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Abstract

We discuss how to obtain an implicit description of the closure of a

discrete exponential family with a finite set of equations derived from an

underlying oriented matroid. These equations are similar to the equations

used in algebraic statistics, although they need not be polynomial in the

general case. This framework allows us to study the possible support sets

of an exponential families with the help of oriented matroid theory. In

particular, if two exponential families induce the same oriented matroid,

then they have the same support sets.

1 Introduction

In this paper we study exponential families, which are well known statistical
models with many nice properties. Let E be an exponential family on a finite
set X , and E its closure. We want to describe the set

S :=
{

supp(P ) ⊆ X : P ∈ E
}

. (1)

of all possible support sets occurring in E .
The problem of determining the possible support sets in an exponential fam-

ily is a classical problem in statistics. It amounts to describing the boundary of
the most basic statistical models. This problem is related to characterizing the
marginal polytope, which can be used, for example, to study the existence or
non-existence of the MLE [EFRS06]. One can show that computing the support
sets of any exponential family is of the same complexity class as NP hard combi-
natorial problems such as the problem of finding maximal cuts in graphs, since
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it is known that the class of marginal polytopes contains the so-called cut poly-
topes (see [KWA09]). This means that there is no corresponding fast algorithm,
unless NP = co-NP [DL97]. Nevertheless, considering only certain subclasses
of exponential families, the situation may simplify so that explicit statements
about support sets become possible. For instance, one of the authors discusses
support sets of small cardinality in hierarchical models, a particular kind of
exponential families [Kah10]. In this paper we find a concise characterization
of the support sets in general exponential families with the help of oriented
matroids. We hope that this will allow for further theoretical results in this
direction.

Although slightly hidden, the connection to oriented matroid theory is very
natural. The starting point, and another focus of the presentation, is the implicit
description of exponential families for discrete random variables inspired by so
called Markov bases [GMS06]. It is described in Theorem 4. We study the—
not necessarily polynomial—equations that define the closure of the exponential
family and relate them to the oriented matroid of the sufficient statistics of the
model. In the case of a rational valued sufficient statistics, our observations
reduce to the fact that the non-negative real part of a toric variety is described
by a circuit ideal. We emphasize how the proof of this fact uses arguments from
oriented matroid theory.

This paper is organized as follows. In Section 2 we develop a theory of im-
plicit representations of exponential families which is analogue to and inspired
by algebraic statistics [GMS06]. In contrast to the toric case we do not require
the sufficient statistics to take integer values and thereby leave the realm of
commutative algebra. What remains is the theory of oriented matroids. We
discuss how answers to the support set problem look like in the language of
oriented matroids and discuss examples coming from cyclic polytopes. These
polytopes are well known in combinatorial convexity for their extremal prop-
erties, as stated, for instance, in the Upper Bound Theorem. In Section 3 we
discuss the basics of the theory of oriented matroids and reformulate statements
from Section 2 in this language, making the connection as clear as possible.

2 Exponential families

We assume a finite set X := {1, . . . ,m} and denote P(X ) the open simplex of
probability measures with full support on X . The closure of any set M ⊆ RX ,
in the standard topology of Rn, is denoted by M . Any vector n ∈ RX can
be decomposed into its positive and negative part n = n+ − n− via n+(x) :=
max(n(x), 0) and n−(x) := max(−n(x), 0). For any two vectors n, p ∈ RX we
define

pn :=
∏

x∈X

p(x)n(x), (2)

whenever this product is well defined (e.g. when n and p are both non-negative).
Let q be a positive measure on X with full support, and let A ∈ Rd×m be a

matrix of width m. We denote ax, x ∈ X , the columns of A. Then we have
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Definition 1. The exponential family associated to the reference measure q
and the matrix A is the set of probability measures

Eq,A :=

{

pθ ∈ P(X ) : pθ(x) =
q(x)

Zθ
exp

(

θT ax

)

, θ ∈ Rd

}

, (3)

where Zθ :=
∑

x∈X q(x) exp
(

θT ax

)

ensures normalization.
If q(x) = 1 for all x ∈ X , i.e. if q is the uniform measure on X , then the

corresponding exponential family is abbreviated with EA.

In the following we always assume that the matrix A has the vector (1, . . . , 1)
in its row span. This means that there exists a dual vector l1 ∈

(

Rd
)

∗ which
satisfies l1(ax) = 1 for all x ∈ X . There is no loss of generality in this assumption
as we can always add an additional row (1, . . . , 1) to A without changing the
exponential family.

Remark 2. The exponential family depends on A only through its row span L.
Different matrices with the same row span lead to different parametrizations of
the same exponential family. In the following it will be convenient to fix one
parametrization, hence we work with matrices A instead of vector spaces L.

