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ALMOST-HOLOMORPHIC AND TOTALLY REAL
LAMINATIONS IN COMPLEX SURFACES

BERTRAND DEROIN

Abstract. We show that there exists a Lipschitz almost-complex
structure J on CP 2, arbitrarily close to the standard one, for which
there exists a compact lamination by J-holomorphic curves sat-
isfying the following properties: it is minimal, it has hyperbolic
holonomy and it is transversely lipschitz. Its transverse Hausdorff
dimension can be any number δ in an interval (0, δmax) where
δmax = 1.6309.... We also show that there is a compact lamina-
tion by totally real surfaces in C2 with the same properties, unless
the transverse dimension can be any number 0 < δ < 1. Our
laminations are transversally totally disconnected.

1. Introduction

In [16], Sullivan introduced a family of laminations by surfaces of
a compact space, for the study of C1-conjugacy classes of expanding
endomorphisms of the circle. These laminations are usually called the
Sullivan’s solenoids. For every prime integer k, the k-th Sullivan’s
solenoid Sk is the quotient of the trivial lamination H × Qk by the
diagonal action of the group of affine transformations x �→ ax + b,
where a is a power of k, and b belongs to the ring Z[1/k]. When k
is not prime, one can construct a similar lamination. These solenoids
carry a very rich dynamics. Among their properties, one can note that:
(i) all the leaves are dense, (ii) Sk has hyperbolic holonomy, (iii) Sk

is transversally lipschitz and carries a transverse conformal structure
of arbitrary Hausdorff dimension. In this work we construct various
examples of embeddings of the Sullivan’s solenoids in complex surfaces.

1.1. Almost-holomorphic laminations in CP 2. In a complex sur-
face, a lamination by holomorphic curves is a closed subset which de-
composes as a disjoint union of non singular holomorphic curves, called
the leaves.
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Does there exist a compact lamination by holomorphic curves in CP 2

whose leaves are not algebraic?

Our main motivation for this problem is the Exceptional Minimal Set
Conjecture, asserting that a leaf of a singular holomorphic singular fo-
liation of CP 2 accumulates on a singularity [3]. If this conjecture were
not true, there would exist a minimal compact lamination by holomor-
phic curves in CP 2 tangent to a singular holomorphic foliation. It has
been proved that such a lamination would have hyperbolic holonomy
[2].

Recent progress has been made on this question when the total space
of the lamination is a sufficiently smooth real hypersurface. A real
hypersurface of CP 2 is called Levi-flat if it is foliated by holomorphic
curves. In the works [15, 13, 4, 7] it is proved that there is no compact
Levi-flat hypersurface in CP 2 with various type of regularity.

However we conjecture that there is a compact lamination by holo-
morphic curves in CP 2 without algebraic leaf, whose transverse space
is totally disconnected. To comfort our conjecture, we prove (see corol-
lary 5.3) that for every k ≥ 2, there exist a lipschitz almost-complex
structure J on CP 2, arbitrarily close to the standard structure in the
uniform topology, and a compact lamination by J-holomorphic curves
which is diffeomorphic to the k-th Sullivan’s solenoid Sk. In particular,
the leaves of these laminations are symplectic surfaces. Moreover, the
transverse space is transversally discontinous and its Hausdorff dimen-
sion can be any number in an interval (0, δk); the maximum of the δk
is δmax = 1.6309... attained for k = 6. Unfortunately, our laminations
tend to the union of three lines when the almost-complex structure
approaches the standard one, so that the construction does not give an
affirmative answer to our conjecture.

1.2. Totally real laminations in C2. In the context of totally real
geometry, we also have examples of laminations. A real surface Σ in a
complex surface S is called totally real if TS|Σ = TΣ ⊕ iTΣ. In C2,
the torus S1 ×S1 is totally real, and its normal bundle is trivial. Thus
there exists a 3-dimensional torus T3 in its neighborhood equipped
with a foliation F by oriented totally real surfaces which is diffeomor-
phic to a minimal linear foliation of R3/Z3. However, these foliations
have transversely invariant metric, and thus do not carry hyperbolic
holonomy. In this work (see corollary 5.4) we prove that: there is a
lamination by smooth totally real surfaces in C2, which is diffeomor-
phic to the second Sullivan’s solenoid, and whose Hausdorff dimension
is any number 0 < δ < 1. Moreover, there are also examples of non
orientable solenoids verifying these properties.



LAMINATIONS IN COMPLEX SURFACES 3

1.3. Structure of the proof. The Sullivan’s solenoids can be smoothly

approximated by branched surfaces Σ
k
, obtained from an annulus by

identifying its boundary components with a k : 1 map, where k is an

integer greater than 2. The branched surface Σ
k

is equipped with a
smooth structure, and the approximation works in the smooth topol-
ogy. The part 4 recalls this construction. The 1-dimensional analog
of this process is the theory of train-tracks, invented by Thurston to
study geodesic laminations of hyperbolic surfaces [1]. In higher dimen-
sion, the approximation of a transversely disconnected lamination by
branched manifolds has been studied by Williams [17] and Gambaudo
[9].

In a complex hermitian surface, an immersed real 2-dimensional sur-
face Σ is called ε-holomorphic if the angle between TΣ and iTΣ is
uniformly bounded by ε. If there is no holomorphic branched surface
because of analytic continuation, there does exist ε-holomorphic sur-
faces when ε is positive, at least locally. We prove that for every ε > 0,

and every integer k ≥ 1 there exists a smooth embedding of Σ
k

in CP 2

whose image is an ε-holomorphic branched surface. We also prove that

there exists a smooth embedding of Σ
2

in C2, whose image is a totally
real branched surface. These results are proved in part 2.

In part 3, we prove a neighborhood theorem for a smooth embedding

of the branched surfaces Σ
k

in an oriented 4-manifold. These neighbor-
hoods are topologically characterized by an odd integer, that we call
transverse braid class: it is a conjugacy class of the braid group on k
strings, and measures how the sheets are turning around the branched

locus, using a natural trivialisation of the normal bundle of Σ
k
.

