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ON THE SCALING OF THE TWO WELL PROBLEM

ANDREW LORENT

ABSTRACT. Let H = (g 091) for 0 > 0. And let K := SO (2) U SO (2) H. We establish a
sharp relation between the following two minimisation problems.

Firstly the two well problem with surface energy. Let ¢ > 1. Let
19 (u):/ d(Du (), K) + ¢ |D?u (2)|* dL?=
Q

and let A denote the subspace of functions in W?2:4 (Q) with det (Du (2)) > 0 for a.e. z € Q
and sup,cq || [Du (2)] || < C satisfying the affine boundary condition u(z) = F (z) for
z € 00, where F ¢ K. We consider the scaling (with respect to €) of

md = ulenip 12 (u).

Secondly the finite element approximation to the two well problem without surface energy.
Let 6 > 0 be any small number. Let Fj (u) = [,d (Du (2),N s (K)) dL?z. Let B
h 34

denote the space of functions that are piecewise affine on a triangular grid {;} of grid size
h satisfying the affine boundary condition u (z) = F (2) for z € 9Q. We consider the scaling
of
ap = inf Fjp (u).
uEB}
Let ¢ > 1. We will show that for any small h, for € := h? we have
ap > ch% = m > Cl€%+6.

Simple examples show aj < Ch% and ml < C’eﬁ so our theorem states that optimal
(scaling) lower bounds on «y, imply optimal (scaling) lower bounds on m{ for any g > 1.

The main tool we will use to establish this reduction will be an L9 version of the sub-
optimal two well Liouville Theorem proved in [22]. We will give a simple proof of this result
using the case of equality of the isoperimetric inequality.

In addition for the case ¢ = 1 we show optimal (scaling) lower bounds on I} follow from
optimal (scaling) lower bounds on Fy by applying the optimal two well Liouville Theorem
of Conti, Schweizer [6].

1. INTRODUCTION

Let H be a diagonal matrix with det (H) = 1. Let K := SO (2)USO (2) H. We are concerned

with minimising the functional

T (u) = /Qd(Du (2),K)dL*z

over the space Lg of functions with affine boundary condition F' ¢ K. This functional is a
special case of the functional proposed by Ball and James [2], [3] and Chipot, Kinderlehrer [5]

in their well known model of solid solid phrase transitions.

Surprisingly, for F' € int (K?°) (see [28] for background and precise definitions) there exists
an exact minimiser of Z, this follows from work of Miiller and Sverdk [24], [25], see Sychev
[29], [30] and Kirchheim [16], [17] for latter developments and Dacorogna Marcellini [8] for a
different approach to some related problems. The approach of Miiller and Sverdk uses the
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2 ANDREW LORENT

theory of “convex integration” (denoted by CI from this point) developed by Gromov, it is one
of the simplest results of the theory.
If we add a small cost to the oscillation of the functional, we have a functional of the form

I9 (u) = / d(Du(z),K) + €|D*u(z)|" dL?z. (2)
Q
Nothing is known about the minimiser of the functional (however there does now exist a T’
2
convergence result for the functional \I/E [6]). In particular it is completely unknown if for very

small € the minimiser is something like the absolute minimiser of Z provided by CI.
This question is best expressed by considering the scaling of

q .= inf 74 . 3
M= et T (u) (3)

An upper bound of m¢ < e is provided by the standard double laminate. This follows
from the characterisation of the quasiconvex hull K% provided by [31].
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Figure (b)

Figure (a)
FIGURE 1

If md ~ €37 for @ > 0 then the minimiser will have to take a very different form than the
double laminate. On the other hand if & = 0 then energetically the minimiser does no better
than the double laminate.

This question is important because CI solutions are important, many counter examples to
natural conjectures in PDE have been achieved via CI, [26], [16], [27]. Minimising functional
19 is the simplest problem that constrains oscillation is some slight way where we can hope to
see the effect of the existence of exact minimisers of (1).

Following the partial results of [22] we reduce this question to the question of the scaling
of a functional similar to Z over the subspace B?% of functions that are piecewise affine on a
triangular grid (with grid size h, where none of the edges of the triangles are in the set of rank-1

"We know it can not be a function u with Z (1) = 0 because the result of Dolzmann Miiller [9], that any
with this property and with the property that Du is a BV has to be laminate
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directions of K). Our reduction is sharp in the sense that we will show optimal lower bounds
for the finite element approximation implies optimal lower bounds for m?, for any ¢ > 1.

Our main tool to achieve this is an L9 version of the sub-optimal two well Liouville theorem
established in [21], this result may be of independent interest. See [6] for the (scaling) optimal
version of the L' theorem.

1.1. Two well Liouville Theorem.

Theorem 1. Let H = (7 %) foro > 0. Letp >1,q > 1. Let K = SO(2)U SO (2) H.
Let u € W24 (B (0)) N WP (B (0)) be a function with the property that det (Du (z)) > 0 and
| [Du(z)] " || < C for a.e. z € By (0) where C > 0 is any large constant.

There exists positive constants C1 << 1,Co >> 1 depending only on o, p, q such that if
€ € (0,C1) and u satisfies the following inequalities

/ d? (Du (z),K)dL?*z < Cye (4)
B1(0)

/ | D*u (z)|qu22 < Creti, (5)
B1(0)
then there exist J € {Id,H} and R € SO (2) such that
/ |Du(2) — RJ|P dL?z < Cye™r (6)
Be, (0)

where k, = 4 when p > 1 and k, =5 when p = 1.

We will give a simple proof of this via the case of equality of the isoperimetric inequality.
More specifically, it is well known that amongst all bodies B of volume 1 in IR", the ball
minimises H"~! (0B), i.e. the ball gives the case of equality of the isoperimetric inequality.
A quantitative statement of this kind is given by the following Lemma of Hall, Haymann,
Weitsman [14].

1

Lemma 1 (Hall et al.). Let E be a set of finite perimeter 2 in R?, R := (@) * and let the
Fraenkel asymmetry \ (E) be defined by

(7)
Then

)2
(Per (E))* > 4r (1 + %) L*(E).
Theorem 1 generalises Theorem 1 of [21] in that hypothesis (5) is an L? bound on D?u
instead of an L! bound as in [21], [6]. Simple examples show that 1 — ¢ is the optimal power in

€. Additionally the control of Du in (6) is (at least) €5 which improves the €0 bound of [21]

but is much weaker than the optimal €7 bound of [6]. The main reason for the improvement
comes from the application the quantitative Liouville Theorem of Friesecke et al. (see Theorem
3 of Section 2) in a efficient way, and this we learned from the work of Conti, Schweizer [6].

The isoperimetric inequality method is the fastest, “calculation free” way to see why the sub
optimal theorem is true, it helps to show why this initially surprising result is actually quite
natural.

2Hall et al. state their Lemma for sets with smooth boundaries. By Theorem 3.41 [1] we can approximate
any set A of finite perimeter with a sequence of sets (A,) that converge in measure to A which have smooth
boundaries and for which Per (A,) — Per (A) as n — oo, hence its easy to see the lemma holds for sets of finite
perimeter.
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The conditions that function w is sense preserving (i.e. det (Du (z)) > 0 a.e. ) and satisfies
SUPge g, (0) || [Du (z)] 7" || < C are technical conditions that we use for convenience, in words,
they say that u can not compress small balls into shapes of arbitrary small diameter or reverse
their orientation, as such they are not such unnatural conditions for functions describing elastic
deformations.

Conjecture 1. Let H, K be as in Theorem 1. Let u € W29 (By (0)) N WP (B (0)). There
exists positive constants C; << 1, Co >> 1 depending on o,p,q such that if u satisfies (4) and
(5) then for some J € {Id,H}, R € SO (2) we have

/ |Du (z) — RJ|P dL?z < Coc?.
Be, (0)

For the case ¢ = 1 this has been proved in [6].

1.2. Finite element approximations. In order to explain our main application of this result
we will need to give a bit more background.

A triangulation (denoted Ay) of Q of size h is a collection of pairwise disjoint triangles {7;}
all of diameter h such that Q@ C J, ca, Ti-

We can approximate any continuous function v uniformly by a function u that is piecewise
affine on the triangles of Ay by the following procedure. For each triangle 7; € A}, define
|, to be the affine map we get by interpolating v on the corners of 7;. We will call @ the
interpolant of u.