The geometrical structure of the boundary of Eq,A is encoded in the polytope
of possible values that the map A : P(X ) → Rd, x 7→ Ax takes:

Definition 3. The convex support of Eq,A is the polytope

cs(Eq,A) := conv {ax : x ∈ X} . (4)

In the context of hierarchical models, the convex support is also called
marginal polytope.

We will see later that the faces of cs(Eq,A) are in a one-to-one correspondence
with the different support sets occurring in Eq,A. Even more is true: The
mapping A, restricted to Eq,A, defines a homeomorphism Eq,A

∼= cs(Eq,A) which
maps every probability measure p ∈ Eq,A into the face corresponding to its
support, see for example [BN78]. This homeomorphism is called the moment
map. One can use the properties of the moment map to prove Theorem 15 using
arguments from the theory of oriented matroids. This will be discussed in the
next section.

Note that the parametrization in (3) does not extend to the boundary. This
is one of the motivations to move on to an implicit description of the exponential
family. The next theorem shows how to obtain an implicit description from Eq,A

from the kernel of A. This gives a nice “duality” as the parametrization itself
is derived from the image of A.

Theorem 4. A distribution p is an element of the closure of Eq,A if and only
if all the equations

pn+

qn− = pn−qn+

, for all n ∈ ker A, (5)

hold for p.
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Remark 5. This theorem is a direct generalization of Theorem 3.2 in [GMS06].
There only the polynomial equations among (5) are studied under the additional
assumption that A has only integer entries. Moreover, only the uniform reference
measure was considered. However, the proof of the theorem generalizes without
any major problem. Actually, the proof of our theorem here needs one step less,
since we don’t need to show the reduction to the polynomial equations. The
different flavor of the results will be made more precise in Remark 13 later.

Our proof closely follows [GMS06]. In our presentation of the proof we want
to explicitly point out how matroid-type arguments are used, the first example
being Lemma 7.

Before giving the proof of Theorem 4 we first state a couple of auxiliary
results which are of independent interest. The matrix A and derived objects are
fixed for the rest of the considerations. A face of a polytope P is the intersection
of the polytope with an affine hyperplane H, such that all x ∈ P with x /∈ H
lie on one side of the hyperplane. Faces of maximal dimension are called facets.
It is a fundamental result that every polytope can equivalently be described as
a compact set defined by finitely many inequalities (i.e. facets), see [Zie94].

In particular we are interested in the face structure of cs(Eq,A). Since we
assumed that all columns of A lie in the affine hyperplane l1 = 1, we can
replace every affine hyperplane H by an equivalent central hyperplane (which
passes through the origin). This motivates the following

Definition 6. Let {ax : x ∈ X} be the vertex set of a polytope. A set F ⊆ X
is called facial if there exists a vector c ∈ Rd such that

cT ay = 0 ∀y ∈ F, cT az ≥ 1 ∀z /∈ F. (6)

Lemma 7. Fix a matrix A = (ax)x∈X ∈ Rd×m and a nonempty subset F ⊆ X .
Then we have:

• If F is facial then no non-zero non-negative linear combination of the ax,
x /∈ F , can be written as linear combination of the ax, x ∈ F .

• F is facial if and only if for any u ∈ ker A:

supp(u+) ⊆ F ⇔ supp(u−) ⊆ F. (7)

• If p is a solution to (5), then supp(p) is facial.

Proof. For the first statement, assume to the contrary that we can find α(x) ≥ 0
and β(x) not all zero such that u =

∑

x/∈F α(x)ax =
∑

x∈F β(x)ax, and let c be
as in (6). We have

0 ≤
∑

i/∈F

αi ≤
∑

i/∈F

αic
T ai = cT

(

∑

i/∈F

αiai

)

= cT

(

∑

i∈F

βiai

)

= 0,

whence αi = 0 for all i /∈ F . This also proves the first direction of the second
statement.
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The opposite direction is a bit more complicated and uses Farkas’ Lemma
(see for example [Zie94]): Let B ∈ Rl×d, and z ∈ Rl. Either there exists a point
in the polyhedron {x : Bx ≤ z}, or there exists a non-negative vector y ∈ Rl

≥

with yT B = 0 and yT z < 0, but not both. Assume that F ( X is nonempty
and satisfies (7) for all u ∈ ker A. Let B be the (|F | + m) × d matrix with
rows

{

aT
x : x ∈ F

}

,
{

−aT
x : x ∈ F

}

,
{

−aT
x , x /∈ F

}

, and z be the vector which
has entries zero in the first 2 |F | components and entries −1 in the last m−|F |.
Then a solution to Bx ≤ z provides a facial vector. Thus it remains to show that
each non-negative y = (y(1), y(2), y(3))T , decomposed according to the rows of
B, with yT B = 0 satisfies yT z ≥ 0. Assume that the columns of A are ordered
such that the columns with indices x ∈ F come first. Then y(3) must be zero as
otherwise (y(2) − y(1), y(3))T ∈ ker A would violate (7) by non-negativity of y.
But then yT z = 0 trivially.