The last step consists to construct in a smooth oriented 4-manifold
a smoothly embedded Sullivan’s solenoid whose leaves are arbitrarily
close to the sheets of an embedded branched surface diffeomorphic to

Σ
k
. This lamination is obtained by peeling the branched locus off, and

is transversely Lipschitz. This construction is the goal of part 5.1.

1.4. Acknowledgments. Sidney Frankel made remarks on a prelim-
inary version of this paper [5] that permitted me to avoid the case of

higher genus laminations. Étienne Ghys communicated to me some ex-
amples of laminated automorphic functions which inspired me to do the
construction of the complex surface containing Sullivan’s solenoid as a
lamination by holomorphic curves, and Bruno Sevennec lead numerical
experiments showing that these functions do not raise to holomorphic
embbedings of Sullivan’s solenoid in the plane (see 5.1). Alexei Glut-
syuk observed that Sullivan’s solenoid does not embed symplectically
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in R4 with its standard symplectic structure, thus answering a ques-
tion initially asked to me by Jean-Claude Sikorav (see 5.4). It was also
a pleasure to discuss this work with Emmanuel Giroux, André Hae-
fliger, Misha Lyubich, Martin Pinsonnault and Jean-Yves Welschinger.
I thank all these persons for their very useful comments and sugges-
tions. This work has been possible with the hospitality of the Université
de Genève, the University of Toronto, and the Max Planck Institut für
Mathematik in Leipzig.

2. Real branched surfaces in complex surfaces

2.1. The branched surfaces Σ
k
. Let k ≥ 2 be an integer. Consider

an oriented compact smooth annulus A, a smooth embedded curve b
that separates A in the disjoint union of two annulus Al and Ar, and

a connected non ramified k : 1 covering R : Ã → A. We identify

two points of Ã if they belongs to the same fiber R−1(x), where x is

a point of the closure of Ar. The resulting quotient space P : Ã →
A

k
is a branched surface (see [17]). The branched locus is a circle b

separating A
k

in two annulus Al and Ar, where Ar is collapsed to b by
a diffeomorphism, and Al is collapsed to b by a k : 1 map. Thus, the
neighborhood of the branched locus is locally an open book with k+ 1
sheets.

Figure 1. Σ

The branched surface A
k

has a smooth structure: for l = 0, 1, . . . ,∞,

a function f : A
k → V with values in a smooth manifold V is of class C l

if f ◦ P is a function of class C l in the usual sense. Define the tangent
space to a point x as usual: it is the quotient Ix/I2

x, where Ix is the
ideal of smooth functions vanishing at x. The reader can easily verify
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that the tangent space is a 2-dimensional real plane, even if the point

belongs to the branched locus. It is important to observe that A
k

is
oriented. This orientation determines an orientation on the branched
locus b, defined by the fact that Al lies on the left of b and Ar on its
right.

Collapse the two boundaries of A
k

by a diffeomorphism reversing the
orientation, in order to obtain a compact oriented smooth branched

surface without boundary Σ
k
. Smooth maps A

k
,Σ

k → V in a smooth

manifold are called embeddings if their derivative TA
k
, TΣ

k → TV is
injective, and immersions if their derivative restricted to the tangent
space at every point is injective.

2.2. Almost-holomorphic embeddings in CP 2. In a complex her-
mitian surface, an immersed surface S ⊂ C2 is called ε-holomorphic if
the angle between TΣ and iTΣ is uniformly bounded by ε. Smooth

immersions of A
k

or Σ
k

are called ε-holomorphic if their image is an
ε-holomorphic branched surface. Of course there does not exist holo-

morphic immersion of Σ
k

in a complex surface, because of analytic
continuation. However, there does exist ε-immersion for ε > 0 arbi-
trarily small, as we shall see.

We construct almost-holomorphic properly embedded annulus and
branched annulus in the bidisc B in C2, defined in some affine coor-
dinates x, y by B = {|x| ≤ 1, |y| ≤ 1}. The following result does not
depend on the hermitian structure of the bidisc, because it is compact.

Lemma 2.1. For every ε > 0 and every k ≥ 1, there exist smooth

proper ε-holomorphic embeddings of the branched annulus A
k

such that
their images coincide with the union of the axis {xy = 0} on a neigh-
borhood of ∂B.

Proof. Consider the holomorphic non-singular curve Cε = {xyk =
εk}. Its intersection with the bidisc is an annulus which is a non ram-
ified cover over an annulus in the x-axis: it is defined by the graph
of the multi-valued function ε/x1/k of x. The determinations of this
function are ε-close to the x-axis when |x| is close to 1, so that we can
glue them together in a neighborhood of the circle {|x| = 1} to obtain

an ε-holomorphic branched annulus diffeomorphic to A
k
.

Now some details. Decompose the bidisc B as the union of B1 =
{ε1/k ≤ |x| ≤ 1, |y| ≤ 1} and B2 = {0 ≤ |x| ≤ ε1/k, |y| ≤ 1}. The curve
Cε intersects B1 and B2 in two annulus A1 and A2 that intersect in
their common boundary {xyk = εk, |x| = ε1/k}.
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Let Ax = {x ∈ C | ε1/k ≤ |x| ≤ 1}, Ãx = {x ∈ C | ε1/k2 ≤ |x| ≤ 1}
and R = xk : Ãx → Ax. Consider a smooth function ϕ : [0, 1] → [0, 1]
which is identically 0 on [1/2, 1], does not vanish on [0, 1/2) and is

identically 1 on [0, 1/4]. The map π1 : x ∈ Ãx �→ (xk, εϕ(|x|)/x) ∈ B1

is a smooth immersion. It is holomorphic if |x| ≤ 1/2 or if for |x| ≥ 1/4.
If 1/4 ≤ |x| ≤ 1/2, its derivative dπ1 is cε-close to the k-bilipschitz C-
linear embedding x ∈ C �→ (kx, 0) ∈ C2, where c > 0 is a constant
depending only on ϕ. Thus the map π1 is a cε-holomorphic immersion.
Note Ax,l = {x| ε1/k ≤ |x| < 1/2}, Ax,r = {x| 1/2 < |x| ≤ 1} and