Let B;ﬂ denote the space of Lipschitz functions in L that are piecewise affine on the tri-
angles of . Our interest in this space of functions comes from the fact that minimisation of
functionals of the form (1) over B?% provides a convenient intermediary problem for the study
of surface energy problems: let Ay, be a triangulation for which the edges of the triangles are
not parallel to the rank-1 connections of the wells K, if & € B% and 71,72 € A}, are such that
d(Di|,,,S0 (2)) =~ 0 and d (Day,,,SO (2) H) ~ 0 it is easy to see 71 can not touch 7, i.e.
there must be a triangle 73 between 71 and 75 for which d (Du s> K) > o(1).

For example if we have an interpolant of a laminate, if triangle 7 cuts through an interface
of the laminate the affine map we get from interpolating the laminate on the corners of 7 will
have its linear part some distance from the wells. See figure 2.

So we can not lower the energy of Z over Bl}é by simply making a laminate type function
with finer layers, there is a competition between the “surface energy” as given by the error
contributed from the interfaces and the “bulk energy” which in the case of the laminate is the
width of the interpolation layer.

Theorem 2. Let K = SO (2)USO (2)H, H = (] 091 ). Let Q be a bounded Lipschitz domain.
Let Ay, be a triangulation of Q of grid size h with the directions of the edges of the triangles
some uniform distance away from the set of rank-1 directions of K. Let F € int (K9). Let
0 > 0 be some small number.

Denote by B% the set of functions with affine boundary condition F that are piecewise affine
on the triangulation Ay. Define F, (u) := [, d (Du (2), N & (K)) dL?z.
Let A% denote the space of C-Lipschitz functions in W2 (Q) with det (Du (z)) > 0 for a.e.

and sup,cq || [Du (2)] ™" || < C with affine boundary condition F .
Let g > 1. Let A > 0. There exists hg = ho (0,q,6,.A,() such that if h € (0, hg) then

inf F, (v) > AhT = inf I%(u) > €30 for e = ho. (8)
1)€B;’,' ueA%
For g =1. We have for h € (0, ho)
inf Fo(v) > Ahs = inf I'(u)> 30 fore=h. 9)

1)€B;’,' ueA;
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FIGURE 2

We will show in fact that Conjecture 1 implies a cleaner formulation of (8), namely that for

any ¢ > 0 there exists ho = ho (0, ¢, 9, A, ) such that h € (0, ho)
inf Fy(v) > Ah3 = inf I (u) > €330 for € = h4. (10)

vEBY uEA%

Recall Conjecture 1 is proved in [6] for the case ¢ = 1 and so for this case we can establish (9).
Let By := diag (1,0), By := diag (—1,1), B3 := diag (—1,1). See figure 1 (b). Define F (u) :=
Jo d(Du(2),{Bi, Ba, Bs}) dL*z. F.E. approximations of F over A}, (where Fy := diag(0,0))
have been studied by Chipot [4] and the author [19]. It has been shown inf, ¢ 4n F(u) ~

h3. From Sverak’s characterisation [31] we know the exact arrangement of rank-1 connections
between the matrices in the set SO (2)USO (2) H and a matrix in the interior of the quasiconvex
hull, see figure 1 (a). As we can see from figures 1 (a) and (b), the finite well functional F
precisely mimics these rank-1 connections.

Conjecture 2. Let K, H be defined as in Theorem 2. Given F' € int (K9°). Let § > 0. Take
B be as in Theorem 2.

Define Fi, (u) == [, d (Du (2),N, & (K)) dL?z. Then there exists constant ¢ depending on

h
o such that
inf Fp (u) > chs.
ueBh

Informally Theorem 2 says that the optimal scaling for I would follow from Conjecture 2.
This is not simply a matter of replacing e with h. There is no reason to think the existence of
an absolute minimiser to Z will cause F}, to scale to zero faster that at rate h3. In their most
constructive form [24], CI solutions are made as a limit of “laminate within laminate” type
functions, and for complicated functions of this type we expect the interpolant to have many
triangles with the derivative not close to the wells. For example Chipot ([4] , Theorem 4.3)

1
proved the upper bound of e=¢™? for the a functional B of the form of F whose wells are

the Tartar square; Ay = —As = diag(—1,—3) and Ay = —A4 = diag(—3,1) and F belong to
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the rank-1 convex hull of Ay, As, A3, A4. The point being that functions that lower the energy
of B have to be n-th order laminate within laminate type functions and for these functions B
can only be made to scale to zero at a very slow rate.

Acknowledgements I'd like to thank Sergio Conti for many helpful discussions during a
visit to the MPI Leipzig in June 2004, in particular helping me to understand [6]. Also for
reading a preliminary version of the paper and pointing out some errors. The general strategy
and particularly the methods in Section 4.4 and Step 2 of Lemma 6 of this paper use many
ideas from [6]. Many thanks to Georg Dolzmann for pointing out to me the connection between
the minimisation of the two well problem with surface energy and finite element approxima-
tions. Thanks also to Laszlo Szekelyhidi for many clarifying discussions, to Stefan Miiller for
suggesting the use of Theorem 4 and Daniel Faraco for providing reference [14].

2. SKETCH OF PROOF OF THE TWO WELL LIOUVILLE THEOREM

The strategy of the proof is to find a radius r € (4,1) such that L? (u (B, (0))) ~ 7r? and
H! (0u (B, (0))) ~ 27r. Theorem 1 then implies u (B, (0)) is close to a ball in the sense of
smallness of A (u (B, (0))). In some sense this is not very far from saying u is close to a rotation
on B, (0), elementary arguments involving (4) and (5) allows us to show this is actually the
case.

Now we will go through the steps in detail. For simplicity assume u is an invertible C*
Eunction which satisfies the following hypotheses, fBl(O) d(Du, K)dz < e and fBl(o) ’D2u’ dr <

1-

Provided C; is small enough our estimate on |D2u| means that for most » > 0, Du on
0B, (0) can not jump from being close to well SO (2) to being close to well SO (2) H. Formally,
if there exists a,b € 9B, (0) with Du (a) close to SO (2) and Du (b) close to SO (2) H then
by the fundamental theorem of Calculus C1 > [, ) |D?u (z)| dH'x > |Du(a) — Du (b)| 2
dist (SO (2),50 (2) H), contradiction.

Thus we must have that for some J € {Id, H}, d (Du(z),K) = d(Du(z),SO (2)J) for all
z € 9B, (0). By a change of variables we can assume J = Id. So

H' (0u (B, (0)) = / |Du (2)t,|dH" 2
8B,-(0)
~ 27r.

And as det (M) = 1 for any M € K we have that L (u (B: (0))) = [ det (Du (2)) dL?z ~

L? (B, (0)) = mr2. So applying Theorem 1 we know that u (B, (0)) is quantitatively close to
being a ball of radius r, i.e. the Fraenkel asymmetry A (u (B, (0))) is small.

Next we will follow the strategy of Conti, Schweizer [6] which is to find a ball B, (y) C B (0)
such that

/ d(Du,SO(2)) =0 (11)
Be(y)
and then apply the the following theorem of Friesecke James and Miiller. *

Theorem 3 (Friesecke, James, Miiller). Let U be a bounded Lipschitz domain in IR™, n > 2. Let
q > 1. There exists a constant C (U, q) with the following property. For each v € W4 (U, IR")
there exists an associated rotation R € SO (n) such that

1D = Rll oy < C (U, q) |dist (Dv, SO () | oo (12)

3Friesecke, James, Miiller Theorem was first stated for L? but the same result holds for L? for ¢ > 1 with
small modifications of the proof
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From Theorem 3 and (11) we can conclude there exists R € SO (2) such that ||Du —
R| La(B.(y)) = 0, and this (possibly after changing variables) gives conclusion (6).

Let B := {x : Du(x) is close to SO (2) H}. Given hypothesis (4), in order to carry out the
argument we just need to find a ball B, (y) C Bj (0) such that L? (B, (y) N B) 0. This follows
from smallness of A (u (Bgr (0))) by the following two steps.

Step 1. We say two points on a circle are antipodal if the line segment joining them goes
through the centre of the circle. We know* du (B, (0)) is roughly a circle and using the fact
that fé)BT(O) d(Du(z),S0(2))dH'z ~ 0, we will show any two antipodal points on 9B, (0),
say a, b will be mapped to antipodal points u (a), u (b) on the “circle” du (B, (0)), and hence
lu(a) —u(b)] Z 7

Step 2. We will use the fact there exists a large set of directions © C S! such that for
any v € © we have |Hv| < 1 to show that along a line [ay,b,] := B, (0) N (v) we have,
H! ([ay,by] N B) ~ 0. Then we use a co-area argument to integrate xp over X :=J [ay, by,
trivially there then exists B, (y) C X with property (11).

vEO

Proof of Step 1. Suppose we let T'; and I'y be the connected components of 9B, (0)\ {a, b}.
Since Du (z) is close to SO (2) for most of the points z € 0B, (0) it is easy to see that
H' (u(T;)) < mr for i = 1,2 which together with the fact that each u (I';) must go around
the outside of the “ball” u (B, (0)) to connect u (a) to u (b) this implies that u (a) and u (b)
must be antipodal.