The last statement follows immediately from the second statement.

Now we are ready for the proof of Theorem 4.

Proof of Theorem 4. The first thing to note is that it is enough to prove the
theorem when q(x) = 1 for all x. To see this note that p ∈ EA if and only if
λqp ∈ Eq,A, where λ > 0 is a normalizing constant, which does not appear in
equations (5) since they are homogeneous.

Denote ZA the set of solutions of (5). We first show that EA satisfies the
equations defining ZA. We plug in the parametrization to find

pu =
∏

x∈X

p(x)u(x) =
∏

x∈X

(

eθT ax

)u(x)

=
∏

x∈X

eθ(x)(Au)(x) =
∏

x∈X

eθ(x)(Av)(x) = pv.

(8)
Thus EA ⊆ ZA, and also EA ⊆ ZA = ZA.

Next, let p ∈ ZA \ EA. We construct a sequence pµ in EA that converges to
p as µ → −∞.

Consider the following system of equations in variables d = (d1, . . . , dn):

dT ax = log p(x) for all x ∈ supp(p). (9)

We claim that this linear system has a solution. Otherwise we can find numbers
v(x), x ∈ F , such that

∑

x v(x) log p(x) 6= 0 and
∑

x v(x)ax = 0. This leads to

the contradiction pv+

6= pv− .
Fix a vector c ∈ Rd with property (6) and for any µ ∈ R define

p(µ) := pµc+d =
(

eµcT a1edT a1 , . . . , eµcT amedT am

)

∈ EA.

By (6) it is clear that limµ→−∞ p(µ) = p. This proves the theorem.

We now see that the last statement of Lemma 7 can be generalized [GMS06,
Lemma A.2]:

Proposition 8. The following are equivalent for any set F ⊆ X :
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1. F is facial.

2. The uniform distribution 1
|F |1{F} of F lies in EA.

3. There is a vector with support F in EA.

According to Theorem 4, in order test whether p is an element of the closure
of Eq,A, we have to test all the equations (5). The next theorem shows that
it is actually enough to check finitely many equations. For this, we need the
following notion from matroid theory: A circuit vector of a matrix A is a nonzero
vector n ∈ Rm corresponding to a linear dependency

∑

x n(x)ax with inclusion
minimal support, i.e if n′ ∈ Rm satisfies supp(n′) ⊆ supp(n), then n′ = λn
for some λ ∈ R. Equivalently, n is an element of ker A with inclusion minimal
support.

A circuit is the support set of a circuit vector. The minimality condition
implies that the circuit determines its corresponding circuit vectors up to a
multiple. A circuit basis C contains one circuit vector for every circuit.1

If we replace n by a nonzero multiple of n then equation (5) is replaced by
an equation which is equivalent over the non-negative reals. This means that
all systems of equations corresponding to any circuit basis C are equivalent.

Theorem 9. Let Eq,A be an exponential family. Then Eq,A equals the set of all
probability distributions that satisfy

pc+

qc− = pc−qc+

for all c ∈ C, (10)

where C is a circuit basis of A.

The proof is based on the following two lemmas:

Lemma 10. For every vector n ∈ ker A there exists a sign-consistent circuit
vector c ∈ ker A, i.e. if c(x) 6= 0 then sgn c(x) = sgnn(x) for all x ∈ X .

Proof. Let c be a vector with inclusion-minimal support which is sign-consistent
with n and satisfies supp(c) ⊆ supp(n). If c is not a circuit, then there exists a
circuit c′ with supp(c′) ⊆ supp(c). Using a suitable linear combination c + αc′,
α ∈ R, we can obtain a contradiction to the minimality of c.

Lemma 11. Every vector n ∈ ker A is a finite sign-consistent sum of circuit
vectors n =

∑r
i=1 ci, i.e. if ci(x) 6= 0 then sgn ci(x) = sgnn(x) for all x ∈ X .

Proof. Use induction on the size of supp(n). In the induction step, use a sign-
consistent circuit, as in the last lemma, to reduce the support.