A
k

x the smooth branched surface constructed as in 2.1. The map π1

induces a cε-holomorphic smooth embedding π1 : A
k

x → B1, whose
image coincides with the x-axis on {(x, y)| 1/4 ≤ |x| ≤ 1} and with Cε

on {(x, y)| ε1/k ≤ |x| ≤ 1/4k}.
Let Ay = {y| ε1−1/k2 ≤ |y| ≤ 1}. The image of the map π2 :

y ∈ Ay �→ (εkϕ(|y|)/yk, y) ∈ B2 is a cε-holomorphic annulus properly
embedded in B2 which coincides with the y-axis on {|x| ≤ 1, |y| ≥ 1/2}
and with Cε on {|x| ≤ 1, |y| ≤ 1/4}. The images of π1 and π2 in B
have a common boundary and their union is a cε-holomorphic smooth

branched surface which is a smooth embedding of A
k
. By construction,

this branched surface coincides with the union of the x-axis and the
y-axis on a neighborhood of ∂B. The lemma is proved.

We are now able to construct almost-holomorphic embeddings of Σ
in CP 2. Again, the result does not depend on the hermitian structure
on the complex projective plane CP 2.

Theorem 2.2. For every integer k ≥ 2 and every real ε > 0, there is

a smooth ε-holomorphic embedding π : Σ
k → CP 2.

Proof. Consider a non degenerate triangle a, b, c in CP 2. Let Ba, Bb

and Bc be bidiscs around a, b and c. The lemma 2.1 shows that there is

a smooth ε-holomorphic proper embedding of A
k

in Ba whose image A
k

a

coincides with the union of the lines (ab) and (ac) on a neighborhood of
∂Ba. There is also a smooth ε-holomorphic properly embedded annulus
Ab (resp. Ac) in Bb (resp. Bc) which coincides with the union of the
lines (ba) and (bc) (resp. (ca) and (cb)) in a neighborhood of ∂Bb (resp.
∂Bc). The union

A
k

a ∪Ab ∪Ac ∪
(
((ab) ∪ (bc) ∪ (ca)) − (Ba ∪ Bb ∪ Bc)

)

is the image of a smooth ε-holomorphic embedding π : Σ
k → CP 2.
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2.3. Totally real embeddings in C2. A smooth immersion π : Σ
k →

C2 is totally real if:

TC2|
Σ

k = TΣ
k ⊕ iTΣ

k
.

Observe that one can construct a smooth embedding π : Σ
2 → C2.

Take the branched annulus A in the bidisc B constructed in lemma
2.1. It is trivial to see that there exists a smooth annulus A properly
embedded in C2 − B, which coincides with the axis x and y on a

neighborhood of ∂B. The union of A and A
2

is an embedding of Σ
2

in
C2.

Theorem 2.3. Every smooth embedding Σ
2 → C2 is isotopic to a

totally real embedding.

Proof. The proof of the theorem uses the work of Forstneric [8]. By

Thom’s transversality theorem, a generic embedding π : Σ
2 → C2 has

only a finite number of complex tangents (a complex tangent is a point

p of the image of Σ
2

whose tangent plane is invariant by i), and one
can suppose that there are not located on the branched locus. To every
of these complex tangents, it is associated an index I(p, π) defined in

the following way [8]: let U be a small disc neighborhood of p in π(Σ
2
).

In suitable holomorphic coordinates (z, w) centered at p, the surface

π(Σ
2
) is a graph of a smooth complex valued function f(z) defined on

a neighborhood of 0. Since the graph of f is totally real at a point
(z, f(z)) if and only if fz(z) �= 0, the origin z = 0 is an isolated zero of
the function fz. The winding number of this function around the origin
is by definition the indice I(p, π). One defines also the indices I+(π)
(resp. I−(π)) by the sum of the indices of the positive (resp. negative)
complex tangent.

For non-branched compact oriented surface, the indices I+ and I−
are invariant under isotopy. However, this is not true in the case of
branched surfaces, because they can jump when the complex tangents
cut the branched locus. We will take advantage of this fact. In [8], it is
proved that there exists a smooth isotopy πt : Σ → C2, t ∈ [0, 1], such
that: if I+(π) �= 0, the image of π1 has two positive complex tangents
p and q of index I(p, π) = −I+(π) and I(q, π) = 2I+(π). If the index
I+(π, r) vanishes at a point r, then r is not a positive complex tangent.
Of course, the result is also valid for negative tangents by changing the
orientation.

Let γ+ be a smooth embedded curve in Σ
2

from p to a point of
the branched locus, which arrives to the branched locus by the right
hand side and cuts the branched locus only at its extremity, and whose
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p

p”

p′

π2(Σ
2
)π1(Σ

2
)

Figure 2. The isotopy πt, 1 ≤ t ≤ 2

image does not contain a complex tangent. A neighborhood of γ+ is

the union of the image Di of two smooth embeddings fi : D → Σ
2
,

i = 1, 2 which coincide on the right part of the unit disc D in R2.
We can suppose that the images of the disc by the fi, i = 1, 2 do not
contain complex tangent, and that the curve f−1

i ◦ γ+ is the segment
[0, 1/2]. Now consider an isotopy Fi,t, i = 1, 2 and 1 ≤ t ≤ 2 of the
maps Fi,1 = π1 ◦ fi : D → C2 in such a way that:

• they take different values on an increasing semi-disc St ⊂ D,
• they take the same value outside St,
• they coincide with Fi,1 on a neighborhood of the unit circle,
• and 1/2 belongs to S2.

If the Fi,t are close enough to Fi,1 in the uniform topology, one define

in this way an isotopy πt : Σ
2 → C2, 1 ≤ t ≤ 2, whose image is

the union of the image of the Fi,t and the image of Σ
2 − (D1 ∪ D2).

Because for non branched surface, the index I+ is invariant by isotopy,
we have I+(π2) = 0. Applying Forstneric’s theorem, one can eliminate
the positive complex tangents after an isotopy.

In the same way, one can eliminate the negative complex tangents
by an isotopy. The theorem is proved.

