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Abstract

In this note, we establish a quantization property for the heat equation of

Ginzburg-Landau functional in R4 which models moving filament vortices. It

asserts that if the energy is sufficiently small on a parabolic ball in R4 ×R+

then there is no filament vortices in the parabolic ball of 1
2 radius. This

extends a recent result of Lin-Rivière [LR3] in R3 but the problem is open

for Rn with n ≥ 5.

§1 Introduction

For n ≥ 2 and ε > 0, the heat equation for the Ginzburg-Landau func-

tional on Rn is:

∂uε

∂t
− ∆uε =

1
ε2

(1 − |uε|2)uε, (x, t) ∈ Rn × R+ (1.1)

uε(x, 0) = gε(x), x ∈ Rn

Here gε : Rn → R2 are given maps. Notice that (1.1) is the negative gradient

flow for the Ginzburg-Landau functional

Eε(v) =
∫

Rn

1
2
|Dv|2 +

1
4ε2

(1 − |v|2)2. (1.2)

Asympotic behaviors for minimizers of Eε in dimension two was first stud-

ied by Bethuel-Brezis-Hélein [BBH] (see also Struwe [S1] and recent impor-

tant works by Pacard-Rivière [PR] on steady solutions to (1.1)). Moreover,

such static theories were also developed by Rivière [R1] [R2] and Lin-Rivière
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[LR1] in high dimensions in connection with codimension two area minimiz-

ing currents, escipally a crucial quantization property for steady solutions to

the equation (1.1) was proved by Lin-Rivière [LR2] for n = 3 and late by

Bethuel-Brezis-Orlandi [BBO] for all n ≥ 3 . The asympototic for the equa-

tion (1.1) in dimension two was initiated by Lin [L1][L2] and also studied by

Jerrard-Soner [JS]. Notice that in the context of understanding the limiting

behavior for sequence of solutions uε to either static or parabolic versions of

the equation (1.1), one encounters the main difficulty from the possibilities

that uε may vanish on sets, called Ginzburg-Landau vortex, where the equa-

tion (1.1) degenerates and uε

|uε| have nontrivial topological obstructions as

well. On the other hand, it is well-known that existences of vortices requires

the Ginzburg-Landau energy at least of the order log 1
ε . In other words, gε

above is assumed to have Eε(gε) = O(log(1
ε )), this, combined with the energy

inequality for (1.1), implies

Eε(uε(·, t)) ≤ O(log
1
ε
). (1.3)

From the analytic point of view, the size estimate for the bad set, which

leads to vortices at the limit, Bε = {(x, t) ∈ Rn × R+ : |uε|(x, t) ≤ 1
2} plays

a critical role in obtain W 1,p compactness for suitable p ∈ (1, 2) (see, e.g.

[BBH] and [PR]). To obtain sharp size estimates of Bε, one often needs to

obtain the so-called η-compactness property for uε which rough says that if

Eε(uε) is of order η log 1
ε for sufficiently small η > 0 then there is no interior

bad points for uε, which was established for (i): minimizers of Eε by Rivière

[R1] [R2] for n = 3 and by Lin-Rivière [LR1] for n ≥ 3; (ii) critical points

of Eε by Lin-Rivière [LR2] for n = 3 and by Bethuel-Brezis-Orlandi [BBO]

for all n ≥ 3. Moreover, such η-compactness property was also proved for

solutions to the equation (1.1) very recently by Lin-Rivière [LR3] in the case

n = 3. It was believed that their result still holds for Rn with n ≥ 4. In

this note, we confirm such a belief in the case that n = 4. More precisely,
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we prove

Theorem A. For n = 4 and ε > 0. Let uε : R4 × R+ → R2 be solutions

to the equation (1.1) satisfying |uε| ≤ 1 and |Duε| ≤ C0
ε . Then there exist

ε0 > 0 and η > 0 depending only on C0 such that if for (x0, t0) ∈ R4 × R+ ,

0 < ρ <
√

t0, and ε ≤ ε0

1
ρ4

∫ t0

t0−ρ2

∫
R4

(
1
2
|Duε|2 +

(1 − |uε|2)2
4ε2

)e
|x−x0|2
4(t−t0) ≤ η log

ρ

ε
, (1.4)

then

|uε(x0, t0)| ≥ 1
2
.