Proof of Step 2. Let v € ©, let a,, b, be antipodal points on 9B, (0) defined by ‘Z“:Z”‘ = .

By definition of © there exists s, € (0,1) such that |[Hv| < s,. And by Step 1 we know
|u (a) — u (b)| = 7, so using the formula H* (u ([ay,b,])) = fj: |Du (2) v| dx, we have

H' (u(lav,b])) = H' (u(lay,b,]\B)) + H' (u (BN [ay,by]))

e (Bm[av,bv])+/bud(Du,K)dx

Ay

a'u_bv
|a1)_bv‘
< r—(1—s8,)H (BN [ay, b)),

and since H* (u ([ay, by])) > |u(ay) — u (by)| 2 r. So we must have H* (B N [ay,b,]) ~ 0. Now
by the co-area formula we

by
/ ﬁXB (z)dL2z:/ (Ll (Bﬂ[av,bv])+/ d(Du,K)dm) dH"w =~ 0
X |? C] a

< H([a0.0,]\B) + \H

~

which gives L? (BN X) ~ 0.
3. FINE PROPERTIES OF SOBOLEV FUNCTIONS AND FUNCTIONS OF INTEGRABLE DILATION
We will need the following well known lemma.
Lemma 2. Let Q be a Lipschitz domain. Let u € WP (Q). There exists a Borel Gy, C Q with
H' (int (Q) \Gy) = 0 such that for every x € Gy, the limit lim,_om~'r=2 [, () U (2)dL*z =:
u(zx) exists and we even have
lim 72 / lu(z) — @ (2))P dL?z =0
B

r—0 ()
1

where p* is the Holder conjugate, i.e. rd % =1.

This follows from Theorem 1 of Section 4.8 and Theorem 3 of Section 5.6.3 of [10].

4By smallness of A (u (B (y))), see Lemma 4
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Definition 1. Given u € W (Q) we define the precise representative 4 of u by

() = lim, o (77%) fB 2)dL?z if v € G,
0ifx € Q\G,

The following lemma is also well known, see for example [12],[10] for convenience of the
reader we give some details.

Proposition 1. Let w € W1P (Q). Suppose By, (0) C Q then for almost every h € (0,7) the
function

t t
w (t) =7 (h cos hsin E)

is absolutely continuous over 0, 2mh] and

[
T 2
/ / | Dw" (z)|p dL'zdL'r < / |Dw (2)|P dL?z
h=00

B-(0)

Proof. We define the standard convolution, w, := w * p where p, (x) := p (f) e 2 and pis
1,
a smooth convolution kernel. So we known by the standard theorems w, 7w oas € — 0.

Let 6 > 0. By the co-area formula, following arguments of the proof of Theorem 4.50 [12]
there must exist K5 C (0,7) with L' ((0,7) \Ks) < 6 and a sequence ¢, — 0 such that for any
he K

[ 0@~ (P +1Dw () - Du, ()P diTz 0 (13
8B (o)

as n — o0.
So let h € K be one of the a.a. radii for such that Dw is defined on all but a set of H! zero
measure on 0By, (0), and the function x — Dw (z) is LP integrable on 0By, (0).
Let v! (t) := we, (hcost, hsint) for t € [0,2m). Let Ly : [0,27) be the L? integrable

function given by Ly, (t) := _a“’ (hcost,hsint) hsint 4 3 3“’ = (hcost, hsint) hcost. By (13) we
have that vaﬂ L ([O—’>27r)) Ly as n — oo. So for any € > 0 there exists N. € IN such that

HDU?nl - Dv?ﬂ2 |Lr (j0,27)) < € for all ny,na > N..

From this by picking a Lebesgue point of w on 9B}, (0) and using the fundamental theo-
rem of Calculus (as in the proof of Theorem 1, Section 4.9.1 [10]) we can show the sequence
v! converges uniformly to the limit v" (t) := @ (hcost, hsint) and v € WP ((0,2n]) with
Dv" (t) = Ly, (t) for a.e. t € (0,27].

Define w” (t) := v" (L) for t € [0,27h]. Then

/ / |Dw" ()| dL'td L' / /
heKs J[0,2wh] heKs J[0,2wh]

< / |Dw (2)|F dL?z
B..(0)

p
dLtdL'h

IA

t t
Dw (hcos E,hsin E)

by the co-area formula. Since § was arbitrary we have that the function w" is defined and
absolutely continuous on 9By, (0) for every h € |J,, K,,-1 and this completes the proof. O

Definition 2. Given an open set Q C IR"™. A function f : Q — IR" is called sense preserving
if det (Df (2)) > 0 for a.e. z € Q.

Definition 3. Given a connected open set Q C IR™. A sense preserving function f:Q — IR"
is said to be of finite dilation if and only if |Df (z) ||* < K (z) |det (Df (z))| a. e where 1 <
K (x) < co. The function f is said to have integrable dilation if and only if fQ z)dL"z <
0.



THE SCALING OF THE TWO WELL PROBLEM 9

We will need the following theorem [15].

Theorem 4 (Iwaniec, Sverak). Let Q C IR? be a connected open set. Given function f: Q —
R?, f € W2(Q) which has integrable dilation then f is open and discrete.

It is also well known that functions of finite dilation are continuous [13].

Lemma 3. Let Q be an open connected set in R®. Let ¢ > 1. Let C > 0 be some arbitrary
large constant. Suppose u € W4(Q) is a sense preserving function with the property that
SUpgeq || [Du ()] < C In addition u satisfies

/d (Du(z),K)dL*z < 0o (14)

then u has integrable dilation and consequently for any z € Q and a.e. r > 0 such that B, (z) C Q
we have that u (B, (2)) is an open set of finite perimeter and

ou (B, (2)) Cu (0B, (2)), which gives Per (u (B, (2))) < H' (u (0B, (2))). (15)
Proof. Now let R(x) € SO (2), S(x) € M2%? be the polar decomposition of the matrix

Du (z), i.e. Du(x) = R(x) S (z). Let A1 (x), A2 (z) be the eigenvalues of S (z), by assumption
we have min {| A1 (z)],|\2 (z)|} > C~! for a.e. z € Q.

Given z € Q for which Du (x) is defined, assume without loss of generality that |A; (z)| >
|A2 (z)|. Now for any v € S,

|[Du(z)of* < | (2)
< O @) e (@)
< c¢(d(Du(z),K)+1)det (Du(x)). (16)

And as (d(Du(z),K)+1) is integrable so by (16) we know u is a mapping of integrable
dilation. By Sobolev embedding theorem we know u € W12 () and thus by Theorem 4 we
have that u is open and discrete, we also know « is continuous.

Since w is open, it is well know (see exercise 9.12, [32]) that du (B, (z)) C u (9B, (z)). By
Proposition 1 for a.e. r > 0 such that B, (z ) C Q we know Du is absolutely continuous
on 4B, (z) and so H! (u (0B faB () Du ‘dHly < oo where t, is the tangent to

0B (=) at y, which of course 1mphes H! (0u (B, (z))) < 00. So by Proposition 3.61 [1] u (B, (z))
is a set of finite perimeter and Per (u (B, (2))) < H! (0u (B, (2))) < H! (v (0B, (2))). O

4. DETAILS OF PROOF OF THEOREM 1

4.1. Preproof. Following the notation of the introduction, let B be the set of points for which
Du is close to SO (2) H, we have to split the lemma into cases depending on the proportion of
B inside By (0).

If B is the majority, we will have to do a change of variables and define & = uw o H~!, then
@ is defined on a thin ellipse in which we will need to look for circles for which D stays close
to SO (2). In order to find such a circle we will need D to be “mostly” close to SO (2) in the
ellipse. For this we require B to be the “large” majority in B (0).

On the other hand if L? (B (0) \B) > /C; since we can use the hypotheses (4), (5) to show
that on all but a set of radii of measure ~ C; we have Du is uniformly close to either SO (2)
or SO (2) H on 0B, (0), and so we must be able to find at least one for which Du is uniformly
close to SO (2).

Hence in our lemmas we will have to argue two cases depending on the sign of

L® (u) := / ed (Du (2),50(2)) —d(Du(z),S0O (2) H)dL?z. (17)
B1(0)
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4.2. Preliminary lemmas.