Remark 2.4. For the branched surfaces Σ
k
, k ≥ 3, the class modulo

k − 1 of the indices I+(π) and I−(π) are invariant under isotopy. One
has the same result: if this class vanishes, there is an isotopy that
makes the branched surface totally real.

One can also consider smooth non-oriented branched surfaces Σ
k

nonor,
obtained from an annulus by identifying one of its boundary to the
other by a k : 1 map reversing the orientation. The same theorem is
true for these embeddings, if and only if k is even. In particular, there

exists a smooth totally real embedding Σ
2

nonor in C2.
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3. A neighborhood theorem for branched surfaces

This section is devoted to the study of the neighborhood of some
smooth oriented branched surfaces in oriented 4-manifold. Let k ≥ 2

be an integer and π : Σ
k → V be a smooth embedding of Σ

k
in an

oriented smooth 4-manifold V . Our technique also works for higher
genus branched surfaces (see [5]).

3.1. The transverse braid class. The normal bundle of π is the 2-
dimensional oriented bundle π∗TV/TΣ

k
. By the tubular neighborhood

theorem, the neighborhood of a non-branched submanifold is character-
ized by its normal bundle. However, this is not true for the embeddings
π; their neighborhoods are characterized by another invariant called the
transverse braid class. It is a conjugacy class of the braid group on k
strings. Its definition is the goal of this paragraph.

Lemma 3.1. The normal bundle of π is trivial. Moreover, two trivi-
alisations of it are homotopically equivalent on the branched locus.

Proof. Because the normal bundle is oriented, it suffices to see that

H2(Σ
k
,Z) = 0 to prove the first part of the lemma. Let B be a neigh-

borhood of the branched locus of Σ
k
, and Σ the exterior of the branched

locus in Σ
k
: the branched locus separates B in right and left annulus

Br and Bl. The Mayer-Vietoris exact sequence associated to the de-

composition Σ
k

= Σ ∪B is:

H1(Σ) ⊕H1(B)
i∗Σ⊕i∗

B−→ H1(Br ∪ Bl) → H2(Σ
k
) → H2(Σ) ⊕H2(B),

the last term being 0 because the top cohomology of a non compact
surface vanishes, and B is homotopically equivalent to a circle. Thus
it suffices to prove that i∗Σ ⊕ i∗

B
is surjective. The group H1(Br ∪Bl) is

the free abelian group generated by b∗r , b
∗
l (the dual basis), where br, bl

are the generators of H1(Br) and H1(Bl) giving the same orientation to
the branched locus. Because br = bl in H1(Σ), there exists a linear form
λΣ ∈ H1(Σ) such that λΣ(br) = λΣ(bl) = 1. On the other hand, we
have bl = kbr in H1(B), so that there exists a linear form λB ∈ H1(B)
such that λB(br) = 1 and λB(bl) = k. Thus the forms i∗ΣλΣ and i∗

B
λB

generate H1(Bl ∪ Br), and the first part of the lemma is proved.
The second part of the lemma follows essentially from the fact that

(k − 1)[b] = 0 in H1(Σ
k
,Z). If si : Σ

k → N , i = 1, 2 are non vanishing

continuous sections of the normal bundle of Σ
k
, there exists a non

vanishing function f : Σ
k → C∗ such that s2 = fs1. Because (k −

1)[b] = 0 in H1(Σ
k
,Z) the indice of f on (k − 1)b vanishes. Thus,
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because k − 1 �= 0 the indice of f on b is 0, and f |b : b → C∗ is
homotopic to a constant.

We analyse the neighborhood of the branched locus. We begin by
some notations. Let B ⊂ A be a small annular neighborhood of b. We

note B̃ = R−1(B), Bl and Br the left and right components of b, and

P : B̃ → B the quotient of B̃ by the relation identifying the fibers

R−1(x) in B̃ if x belongs to the closure of Br. Note that we have a
natural smooth immersion Q : B → B.

Lemma 3.2 (Neighborhood of the branched locus). Let s : Σ
k → N

be a non-vanishing section of the normal bundle of Σ
k
. There exists a

neighborhood W of the branched locus π(b) in V and a diffeomorphism
ψ = (q, ζ) : W → B × D where B is an annular neighborhood of b in
A, such that

• q ◦ π = Q.
• On the branched locus b: ∂

∂ζ
= s.

Moreover, the isotopy type of these coordinates is uniquely determined
by the second condition.

Proof. First, we construct the map q locally at the neighborhood of
the branched locus. On the neighborhood D of a point x of b ⊂ B, we
have k determinations Si : D → B, i = 1, . . . , k such that Q ◦ Si = id.
The maps π ◦Si : D → V are smooth embeddings that coincide on the
right part of D. By the tubular neighborhood theorem, there exists
neighborhoods W ′

i of π ◦ Si(D) in V and submersions q′i : W ′
i → D

such that q′i ◦ π ◦ Si = id. Think of B as being an embedded annulus
in the complex line C. Let q′ = (q′1 + . . . + q′k)/k be the submersion
from the neighborhood W ′ = W ′

1 ∩ . . .∩W ′
k of π(x) to a neighborhood

of x. The maps q′ ◦ π ◦ Si, i = 1, . . . , k are equal to a diffeomorphism
F from a neighborhood of x into its image. On the right hand part
of D this diffeomorphism is the identity. The submersion q = F−1 ◦ q′
is defined on a neighborhood of π(x), and verify q ◦ π = Q. To get a
global map q, it suffices to use a partition of the unity, and to consider
a sufficiently small annular neighborhood B of b.

Because V is oriented the branched locus π(b) is transversely oriented

in the 3-manifold R̃−1(b). Thus there exists a smooth submersion ζ

from a neighborhood of π(b) in R̃−1(b) to D such that the map (q, ζ)
is a diffeomorphism into the product b×D. Of course, one can choose
ζ so that ∂

∂ζ
= s. Then, ζ can be smoothly extended to a submersion

ζ : W → D from a neighborhood W of b in V to D in such a way that
ψ = (q, ζ) : W → B ×D is a diffeomorphism. The isotopy type of the
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coordinates ψ is determined by the homotopy type of the restriction of
s to the branched locus, which is uniquely determined by lemma 3.1.
The lemma is proved.