We would like to remark that the idea developed by Lin-Riviere [LR2]

[LR3] was to interpolate between the Lorentz spaces L2,1 and L2,∞ on generic

two dimensional slices which therefore worked very well in R3, but it seems

unclear how to extend them to Rn with n ≥ 4. On the other hand, there

is the interpolation technique between L1 and L∞ developed by Bethuel-

Brezis-Orlandi [BBO] avaiable for the statics case in Rn for all n ≥ 3, where

they made very clever uses of the energy monotonicity formular for static

solutions to the equation (1.1). Our method starts with the observation that

there exists an energy monotonicity inequality for all time slice Rn × {t}
when n = 4, which enables us to adapt the main ideas from [BBO] and some

of those ideas from [LR3]. Notice that one can always view solutions to the

equation (1.1) in R3 × R+ as solutions to the equation (1.1) in R4 × R+

which are independent of the fourth spatial variable. Hence, our proof also

gives a somewhat different proof of a main theorem of [LR3].

The paper is organized as follows. In §2, we derive the needed elliptic

type energy inequality in R4×{t}; In §3, we recall the parabolic type energy

monotonicity inequalities established by Struwe [S2] and Lin-Rivière [LR3]

and extract a good time slice; In §4, we illustrate the main estimate by
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performing an intrinsic Hodge decomposition of a suitable quantity on good

time slices and prove theorem A.

§2 Euclidean monotonicity at time slice for n = 4

This section is devoted to a slice monotonicity inequality (2.1) for uε :

Rn × R+ → R2 satisfying (1.1) when n = 4. For n ≥ 4, x ∈ Rn, r > 0, and

t > 0, we denote

Eε(x, r) =
∫

Br(x)

(
1
2
|Duε|2 +

n(1 − |uε|2)2
2(n − 2)ε2

)(y) dy

as the Ginzburg-Landau energy of uε over Br(x) at time t. Then we have

the following differential inequality.

Lemma 2.1. For n ≥ 4. For ε > 0, let uε : Rn × R+ → R2 be a solution to

(1.1). Then, for any (x, t) ∈ Rn × R+ and r > 0, one has

d

dr
(r2−nEε(x, r) +

r3−n

3 − n

∫
Br(x)

|∂uε

∂t
||∂uε

∂r
|)

≥ r2−n

∫
∂Br(x)

|∂uε

∂r
|2 +

(1 − |uε|2)2
2(n − 2)ε2

+
r3−n

3 − n

∫
∂Br(x)

|∂uε

∂t
||∂uε

∂r
| (2.1)

Proof. For simplicity, we assume that x = 0 and denote u for uε. Multiply-

ing (1.1) by x · Du, integrating over Br and using integration by parts, we

obtain

∫
Br

utx · Du =
∫

Br

∆ux · Du − 1
4ε2

x · D(1 − |u|2)2

=
∫

Br

D · (Dux · Du) − Du · D(x · Du) − x · D (1 − |u|2)2
4ε2

= r

∫
∂Br

|∂u

∂r
|2 −

∫
Br

|Du|2

−
∫

Br

x · D(
1
2
|Du|2 +

(1 − |u|2)2
4ε2

)
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= r

∫
∂Br

(|∂u

∂r
|2 − 1

2
|Du|2 − (1 − |u|2)2

4ε2
)

+ (n − 2)
∫

Br

(
1
2
|Du|2 +

n(1 − |u|2)2
4(n − 2)ε2

)

This yields

(n − 2)Eε(0, r) =
∫

Br

utx · Du + r

∫
∂Br

(
1
2
|Du|2 − |∂u

∂r
|2 +

(1 − |u|2)2
4ε2

)

Therefore

d

dr
(r2−nEε(0, r)) = (2 − n)r1−nEε(0, r) + r2−n

∫
∂Br

(
1
2
|Du|2 +

n(1 − |u|2)2
4(n − 2)ε2

)

= −r1−n

∫
Br

utx · Du + r2−n

∫
∂Br

(|∂u

∂r
|2 +

(1 − |u|2)2
2(n − 2)ε2

)

Observe that

−r1−n

∫
Br

utx · Du ≥ −r2−n

∫
Br

|ut||∂u

∂r
|

= − d

dr
(
r3−n

3 − n

∫
Br

|ut||∂u

∂r
|) +

r3−n

3 − n

∫
∂Br

|ut||∂u

∂r
|

Hence

d

dr
(r2−nEε(0, r) +

r3−n

3 − n

∫
Br

|ut||∂u

∂r
|)

≥ r2−n

∫
∂Br

(|∂u

∂r
|2 +

(1 − |u|2)2
2(n − 2)ε2

) +
r3−n

3 − n

∫
∂Br

|∂u

∂t
||∂u

∂r
|

This completes the proof of (2.1).

