] (m ≥ 2) for details). Let ω1 be

the only bubble, it follows from theorem 3.4 that there exist δi → 0 and

yi
1 ∈ B2

1 → 0 such that vi(·) = wi((yi
1, 0) + δi·) = ũi((yi

1, y
i
2) + δi·) converges

to ω1 in H1 ∩ C2(R2 × B2m−2
2 , N) locally. For simplicity, we assume that

(yi
1, y

i
2) = (0, 0). As in [DT] [LR] or [LW], lx0 = 1 implies that, for any

sufficiently small ε > 0 and sufficiently large R > 0,

r2−2m

∫
(B2

2r\B2
r)×B2m−2

r

|Dũi|2 ≤ ε2, ∀Rδi ≤ r ≤ 1 (3.30)

Therefore, theorem A yields

|y1||Dũi|(y1, 0) ≤ Cε, ∀2Rδi ≤ |y1| ≤ 1
2

(3.31)

or

|y1||Dvi|(y1, 0) ≤ Cε, ∀2R ≤ |y1| ≤ 1
2δi

(3.32)

Observe that, for lx0 = 1, (3.29) is an equality is equivalent to

∫
B2

δ
2δi

\B2
2R

|Dvi|2(y1, 0) dy1 = o(i−1, δ, R−1) (3.33)

here limR→∞,δ→0 limi→∞ o(i−1, δ, R−1) = 0. Since vi : (BR0(riδi)−1 , j̃i, g̃i) →
(N, J, h) is J-holomorphic, j̃i ≡ (Dx0,riδi)∗j → jx0 and g̃i ≡ g◦Dx0,riδi → gx0

in C2 norm, and R2×{(0, · · · , 0)} = (Tx0Σ)⊥ is jx0 -holomorphic by theorem

3.4, we have two propositions for ṽi(y) = vi(y, 0) : R2 → N :
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Proposition 3.3. For y = (y1, y2) ∈ R2,

∂ṽi

∂y2
= J(ṽi)(

∂ṽi

∂y1
) + dṽi((jx0 − j̃i)(

∂

∂y1
)) (3.34)

∂ṽi

∂y1
= −J(ṽi)(

∂ṽi

∂y2
) − dṽi((jx0 − j̃i)(

∂

∂y2
)) (3.35)

Proof. Since (3.35) can be obtained by the same way as (3.34), it suffices to

indicate the proof of (3.34). We assume that jx0(
∂

∂y1
) = ∂

∂y2
. Hence we have

∂ṽi

∂y2
= dṽi(jx0(

∂

∂y1
))

= dṽi(j̃i(
∂

∂y1
)) + dṽi((jx0 − j̃i)(

∂

∂y1
))

= J(ṽi)(dṽi(
∂

∂y1
)) + dṽi((jx0 − j̃i)(

∂

∂y1
))

= J(ṽi)(
∂ṽi

∂y1
) + dṽi((jx0 − j̃i)(

∂

∂y1
))

This implies (3.34).

Proposition 3.4 (almost conformality). For y = (y1, y2) ∈ R2,

|〈 ∂ṽi

∂y1
,
∂ṽi

∂y2
〉| ≤ C‖jx0 − j̃i‖C0 |Dṽi|2 (3.36)

|〈 ∂ṽi

∂y1
,
∂ṽi

∂y1
〉 − 〈 ∂ṽi

∂y2
,
∂ṽi

∂y2
〉| ≤ C‖jx0 − j̃i‖C0 |Dṽi|2 (3.37)

Proof. For simplicity, we only verify (3.37). In fact, (3.35) implies

〈 ∂ṽi

∂y1
,
∂ṽi

∂y1
〉 − 〈 ∂ṽi

∂y2
,
∂ṽi

∂y2
〉

= 2〈J(ṽi)(
∂ṽi

∂y2
), dṽi((jx0 − j̃i)(

∂

∂y2
))〉 + |dṽi((jx0 − j̃i)(

∂

∂y2
))|2

≤ C‖jx0 − j̃i‖C0 |Dṽi|2

This yields (3.37).
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Our idea to prove (3.33) is as follows. We first prove there is no angular

energy concentrated in the neck region, which can be done by modifying

the argument of Sacks-Uhlenbeck [SaU] in their proof of removable isolated

singularity theorem, and then use (3.36) and (3.37) to control the radial

energy by the angular energy in the neck region.