Proof of Theorem 9. Again, we can assume that q(x) = 1 for all x ∈ X . By
Theorem 4 it suffices to show: If p ∈ RX satisfies (10), then it also satisfies

pn+

= pn− for all n ∈ ker A. Write n =
∑r

i=1 ci as a sign-consistent sum of

1It is easy to see that a circuit basis of ker A spans ker A. However, in general the circuit
vectors are not linearly independent.
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circuits ci, as in the last lemma. Without loss of generality we can assume
ci ∈ C for all i. Then n+ =

∑r
i=1 c+

i and n− =
∑r

i=1 c−i . Hence p satisfies

pn+

− pn− = p
P

r−1
i=1 c+

i

(

pc+
1 − pc−1

)

+
(

p
P

r−1
i=1 c+

i − p
P

r−1
i=1 c−

i

)

pc−1 , (11)

so the theorem follows easily by induction.

The theorem implies that a finite number of equations is sufficient to de-
scribe Eq,A. The number of equations that are necessary is bounded from above
by the number of different support sets occurring in C.

Example 12. Consider the following sufficient statistics:

A =

(

1 1 1 1
−α 1 0 0

)

, (12)

where α /∈ {0, 1} is arbitrary. The kernel is then spanned by

v1 = (1, α,−1,−α)T and v2 = (1, α,−α,−1)T . (13)

These two generators correspond to the two relations

p(1)p(2)α = p(3)p(4)α, and p(1)p(2)α = p(3)αp(4). (14)

It follows immediately that

p(3)p(4)α = p(3)αp(4). (15)

If p(3)p(4) is not zero, then we conclude p(3) = p(4). However, on the boundary
this does not follow from equations (14): Possible solutions to these equations
are given by

pa = (0, a, 0, 1 − a) for 0 ≤ a < 1. (16)

However, pa does not lie in the closure of the exponential family EA, since all
members of EA do satisfy p(3) = p(4).

A circuit basis of A is given by the following vectors:

(0, 0, 1,−1)T p(3) = p(4), (17a)

(1, α, 0,−1 − α)T p(1)p(2)α = p(4)1+α, (17b)

(1, α,−1 − α, 0)T p(1)p(2)α = p(3)1+α. (17c)

Remark 13 (Relation to algebraic statistics). In the particular case where the
vector space ker A has a basis with integer components (for example, if A itself
has only integer entries), every circuit is proportional to a circuit with integer
components. In this case the corresponding equations (5) are polynomial, and
the theorem implies that EA is the non-negative real part of a projective variety,
i.e. the solution set of homogeneous polynomials. If we want to use the tools of
commutative algebra and algebraic geometry, then it turns out that circuits are
not the right object to consider: For example, proportional circuits only yield
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equivalent equations if we consider them over the non-negative reals, but we
may obtain a different solution set if we allow negative real solutions or complex
solutions, which may greatly increase the running time of many algorithms of
computational commutative algebra. Hence, if we want to use algebraic tools,
it is best to work with a Markov basis, which can be defined as a finite set of
kernel vectors such that the solution set over C of the corresponding equations
equals the Zariski closure of E , i.e. the smallest variety containing E .2 In this
algebraic setting, Theorem 4 remains valid if we replace “closure” by “Zariski
closure” and kerA by the integer kernel kerZ A. This fact was first noted in
[DS98].

In the algebraic case one can also look at the ideal (see [CLO08]) generated
by all polynomial equations induced by integer valued circuit vectors. This
ideal is called the circuit ideal. By what was said above this ideal is in general
smaller than the associated toric ideal, which contains the polynomial equations
induced by all integer valued kernel vectors. Circuit ideals have been studied
already in the seminal paper [ES96]. For further results illuminating their nice
relations to polyhedral geometry we refer to [BJT07].

Finding a Markov basis is in general a non-trivial task, see [HM09]. It seems
to be much easier to compute the circuits of a matrix. However, a minimal
Markov basis is usually much smaller than a circuit basis, and thus it is easier
to handle (but cf. the next remark). For experiments in this direction we recom-
mend the open source software package 4ti2 [4ti2] which can compute circuits
as well as Markov bases.

Remark 14. Using arguments from matroid theory the number of circuits can
be shown to be less or equal than

(

m
r+2

)

, where m = |X | is the size of the state
space and r is the dimension of the exponential family Eq,A, see [DSL04]. This
gives us an upper bound on the number of implicit equations which is necessary
to describe Eq,A. Note that

(

m
r+2

)

is usually much larger than the codimension
m− r− 1 of Eq,A in the probability simplex. In contrast to this, if we only want
to find an implicit description of all probability distributions of Eq,A, which
have full support, then m − r − 1 equations are enough: We can test p ∈ Eq,A

by checking whether log(p/q) lies in the column span of A. This amounts to
checking whether log(p/q) is orthogonal to kerA, which is equivalent to m−r−1
equations, once we have chosen a basis of ker A.