Now we state the consequence of Lemma 2.1 for n = 4, namely the

following slice energy monotonicty inequality.

Proposition 2.2. For ε > 0, let uε : R4 × R+ → R2 be a solution to (1.1).

Then, for any (x, t) ∈ R4 × R+ and 0 ≤ r ≤ R < ∞, it holds:

r−2Eε(x, r) +
∫ R

r

dr

r2

∫
∂Br(x)

(
1
2
|∂uε

∂r
|2 + (4ε2)−1(1 − |uε|2)2

≤ 2R−2Eε(x, R) + 2
∫

BR(x)

|∂uε

∂t
|2. (2.2)
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In particular,

∫
BR(x)

|y − x|−2 (1 − |uε(y)|2)2
ε2

≤ 8R−2Eε(x, R) + 8
∫

BR(x)

|∂uε

∂t
|2. (2.3)

Proof. It is clear that (2.2), with r tending to zero, gives (2.3). Therefore,

it suffices to prove (2.2). First notice that, integrating (2.1) with n = 4 from

r to R, we have

R−2Eε(x, R)

≥ r−2Eε(x, r) + R−1

∫
BR(x)

|∂u

∂t
||∂u

∂r
| − r−1

∫
Br(x)

|∂u

∂t
||∂u

∂r
|

+
∫ R

r

s−2

∫
∂Bs(x)

(|∂u

∂r
|2 +

(1 − |u|2)2
4ε2

) −
∫ R

r

s−1

∫
∂Bs(x)

|∂u

∂t
||∂u

∂r
|

Now, we need to use the fact n = 4 for the following estimates.

r−1

∫
Br(x)

|∂u

∂t
||∂u

∂r
| ≤ 1

2
r−2

∫
Br(x)

|∂u

∂r
|2 +

1
2

∫
Br(x)

|∂u

∂t
|2

≤ 1
2
r−2

∫
Br(x)

|∂u

∂r
|2 +

1
2

∫
BR(x)

|∂u

∂t
|2

Applying the Young inequality again, we also have, for r ≤ s ≤ R,

s−1

∫
∂Bs(x)

|∂u

∂t
||∂u

∂r
| ≤ 1

2
s−2

∫
∂Bs(x)

|∂u

∂r
|2 +

1
2

∫
∂Bs(x)

|∂u

∂t
|2

so that

∫ R

r

s−1

∫
∂Bs(x)

|∂u

∂t
||∂u

∂r
| ≤ 1

2

∫ R

r

s−2

∫
∂Bs(x)

|∂u

∂r
|2 +

∫
BR(x)

|∂u

∂t
|2.

Putting these inequality together, we obtain

R−2Eε(x, R) ≥ 1
2
r−2Eε(x, r) −

∫
BR(x)

|∂u

∂t
|2

+
∫ R

r

s−2

∫
∂Bs(x)

(
1
2
|∂u

∂r
|2 +

(1 − |u|2)2
4ε2

)
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This implies (2.2).

§3 Parabolic monotonicity and extracting a good time

In this section, we gather two of the necessary parabolic energy mono-

tonicty inequality which was first proved by Struwe [S2] in the context of

heat flow for harmonic maps, and slightly variance of which was established

by Lin-Rivière [LR3] and then extract a good time slice. The formular below

are valid for all n ≥ 2.