For this purpose, we assume that there is a global orthonormal frame

field {eα}2n
α=1 of TN (in general, we can follow the modified Hélein’s construc-

tion of global frame as in Case 2 of proof for theorem A in §2 to ensure such

an existence of a global frame). As before, we can write J =
∑

α,β Jαβeα⊗e∗β
so that (3.34) and (3.35) become:

〈 ∂ṽi

∂y2
, eα(ṽi)〉 =

∑
β

Jαβ(ṽi)〈 ∂ṽi

∂y1
, eβ(ṽi)〉

+ 〈dṽi((jx0 − j̃i)(
∂

∂y1
)), eα(ṽi)〉 (3.38)

〈 ∂ṽi

∂y1
, eα(ṽi)〉 = −

∑
β

Jαβ(ṽi)〈 ∂ṽi

∂y2
, eβ(ṽi)〉

− 〈dṽi((jx0 − j̃i)(
∂

∂y2
)), eα(ṽi)〉 (3.39)

Denote Fα = (〈 ∂ṽi

∂y1
, eα(ṽi)〉, 〈 ∂ṽi

∂y2
, eα(ṽi)〉) and

Gα = (−〈dṽi((jx0 − j̃i)(
∂

∂y2
)), eα(ṽi)〉, 〈dṽi((jx0 − j̃i)(

∂

∂y1
)), eα(ṽi)〉)

Then, by taking one more derivative of (3.38) and (3.39), we have, on B2
2δ
δi

⊂
R2,

div(Fα) =
∑

β

Jαβ(ṽi)(〈 ∂ṽi

∂y1
,
∂eβ(ṽi)
∂y2

〉 − 〈 ∂ṽi

∂y2
,
∂eβ(ṽi)
∂y1

〉)

+
∑

β

〈 ∂ṽi

∂y1

∂Jαβ(ṽi)
∂y2

− ∂ṽi

∂y2

∂Jαβ(ṽi)
∂y1

, eβ(ṽi)〉

+ div(Gα) (3.40)

Now we extend ṽi(y, 0) from B2
2δ
δi

\B2
R to the whole R2, still denoted as itself,

such that its H1(R2)-norm is bounded by H1(B2
2δ
δi

\ B2
R)-norm. Similar to
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the Hodge decomposition in §2, we know that there are Hα ∈ H1(R2, R) and

Iα ∈ L2(R2, R2) such that divR2(Iα) = 0 and

Fα = D̄Hα + Iα, ‖D̄Hα‖L2(R2) + ‖Iα‖L2(R2) ≤ C‖D̄ṽi‖L2(B2
2δ
δi

\B2
R

) (3.41)

Here we use D̄ = ( ∂
∂y1

, ∂
∂y2

) and ∆̄ to denote the gradient and the Laplacian

on R2, and D to denote the gradient in R2m. It follows from (3.16) that
∫

B2
2δ

∂δi

\B2
R

|Dṽi|2 =
∫

B2
2δ

∂δi

\B2
R

|D̄ṽi|2 + o(i−1)

Hence, on B2
2δ
δi

\B2
R, we have

∆̄Hα =
∑

β

Jαβ(ṽi)(〈 ∂ṽi

∂y1
,
∂eβ(ṽi)
∂y2

〉 − 〈 ∂ṽi

∂y2
,
∂eβ(ṽi)
∂y1

〉)

+
∑

β

〈 ∂ṽi

∂y1

∂Jαβ(ṽi)
∂y2

− ∂ṽi

∂y2

∂Jαβ(ṽi)
∂y1

, eβ(ṽi)〉

+ div(Gα) (3.42)

Since divR2(Iα) = 0, there is a uα ∈ H1(R2) such that Iα = (∂uα

∂y2
,−∂uα

∂y1
).