Recall that a conjugacy class of the braid group on k strings is rep-
resented by a smooth embedded curve in the solid torus S1 ×D, trans-
verse to the vertical fibration and intersecting the fibers in k points. In
fact the conjugacy classes of the braid group on k strings are in corre-
spondance with the isotopy classes of these transverse curves, modulo
isotopy tangent to the vertical fibration.

Definition 3.3. Let ψ : W → A × D be the coordinates constructed
in lemma 3.2, which are well-defined up to isotopy. Let bl ⊂ B be a
smooth oriented circle obtained by pushing b in the left part of B. The

curve ψ(Σ
k
)∩(bl×D) in the solid torus bl×D defines a conjugacy class

of a braid on k strings: it is called the normal braid class. Remark that
this braid induces a cyclic permutation on the set with k elements.

v

Bl

Figure 3. The section v of the normal bundle

Remark 3.4. If k = 2, the braid group is Z, and the normal braid
class is naturally identified to an odd integer. In that case, there is
a more intuitive way to think of the transverse braid class. On a left
annular neighborhood Bl of the branched locus, let v be the normal
vector field that looks to the opposite sheet of Σ, as shown in figure
3.1. Let n : Σ → N be a global trivialisation of the normal bundle
of Σ. The normal braid class is the winding number of the function
v/n : Bl → C∗.

Example 3.5. Let B be a conjugacy class of the braid group on k
strings, inducing a cyclic permutation. We construct a smooth oriented

4-manifold VB with boundary and a smooth embedding π : Σ
k → VB

whose transverse braid class is B. This shows that the transverse braid
class is a non-trivial invariant.

Let f : Ã → D be a smooth function, vanishing on Ar, such that

(R, f) : Ã → A × D induces a smooth embedding π : A
k → A × D,

and such that the intersection of the image of π with ∂lA×D represent
the class B. There is a canonical trivialisation of the normal bundle
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of ∂l,rπ(A) in ∂A × D given by the product structure. Thus there
exists a canonical choice, up to isotopy, of a diffeomorphism Φ from a
neighborhood of ∂lπ(A) to the solid torus ∂rπ(A) × D. We glue these
tori by Φ, in order to build a smooth oriented 4-manifold VB and a

smooth embedding π : Σ
k → VB. The transverse braid class of this

embedding is B.

F

Φ

Figure 4. Hirsch foliation

The boundary of VB has corners but can be smoothed. It is homeo-
morphic to the Hirsch manifold, obtained by identifying without twist
the boundary components of the domain between the two solid tori
showed in figure 3.5, where the solid torus inside represents the conju-
gacy class B.

It is interesting to note that, given a non-ramified k : 1 map r from
the circle to itself, there are two geometric constructions that code the
dynamics of r:

• the vector field on the branched surface Σ
k

represented in figure
2.1.

• the foliation F by surfaces on the Hirsch manifold represented
in figure 3.5.

In fact, the leaves of Hirsch foliations can be thought of as the bound-

aries of neighborhoods of the orbits of the vector field on Σ
k
, as is shown

in figure 3.5. This construction gives an interesting duality between the

Hirsch foliations and the branched surfaces Σ
k

equipped with a vector
field both realizing the dynamics of an endomorphism of the circle.
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z′

z

r(z) = r(z′)

Figure 5. Duality between Hirsch foliation and vector
fields on branched surfaces

Theorem 3.6 (Neighborhood theorem). Let k ≥ 2 be an integer, and

πi : Σ
k → Vi, i = 1, 2 be smooth embeddings of Σ

k
in oriented smooth 4-

manifolds Vi, having the same transverse braid class. For i = 1, 2, there

exist neighborhoods Vi of πi(Σ
k
) in Vi and a diffeomorphism Ψ : V1 →

V2 such that Ψ ◦ π1 is arbitrarily close to π2 in the smooth topology.

Remark 3.7. Even on the neighborhood of a point of the branched
locus, it is not true that one can find Ψ such that Ψ ◦ π1 = π2, like in
the tubular neighborhood theorem.

Proof. Take the neighborhood Wi of the branched locus and the
coordinates ψi of πi(Σ) constructed in 3.2, in such a way that the

curves ψi ◦ πi(Σ
k
) ∩ (bl ×D) are isotopic, by an isotopy preserving the

vertical fibration of bl ×D. In such coordinates, it is easy to construct
a diffeomorphism Φ : W1 →W2 isotopic to the identity such that Φ◦π1

is arbitrary close to π2 in the smooth topology, and coincide with π2

on a neighborhood of ∂B. In coordinates (X, ζ) of B×D, we have the
following facts:

• the section ∂
∂ζ

of the normal bundle of π1(Σ) can be extended

to a global non vanishing section.
• the section φ∗ ∂

∂ζ
of the normal bundle of π2(Σ) can be extended

to a global non vanishing section.

This is because the transverse braid classes of the πi’s are the same.
These non vanishing sections induce isomorphisms between the normal
bundles of the πi outside the Wi. By the classical techniques of the
tubular neighborhood theorem using riemannian metrics, we find an
extension of φ to a neighborhood of π1(Σ) such that outside W1 one
has π2 = φ ◦ π1. The theorem is proved.
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4. Solenoids and branched surfaces

A Riemann surface lamination of a topological space X is an atlas
L made by homeomorphisms ϕ : U → D × T from open sets of X to
the product of a disc by a transverse space T , such that:

(i) the open sets U cover X.
(ii) The change of coordinates preserve the local fibrations by discs.
(iii) They are holomorphic along the fibers. A Riemann surface lam-

ination inherits a smooth structure [10]. For l = 0, 1, . . . ,∞, a function
f : X → V with values in a smooth manifold is of class C l if in the
charts (z, t) : U → D × T of L, the functions

ft = f(., t) : D → V

are of class C l and depend continuously of t in the C l topology. This
definition is independant of the coordinate chart, because the change
of coordinates are holomorphic along the fibers and continuous trans-
versely.