It turns out that even in the boundary the number of equations can be fur-
ther reduced: In general we do not need all circuits for the implicit description
of Eq,A. For instance, in Example 12, the equations 17b and 17c are equiv-
alent given 17a, i.e. we only need two of the three circuits to describe Eq,A.
Unfortunately we do not know how to find a minimal subset of circuits that
characterizes the closure of the exponential family. Of course, in the algebraic
case discussed in the previous remark this question is equivalent to determining
a minimal generating set of the circuit ideal among the circuits.

2It turns out that it is not so easy to find an example of a Markov basis which does not
consists of circuits. In [AT03], S. Aoki and A. Takemura give a model and a Markov basis
element which is not a circuit. Interestingly, the full Markov basis of this model is not known.
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Now we focus on the following problem: Given a set S ⊆ X , is there a
probability distribution p ∈ EA satisfying supp(p) = S? In other words, we
want to characterize the set

S(q, A) := {supp(p) : p ∈ Eq,A} ⊆ 2X . (18)

Proposition 8 gives the following characterization: A nonempty set S ⊆ X is
the support set of some distribution p ∈ Eq,A if and only if the following holds
for all circuit vectors n ∈ ker A:

• supp(n+) ⊆ S if and only if supp(n−) ⊆ S.

Obviously, this condition does not depend on the circuits themselves, but only
on the supports of their positive and negative part. In order to formalize this
observation, consider the map

sgn: n 7→ (supp(n+), supp(n−)),

which associates to each vector a pair of disjoint subsets of X . Such a pair of dis-
joint subsets shall be called a signed subset of X in the following. Alternatively,
signed subsets (A, B) can also be represented as sign vectors X ∈ {−1, 0,+1}X ,
where

X(x) =











+1, if x ∈ A,

−1, if x ∈ B,

0, else.

(19)

In this representation, sgn corresponds to the usual signum mapping extended
to vectors. As a slight abuse of notation, we don’t make a difference between
these two representations in the following.

The signed subset sgn(c) corresponding to a circuit c ∈ ker A shall be called
an oriented circuit. The set of all oriented circuits is denoted by

C(A) := ± sgn(C) = {sgn(c) : c ∈ C or c ∈ −C}, (20)

where C is a circuit basis of A.
We immediately have the following

Theorem 15. Let S be a nonempty subset of X . Then S ∈ S if and only if the
following holds for all signed circuits (A, B) ∈ C(A):

A ⊆ S ⇔ B ⊆ S. (21)

Corollary 16. If two matrices A1, A2 satisfy C(A1) = C(A2) then the possible
support sets of the corresponding exponential families Eq1,A1

and Eq2,A2
coincide.

According to remark 14, Theorem 15 gives us up to
(

m
r+2

)

conditions on the
support. Usually, some of these conditions are redundant, but it is not easy
to see a priori, which conditions are essential. Of course, a necessary condition
for a subset S of X to be a support set of a distribution contained in EA is
condition (21) restricted to pairs from a subset H ⊆ C(A). For example, one
can take H := sgn(B), where B is a finite subset of kerA, such as a basis.
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Example 17. Let’s continue Example 12. From the circuits we deduce the fol-
lowing implications:

p(3) 6= 0 ⇐⇒ p(4) 6= 0, (22a)

p(1) 6= 0 and p(2) 6= 0 ⇐⇒ p(4) 6= 0, (22b)

p(1) 6= 0 and p(2) 6= 0 ⇐⇒ p(3) 6= 0. (22c)

Again, as above, the last two implications are equivalent given the first.
From this it follows easily that the possible support sets in this example

are {1}, {2} and {1, 2, 3, 4}. From the spanning set (13) we only obtain the
implication

p(1) 6= 0 and p(2) 6= 0 ⇐⇒ p(3) 6= 0 and p(4) 6= 0. (23)

We conclude this section with two examples where a complete characteriza-
tion of the face lattice of the convex support and thus of the possible supports
is easily achievable.