Therefore, direct calculations imply

∆̄uα = 〈 ∂ṽi

∂y1
,
∂eα(ṽi)
∂y2

〉 − 〈 ∂ṽi

∂y2
,
∂eα(ṽi)
∂y1

〉 (3.43)

To estimate Hα, we proceed as follows. For R, δ > 0 fixed, denote Pi =

B2
2δ
δi

\ B2
R and P k

i = B2
ek+1R \ B2

ekR for 0 ≤ k ≤ ki = [ln( δ
Rδi

)]. Note that

Pi = ∪ki

k=0P
k
i . Define the piecewise radial harmonic function Ψi on Pi as

follows. For 0 ≤ k ≤ ki, define

∆̄Ψi = 0, in P k
i (3.44)

Ψi =
1

|∂B2
ekR

|
∫

∂B2
ekR

Hα, on ∂B2
ekR

Ψi =
1

|∂B2
ek+1R

|
∫

∂B2
ek+1R

Hα, on ∂B2
ek+1R
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Observe that the first two terms of the right hand side of eqn. (3.42) is less

than C|Dṽi|2. Now, multiplying both eqn. (3.42) and (3.44) by Hα − Ψi

subtracting each other and then integrating over P k
i , for 0 ≤ k ≤ ki, we

obtain
∫

P k
i

|D̄(Hα − Ψi)|2

≤
∫

∂P k
i

〈∂(Hα − Ψi)
∂ν

,Hα − Ψi〉 + C

∫
P k

i

|Dṽi|2|Hα − Ψi|

+
∫

P k
i

〈Gα, D̄(Hα − Ψi)〉 +
∫

∂P k
i

〈Gα, ν〉(Hα − Ψi) (3.45)

where ν denotes the unit outward normal of ∂P k
i .

Since |Gα| ≤ C‖jx0 − j̃i‖C0|Dṽi|, we have

|
∫

P k
i

〈Gα, D̄(Hα − Ψi)〉|

≤ C‖jx0 − j̃i‖C0

∫
P k

i

|Dṽi||D̄(Hα − Ψi)|

≤ 1
4

∫
P k

i

|D̄(Hα − Ψi)|2 + C‖jx0 − j̃i‖C0

∫
P k

i

|Dṽi|2 (3.46)

Observe that ∫
∂P k

i

〈∂Ψi

∂ν
,Hα − Ψi〉 = 0

and (3.32) implies

max
P k

i

|Hα − Ψi| ≤ oscP k
i
|ṽi| ≤ Cε (3.47)

Therefore, we have
∫

P k
i

|D̄(Hα − Ψi)|2

≤ C(ε+ ‖jx0 − j̃i‖C0)
∫

P k
i

|Dṽi|2

+
∫

∂P k
i

〈∂Hα

∂ν
,Hα − Ψi〉 +

∫
∂P k

i

〈Gα, ν〉(Hα − Ψi) (3.48)
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Hence, taking summations over 0 ≤ k ≤ ki, we obtain
∫

Pi

|D̄(Hα − Ψi)|2

≤ C(ε+ ‖jx0 − j̃i‖C0)
∫

Pi

|Dṽi|2

+ (
∫

∂B2
δ
δi

−
∫

∂B2
R

)(〈∂Hα

∂|y| , Hα − Ψi〉 + 〈Gα,
y

|y| 〉(Hα − Ψi))

= Ii + IIi

It is clear that by choosing sufficiently small ε > 0 and sufficiently large

i >> 1 we have

|Ii| ≤ 2ε
∫

Pi

|Dṽi|2

For IIi, we know

|IIi| ≤ C(
∫

∂B2
δ
δi

+
∫

∂B2
R

)(|D̄Hα| + ‖jx0 − j̃i‖C0 |Dṽi|)|Hα − Ψi|

Hence, using the Poincaré inequality on ∂B2
δ
δi

and ∂B2
R and the Fubini’s

theorem, we get

|IIi| ≤ C

∫
B2

2δ
δi

\B2
δ
δi

|Dṽi|2 + C

∫
B2

2R
\B2

R

|Dṽi|2

which converges to zero as i→ ∞, δ → 0, R→ ∞. Therefore, we have
∫

Pi

|D̄(Hα − Ψi)|2 ≤ 2ε
∫

Pi

|Dṽi|2 + o(i−1, δ, R−1) (3.49)

Now we want to estimate the ‖Iα‖L2(Pi). This step can be done in the same

way by [LR] as follows. First, the eqn. (3.43) implies that

‖Iα‖L2,1(R2) ≤ ‖Duα‖L2,1(R2)

≤ C‖D2uα‖L1(R2)

≤ C‖〈 ∂ṽi

∂y1
,
∂eα(ṽi)
∂y2

〉 − 〈 ∂ṽi

∂y2
,
∂eα(ṽi)
∂y1

〉‖H1(R2)