4.1. Sullivan’s solenoids [16]. Let D∗ = {q ∈ C | 0 < |q| < 1} be
the punctured disc, k ≥ 2 an integer and R the endomorphism

q ∈ D∗ �→ R(q) = qk ∈ D∗.

The inverse limit of the tower of holomorphic non ramified coverings

. . .
R→ D∗ → . . .

R→ D∗ is the space D∗
∞ of bi-infinite sequences q̂ =

(qn)n∈Z of points of D∗ such that qn+1 = qk
n. It is equipped with the

product topology.

Lemma 4.1. The inverse limit D∗
∞ has a natural structure of a Rie-

mann surface lamination, given by the fact that the map q0 : D∗ → D∗

is a fibration by the Cantor set Zk of k-adic integers.

Proof. To see that, think of D∗
∞ as being a quotient of the trivial

product Riemann surface lamination H × Zk, where H is the upper
half plane in the complex line. Indeed, if s = s0 +ks1 + . . .+knsn + . . .
is a k-adic integer, and τ an element of the upper half plane, one can
construct the element q̂ of D∗

∞ defined by the bi-infinite sequence

∀n ≥ 0, qn = ekniτ and q−n = e(iπSn−1+iτ)/kn

,

where Sn = s0 +ks1 + . . .+knsn. The map (τ, s) ∈ H×Zk �→ q̂(τ, s) ∈
D∗

∞ induces an homeomorphism between the quotient of H × Zk by
the translation (τ, s) �→ (τ+1, s+1) and D∗

∞. Because this translation
is a Riemann surface lamination isomorphism of H × Zk to itself, it
induces a Riemann surface lamination structure on D∗

∞. This ends the
proof of the lemma.
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Observe that the double cover R lifts to a homeomorphism R∞ of
Riemann surface lamination from D∗

∞ to itself, defined by R∞(q̂) =
(qk

n)n∈Z. In fact R∞ lifts to the map (τ, s) �→ (kτ, ks) from H × Zk

to itself, and thus R∞ is an isomorphism of Riemann surface lamina-
tion. It acts properly, cocompactly and without fixed points. Thus the
quotient Sk of D∗

∞ by R∞ is a compact Riemann surface lamination.
This lamination has been introduced by Sullivan in [16] for the study
of C1-conjugacy classes of expanding endomorphisms of the circle. We
call Sk the k-th Sullivan’s solenoid.

Proposition 4.2. The solenoid Sk has hyperbolic holonomy and its
leaves are dense. Moreover, there are transversely invariant conformal
structures on Sk given by the ultra-metrics dα on Zk defined by

dα(s, s′) = αvk(s−s′),

for every real number α verifying 0 < α < 1. Observe that the trans-
verse space is of Hausdorff dimension δ = − log k

log α
for the conformal

structure dα.

Proof. This is a consequence from the fact that the holonomy pseudo-
group is conjugated to the pseudo-group of affine tranformations acting
on Zk, of the form x �→ ax+ b where a is a power of k and b belong to
the ring Z[1/k].

4.2. Approximation of Sk by Σ
k
. A point of Sk is a part {qn}n∈Z of

points of D∗ for which qn+1 = qk
n. Such a part is called an orbit of R.

The topology on Sk is induced by the Hausdorff topology on compact
subsets of the punctured disc.

For every 0 < c < 1, identify two orbits O,O′ ∈ Sk if they coincide

on the open punctured disc of radius c, and let Pc : S → Σ
k

c be the

quotient map. For l = 0, 1, . . . , ,∞, a function f : Σ
k

c → V with value
in a smooth manifold is of class C l if f ◦Pc is a function of class C l on
Sk.

Lemma 4.3. The space Σ
k

c is diffeomorphic to Σ
k
, and the map Pc :

Sk → Σ
k

c is a smooth immersion.

Proof. Let c < c′ <
√
c be a small real number. Consider the annulus

A′ = {c2 ≤ |q| ≤ c′}, and the space P ′ : A′ → Σ
′
obtained from A′

by identifying the points q, −q and qk if |q| ≥ c. This space is clearly

diffeomorphic to the branched surface Σ
k
, if it is equipped with the

following smooth structure: for l = 0, 1, . . . ,∞, a function f : Σ
′ → V

is of class C l if f ◦P ′ is of class C l. If O is an orbit of R, its intersection
with A′ is either one point, or three points of the form {q,−q, qk} where
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Pc,c′ Pc′,c”

Σ
k
c

Pc”

Σ
k
c′ Σ

k
c” Sk

Figure 6. Peeling the branched locus off (with the val-
ues c < c′ < c” =

√
c)

|q| ≥ c. Thus we have a canonical map P : S → Σ
′
. It is obvious that

this map is a smooth immersion. The lemma is proved.

Because the fibers of Pc′ are contained in the fibers of Pc if 0 < c <
c′ < 1, there exists a continuous map

Pc,c′ : Σ
k

c′ → Σ
k

c

for which Pc = Pc,c′ ◦ Pc. Observe that the diameter of the fibers of
Pc tends uniformly to 0 as c tends to 1, so that the solenoid Sk is the

inverse limit of the system of maps {Pc,c′}. The maps Pc,c′ : Σ
k

c′ → Σ
k

c

are smooth immersions. In [17, 5], it is proved that Sk is the inverse
limit of the system {Pc,c′} in the smooth topology, but we will not need
this fact here. Thus Sk is obtained from Σc by “peeling the branched
locus off”.

5. Embeddings of Sullivan’s solenoid in 4-manifolds

5.1. Ghys’s automorphic functions. Ghys has discovered some re-
marcable automorphic functions on the Sullivan’s solenoids Sk. Con-
sider a complex number α of modulus 0 < |α| < 1, an integer p, and
the following series

Gp(q̂) =
∑
n∈Z

αnqkp+1/kn

,

the notation qkn
= qn being suggested by Ghys. For n positive it is

equivalent to a geometric series because the kn roots of q converge to
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the unit circle. For negative n the geometric series αn is killed by the
term qkn

which converges faster than any exponential to 0. The series
Gp is then convergent, and it verifies the relation

Gp(R∞q̂) = αGp(q̂).