Lemma 3.1 (Energy monotonicity) Let uε : Rn → R+ → R2 be solutions to

the equation (1.1) and (x0, t0) ∈ Rn × R+. Then for any 0 < ρ ≤ √
t0

d

dρ
[

1
ρn

∫ t0

t0−ρ2

∫
Rn

(
1
2
|Duε|2 +

(1 − |uε|2)2
4ε2

)e
|x−x0|2
4(t−t0) ]

=
1

ρn+1

∫ t0

t0−ρ2

∫
Rn

[
1

2(t0 − t)
|(x − x0) · Duε + 2(t − t0)

∂uε

∂t
|2

(1 − |uε|2)2
2ε2

]e
|x−x0|2
4(t−t0) (3.1)

Proof. It follows exactly same lines of the proof of Lemma 2.1 of [LR3]. We

omit it here.

We also need the following identity which indicates how the energy de-

cays along the spatial infinity.

Lemma 3.2. Under the same notations as Lemma 3.1. For any t0 > 0 and

0 < ρ ≤ √
t0. Then the following holds:∫ t0

t0−ρ2

∫
Rn

[(1 +
|x|2

4(t0 − t)
)(

1
2
|Duε|2 +

(1 − |uε|2)2
4ε2

)e
|x|2

4(t−t0)

1
4(t0 − t)

|x · Duε + 2(t − t0)
∂uε

∂t
|2e

|x|2
4(t−t0) ]

≤ ρ2

∫
Rn

∫
Rn×{t0−ρ2}

[
1
2
|Duε|2 +

(1 − |uε|2)2
4ε2

]e
−|x|2
4ρ2

+
∫ t0

t0−ρ2

x

4(t0 − t)
· Duε · [x · Duε + 2(t − t0)

∂uε

∂t
]e

|x|2
4(t−t0) (3.2)

7



Proof. It again follows from the same argument as that of Lemma 2.2 of

[LR3].

Now we describe the extraction of a good time slice as follows. We follow

closely from §2.2 of [LR3] and the reader may refer to [LR3] for more details.

For simplicity, we assume that (x0, t0) = (0, 0) and the equation (1.1) holds

in R4 × R−. Assume that (1.4) holds for some ρ > 0. Then, by integration

of (3.1) from ε to ρ and the Fubini’s theorem, there exists a ρ1 = ρε ∈ (ε, ρ)

such that :
1
ρ4
1

∫ 0

−ρ2
1

∫
R4

jε(uε)e
|x|2
4t ≤ η (3.3)

Here

jε(uε) ≡ 1
2|t| |x · Duε + 2t

∂uε

∂t
|2 +

(1 − |uε|2)2
2ε2

(3.4)

so that
1
ρ2
1

inf
ρ∈(

ρ1
2 ,ρ1)

∫
R4×{−ρ2}

jε(uε)e
− |x|2

4ρ2 ≤ 2η (3.5)

Denote

E =
1
ρ4
1

∫ 0

−ρ2
1

∫
R4

eε(uε)e
|x|2
4t (3.6)

where

eε(uε) ≡ (
1
2
|Duε|2 +

(1 − |uε|2)2
4ε2

)

Then (3.1) implies

E ≤ inf
ρ1
2 ≤ρ≤ρ1

1
ρ4

∫ 0

−ρ2

∫
R4

eε(uε)e
|x|2
4t +

∫ ρ1

ρ1
2

ρ−5

∫
R4

jε(uε)e
|x|2
4t

≤ inf
ρ1
2 ≤ρ≤ρ1

1
ρ4

∫ 0

−ρ2

∫
R4

eε(uε)e
|x|2
4t +

4
ρ4
1

∫ 0

−ρ2
1

∫
R4

jε(uε)e
|x|2
4t

≤ inf
ρ1
2 ≤ρ≤ρ1

1
ρ4

∫
R4

eε(uε)e
|x|2
4t + 4η

As in [LR3], we may assume

E >> Cη (3.7)
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so that

inf
ρ1
2 ≤ρ≤ρ1

1
ρ4

∫
R4

eε(uε)e
− |x|2

4ρ2 ≤ E ≤ 2 inf
ρ1
2 ≤ρ≤ρ1

1
ρ4

∫
R4

eε(uε)e
− |x|2

4ρ2 (3.8)

Therefore, there exists a ρ0 ∈ [ρ1
2 , ρ1] such that

max{ 1
ρ4
0

∫ 0

−ρ2
0

∫
R4

jε(uε)e
|x|2
4t ,

1
ρ2
0

∫
R4×{−ρ2

0}
jε(uε)e

− |x|2
4ρ2

0 } ≤ Cη (3.9)