≤ C‖D̄ṽi‖2
L2(Pi)

(3.50)
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On the other hand, it follows from (3.32) that we can conclude that

‖Iα‖L2,∞(Pi) ≤ ‖D̄uα‖L2,∞(Pi)

≤ Cmax
y∈Pi

|y||D̄ṽi|(y) ≤ Cε (3.51)

Hence, by (3.50) (3.51) and the interpolation between L2,1 and L2,∞, we

have

‖Iα‖2
L2(Pi)

≤ C‖Iα‖L2,1(R2)‖Iα‖L2,∞(Pi) ≤ Cε

∫
Pi

|D̄ṽi|2 (3.52)

Therefore we have

∫
Pi

r−2|∂ṽi

∂θ
|2 ≤

∑
α

∫
Pi

|D(Hα − Ψi)|2 + |Iα|2

≤ 2ε
∫

Pi

|Dṽi|2 + o(i−1, δ, R−1) (3.53)

where we have used the polar coordinate y = (r, θ). Finally, we apply the

almost conformality identities (3.36) and (3.37) to get

∫
Pi

|∂ṽi

∂r
|2 ≤

∫
Pi

r−2|∂ṽi

∂θ
|2 + C‖jx0 − j̃i‖C0

∫
Pi

|Dṽi|2

≤ 2ε
∫

Pi

|Dṽi|2 + o(i−1, δ, R−1) + C‖jx0 − j̃i‖C0

∫
Pi

|Dṽi|2 (3.54)

Combining (3.53) with (3.54) together, we obtain

∫
Pi

|D̄ṽi|2 ≤ Cε+ o(i−1, δ, R−1) (3.55)

Since ε is as small as we want, (3.55) yields (3.33). The proof of theorem 3.6

is complete.

Proof of theorem F.

We can follow the Federer’s dimension reduction argument (cf. [F] [SU])

to obtain the result. For simplicity, we only indicate that (1): for m = 2, u is
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smooth; (2) for m = 3 sing(u) consists of isolated points. First, let x0 ∈ M

be a singular point for u, then

Θ2m−2(u, x0) ≡ lim
r↓0

r2−2m

∫
Br(x0)

|Du|2 ≥ ε21 > 0 (3.56)

Then, for any ri ↓ 0, consider ui(x) = u(x0 + rix) : B2m
2 → N . Then it is

easy to see that ui : (B2m
2 , ji, gi) → (N, J, h) are stationary J-holomorphic

maps, here ji = (Dx0,ri)∗(j) and gi = g ◦Dx0,ri . Moreover, we can assume

sup
i≥1

{E(ui, B
2m
2 ) = (2ri)2−2m

∫
B2ri

(x0)

|Du|2} ≤ 2Θ2m−2(u, x0) <∞ (3.57)

Since ji and gi are uniformly nice in C3(B2m
2 ), we can assume that

max{‖ji − jx0‖C2(B2m
2 ), ‖gi − gx0‖C2(B2m

2 )} → 0

We can then assume that there is φ ∈ H1(B2m
2 , N), which is J-holomorphic

with respect to (B2m
2 , jx0 , gx0), such that ui → φ weakly in H1(B2m

2 , N).

Since (N, J, h) is assumed to support no pseudo-holomorphic S2’s, it fol-

lows from theorem 3.4 that ui → φ strongly in H1(B2m
2 , N). Hence φ is a

stationary J-holomorphic map satisfying

∂φ

∂r
(x) = 0, for a. e. x ∈ B2m

2 (3.58)

and ∫
S2m−1

|Dφ|2(θ) dH2m−1(θ) = Θ2m−2(u, x0) ≥ ε21 > 0 (3.59)

Since

dφ(jx0(
∂

∂r
)) = J(φ)(

∂φ

∂r
)

(3.58) implies

dφ(jx0(
∂

∂r
)) = 0, for a. e. x ∈ B2m

2

We may assume that jx0 , gx0 are standard on R2m. Then the integral curves

for jx0(
∂
∂r ) are fibers of the Hopf fibration:

H(z1, · · · , zm) = [z1, · · · , zm] : Cm ≡ R2m → CPm−1
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Therefore, there exists a φ̃ : CPm−1 ≡ S2m−1/S1 (cf. [MS]) such that for a.

e. z = (z1, · · · , zm) ∈ Cm \ {0},

φ(z) = φ̃(H(
z

|z|))

Moreover, the J-holomorphicity of φ implies that

φ̃ : (CPm−1, j̄0, ḡ0) → (N, J, h)

is a J-holomorphic map, here j̄0 is the standard complex structure and ḡ0 is

the Fubini-Study metric on CPm−1; the stationarity of φ also implies that

φ̃ : (CPm−1, ḡ0) → (N, h) is stationary.