Example 18 (Supports in the binary no-n-way interaction model). Consider the
binary hierarchical model [KWA09] whose simplicial complex is the boundary of
an n simplex. If n = 3, this model is called the no-3-way interaction model and
its Markov bases have been recognized to be arbitrarily complicated [LO06], so
we cannot hope to find an easy description of the oriented circuits. However,
if we restrict ourselves to binary variables x = (xi)

n
i=1 ∈ X := {0, 1}n

, the
structure is very simple. In this case the exponential family is of dimension
2n − 2, i.e. of codimension 1 in the simplex, so kerA is one dimensional. It is
spanned by the “parity function”:

e[n](x) :=

{

−1 if
∑n

i=1 xi is odd,

1 otherwise.
(24)

Using Theorem 15 we can easily describe the face lattice of the marginal polytope
(i.e. convex support) P (n−1): A set Y ( {0, 1}n

is a support set if and only if
it does not contain all configurations with even parity, or all configurations
with odd parity. It follows that P (n−1) is neighborly, i.e. the convex hull of any

⌊dim(P (n−1))
2 ⌋ = 2n−1 − 1 vertices is a face of the polytope. To see this, note

that no set of cardinality less than 2n−1 can contain all configurations with even
or odd parity. We can easily count the support sets by counting the non-faces
of the corresponding marginal polytope, i.e. all sets Y that contain either the
configurations with even parity, or the configurations with odd parity. Let sk

be the number of support sets of cardinality of k, i.e. the number of faces with
k vertices. It is given by:

sk =

(

2n

k

)

− 2

(

2n−1

k − 2n−1

)

, (25)

where
(

m
l

)

= 0 if l < 0. Since this polytope has only one affine dependency
(24) which includes all the vertices, we see that it is simplicial, i.e. all its faces
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are simplices. It follows that fk, the number of k-dimensional faces, is given by
fk = sk−1.

Altogether we have determined the face lattice of the polytope, which means
that we know the “combinatorial type” of the polytope. It turns out that the
face lattice of P (n−1) is isomorphic to the face lattice of the (2n−2)-dimensional
cyclic polytope with 2n vertices.

Next, we take a closer look at cyclic polytopes. Define the moment curve in
Rd by

x : R → Rd, t 7→ x (t) :=
(

t, t2, · · · , td
)T

. (26)

The d-dimensional cyclic polytope with n vertices is

C(d, n) := conv {x (t1), . . . ,x (tn)} , (27)

the convex hull of n > d distinct points (t1 < t2 < . . . < tn) on the moment
curve. The face lattice of a cyclic polytope can easily be described using Gale’s
evenness condition, see [Zie94]. The cyclic polytope is simplicial and neighborly,
i.e. the convex hull of any ⌊d

2⌋ vertices is a face of C(n, d), but even better, one
has

Theorem 19 (Upper Bound Theorem). If P is a d-dimensional polytope with
n = f0 vertices, then for every k it has at most as many k-dimensional faces as
the cyclic polytope C(d, n):

fk(P ) ≤ fk(C(d, n)), k = 0, . . . , d. (28)

If equality holds for some k with ⌊d
2⌋ ≤ k ≤ d then P is neighborly.

Theorem 19 was conjectured by Motzkin in 1957 and its proof has a long
and complicated history. The final result is due to McMullen [McM70].

The Upper Bound Theorem shows that the exponential families constructed
above have the largest number of support sets among all exponential families
with the same dimension and the same number of vertices. Finally, we consider
a cyclic polytope of dimension two which also gives an interesting exponential
family, answering the question for the exponential family of smallest dimension
containing all the vertices of the probability simplex. The construction is due
to [MA04].

Example 20. Let X = {1, . . . ,m} and consider the matrix A, whose columns are
the points on the 2-dimensional moment curve, augmented with row (1, . . . , 1):

A :=





1 1 1 . . . 1
1 2 3 . . . m
1 4 9 . . . m2



 . (29)

This matrix defines a two-dimensional exponential family. To approximate
an arbitrary extreme point δj of the probability simplex, consider the pa-
rameter vector θ = (j2,−2j, 1)T , giving rise to probability measures pβθ =
1
Z exp(−βθT A). Since θT Ai = (i − j)2, we get that limβ→∞ pβθ = δj .

Summarizing we see that cyclic polytopes, owing to their extremal proper-
ties, have something to offer not only for convex geometry, but also for statistics.
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3 Relations to Oriented Matroids

In this section the results from the previous section are related to the theory of
oriented matroids. The proofs in this section are only sketched, since the main
results of this work have already been proved directly. We refer to chapters 1
to 3 of [BVS+93] for a more detailed introduction to oriented matroids.