1
ρ4
0

∫ 0

−ρ2
0

∫
R4

eε(uε)e
|x|2
4t ≤ E ≤ C

ρ4
0

∫ 0

−ρ2
0

∫
R4

eε(uε)e
|x|2
4t (3.10)

1
ρ2
0

∫
R4×{−ρ2

0}
eε(uε)e

− |x|2
4ρ2

0 ≤ E ≤ C

ρ2
0

∫
R4×{−ρ2

0}
eε(uε)e

− |x|2
4ρ2

0 (3.11)

These inequalities, combined with Lemma 3.2, also yield

1
ρ2
0

∫
R4×{−ρ2

0}

|x|2
|t| eε(uε)e

|x|2
4t ≤ CE (3.12)

Observe that (3.9) and (3.11) also imply

∫
R4×{−ρ2

0}
|∂uε

∂t
|2e−

|x|2
4ρ2

0 ≤ CE (3.13)

In particular, for any λ >> 1 to be chosen later, one has

∫
B4λρ0×{−ρ2

0}
|∂uε

∂t
|2 ≤ Ce4λ2

E (3.14)

Hence, applying the monotonicity inequality (2.3) for uε at t = −ρ2
0, we

obtain the following key inequality:

∫
B2λρ0 (x)×{−ρ2

0}
|y − x|−2 (1 − |uε|2)2

ε2
≤ Ce4λ2

E, ∀x ∈ B2λρ0 (3.15)

On the other hand, (3.9) also yields:

1
ρ2
0

∫
B4λρ0×{−ρ2

0}

(1 − |uε|2)2
ε2

≤ Ce4λ2
η (3.16)
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Notice that (3.12) implies that

1
ρ2
0

∫
(R4\B λρ0

2
)×{−ρ2

0}
eε(uε)e

− |x|2
4ρ2

0 ≤ C

λ2
E. (3.17)

This, combined with suitable choice of λ >> 1 according to the Fubini’s

theorem, gives
1
ρ0

∫
∂Bλρ0

eε(uε)e
− |x|2

4ρ2
0 ≤ C

λ3
E (3.18)

1
ρ2
0

∫
Bλρ0×{−ρ2

0}
eε(uε)e

− |x|2
4ρ2

0 ≥ E

3
. (3.19)

Together with the inequalities (3.9)–(3.18), we can proceed on the estimate

of E by estimating the left hand side of (3.19) in §4 below.

§4 An intrinsic Hodge decomposition to estimate uε × duε

This section is devoted to the proof of theorem A. The main techinical

part is to obtain L2-estimate of uε ×duε on Bλρ0 ×{−ρ2
0}. To do it, we need

an intrinsic Hodge decompostion of uε × duε at t = −ρ2
0. We adapt ideas

from both [BBO] and [LR3] for this purpose.

From now on, we work on t = −ρ2
0 and denote u as uε.

First, we define H : Bλρ0 → R2 by the auxillary Neumann problem:

∂

∂xi
(e

− |x|2
4ρ2

0
∂H

∂xi
) =

∂

∂xi
(e

− |x|2
4ρ2

0 u × ∂u

∂xi
), in Bλρ0 (4.1)

∂H

∂r
= u × ∂u

∂r
, on ∂Bλρ0 (4.2)

Observe that

| ∂

∂xi
(e

− |x|2
4ρ2

0 u × ∂u

∂xi
)| = e

− |x|2
4ρ2

0 | (−2ρ2
0

∂u
∂t + x · Du)
2ρ2

0

× u|

≤ e
− |x|2

4ρ2
0
| − 2ρ2

0
∂u
∂t + x · Du|
2ρ2

0

≤ 2ρ−1
0 e

− |x|2
4ρ2

0 (jε(uε))
1
2
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so that we can establish the following estimate for DH .