Lemma 4. Let E be a set of finite perimeter in IR® with L? (E) > 1, let € be a small number,
suppose E has the following properties

Per (E) < 27 (LQ(E)>%+5 (18)

™

N

then there exists a € IR? such that for R := (M)

T

BClE% (x) NOE # O for each x € OBg (a). (19)

Proof. Let A(E) be defined as in (7) Lemma 1. So there exists ¢ € IR? such that
L? (E\Bg (a)) < 2\ (E) 7R? and by Lemma 1 (Per (E))? > 4r? (1 + %) R2. So by (18)

TR? (A (E))® < 4meR + €% < 20eR
and so (A (E))® < 10eR™!, thus A (E) < %/ for some constant co > 1 so
L? (ENBg(a)) > (1 —cov/e) TR (20)

Thus B 1, (x) NEN Bg(a) # 0 for any = € dBg (a), since otherwise we contradict (20).
co
On the other hand if for some x € dBg (a) we have B 1 (z)\Bg(a) C E then we have

CDEZR
L? (E\Bg (a)) > ”TC(Z)\/ER2 and together with (20) this implies L? (E) > 7 R? which contradicts
the definition of R. So let ¢; = ¢oR; for every © € dBpg (a) we have B ! () N E¢ # () and
c1
B (z) N E # (). Hence

1
c1e4

B 1 (z)NOE # 0 for any x € 9B (a). O (21)

ClE

Lemma 5. Let p > 1, ¢ > 1. Suppose u € WP (B (0)) N W4 (By (0)) satisfies properties
(4), (5). Let L® (u) be defined by (17).

There exists a small positive constant ¢ = ¢ (o) such that the following holds true:

If Lf (u) > 0 then for any b € B%z (0) we must be able to find a set By, C ($,%) such that

402
Lt ((%, %) \Eb) < % and for any R € Ey
/ @@ (Du (). 50 (2) ) di'z < ce. (22)

H~=1(0BRr(b))

If Lt (u) < 0 then for any b € B,z (0) we can find a set E, C (2e2,1 —e2) such that

Lt ((2e2, 1-— e2) \Eb) < cl\‘;; and for any R € Ey

/ d (DAU (2),S0 (2)) dH'z < ce. (23)
dBR(b)

Proof. First we will deal with the case were L¢ (u) > 0. Let b € B,2 (0).
8
Let

II= {r € (0, %) : Du is absolutely continuous on H ™! (0B, (b))} .
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By a version of Proposition 1 % we have L' ((0,%)\II) = 0. For any r € II let Du denote
the derivative of Du along H~! (9B, (b)). Note Dd err (H= (0B, (b))) and

2 P ro " AN L 1
D% ()| dL2z > o ‘Du (z)‘ dH'zdL'r (24)
H-1(Ba(b)) o Ju-108,0)

Since L® (u) > 0

/ d(Du(2),S0 (2) HYdL?: < / ed (Du (2), SO (2)) dL2=
B1(0) B1(0)

< / ¢(d(Du(z),K)+ o0 ")dL?z
B1(0)

< Teo ™l (25)
Let
e G )2}
and
Gy = {r € (% g) NI : / ‘D\ul (z)‘delz < \/Eelp} . (27)
H-1(8B,.(b))

Now we can define function ¥ : H~' (Bg (b)) — IR by
U (z) :=rif and only if z € H™ (0B, (b)).

It is easy to see |D¥| < 0~ !, so by the co-area formula

/ / d (D\u (), K) dH'zdL'r
re($,%)\G1 JH=1 (9B, (b))

7 (Du (z 22
S/Hl(Bg@) ID¥ (2)|d* (Du (=) . K) dL

g g
472

4)

< Crole.
So
1 ([0 O Cio~ 1!
A(CRINDE N (28)
In exactly the same way we have
1 ([0 O Cio~2
—, = < .
L ((4’2>\G2) = e (29)

Let px be the Holder conjugate of p, i.e. 1% + % = 1. Now for any r € G; N G2 NII we have

a /o~ p* —1 P
(a7 (Du(2),K)) Du' (2) (26),(27
/ +€P dH'z < 2vke (30)
H-1(8B,.(b)) p* p
By Young’s inequality this implies
q —~ —~
/ = (Du(z) ,K) ’Du (z)’ dH'z < 2v/%. (31)
H~1(0Br (b))

5This follows by almost exactly the same proof as Proposition 1, the only difference being we need to use the
co-area formula with respect to a function whose level sets are of the form H~! (9B, (b)) hence the Jacobean
of this function is equal to o~ 1
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Since r € Gy, (see (26)) we must have a point zg € H~! (0B, (b)) such that
d (m (x0),50 (2) J1) <c (\/Ee)% for some J; € {Id,H}. (32)

Step 1. We will show that for any » € Gy N Ga NI we have J; € {Id, H} such that
d (m (2),50 (2) Jl) <d (DAu (2), K) for all z € H= (8B, (b)).

Proof of Step 1. We know there exists o € H 1 (0B, (b)) such that (32) holds true. Let
Jo € {Id, H} \J2. If Step 1 is false we have a point x1 € H~1 (9B, (b)) such that

d (DAU (z1),50 (2) J2) <d (ﬁu (z1),50 (2) Jl) .

Recall we chose r > 0 so that Du is absolutely continuous on H~! (0B, (b)). Define g :
0,27) — R by g(8) := d (m (H (rei® + b)) ,K). Let W := {0 € (0,27] : g (6) > 0}, it is

easy to see g is absolutely continuous on W and |Dg (0)| < ¢ ‘m/ (H=! (re” + b))‘ for any
e W. Let dy :=d (SO (2),5S0(2) H).
Now sup,¢g,2r) 9 (2) > %‘), inf.cp,27) 9 (2) <2 (\/Ee)%, so there must be a subinterval I C
(0, 27r] with the following properties;
e letting a,b be the end points of I, |g (a) — g (b)| = %.
o inf{g(zx):xzel}> %‘), sup{g (z) : x € I} < do.

So
D= @90
= /Dg(m)dle
I
< ¢ / D (2)] . (33)
H~1(0B:(b))

Let J := {H ' (re® +b):0 € I}. We know d~ (m(m),K) > (%")’% for all z € J, so
/‘m/ (x)‘dp% (m(m),K) dH'z > <@> " / ‘D\u' (x)‘dHlx
J 8 J

a
(3>3) @ P* @
8 4c

by (31) assuming constant e is small enough we have a contradiction, thus Step 1 is proved.

Step 2. We will show there exists J; € {Id, H} such that for any r € G3 N G2 NII we have
d (m (2),50 (2) Jl) <d (DAu (2), K) for all » € H~' (9B, (b)). (34)
Proof of Step 2. Suppose not, so we can find r1,72 € G1 N G2 N1I such that
d (DAU (2), S0 (2)) <d (DAU (2), K) for all z € H~' (9B, (b))

nd
) d (f)& (2),50 (2) H) <d (ﬁu (2) ,K) for all z € H= (8B,, (b)).

Assume without loss of generality that r; < ro. Let

Wy = {z € H ' (8B,, (b)) : d (DAu (2), 50 (2)) < \/E\/E} (35)
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and let
Wa = {z e H-1(9B,, (b)) : d (D\u(z),SO 2) H) < \/E\E} . (36)
Since r1,7r2 € G1 (see definition (26)) we have that

H' (H7' (0B, (b)) \W1) Veye < / d (17u (2),S0 (2)) dH'z
H=1(8B,, (b))
< e
So
H' (H™ (0B, (b)) \W1) < Ve (37)
and in the same way
H' (H' (0B, (b)) \Wa) < Ve (38)

Let

F = ae[—arl,orl]:/ d? (D\u(z),K)dlegx/Ee
P—lj(a)mBl(o)

— P
Du' (z)‘ dH'z < \/ee' P

e

F,=qa¢€[-or,or]: /
P~ (a)NB1(0)
1

In exactly the same way as we established (28) and (29), by Fubini L ([—or1,0r1] \F1) < %
and L ([—ory,or1] \Fs) < % and note that for any a € F} N Fy we have

/ cdi* (Du(z), K) | D (2)| L'
P~ (a)NB1(0)

°1

— p
Du (2)‘ dL'z

g/ @ (Du(z), K) + e
P;_l(a)ﬂBl(O)
1

< Ve
where p* is the Holder exponent of p.
So by an identical argument to that of Step 1 we can show that for any x € F} N Fy
there exists J; € {Id, H} such that for J, € {Id,H}\ {J1} we have d (f)& (2),50(2) J1) <

d (m (2),50(2) Jg) for all z € P 1 By (0). However by (37), (38) L' (Pef (Wi N W2)) >

5+ so assuming C; is chosen small enough we have Pef_ (W1 NWse) N Fy N Fy # () which con-
tradicts the definition of Wy, W, see (36) and (35). This completes the proof Step 2.