Let E be a finite set and C a non-empty collection of signed subsets of E
(see the previous section). For every signed set X = (X+, X−) of E we let
X := X+ ∪ X− denote the support of X. Furthermore, the opposite signed set
is −X = (X−, X+). Then the pair (E, C) is called an oriented matroid if the
following conditions are satisfied:

(C1) C = −C,

(C2) for all X, Y ∈ C, if X ⊆ Y , then X = Y or X = −Y , (incomparability)

(C3) for all X, Y ∈ C, X 6= −Y , and e ∈ X+ ∩ Y − there is a Z ∈ C such that
Z+ ⊆ (X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y −) \ {e}. (weak elimination)

In this case each element of C is called a signed circuit.
Note that to every oriented matroid (E, C) we have an associated unoriented

matroid (E,C), called the underlying matroid, where

C = {X+ ∪ X− = supp(X) : X ∈ C} (30)

is the set of circuits of (E,C). In this way oriented matroids can be considered
as ordinary matroids endowed with an additional structure, namely a circuit
orientation which assigns two opposite signed circuits ±X ∈ C to every circuit
X ∈ C.

The most important example of an oriented matroid here is the oriented
matroid of a matrix A ⊆ Rd×m. In this case let E = X = {1, . . . ,m}, and let

C =
{

(supp(n+), supp(n−) : n ∈ ker A has inclusion minimal support.
}

. (31)

This example is so important that oriented matroids which arise in this way are
given a name: An oriented matroid is called realizable if it is induced by some
matrix A.3

The only axiom which is not trivially fulfilled for this example is (C3). How-
ever, if we drop the minimality condition and let V = {(supp(n+), supp(n−) :
n ∈ ker A}, then it is easy to see that V satisfies (C3). Thus (E, C) satisfies
(C3) by the following proposition:

Proposition 21. Let V be a nonempty collection of signed subsets of E satisfy-
ing (C1) and (C3). Write Min(V) for the minimal elements of V (with respect
to inclusion of supports). Then

1. for any X ∈ V there is Y ∈ Min(V) such that Y + ⊆ X+ and Y − ⊆ X−.

3Note that this definition depends, in fact, only on the kernel of A, compare Remark 2
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2. Min(V) is the set of circuits of an oriented matroid.

Proof. [BVS+93], proposition 3.2.4.

This illustrates how (C2) corresponds to the minimality condition. It is
possible to define oriented matroids without this minimality condition using the
following construction:

For two signed subsets X,Y of E define the composition of X and Y as

(X ◦ Y )+ := X+ ∪ (Y + \ X−), (X ◦ Y )− := X− ∪ (Y − \ X+). (32)

Note that this operation is associative but not commutative in general. A
composition X ◦Y is conformal if X and Y are sign-consistent, i.e. X+ ∩Y − =
∅ = X− ∩ Y +.

An o.m. vector of an oriented matroid is any composition of an arbitrary
number of circuits.4 The set of o.m. vectors shall be denoted by V. If the
oriented matroid comes from a matrix A, then V equals the set V from above.

The above proposition implies easily that an oriented matroid can be defined
as a pair (E,V), where V is a collection of signed subsets satisfying (C1), (C3)
and

(V0) ∅ ∈ V,

(V2) for all X, Y ∈ V we have X ◦ Y ∈ V,

Note that in the realizable case linear combinations of vectors correspond to
composition of their sign vectors in the following sense:

sgn(n + ǫn′) = sgn(n) ◦ sgn(n′), for ǫ > 0 small enough. (33)

Now Lemmas 10 and 11 correspond to the following two lemmas

Lemma 10’. For every o.m. vector Y there exists a sign-consistent signed cir-
cuit X such that X ⊆ Y .

Lemma 11’. Any o.m. vector is a conformal composition of circuits.

To every matrix A we can associate a polytope which was called convex
support in the last section. Many properties of this polytope can be translated
into the language of oriented matroids. This yields constructions which also
make sense, if the oriented matroid is not realizable. In order to make this
more precise, we need the notion of the dual oriented matroid. The general
construction of the dual of an oriented matroid is beyond the scope of this
work. Here, we only state the definition for realizable oriented matroids.

In the following we assume that the matrix A has the constant vector
(1, . . . , 1) in its rowspace. This means that all the column vectors ax lie in
a hyperplane l1 = 1. In the general case, this can always be achieved by adding

4In [BVS+93], o.m. vectors are simply called vectors. The name “o.m. vector” has been
proposed by F. Matúš to avoid confusion.
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another dimension. Technically we require that the face lattice of the polytope
spanned by the columns of A is combinatorially equivalent to the face lattice of
the cone over the columns. See also the remarks before Definition 6.

For every dual vector l ∈ (Rd)∗ let N+
l := {x ∈ X : l(ax) > 0} and N−

l :=
{x ∈ X : l(ax) < 0}. This way we can associate a signed subset sgn∗(l) :=
(N+

l , N−
l ) with l. The signed subset sgn∗(l) is called a covector. Let L be

the set of all covectors. If the signed subset (N+
l , N−

l ) has minimal support
(i.e. “many” vectors ax lie on the hyperplane l = 0), then l is called a cocircuit
vector, and sgn∗(l) is called a signed cocircuit. The collection of all signed
cocircuits shall be denoted by C∗.