Lemma 4.1 Under the same notations as above. The following holds: there

exists a Cλ > 0 such that

1
ρ2
0

∫
Bλρ0

|DH |2e−
|x|2
4ρ2

0 ≤ Cλρ−2
0

∫
Bλρ0

jε(uε)e
− |x|2

4ρ2
0

+
Cλ

ρ0

∫
∂Bλρ0

|∂u

∂r
|2e−

|x|2
4ρ2

0 (4.3)

In particular, one has

1
ρ2
0

∫
Bλρ0

|DH |2e−
|x|2
4ρ2

0 ≤ Cλη +
CE

λ2
. (4.4)

Proof. First, notice that (4.4) is the consequence of (4.3) and the inequalities

(3.9) and (3.18). Secondly, the proof of (4.3) can be obtained by copying lines

of arguments of Lemma 2.4 of [LR3](page 836-839). We omit it here.

Observe that (4.1) and (4.2) can be rewritten into:

∂

∂xi
(e

− |x|2
4ρ2

0 (
∂H

∂xi
− u × ∂u

∂xi
)IBλρ0

) = 0 (4.5)

in the sense of distributions on R4, here IBλρ0
denotes the characteristic

function of the ball Bλρ0 .

Define δ ∈ C∞(R+, R+) by δ(r) = r2 for 0 ≤ r ≤ 2λρ0, δ(r) = (4λρ0)2

for r ≥ 4λρ0 and (2λρ0)2 ≤ δ(r) ≤ (4λρ0)2 for r ∈ [2λρ0, 4λρ0]. Let gij(x) =

e
− δ(|x|)

4ρ2
0 δij be the new conformal metric on R4, which is readily seen to be

bilipschitzly equivalent to the standard metric on R4. Denote d∗g as the

adjoint of d with respect to g and ∆g ≡ d∗gd + dd∗g as the Laplace-Beltrami

operator with respect to g. Notice that (4.5) is equivalent to

d∗g((dH − u × du)IBλρ0
) = 0, in R4 (4.6)

11



Therefore, by the classical Hodge decompostion theory (see, e.g., Iwaniec-

Martin [IW]), there exists a 2-form α ∈ H1
g (R4, Λ2(R4)) such that

d∗gα = (dH − u × du)IBλρ0
, dα = 0 (4.7)

‖Dα‖L2
g(R4) ≤ C(‖Du‖L2

g(Bλρ0) + ‖DH‖L2
g(Bλρ0 )) (4.8)

Here H1
g (or L1

g respectively) denotes H1 (or L2 respectively) with respect

to g. Notice that

‖Df‖2
L2

g(R4) =
∫

R4
|Df |2(x)e

− δ(|x|)
4ρ2

0

In order to estimate Dα in L2
g, we modify the approach of [BBO] as follows.

Let β ∈ (0, 1
2 be determined later, and f : R+ → [1, 1

1−β ] be a smooth

function such that f(t) = 1
t for t ≥ 1 − β, f(t) = 1 for t ≤ 1 − 2β, and

|f ′| ≤ 4. Define on R4 the function a such that a(x) = f2(|u|(x)) on Bλρ0

and a(x) = 1 elsewhere, so that 0 ≤ a − 1 ≤ 4β holds on R4. Observe that

f2(|u|2)u × du = f(|u|)u × d(f(|u|)u). Therefore, (4.7) implies

d(ad∗gα) = IBλρ0
d(f(|u|)u) × d(f(|u|u)

+ f(|u|)u × du ∧ d|x|σg
∂Bλρ0

− d(IBλρ0
adH)

= ω1 + ω2 + ω3 (4.9)

where σg
∂Bλρ0

denotes the surface measure of ∂Bλρ0 with respect to the metric

g. Observe that if |u| ≥ 1−β then d(f(|u|u)×d(f(|u|)u) = d( u
|u| )×d( u

|u|) = 0,

otherwise we have 1 ≤ β−2(1 − |u|2)2 so that

|ω1|(x) ≤ Cε−2 ≤ Cβ−2 (1 − |u(x)|2)2
ε2

, ∀x ∈ Bλρ0 (4.10)

Using the fact that dα = 0, we get

∆gα = dd∗gα = d(ad∗gα)+d((1−a)d∗gα) = ω1+ω2+ω3+d((1−a)d∗gα) (4.11)
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Denote G(x, y) = G(|x− y|) as the fundamental solution of ∆g on R4. Then

it follows from the bilipschitz equivalence between g and the euclidean metric

on R4 that there exists a C > 0 such that

Ce−4λ2 |x − y|−2 ≤ G(x, y) ≤ Ce4λ2 |x − y|−2, |DyG(x, y)| ≤ Ce4λ2 |x − y|−3

(4.12)