For m = 2. Suppose that sing(u) �= ∅. Then the above argument implies

that φ̃ : CP 1 ≡ S2 → N is a J-holomorphic map which, by (3.59), satisfies

ε21 ≤ ∫
S2 |Dφ̃|2 < ∞, which contradicts with the assumption that (N, J, h)

doesn’t support pseudo-holomorphic S2’s. Hence u ∈ C∞(M4, N).

Now for m = 3. Suppose that sing(u) is not isolated. Then there exist

{xi}∞i=1, x0 ∈ sing(u) such that xi → x0. Consider vi(x) = u(x0 + λix) :

B2m
2 → N , with λi = 2|xi − x0| → 0. Then one can show that there is a

stationary J-holomorphic map φ : R6 → N such that vi → φ strongly in

H1(B6
2 , N). Moreover, φ is homogeneous of degree zero and there is a z1,

with |z1| = 1
2 , such that {0, z1} ⊂ sing(φ). Now, if we blow-up φ near z1,

then we obtain another stationary J-holomorphic map ψ : R6 → N , which

is independent of z1-direction and hence independent of j0(z1)-direction as

well. Hence the singular set of ψ contains a two dimensional plane, which is

impossible by theorem C.

Remark 3.5. It is a very interesting question to ask: whether a weak limit

map u ∈ H1(M,N) from a sequence of stationary J-holomorphic maps is a

stationary J-holomorphic map. It follows from theorem D that any such a

map u is weakly J-holomorphic which is smooth away from a closed set with
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finite H2m−2-measure. The answer is positive, under the assumption that

both (M, j, g) and (N, J, h) are almost Kähler manifolds, and Π2(N) = 0,

see the remark 4.4 of §4 .

§4 J-holomorphic maps as harmonic maps

In this section, we examine a few cases where J-holomorphic maps be-

come harmonic maps, i.e. critical points of the Dirichlet energy with respect

to the variations in N . One may compare it with the well-known fact that

any holomorphic map between Kähler manifolds is harmonic map (cf. [EL]

page 51).

Proposition 4.1. For any domain Ω ⊂M , we have

E(u,Ω) =
1
4

∫
Ω

|du− J ◦ du ◦ j|2 − EJ (u,Ω), (4.1)

where E(u,Ω) = 1
2

∫
Ω
|Du|2 and EJ (u,Ω) = 1

2

∫
Ω
〈J ◦ du, du ◦ j〉.

Proof. Note that

〈J ◦ du ◦ j, J ◦ du ◦ j〉 = 〈du ◦ j, du ◦ j〉 = 〈du, du〉

and

〈du, J ◦ du ◦ j〉 = 〈J ◦ du, J2 ◦ du ◦ j〉 = −〈J ◦ du, du ◦ j〉

we have

∫
Ω

|du − J ◦ du ◦ j|2

=
∫

Ω

(|du|2 + 〈J ◦ du ◦ j, J ◦ du ◦ j〉 − 2〈du, J ◦ du ◦ j〉)

= 2
∫

Ω

|du|2 + 〈J ◦ du, du ◦ j〉

This clearly gives (4.1).

37



From now on, we further assume that (N, J, h) (respectively (M, j, g))

is an almost Kähler manifold, i.e. ωN(·, ·) = h(J ·, ·) (respectively ωM (·, ·) =

g(j·, ·)) is an almost Kähler form. Then we have the following proposition

(see, corollary (8.15) of [EL] page 51 for the case that both j and J are

integrable).

Proposition 4.2. Assume that (M, j, g) and (N, J, h) are almost Kähler

manifolds. Then any weakly J-holomorphic map u ∈ H1(M,N) is a weakly

harmonic map.