Thus Gp behaves as an automorphic function. Indeed, if p0, . . . , pN are
distinct integers, the map

G = [Gp0 : . . . : GpN
]

defines a “birational” map from Sk to CPN , which is holomorphic at
any point q̂ for which the Gpi

’s do not vanish simultaneously. In [6], it
is proved that one can obtain this way:

• an holomorphic embedding of Sk in CPN if N is large enough.
• an holomorphic map in CP 2, which is an immersion along the

leaves.

Numerical experiments lead by Sevennec have suggested that these au-
tomorphic functions do not raise to a holomorphic embedding in CP 2.
To comfort these experiments, we showed in [6] that these immersions

are not dα-bilipschitz embeddings if |α| �= k(1−√
13)/2. It is interesting

to note that for these values of α, the Hausdorff dimension of dα is
δ = (1 +

√
13)/2, independant of k.

However, the Sullivan’s solenoids can be equipped with different Rie-
mann surface structures. It would be interesting to study similar auto-
morphic functions, and the possible obstructions to obtain holomorphic
dα-bilipschitz holomorphic embeddings in the complex projective plane.

5.2. Peeling the branched locus off in the 4-manifold. This para-
graph is devoted to the construction of embeddings of Sullivan’s solenoid
in a smooth oriented 4-manifold, arbitrarily close in the smooth topol-

ogy to a smooth embedding of the branched surface Σ
k
.

Theorem 5.1. Let k ≥ 2 be an integer, 0 < c < 1 and B a conjugacy
class of the braid group on k strings, inducing a cyclic permutation.
There exists a number 0 < δB < 2 with the following property. Let

πc : Σ
k

c → V be a smooth embedding of Σ
k

c in an oriented smooth
4-manifold, whose transverse braid class is B. There exists a smooth
embedding π : Sk → V which is arbitrarily close to πc ◦ Pc in the
smooth topology. Moreover, π can be chosen to be dα-bilipschitz for
every α such that − log k/ logα < δB.

Proof. According to theorem 3.6, it suffices to show the statement

in a particular example of a smooth embedding πc : Σ
k

c → V with
arbitrary transverse braid class (inducing a cyclic permutation on the
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set with k elements). We do that in the C l topology for every integer
l ≥ 1.

Let B be a conjugacy class of the braid group on k strings, inducing
a cyclic permutation. The class B can be represented by a smooth
1-dimensional manifold of S1 × D transverse to the vertical fibration
by discs. Let

z ∈ S1 �→ (zk, f(z)) ∈ S1 × D

be a parametrization of it. By approximating f by an analytic function,
one can suppose that f is analytic. Thus it can be extended to a
holomorphic function on a neighborhood of the unit circle.

Let 0 < d < 1 be a real number close to 1, α > 0 a small real
number, and D = D(0,M/(1 − α)) the closed disc around 0 in C of
radius M/(1 − α), where M = sup |f |. The map Φ : (q, ζ) ∈ {|q| =
d}×D �→ (qk, f(q)+αζ) ∈ {|q| = dk}×D is a well-defined embedding
if α is small enough. Let V be the oriented 4-manifold obtained from
{dk ≤ |q| ≤ d}×D by attaching the point (q, ζ) to the point Φ(q, ζ) =
(qk, f(q) + αζ) if |q| = d and ζ ∈ D. The topology of this smooth
4-manifold with boundary and corner has already been studied in 3.5.

Let c ≥ 1/4, and g : D∗ → [0, 1] be a smooth function which is
identically 1 on a neighborhood of {|q| ≤ d1/4}, strictly positive on
{|q| < c}, and vanishing on {|q| ≥ c}. We also suppose that g depends
only on |q| and is a decreasing function of it. Consider the finite series

F (q̂) = g(q1/k)f(q1/k)+αg(q1/k2

)f(q1/k2

)+. . .+αn−1g(q1/kn

)f(q1/kn

)+..

The function F is smooth on D∗
∞, strictly bounded by M

1−α
.

We have the relation

F (R∞q̂) = f(q) + αF (q̂)

if |q| = d. The set Â = q−1(A) contained in D∗
∞ is a fundamental

domain for the action of R∞. The smooth immersion P ◦(q, F ) : Â→ V
is constant along the orbits of R∞. Thus it induces a smooth immersion
S → V . Because this map depends only on the intersection of an orbit
with the punctured disc of radius c, it induces a smooth immersion

πc = P ◦ (q, F ) : Σ
k

c → V .

Lemma 5.2. If α > 0 is small enough, the map πc is a smooth embed-

ding of Σ
k

c in V whose transverse braid class is B.

Proof. It suffices to prove that for any z in A, the map Fc takes
the same value on two points of q−1(z) if and only if they coincide on
{0 < |q| < c}. Let q̂1 �= q̂2 ∈ q−1(z), and n ≥ 1 be the smallest integer

such that q
1/kn

1 �= q
1/kn

2 . Observe that there exists a k-th root of the
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unity ζ �= 1 such that q
1/kn

1 = ζq
1/kn

2 . Because g is a decreasing function
of |q|, we get the inequality

(5.1) |F (q̂2) − F (q̂1)| ≥ αn−1g(|qi|1/kn

)C(α, f),

where C(α, f) = m−2αM
1−α

,M = sup |f | andm = inf(|f(q)−f(ζq)| | |q| ≥
d, ζk = 1, ζ �= 1). Thus, if α > 0 is small enough, C(α, f) > 0 and πc

is a smooth embedding.
To see that the transverse braid class of πc is B, it suffices to observe

that there is a non-vanishing section of the normal bundle of Σc of the
form

β(q)
∂

∂ζ
,

where β is a non-vanishing function which takes the value α if |q| = d2

and 1 if |q| = d. The lemma is proved.