Step 3. We complete the proof of Lemma 5 for the case L¢ (u) > 0.
Proof of Step 8. We need only show that in (34) we can take, J; = H for any r € G; NGy N 1L

Let A = U, cq,na,nn H ' (0B (b)).
So suppose not, then

/Adq (DZL(Z),S()@)) dL?z = /Adq (D\u(z),K) dL?2

(4)
< ce

Note that by (28), (29) and the co-area formula we have

L? (A) > oLt (G1 UGQ)

o2

> —.
- 16
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Now we can extract subset A C A such that sup {dq (Du(2),50(2)):z¢€ 1&} < 2¢e with the

property that L? (:&) > L22(A), but as dg >> ¢7 we have inf {d(Du (2),SO(2)H) : z € 1&} >

%0 and hence

/Jl(Du (2),50 (2) H)dL?z > 2=
A

and (assuming e is small enough) this contradicts (25). Now defining Ej, := G; N Go N 1T by
(28) and (29) this set satisfies all the properties of the statement. Hence the lemma is proved
for the case L® (u) < 0.

Step 4. We complete the proof of the case where L¢ (u) < 0.
Proof of Step 4. Arguing identically to the case where L° (u) > 0 we can show there exists a
set Ep C (2¢2,1 —¢?), J1 € {Id, H} such that L* ((2¢%,1 — ¢*) \E;) < 20\[C1 and
/ d? (m (2),50(2) Jl) dH'z < ce for each r € E,.
dB,.(b)
So the set U := {J,.cp, B (b) has the property

/ @@ (Du (2).50 (2).1) di'z < Cre. (39)
U

We claim J; = Id. Suppose not, assuming C; is small enough L? (B; (0) \U) < 5¢2. By Holder’s
inequality

/Ud(Du oI = (/U d* (Du(z), S0 (2) H) dL2z> %

Qe
—
N
(an)
=

< ceq.

Thus
/ d(Du(2), S0 (2) H) L2
B1(0)

g/d(Du(z),so (2) H) dL22+/ d(Du(2), K) + o~ 'dL2=
U B1(0)\U
w.w
< ce1i+o07 L% (B (0)\U)
< ce?. (41)

However since L¢ (u) < 0 this implies

/ d(Du(z),S80(2))dL?*z < ce. (42)
B1(0)

Let
D:={z € B (0): d(Du(z),S0(2)H) < Ve, and d(Du(z),50 (2)) < Ve},
so by (42), (41) L? (D) < 7 — ¢y/e however as d (SO (2),S0 (2) H) = do, D should be empty,

so this a contradiction. O

Lemma 6. Let p > 1, ¢ > 1. Suppose u € WP (By (0)) N W4 (By (0)) is a sense preserving
function for which sup,¢p, (o) || [Du ()] 7" || < C and u satisfies properties (4), (5). Let L* be
defined by (17) and let constant e = ¢ (o) be as in Lemma 5.
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If L* (u) > 0 then for any b € B,2 (0) there erists a set Yy, C (%, %) with L ((%, %) \yb) <
8
100 and for any r € Yy we have
L? (u (H™" (B, (b)) > 712 — cea. (43)
If L€ (u) < 0 then for any b € B,2 (0) there exists a set Y, C (2e2, %) with L ((2227 %) \yb) <
ﬁ and any r € Yy is such that
L2 (u(B, (b)) > 72 — ceu.
Proof. We will only argue the case L®(u) > 0, the argument for the case L°(u) < 0 is
identical.

Step 1. We will show that for any b € B, (0) there exists a set }, C (%,%) with
8
L' ((%,%)\Vs) < 135 such that for some A € SO (2)H there exists an affine function l4
with derivative A such that

[N

lu —Lall Lo (-1 (8B, (b)) < c\/Cre (44)

Proof of Step 1. Let Ep C (%, %) be the set defined in Lemma 5. Let
D= |J H'(9B. ().
reEN($,%)

Now by definition of Ej, see (22) we have

/dq(Du(z),SO(2)H)dL2z < a*l// d?(Du(z),S0 (2) H)dH"'zdL'r
D E, JH-1(8B(b))

< ce (45)
And let T := UTE(%,%) H=' (0B, (b)), we know
L*(T\D) < 50 'L ((% %) \Eb)
5C10’73
< T (46)

Now by Proposition A1 [11] there exists a constant U = U (T') and a function v : T'— IR? such
that || Dvl| () < U1000~! and

| Dv — Dul| pa(y |Du (x)|? dL?z. (47)

< C/
{ze€T:|Du(x)|>1000-1}

Now
|Du (z)|"dL?z < d? (Du(z),K)dL*x

2 [
AwET:Du(z)>lOOU‘1} {z€T:|Du(z)|>1000—1}

—~
INE

29¢. (48)
And
/ 4 (Dv(2),80 (2)H)dI2: <  cI(T\D)+ / 7 (Do (2), SO (2) H) dL2=
T D

(46),(47),(48)
< /dq(Du(z),SO(2)H)dL2z—|—ﬁ—l—ce
D Ve

w

- Ve
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For the case ¢ > 1 we can (after change of variables) apply Theorem 3 to conclude there
exists A € SO (2) H such that

(49)

C
Du(z) — AlYdr?z < &L,
[ Do) - apazzs < <2

For the case ¢ = 1 note
/ d*(Dv(z),SO(2)H) < c/ d(Dv (2),SO (2)H)
T T
CC1
< =
Y

and again we apply Theorem 3, so there exists A € SO (2) H such that

1

/T\Dv(z)—A\dLQZ < c(/TDv(z)—A|2dL22>2
< c@. (50)

Now by applying (47), (48) to (49), (50), for any ¢ > 1 we have

/ |Du (2) — A|7dL?z < ¢\/Cie™ 3.
T

By Poincaré’s inequality there exists and affine map [4 with Di4 = A such that

/ lu (2 (2)|7dL%z < ey/Cre 2.

So by the co-area formula there exists a set Y, C (%, %) such that L' (($,%)\Ws) < 135 such
that for each r € ), we have

/ lu(z) —la (z)|q+\Du(z)—A(z)|qu1z§0\/C1e_% (51)
H=1(8B,(b))

By the fundamental theorem of Calculus any r € ), satisfies (44) so this completes the proof
of Step 1.

-

Step 2. We will show we can find r; € (% {) N Y, such that
/ det (Du (2))dL?z = L (u (H™' (B, (b)) -
H=1 (B (1))

Proof of Step 2. Following ideas of [6] (Step 1 of the proof Proposition 2.2) we will use some
elements of degree theory.

Let ro € VpN (22, ‘2’) We consider the homotopy defined by H (z,t) = tu (z)+ (1 —t) 14 (x)

for t € [0,1], x € H~1 (B,, (b)). Note that for every t € [0,1], z — H(z,t) is C°. Also note
that for C; small enough by (44) we have

Ia (H—l (B% (b))) AH (OH (By, (b)) ,t) =0

for all t € [0,1]. So by Theorem 2.3 [12] we have that for any p € 4 (H ! (BTU (b))),
d(H(t,-),H (B, (b)) ,p) is independent of ¢. As det (A) =1 and we know
d(la(z),H " (B, (b),p) =1

this implies d (u, H~' (B, (b)) ,p) = 1 for any p € la (H_l (B%ﬂ (b)))
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Now since by Sobolev embedding v € W2 (B; (0)) and det (Du (x)) > C~2 for a.e. v €
Bj (0) by Theorem 5.32 [12] we know u satisfies the hypotheses to apply Remark 5.26 [12] and

so we know that for a.e. p € l4 (H_1 (B%a (b))) we have

d(u, H (B, (b)) ,p) = Z sgn (det (Du (2))) (52)
ze{yeH 1 (By,(b)):uly)=p}

and as det (Du (2)) = 1 this gives us that # {y € H™* (B, (b)) : u(y) =p} = 1 for a.e. p €
Ia (H*l (Bsa (b))).

Now take r; € (% —(6’
u (QH= (B, ( (BSU )) hence H (9H 1 (B,, (b)),t) C I (H 1 (BTU (b)))
for all ¢t € [0, 1]. So for p & la (H 1 (B% (b))) we know by Theorem 2.3 [12] the degree
d(H(t,-),H (B, (b),p) is independent of ¢ and so we know d (u, H ! (B, (b)),p) =0, by
(52) this implies that L? (u (H-Y (B, (b)) \la (H—l (BST” (b)))) —0.