Let αi = G ∗ ωi for 1 ≤ i ≤ 3. Then α4 = α − ∑3
i=1 αi solves

∆gα4 = d((1 − a)d∗gα) (4.13)

Direct calculations, using |a − 1| ≤ 4β and smallness of β, yield

‖Dα4‖2
L2

g(R4) ≤ Cβ

3∑
i=1

‖Dαi‖2
L2

g(R4) (4.14)

The main difficulty comes from estimates of Dα1 which can be done as

follows, due to the monotonicity inequality (3.15) and (3.16). Indeed, by the

maximum principle, we have ‖α1‖L∞(R4) = ‖α1‖L∞(Bλρ0 ) and, by (4.10),

(4.12), and (3.15),

‖α1‖L∞(Bλρ0 ) ≤ sup
x∈Bλρ0

∫
Bλρ0

G(x − y)|ω1|(y)

≤ Cλβ−2 sup
x∈Bλρ0

∫
Bλρ0

|x − y|−2 (1 − |u(y)|2)2
ε2

≤ Cλβ−2E (4.15)

This, combined with (3.16), implies

‖Dα1‖2
L2

g(R4) ≤ ‖ω1‖L1(R4)‖α1‖L∞(R4) ≤ Cλβ−2ρ2
0ηE (4.16)

For α3, using integration by parts and (4.4), we have

‖Dα3‖2
L2

g(R4) ≤ C‖DH‖2
L2

g(Bλρ0 ) ≤ Cληρ2
0 +

Cρ2
0E

λ2
. (4.17)
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For α2, we can modify the Lemma A1 of appendix in [BBO] to conclude that

‖Dα2‖2
L2

g(R4) ≤ Cλρ0‖Du‖2
L2

g(∂Bλρ0) (4.18)

this, combined with (3.18), gives

‖Dα2‖2
L2

g(R4) ≤
Cρ2

0

λ2
E (4.19)

Putting these estimates for αi for 1 ≤ i ≤ 4 and Lemma 4.1 together, we

then obtain

1
ρ2
0

∫
Bλρ0

|u × du|2e−
|x|2
4ρ2

0 ≤ Cλη +
CE

λ2
+ Cλβ−2ηE (4.20)

This, combined with the fact that 4|u|2|du|2 = 4|u× du|2 + |D|u|2|2 and the

following estimate (see (2.67) of [LR3] page 845)

1
ρ2
0

∫
Bλρ0

|D|u|2|2e−
|x|2
4ρ2

0 ≤ Cη
1
4 E + Cη

1
2 (4.21)

implies

1
ρ2
0

∫
Bλρ0

|Du|2e−
|x|2
4ρ2

0

=
1
ρ2
0

∫
Bλρ0

(1 − |u|2)|Du|2e−
|x|2
4ρ2

0 +
1
ρ2
0

∫
Bλρ0

|u|2|Du|2e−
|x|2
4ρ2

0

≤ C

ρ2
0

∫
Bλρ0

(1 − |u|2)
ε

|Du|e−
|x|2
4ρ2

0

+
4
ρ2
0

∫
Bλρ0

(|u × du|2 + |D|u|2|2)e−
|x|2
4ρ2

0

≤ Cλ

ρ2

∫
Bλρ0

(1 − |u|2)2
ε2

e
− |x|2

4ρ2
0 + (Cλη + Cη

1
2 )

+ (λ−1 + Cλ−2 + Cλβ−2η + Cη
1
4 )E

≤ (λ−1 + Cλ−2 + Cλβ−2η + Cη
1
4 )E + (Cλη + Cη

1
2 ) (4.22)
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Therefore, for any given δ > 0, we can first choose a sufficiently large λ > 1

and a sufficiently small β and then choose much smaller η so that

E ≤ Cδ (4.23)

so that, using the monotonocity inequality (3.1) again,

1
ε6

∫ 0

−ε2

∫
Bε(0)

(1 − |uε|2)2
ε2

e
|x|2
4t ≤ δ. (4.24)

This, combined with the fact that |Duε| ≤ Cε−1, yields |uε(0, 0)| ≥ 1
2 . There-

fore, the proof of theorem A is complete.
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