Proof. Let ΠN be the nearest point projection of a neighborhood of N in

Rl onto N . Then u is a weakly harmonic map iff

d

dt
|t=0

∫
M

|D(ΠN (u+ tφ))|2 = 0, ∀φ ∈ C1
0 (M,Rl), (4.2)

Direct calculations give, for t ≥ 0,

〈J ◦ d(ΠN (u+ tφ)), d(ΠN (u+ tφ)) ◦ j〉 = 〈ωM , (ΠN (u+ tφ))∗ωN 〉

Since (ΠN (u + tφ))∗ωN = (u+ tφ)∗Π∗
Nω

N , we claim:

d

dt
|t=0

∫
M

〈ωM , (ΠN (u + tφ))∗ωN〉 = 0 (4.3)

Suppose that (4.3) were proven. Denote ut = ΠN (u+ tφ). Since u is weakly

J-holomorphic, we have

∫
M

|dut − J ◦ dut ◦ j|2 ≥
∫

M

|du− J ◦ du ◦ j|2

hence
d

dt
|t=0

∫
M

|dut − J ◦ dut ◦ j|2 = 0

This, combined with (4.1) and (4.3), implies (4.2). Now we return to the

proof of (4.3). Since for a.e. x ∈ M d(Π∗
Nω

N) = 0, we have (cf. also the
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proof of [RT] Proposition II.1)

d

dt
|t=0(ΠN (u+ tφ))∗ωN

=
d

dt
|t=0(u + tφ)∗Π∗

Nω
N

= d(u∗(iφ(x)Π∗
Nω

N)) + u∗iφ(x)d(Π∗
Nω

N )

= d(u∗(iφ(x)Π∗
Nω

N))

where iφ(x) denotes the interior product by φ(x). Therefore

d

dt
|t=0

∫
M

〈ωM , u∗tω
N〉

=
∫

M

〈ωM ,
d

dt
|t=0u

∗
tω

N〉

=
∫

M

〈ωM , d(u∗(iφ(x)Π∗
Nω

N )))〉

=
1

(2m− 1)!

∫
M

d(u∗(iφ(x)Π∗
Nω

N )(ωM )m−1)

= 0

Here we have used both the Stokes’ theorem and ∂M = ∅. This yields (4.3).

Hence the proof of (4.2) is complete.

Proposition 4.3. Assume that (M, j, g) and (N, J, h) are almost Kähler

manifolds. Then any weakly J-holomorphic map u ∈ H1(M,N) satisfying

d(u∗ωN ) = 0, in the sense of distributions, is stationary. In particular, it is

a stationary harmonic map.

Proof. For any smooth vector field X on M with compact support, let Ft

be one parameter family of diffeomorphisms of M generated by X . Denote

ut(x) = u(Ft(x)), we need to show that (3.1) holds. It follows from (4.1) and

the fact u is weakly J-holomorphic that it suffices to prove

∫
M

〈ωM , u∗tω
N〉 =

∫
M

〈ωM , u∗ωN 〉 (4.4)

39



We can assume that the support of X is contained in a geodesic ball B ⊂M ,

i.e. spt(X) ⊂ B. Since dωM = 0 and B is a ball, we can assume that

there is a smooth one form φ on B such that ωM = dφ holds on B. Since

u∗tω
N = F ∗

t u
∗ωN and d(u∗ωN) = 0, we have d(u∗tω

N) = F ∗
t d(u

∗ωN) = 0.

Hence
∫

M

〈ωM , u∗tω
N 〉 =

∫
B

〈dφ, u∗tωN〉

=
1

(2m− 1)!

∫
B

d(φ ∧ (ωM )m−2) ∧ u∗tωN

=
1

(2m− 1)!

∫
B

d(φ ∧ (ωM )m−2 ∧ u∗tωN)

= 0

here we have used the Stokes’s theorem in the last step. This gives (4.4).

Therefore, (3.1) is proved. The fact that u is also a weakly J-holomorphic

map follows from the previous proposition.

Remark 4.4. (i) We would like to remark that [RT] introduced local approx-

imablity to denote maps u ∈ H1(M,N) which can be locally approximated

by smooth maps in H1-norm, which is equivalent to d(u∗ωN) = 0 weakly.

(ii) Under the same conditions as those in Proposition 4.3. If, in additions,

Π2(N) = 0. Then any weakly J-holomorphic map u ∈ H1(M,N) is a sta-

tionary harmonic map.