Hence for a.c. p € u (H™* (By, (b)), since 1 < ro we have

1 #{ye H (B, (b)) :u(y) =p}

#{ye H " (B, (b)) :uly) =p}
1.

So by Remark 5.26 [12] we know d (u, H~* (B, (b)) ,y) = 1for a.e.y € u (H* (B,, (b))). Now
we can apply Theorem 5.35 [12], so

/ det (Du (2)) dL2
H=1(Bry (b))

) N, so again assuming C; is small enough from (44) we have

IN A

d(u, H (B, (b),y)dL?
Ly 20 (B O ) a2

= L*(u(H " (B, (b)))- (53)
This completes the proof of Step 2.

Let G := {2 € H ' (B,, (b)) : d(Du(z),K) <1} so by (4) we have L? (H~! (B, (b))\G) <
| z

ce. So for each z € G let A (z) € SO (2 )USO( ) H such that d (Du (z), K) = |Du(z) — A(2)|
/gdet (Du(z))dL?z = | det (A(z) + (Du2) — A= ))) dL?z
= [ det(A(2) +cof (4(2)): (Du(2) = A(2) + det (Du(z) ~ A(2) L2z
Yo (G) — cen

> 777“% — ce%
And since det (Du (z)) > 0 for a.e. z € By (0), this together with (53) clearly implies (43). O
4.3. Main Proposition.

Proposition 2. Let p,q > 1. Suppose u € WP (By (0)) N W7 (By (0)) is a sense preserving
function with sup,¢p, (o) || [Du ()] " || < C which satisfies inequalities (4), (5).
There exists small positive constant ¢ = ¢ (o) such that if we define L* (u) by (27) and define

O, by
O, = H if L (u) >0
T Id A L (u) <0

Then the function @ := u o O satisfies the following property.
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There exists constant ¢ = ¢ (o) > 0 such that for any b € B, (0) we can find Ry > 2¢;
with the property that for every 8 € (0,2x], {ag,bg} = {Xe’® +b: X >0} NOBg, (b), then

I (ag) — i (bg)| > 2 (1 - cei) R.. (54)

Proof.

We will argue the case L°(u) > 0, the case L° (u) < 0 can be dealt with in an identical
manner.

Now by Lemmas 5, 6 there exists A € SO (2) H and sets Yy, Ey, C (%, %) with

(($3)\WnB) < 5

12) W E) <5
such that for any r € Y, N Ep, (22) implies that Du is close to A in the dHLlaHfl(aBR(b)) norm,
and from (43) we have

L (u (H™" (B, (b)) = w12 — cen. (55)
Let & :=wuo H . Let Ry € Y, N Ey. So using Hélder for the last inequality

/831?,1 o d (EZ (Z),SO(2)) dH'z < C/H1(aBRl o) d (m (y) 0 H_l,SO(Q)) dH 'y

(22)
< ce%. (56)

Let K = KH™!, it is easy to see that by Holder’s inequality, from (4)
/ d (Da (2), f{) dL?z < cei. (57)
B4 (0)

Claim. We will show 4 (Bg, (b)) satisfies condition (18) of Lemma 2.
Proof of Claim. From (55) we know

L?(a(Bg, (b))

L? (u (H™" (Br, (b))
> wR} - ce. (58)

L? (@ (Bg, (b))

Now we know H' (i (9Bg, (1)) = [y, ) ‘Ez(z) .

> Ry — cei. (59)

dH"'z. So

|H" (@ (0Bg, (b)) —27Ry| < / ‘ﬁa(z) t,| —1dH'z
OBR, (b)
< / d (13?1 (2), S0 (2)) dH'z
9Br, (b)
(56) 4
< ceq. (60)

Now we can assume R; was chosen to be one of the radii for which we can apply Lemma 3,
so we know u (Bg, (b)) is a set of finite perimeter and so Per (u (Bg, (b))) < H* (u (0Bg, (b))).
So putting this together with (59) we have

T - 2

— ceq. (61)

Hence the set @ (Bg, (b)) has property (18) for ¢ = cet, which proves the claim.
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Let ag, bg be two antipodal points on 0Bg, (a), i.e. {ag,bg} = OBr, (a) N {(e?) +a}. Let
I'1, T2 be the connected components of dBg, (a)\ {as,bs}. Note @ (I'1) and @ (I'y) are the
connected components of & (9Bg, (a))\ {t (ag), @ (bg)}.

e p o JEGER®) | 1 _ ol

et Ry 1= \/ ————" 4 ceq, i.e. Ry > Ry (see (59)). Now by Lemma 4 for ¢ = cea
there exists a € IR?, such that OB, (a) has property (21). Let 1,2, ... Za,m be evenly spaced
points on OBg, (a) where |z — 2p41| € (1000618%,2000616%), see figure 3.

Recall that by Lemma 3 we know that 0w (Bg, (a)) C @ (0Bg, (a)). We start with x;, by
Lemma 2 we can pick z; € B 4 (x1) N4 (OBR, (a)), suppose without loss of generality that
c1

z1 € @ (). It will be clear in the forth coming argument that we must have
B 1 (zr)N@(Ty) =0 for some k € {2,3,...2m} (62)
c1
we will assume this is the case for the time being and come back to it later.
Let
1 :min{k €{2,3,...2m}: B 1 () Na(ly) = (Z)}
c1
and let
2 :max{k €{2,3,...2m}: B 3 () Na(ly) = (D}.
c1

4
Now any k € {¢1 + 1,...p2 — 1} has to be such that B gt (zr) N (T'1) = O since otherwise
c1

@ (T'1) would be dis-connected. Now let {21, 2, ... Z2,, } be a reordering of {z1,... 22, } where
Zk+1 is the clockwise nearest neighbour to Zj for each k € {1,2,...2m — 1} and Z1, 22,...2,, €
U (Fl), 2p1+1, Z9,...20m €U (FQ)

Let 0y denote the angle between zx and Zx1q for k = 1,2,...2m — 1 and 65, be the angle

. - - 1\ .
between za,, and z1. It is easy to see |2 — Zgy1| > 2 (R2 —ce 4q) sin %’C. Hence

p1—1

H'(a(Ty)) > Z‘gk_5k+1‘
k=1
p1—1

1 .

2 (Ry — cet i

( 5 — Ce )’;sm 5
p1—1

> R, (Z 9k> — cea. (63)
k=1

And we know from (56) H! (@ (I'1)) = fFl |Dii (z)t,|dH 'z < mRy + CE%, which implies

, (63) Pl
TRy +ceta > Ry (Z 9k>

k=1

Y

and hence as Rs > R; we have ZZ;I 0, <+ ceda.
Via exactly the same arguments it is clear (62) must be true, i.e. if (62) was false then

2m-1 L
M0, < T4 cea.

H' (@ (T'1)) would be too long. Also by the same argument we can show > ke

Since obviously 32 6 = 27 so we have

p1—1

Z 9k — T
k=1

Now Z1,2,, € N 1 (@ (9T')), without loss of generality we can assume z; € N i (t(ag))
and z,, € N_1 (@ (bg)). So as @(ag),u(bg) € N L (0BR, (a)) and as by (64) the angle

< cefa. (64)
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FIGURE 3

between them is within ce3 of m, thus |t (ag) — @ (bg)] > 2Re — ce®s. This completes the proof
of Proposition 2 in the case where L¢ (u) > 0.
In the case where L® (u) < 0 we know there exists R > 2¢; satisfying (23). We can then

L2(u(Br(b)) > Hl(auz(BR(b))) — cei then we can use

argue in exactly the same way to show
Lemma 4 to show antipodal points on 9Bg (b) are mapped to points distance R — ceta apart.
O

4.4. Proof of Theorem 1 continued. As in the proof of Proposition 2, we will concentrate
on the case where L (u) > 0.

By Proposition 2, % := u o H~! has the property that for every b € B, (0) there exists
Ry > 2¢; and a € IR? such that (54) holds true. As stated before, it is easy to see

/ d (Da (2), f{) dL?z < cei (65)
B, (0)

It is a calculation to see that for

b1 = (Vlr"2> and ¢y 1= (Vl_t‘” )

we have |H*1¢i’ = 1. Let

== {9 € (0,27] : ¥ = ( 'lf“2> for some a € (
VitaZ

)

Sl
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And 13 := ((¢") 4+ z) N Bg, (2). Let V, (z) := {l§ N B, (x) : 0 € 21} \Bg ().
Using the Fubini argument from Section 2.3 [6] we will show we can find b € V¢, (0) such
that

/ d (D (2), K )|z~ b dL?= < e, (66)
Bg (b)

we argue as follows, by Fubini Theorem we have

/ / d (Dﬂ (x), I~() |z —y| "t dL2xdL?y
1 (0) /Bg (b)
< / / d (Dﬂ (x) ,IN() |z —y| ' dL?zd L3y
¢1(0) /B4 (0)
= / d (Dﬂ (x) ,I?) / |z — y| " dLydL?x
B, (0) Ve, (0)

< C/BU(O) d (Da () f{) dL2z

Ce.