Lemma 22. Let (E, C) be an oriented matroid induced by a matrix A. Then
(E, C∗) is an oriented matroid, called the dual oriented matroid.

Proof. See section 3.4 of [BVS+93].

Note that the faces of the polytope correspond to hyperplanes such that all
vertices lie on one side of this hyperplane, compare Definition 6. Thus the faces
of the polytope are in a one-to-one relation with the positive covectors, i.e. the
covectors X = (X+, X−) such that X− = ∅. The face lattice of the polytope
can be reconstructed by partially ordering the positive covectors by inclusion
of their supports; however, the relation needs to be inverted: Covectors with
small support correspond to faces which contain many vertices. The empty
face (which is induced, for example, by the dual vector l1 which defines the
hyperplane containing all ax) corresponds to the covector T := (X , ∅).

We can apply these remarks to all abstract oriented matroids such that
T = (X , ∅) is a covector. Such an oriented matroid is usually called acyclic.
Thus a face of an acyclic oriented matroid is any positive covector. A vertex
is a maximal positive covector X in L \ {T}, i.e. if X ⊆ Y for some positive
covector Y ∈ L \ {X}, then Y = T .

In this setting we have the following result, which clearly corresponds to the
second statement of 7:

Proposition 23 (Las Vergnas). Let (E, C) be an acyclic oriented matroid. For
any subset F ⊆ E the following are equivalent:

• F is a face of the oriented matroid.

• For every signed circuit X ∈ C, if X+ ⊆ F then X− ⊆ F .

Proof. The proof of Proposition 9.1.2 in [BVS+93] applies (note that the state-
ment of Proposition 9.1.2 includes an additional assumption which is never used
in the proof).

With the help of the moment map defined in the previous section, this
proposition can be used to easily derive Theorem 15: By the properties of the
moment map, every face of the convex support corresponds to a possible support
set of an exponential family, and the proposition links this to the signed circuits
of the corresponding oriented matroid.

Finally, Corollary 16 can be rewritten as
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Corollary 16’. The possible support sets of two exponential families coincide
if they have the same oriented matroids.

Unfortunately, this correspondence is not one-to-one: Different oriented ma-
troids can yield the same face lattice, i.e. combinatorially equivalent polytopes.
A simple example is given by a regular and a non-regular octahedron as de-
scribed in [Zie94]. The special case has a name: an oriented matroid is rigid, if
its positive covectors (i.e. its face lattice) determine all covectors (i.e. the whole
oriented matroid). Still, Corollary 16’ implies that the instruments of the theory
of oriented matroids should suffice to describe the support sets of an exponential
family.

Remark 24 (Importance of Duality). There are mainly two reasons why the
theory of oriented matroids (as well as the theory of ordinary matroids) is
considered important. First, it yields an abstract framework which allows to
describe a multitude of different combinatorial questions in a unified manner.
This, of course, does not in itself lead to any new theorem. The second reason
is that the theory provides the important tool of matroid duality.

It turns out that the dual of a realizable matroid is again realizable: If A is
a matrix representing an oriented matroid (E, C), then any matrix A∗ such that
the rows of A∗ span the orthogonal complement of the row span of A represents
the oriented matroid (E, C∗).

To motivate the importance of this construction we sketch its implications
for the case that the oriented matroid comes from a polytope. In this case
the duality is known under the name Gale transform [Zie94, Chapter 6]. A d-
dimensional polytope with N vertices can be represented by N vectors in Rd+1

lying in a hyperplane. These vectors form a (d + 1)×N -matrix A. Now we can
find an (N − d− 1)×N -matrix A∗ as above, so the dual matroid is represented
by a configuration of N vectors in RN−d−1. This means that this construction
allows us to obtain a lowdimensional image of a highdimensional polytope, as
long as the number of vertices is not much larger than the dimension. This
method has been used for example in [Stu88] in order to construct polytopes
with quite unintuitive properties, leading to the rejection of some conjectures.
Furthermore, oriented matroid duality makes it possible to classify polytopes
with “few vertices” by classifying vector configurations.

The notion of dimension generalizes to arbitrary oriented matroids (and
ordinary matroids). In the general setting one usually talks about the rank of
a matroid, which is defined as the maximal cardinality of a subset E ⊆ F such
that E contains no support of a signed circuit. In this sense duality exchanges
examples of high rank and low rank, where “high” and “low” is relative to |E|.
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