Proof of (ii). According to Proposition 4.3, it suffices to prove

d(u∗ωN) = 0

Since Π2(N) = 0, it follows from the density theorems, due to Bethuel [B1]

and Hang-Lin [HL], that, for any geodesic ball B ⊂ M , there exist {uk} ⊂
C∞(B,N) ∩H1(B,N) such that

lim
k→∞

‖uk − u‖H1(B,N) = 0
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Hence, on B,

d(u∗ωN ) = lim
k→∞

d(u∗kω
N) = lim

k→∞
u∗k(dωN ) = 0

Therefore, the conclusion of the remark 4.4 follows from the Proposition 4.3.

Proposition 4.5. Assume that (M, j, g) and (N, J, h) are almost hermitian

manifolds. If the covariant derivative of J satisfies the symmetry condition:

(∇h
XJ)(Y ) = (∇h

Y J)(X), ∀X,Y ∈ TN (4.5)

here ∇h denotes the Levi-Civita connection on N with respect to h. Then any

J-holomorphic map u ∈ H1(M,N) is a weakly harmonic map. In particular,

any stationary J-holomorphic map u ∈ H1(M,N) is a stationary harmonic

map.

Proof. For simplicity, we assume that u ∈ C∞(M,N) and verify that u

satisfies the harmonic map equation: τ(u)(p) = 0 for any p ∈ M (with-

out the smoothness assumption, one can express our calculations in the

form of distributions by integration of parts). By choosing a normal coordi-

nate (x1, · · · , x2m) centered at p such that p = 0 ≡ (0, · · · , 0), gij(0) = δij ,
∂gij

∂xk
(0) = 0, and j(0) = j0 which is the standard complex structure on R2m

such that, at p,

j(0)(
∂

∂xi
) =

∂

∂xm+i
, j(0)(

∂

∂xm+i
) = − ∂

∂xi
, ∀1 ≤ i ≤ m

Let ∇ denote the Levi-Civita connection on u∗TN . Then, at p,

τ(u)(p) =
∑
i,j

gij∇ ∂
∂xi

(
∂u

∂xj
)|x=0 =

2m∑
i=1

∇ ∂
∂xi

(
∂u

∂xi
)|x=0

= −
m∑

i=1

[∇ ∂
∂xi

(J(u)(du(j(x)(
∂

∂xi
)))) + ∇ ∂

∂xm+i

(J(u)(du(j(x)(
∂

∂xm+i
))))]|x=0
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= −
m∑

i=1

[(∇ ∂
∂xi

J(u))(du(j(x)(
∂

∂xi
))) + (∇ ∂

∂xm+i

J(u))(du(j(x)(
∂

∂xm+i
)))]|x=0

−
m∑

i=1

J(u)((∇ ∂
∂xi

du)(j(x)(
∂

∂xi
)) + (∇ ∂

∂xm+i

du)(j(x)(
∂

∂xm+i
)))|x=0

−
m∑

i=1

J(u)(du(∇ ∂
∂xi

(j(x)(
∂

∂xi
))) + du(∇ ∂

∂xm+i

(j(x)(
∂

∂xm+i
))))|x=0

= −(I + II + III)

It is not difficult to see that, at x = 0,

III =
m∑

i=1

J(u)(du(∇ ∂
∂xi

∂

∂xm+i
−∇ ∂

∂xm+i

∂

∂xi
))

=
m∑

i=1

J(u)(du([
∂

∂xi
,

∂

∂xm+i
])) = 0

II =
m∑

i=1

J(u)(∇ ∂
∂xi

∂u

∂xm+i
−∇ ∂

∂xm+i

∂u

∂xi
) = 0

I =
m∑

i=1

(∇ ∂
∂xi

J(u))(
∂u

∂xm+i
) − (∇ ∂

∂xm+i

J(u))(
∂u

∂xi
) = 0

Here we have used (4.5) in the last step. This completes the verification.

Remark 4.6. Since the Nijenhuis tensor NJ can be expressed in the form

(cf. [MS])

NJ(X,Y ) = (∇h
JY J)X − (∇h

JXJ)Y + (∇h
Y J)JX − (∇h

XJ)JY

(4.5) implies that NJ ≡ 0. Hence the well-known theorem of Newlander-

Nirenberg implies that J is integrable so that (N, J, h) is a hermitian mani-

fold.
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surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math.

312 (1991), no. 8, 591–596.
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