IA

Thus there must exists y € V., (0) such that (66) holds true. Note that for some constant
c2 = ¢2 () > 0 we have B, (0) C V¢, (b)
By Proposition 4 there exists Ry > 2¢q such that for any 8 € (0,2n], letting {ag,bg} =
((e?) +b) N OBg, (b) we have
3 (ag) — @ (bg)| > 2 (1 - et ) Ry. (67)
Let
B:={z € Bg, (b):d(Di(z),S0(2)H™ ") <d(Di(z),50(2))}. (68)
Now it is an exercise to see that there exists s, € (0,1) such that for any 6§ € Z; we have

|H='e"| < s,. We estimate that

i (ag) — 1 (bg)| < |Dii (z) €| dH' 2
lb

IA

seH' (1N B) + H' (I5\B) + /
1

d (Da (2), f() dH'z

- Hl(lg)—(l—sg)Hl(lgﬂB)+/

g

d (Da (), f() dH'z.  (69)
Now H' (1%) = |ag — bg| = 2Ry so putting (67), with (69) we have

2(1—ceﬁ)Rl§231—(1—50)H1(1303)+/

g

d (Dﬂ(z) f{) dH'z.

This implies

(1=s0) [ xaams< [

1 1

d (Da (2) ,f() dH'z + cei. (70)
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Since R; < & by the co-area argument of Section 2.3, Case 1 [6].

/ (1—s,)xB(2)|z—b""dL?z = / / (1—s5) x5 (2)dH 2dL'0
Vi, (b) =, Ji
(70) ~
< / / d (Da (2), K) dH'2dL'0 + ce™
=1 lg

< / d(Da(z),f() 2 — bt dL22 + cei
Br, (b)
(66) N
< ce+ceta.
As |z —b|7" > 1 for any z € Bg, (b), and since B, (0) C Vg, (b), this gives
L* (BN B, (0)) < ceta. (71)
So (recall definition (68))

/ d(Da(z),S0 (2))dL*z
Be, (0)

< / d (Da (2) f{) ALz + / d (Dﬂ (2) f{) o ldL?e
Be, (0\B Bey (0)NB

) .
< cea +0 L* (B, (0)NB)

(7_<1) ces (72)
Since d? (D (2), 50 (2)) < ¢ (d (Dii(2), S0 (2)) + d4 (Da (2), f()) we have

(65),(72) 1
/ 7 (Dii(2), 50 (2))dL2 < cets
B¢, (0)

Now in the case ¢ > 1 we can apply Theorem 3 so we have that there exists A € K such that
/ |Dii(z) — A|TdL*z < cei,
Be, (0)

which implies

/ |Du (2) — AH|"dL2% < ceia. (73)
Boey (0)

In the case ¢ = 1 we have to apply Proposition A1 of [11] which gives us a c¢-Lipschitz function
v such that
Dt — Dvl| 1B, (0)) < ce. (74)

So using Lipschitzness

/ i (Dv(2),80 (2)dL2: < c/ d(Dv(2), SO (2)) dL2=
B, (0) B¢, (0)

(74)
< c/ d(Dii (2), 50 (2)) dL2 + ce
Be, (0)

(72) 1
<  cet.

So applying Theorem 3 we have there exists R € SO (2) such that

Bl

—
\]
ot

=

/ |Dv (z) — R\% dL?z < cet.
B, (0)



THE SCALING OF THE TWO WELL PROBLEM 23

Thus using Holder’s inequality

(74)
/ \Dii (=) — R|dL?: < / Do (2) — R| AL + ce
Bea 0) By 0)

4
5

< c(/ |Dv(z)—R|%dL2z> + ce
Be, (0)

And this implies
/ |Du (2) — RH|dL?z < ce5.
By (0)

In the case where Lf (u) < 0 the argument is identical. O

5. PROOF OF THEOREM 2

With a view to later developments we will prove the following results in more generality than
is needed.

Definition 4. Forp>1,q¢>1,e > 1. We will say we have an (p,q,e) Liouville Theorem
for a function class in WP (B; (0)) N W24 (B; (0)) if there exists positive constants C; << 1
and Co >> 1 depending on p, g, o such that the inequalities

/ d? (Du(z),K)dL?*z < Cye, / |D%u (2)|" dL?z < C1e' 71
B1(0) B1(0)
imply that there exists J € {Id, H}, R € SO (2) such that

/ |Du (2) — RJ|P dL2z < Cye™s.
Bc, (0)

So in Theorem 1 we established a (p, ¢,4) Liouville Theorem for orientation preserving func-
tions in WP (By (0)) N W29 (By (0)) with the property sup,cp, o) Il [Du @) < C. In
Conjecture 1 we conjectured that an (optimal) (p, g, 1) Liouville Theorem holds for functions
in WP (By (0)) " W24 (B; (0)) and recall in [6] a (p,1,1) Liouville Theorem has been proved.

We have the following proposition.

Proposition 3. Let H = (] %), K =S0((2)USO(2)H. Letp € [1,2], ¢ > 1, e € [1,4].
Let B% be as defined in Theorem 2. Let A denote the space of sense preserving functions in
WP (Q1 (0))NW24(Q1 (0)) for which SUPge, (o) Il [Pu (z)]7' || < C. Define Fy, as in Theorem
2.
Suppose we have a (p,q,e) Liouville Theorem for A. Let A% denote the subset of functions
in A with affine boundary condition F' that are (-Lipschitz. Let 6 > 0 be a small number. Let
€[1,2], ifue A% is such that

I9 (u) < €34 (76)

then there exists a constant Cs = Cs (9, q,0,() such that for h = e%, letting u € B?; denote the
piecewise affine interpolant of u we have

Fn (’L~L

wlp

IN

Csh -9,

If e = 1 we have the stronger result Fo (@) < C3hs 0
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Proof. Let p € (1,2] be such that @ = ¢ we assume 0 is sufficiently small so that such

a p can be found. Let wy,ws € S* be two (non-equal) vectors such that wy, ws and w; —wo are
not in the set of rank-1 connections. We assume the triangulation A\ is composed of triangles
which (in pairs, see figure 4) form the parallelepipeds of the set

Q1 (0)\ ({ke%wg +(wi) ke Z} U {ke%wl +(ws) ke Z}) .

Let ¢ > 1 be some constant we will decided on later. Let {¢; : ¢ = 1,2,... No} be an ordering
of the points

1
pea
For each i € {1,2,... Ny} let v; : Q. (0) — IR? be defined by v; (2) :=u (ci + ze%) ¢ . Let
o = C! d? (Dv; (), K)dL*z
Q4 (0)
= ¢ aCy / d? (Du (z), K)dL?z. (77)
Q 1(ci)
ped
So note
No ND
Zeqaz = Cl_lz/ d? (Du (z), K)dL*z
i=1 i=17Q 1(c)
ped
(76) o
<  cedq (78)
Let

By = {z : / ’DQ’Ui (Z)’quQZ > C1agq} )
Q,(0)

Let M = Card (B;). Now there must exist subset E C Bj such that Card (E) > % with

the property that for every i € E we have o; < ¢/ ¢33 M~ since otherwise we have that the
set By := {z € By oy M > c’e?%z_%} is such that Card (Ey) > %

So
Y > C a(By) Setit
2 0 = Card(Ey) gre
1€ Fy
> i3
=z 26
which contradicts (78) for constant ¢’ large enough.
So
> [ ptuetdts = Y el
ies, 79 i€B1
—~ o _ 2 1-gq
> (C1Card <B1) (c'eﬁfﬁM*I)
> ce($i=3) 1= Carq (E) M1
> chg(%_%)(l_Q).
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Then
Z | D*u (y)|q617§dL2y > eM(F=7)0-0),
i€B1 7,
This implies e3a 1 > cMie (F-3)-0-143 so €31 1 > eM9e3a =5+ and thus
cediTa > M = Card (By). (79)

So if ¢ ¢ B; then by the fact we have an (p, g, e) Liouville Theorem (see Definition 4) there
exists A; € K such that (recall (77))

1
/ |Dv; (2) — As|P dL?2z < Coarf” . (80)
QC1<4>( )

1Let 7 > 0 be some small number we decide on later. We will show that if A > €er-T then
Aer < e TA. To see this note that