We are going to peel the branched locus of πc(Σ
k

c ) off in V . Let
ε > 0 be a small number, and l ≥ 1 an integer. Consider a smooth non
vanishing function gε : D → (0, 1] such that

• gε is 1 on a neighborhood of {|q| ≤ d1/4},
• gε is a decreasing function of |q|,
• gε is ε-close to g in the C l-topology (the derivatives are com-

puted with respect to the hyperbolic metric of D∗),
• gε is identically ε on {|q| ≥ c}.

Let fε = gεf and consider the infinite series

Fε(q̂) = fε(q
1/2) + αfε(q

1/4) + . . .+ αn−1fε(q
1/2n

) + . . . .

This series converges to a smooth function strictly bounded by M
1−α

, so

that as before, we have a smooth immersion π = P ◦ (q, Fε) : Sk → V .
The estimates (5.1) shows that if z ∈ A and q̂1 �= q̂2 ∈ q−1(z) then

|Fε(q̂2) − Fε(q̂1)| ≥ Cαn−1,

where C > 0 is a constant depending on f , α and ε. Thus π is a smooth
dα-bilipschitz embedding of Sk in V . Moreover, by construction the
function g − gε is uniformly bounded by ε in the Ck topology, so that
π is ε-close to πc in the C l topology. The theorem is proved.

Corollary 5.3 (Almost-holomorphic laminations in CP 2). For every
k ≥ 2, there exists a number δk > 0 such that for every 0 < δ < δk,
there exist a lipschitz almost-complex structure J on CP 2, arbitrar-
ily close to the standard one in the uniform topology, and a compact
lamination by J-holomorphic curves, which is transversely Lipschitz of
transverse dimension δ. This lamination is a smooth embedding of Sk.
The maximum of the δk is δ6 = 1.6309 . . ..
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Proof. For every k ≥ 2, let Bk be the transverse braid class of the

almost-holomorphic embeddings of Σ
k

in CP 2 constructed in 2.2. By
our construction, the braid Bk is represented by some curves in the
solid torus of the form

f : q ∈ S1 �→ (qk, qs+rk) ∈ S1 ×D,

where s, r are integers and s has no common divisors with k. Let dk be
the euclidian distance between two consecutive k-th roots of the unity.
Observe that if

0 < α < αk =
dk

2 + dk
,

the conditions on α in the proof of theorem 5.1 are satisfied. Thus,
for every 0 < α < αk, and for every ε > 0, there exists a smooth ε-
holomorphic embedding of Sk in CP 2, which is dα-bilipschitz. Remark
that the Hausdorff dimension δk of the distance dαk

is

δk = − log k/ logαk.

The maximum δmax of these Hausdorff dimension is attained for k = 6:
one has δmax = δ6 = 1.6309...

Given an ε-holomorphic and dα-bilispchitz embedding of S6 in CP 2,
it suffices to construct the almost-complex structure J . We define it on
the tangent bundle TS, in such a way that it is lipschitz and ε-close to
the standard one. This almost complex structure defined on TS can
be extended to a lipschitz almost complex structure on TCP 2 which is
ε-close to the standard one. The corollary is proved.

Corollary 5.4 (Totally real laminations in C2). For every 0 < δ < 1,
there exists a compact lamination by totally real smooth surfaces, which
is transversely Lipschitz of transverse dimension δ. This lamination is
a smooth embedding of S2.

Proof. Because δ2 = 1 (see theorem 5.1 and the first paragraph of the
proof of corollary 5.3), for every 0 < δ < 1 one can perturb a smooth
embedding of Σ2 in an oriented 4-manifold by a smooth embedding of

Σ
2

which is dα-bilipschitz, where δ = − log 2/ logα. Thus the corollary
is a consequence of 2.3.

Remark 5.5. One also can peel the branched locus of the non orientable

branched surface Σ
2

nonor off (see remark 2.4), and obtain a lamination
by non orientable totally real surfaces in C2.

Question 5.6. In the introduction, we have seen an example of a 3-
dimensional compact torus T 3 ⊂ C2, equipped with a minimal linear
foliation by totally real surfaces. If V 3 ⊂ S is a 3-dimensional manifold
in a complex surface, equipped with a foliation by totally real surfaces,
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then i times the transverse direction defines a tangent non vanishing
vector field along the leaves. Most of the foliations by surfaces on 3-
manifolds do not carry such flows. There are however examples with
hyperbolic holonomy; for instance the stable foliation of the geodesic
flow on the tangent bundle of a surface a negative curvature. In which
compact complex surfaces is it possible to realize these examples as
a foliation by totally real surfaces of an embedded (or immersed) 3-
manifold V ?

5.3. Holomorphic embeddings of Sk in complex surfaces. For
every conjugacy class of braid B in the braid group on k strings, the
k-th Sullivan’s solenoid embeds holomorphically in the complex surface
V , if d is sufficiently close to 1. Indeed, consider the following series
defined on D∗

∞:

F (q̂) = f(q1/k) + αf(q1/k2

) + . . .+ αn−1f(q1/kn

) + . . .

It verifies the relation

F (R∞q̂) = f(q) + αF (q̂),

and is strictly bounded by 1
1−α

. The set Â = q−1(A) contained in D∗
∞

is a fundamental domain for the action of R∞. The map P ◦ (q, F ) :

Â → V is holomorphic and constant along the orbits of R∞. Thus it
induces a holomorphic map π : S → V . This map is a d|α|-bilipschitz
embedding if d is close to 1, as it has been shown in lemma 5.2.

5.4. Symplectic embeddings of Sk in R4. The leaves of the sole-
noids that we have constructed in 5.3 are in particular symplectic sur-
faces. Because the top homology of S is vanishing, Sikorav raised the
question wether it is possible to embed symplectically S into R4, with
its standard symplectic structure. Glutsyuk beautifully answered this
question by the negative. If it was possible, one would be able to con-
struct a lipschitz almost-complex structure J on CP 2, calibrated on
the standard symplectic form, for which there would exist a lamination
S by J-holomorphic curves, and a J-holomorphic line disjoint from
S. But by a theorem of Gromov [11], by two distinct points passes
a unique J-holomorphic line. Thus, by connectedness of the space of
lines, no lines intersect S, because the intersection between lines and
leaves have to be positive. This contradicts the fact that some line cuts
the lamination.
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