1 1
P =
Aer = Aer ™ A = T

A"er

Te ep—1 1
since A > eer-1 we know A er > e so Aer < e TA.
_Tep .
Let A = ee»-1. Now if a; € (0,A) then

/ |Dv; (2) — Ay|PdL?z < Cooif”
chw(o)

CoA "
= ChearT, (81)

Let By := {i:a; € (0,A)}. Let G := {1,2,...No}\ (B1 UBg). So for each i € G by (80)

there exists A; € K such that
1
/ |Dv; (2) — Ay|P dL?z o
QCN)(O)

Cgai

IN

< € 7Cr0q;. (82)
We assume ¢ has been chosen big enough so that diam (P;) < C““q forany i € {1,2,...No}.
Soif ,NQ. ., 1(cj)#0 then P; C QC 1 (¢y).
—5 €9 1p€ed
Let Z1 :=U;jcq @, 1 (ci). Let
=z €1

:ZXQ %Fz ( ) |[Du (x) — Ai\p.

ieG  Ciee
So

/Fl(m)szx - CZ/ D) AP e

i€G
Cl<peq

— Y / 1D (@) - A are
chp

e
(82) R
< ced Z e "oy
i€eG
(78)

o
ceda T,
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Let Z5 := UieB2 Qe 1 (¢i). Recall for each i € Bs there exists A; € K such that inequality
P €

(81) holds true.
Let

Y}) = {ke%wg +(wy): k€ Z} +twy, Y72 :i= {ke%wl + (wq) 1 k € Z} + tw;.

Let to be the smallest positive number such that Y = Yt}) and let t; be the smallest positive
number such that YZ = V2. Let L : Q; (0) — [0,%o] be such that L7 (s) = Y! N Q; (0) and
let Ly : Q1 (0) — [0,#1] be such that L;* (s) = Y2N Q1 (0). Tt is easy to see that |[DL;| < ¢
and |DLs| < ¢ so by the co-area formula we must be able to find o1, o2 such that

/ Fi(2)dH'z < ce et (83)
L

o)
and
/ Fy(z)dH"z < ce iedi . (84)
Ly (02)

Let {P;:¢=1,2,... N1} be an ordering of the set of (complete) parallelograms formed by
Q1 (0)\ (Yc,l1 U Yfl). Let

Vi={ie{l,2,...N1}: P,NZ1 £0}, Va={ie{1,2,...Ni}: P,N Zy # 0}, (85)
note that V3 N V5 # (). Now by (83) and (84) we know
Z/ Fy(2)dH"2 < ce ieda . (86)
A% op;

1 2

Now each parallelogram P; is composed of two triangles, denote them 7;,77. See figure 4.

i .
i b i
a 2 b,

a ai3 b3
w2

FIGURE 4

Let {at,a},a}} denote the corners of the 7} where [a},a}] C OP; and [a},a}] C OP; and
let {b},b%, b4} denote the corners of 72 where [bi,b4] C OP; and [bi,b5] C OP;. Now if i € V3
then P, C Q . 1 (cps)) for some p (i) ¢ ByUB; and Fy (z) > ’Du (x) — Ap(i)|p for all z € P;.

Ciped
See figure 5.
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Cp()
[¢]

FIGURE 5

cipe'd

Now

[(u (ad) - u (a)) — Ay (a} —ad)| < /{
_|_

o

Du(z)—Ap(i) ‘SGE }

[ada3]:

/{[ai,ag]: Du(z)—Ap) |>s% }

27

|Du (2) — Ay | dL' 2

|Du(2) — Apiy| dL' 2

. . (1—-p)a aé
< af - d €50 4 e Ba / |Du (2) — Ap(i)|p dL'z
aj
. . (1—-p)a as
< |a21—a12|6% e o / Fy(2)dH"z.
i

1

And in exactly the same way

(A-p)a

o (0h) = ) = Apgy (o — )| < [ a5 4“5 [y 2y
aj

Which implies

1 (d-po

< cedi 4 ce e B / Fy(2)dH'z,
oP;

‘Dﬂ i — Ap()

exactly the same inequality holds for 74.
So
1 (A-p)a

2
ZZ‘D@LT;—AP(Q e < 2Card(Vi)eiehi + Y ceve / Fy (z)dH"'z
oP;

i€Vy g=1 A%

—T

(86) (1-pa o
< CE 34 €3a

Now for i € Vo we know P; C QC 1 (¢p(s)) for some p (i) € By so (see (81))
1€

/ |.D’Uz (Z) - Ap(i) |p dL2Z § CQG(’«P%L
QC1<P(0)

(87)

(88)
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T a(p—1) . . . .
S0 €ep—1 = ealer—1) | 30 since v; is Lipschitz

Now let 7 = a(pt;l)

3
([ over- ) s
QC1<P(0)

Let [, be the affine function with l4,, (0) =v; (0), and Dla,, = Ap). Let g :=v; —la, ),
so ¢ (0) = 0 and so by Morrey’s inequality ([10] Section 4.5.3, Theorem 3) we have

1
3

A

sup g ()]

< ¢ (/ |Dg (z)3dL2z>
fEchlw(O) QCl“P(O)

a(p—1)
S ce3a(ep—1) |

e 1
Now recall u (x) = v; (Lf“’> ez for z € Py, so

€q

a(p—1)

sup {‘u (eéz + cp(i)) —la,. (6%2’)‘ 12 € Qcp (0)} < cededater1, (89)

Now take triangle 7}, note that

= [(u(a}) —u(a)) - (ZAW) (a2) — LAy (a1))]

1 _o(@-1)
< ceaqedaler—1)

al, —at al, —at a(p—1)
Dija | 22— | — A | —2—L || < ce3aler—1
L7; ’G,Z —a (%) ’az _ az| —=
2 — 01 2 — 01

In exactly the same way

. al —at al —at a(p—1)
PN (S R R (U S |
’ag_%’ ’ag—a1|

a(p—1)
< cedater=1 . Let K := N ae-n (K). So we have shown

D (ah = a}) = Ay (ah — a})

Thus

Thus |Du L'Q-l — Ap(z)

ce3alep—1)
Dii|;w € K, for every i € Vo,w =1,2. (90)
Now note that Q1 (0)\ (Z1 U Z3) = Q1 (0)\ (UieGuB2 Qe 1 (cz)> and note
7 €
L? <Q1 (0)\ ( U @Qc. 2 (c,»)>> < cCard(By)es
i€eGUB, ¢
(79) o
< cedq
So as
(85)
U P C Q1(0)\ ( U Q. (ci>>
i€{1,2,... N1 }\(V1UV2) i€EGUB> 2
S0

i€{1,2,... N1 }\(V1UV2)
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Hence
Nl 2 2 1
/ d(Du(z), K.)dL*z < cZZd(DuLTw,KG) €9 + ceq
Q1(0) i=1 w=1
2 2 2 2
S CZ Zd(DﬂLT;x!,KE) €a +CZ Zd(DﬂL'ri“’vKE) €q
i€V w=1 i€eVo w=1
+ > cL? (P;) + ce
iG{l,Q,...Nl}\(VlUVQ)
(88),(90),(91) -pa__ o
< ce 3q €34
4(l-pla  «
= ce 314 €34
< ce Peda,
Now in the case where e = 1, Kc = N _ o (K). So

/ d(Di(z),K)dL?z g/ d (Dt (z),K.)dL*z 4 ce?a
Q1(0)

Q1(0)
< ce V€3,
Now for e > 1, since e < 4 and p < 2, and recall % = % SO
p—1 )
€3alep—1) = g6a(ep—1)
< e
S
< €®4a,
Hence K. C N s (K). So
¢84g

€ 84q

/ d(Da(z),N ; (K))dLQchge—%%. 0
Q1(0)

Proof of Theorem 2.
To simplify details we will take = @1 (0). It will be clear that the proof works for any
bounded Lipschitz domain. Suppose

inf 7, (v) > Ahs. (92)

veBR
Let ¢ > 1. If for some ¢, there exists u € A% such that
I < et

1+3q8
= € 3q

Q=

let @« =1+ 3¢d. Now for ¢ > 1 by Theorem 1 we have an (p, ¢,4) Liouville theorem, so h = ¢
by Proposition 3 we have

Fu(d) < Cshiteo—3

IN

< Cshsth
which contradicts (92) for small enough h (depending on §, A, ¢, ¢ and (). So we have
established (8).

For the case ¢ = 1, suppose fveB,@ Fo (v) > AR3. Since from [6] we have an (p, 1, 1) Liouville

theorem. So let h = €, by Proposition 3 for h = ¢ we have F (1) < Cgh%+%, contradiction for
small enough h. So we have shown (9). O
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