Boundary layer energies for nonconvex discrete systems

by

Lucia Scardia, Anja Schlömerkemper, and Chiara Zanini

Preprint no.: 4 2009
Boundary layer energies for nonconvex discrete systems

Lucia Scardia, Anja Schlömerkemper and Chiara Zanini

January 8, 2009

Abstract

In this work we consider a one-dimensional chain of atoms which interact through nearest and next-to-nearest neighbour interactions of Lennard-Jones type. We impose Dirichlet boundary conditions and in addition prescribe the deformation of the second and last but one atoms of the chain. This corresponds to prescribing the slope at the boundary of the discrete setting. We compute the Γ-limits of zero and first order, where the latter leads to the occurrence of boundary layer contributions to the energy. These contributions depend on whether the chain behaves elastically close to the boundary or whether there is a crack. This in turn depends on the given boundary data. We also analyse the location of fracture in dependence on the prescribed discrete slopes.

1 Introduction

Devices in engineering become smaller and smaller. The applicability of classical continuum theories reaches its limit in the modelling of the physical properties of such devices. On the other hand purely atomistic models are often still too complex to handle. To capture discreteness effects and still to be able to model and analyse physical properties, we start from a discrete system and derive its continuum limit. This approach is by now established in the literature and has been successfully applied to different settings. Moreover, there are mathematically rigorous derivations of discrete-to-continuum limits; see e.g. [BG06, BT08, BL05, Sch06] in the context of elasticity, [BC07, BDMG99] for fracture mechanics and [Sch05, SS08] for magnetic materials.

In this work we focus on a model that describes fracture. The first important work on a discrete-to-continuum derivation in this area is Truskinovsky’s article [Tru96]. Truskinovsky’s approach consists of starting from a one-dimensional chain of atoms which interact by Lennard-Jones potentials and to scale the strain in the region close to a crack differently than the strain in the region far away from the crack. This yields a continuum theory which contains a small parameter with the scale of length, which is thus able to reflect the fact that fracture is a size-dependent phenomenon. Truskinovsky obtains a bulk energy as well as a contribution due to the crack. The latter energy contribution depends on the crack opening and is formulated in the sense of Barenblatt [Bar62].
In [BDMG99] Braides, Dal Maso and Garroni made Truskinovsky’s work mathematically rigorous by using Γ-convergence methods (see [Bra02] and [DM93] for a comprehensive introduction to Γ-convergence). While Braides, Dal Maso and Garroni assume different scaling behaviour of the Lennard-Jones potential in the convex and concave regions, respectively, we follow Braides and Cicalese [BC07] and derive an asymptotic expansion for the limiting continuum energy up to the first order via Γ-convergence.

As in [BC07] we consider next-to-nearest neighbour interactions in addition to the nearest neighbour interactions between the atoms in the energy functional (see also [CT02]). This leads to boundary layer contributions to the limit energy and thus allows to describe fracture, as will be extensively shown in this article. Throughout we assume that the interaction potentials between nearest and next-to-nearest neighbouring atoms are of Lennard-Jones type. See Figure 1 for an example of a Lennard-Jones potential, and see below for details. Note that our class of Lennard-Jones type potentials also contains typical other interaction potentials of physical relevance, such as Morse potentials or double Yukawa potentials, see Remark 4.1.

Since we deal with nearest and next-to-nearest neighbour interactions, we impose Dirichlet boundary conditions (corresponding to a hard device) not only at the endpoints of the chain, as in [BC07], but also at the second and last but one atoms, in agreement with [CT02]. We notice that this further constraint can be equivalently interpreted as prescribing the discrete slopes at the boundary of the chain.

It turns out that the Γ-limit of our discrete energy yields a bulk energy, cf. Theorem 3.1. The bulk energy density is the convexification of a potential, J_0, obtained by combining the Lennard-Jones type potentials between consecutive atoms and between next-to-nearest neighbour atoms through an inf-convolution, cf. (3.3) for details. In order to capture boundary layer contributions, we then compute the first-order Γ-limit in Section 4. We distinguish the cases of elasticity ($\ell \leq \gamma$, Subsection 4.1) and the case of the occurrence of fracture ($\ell > \gamma$, Subsection 4.2), which depend

![Figure 1: A typical example of a Lennard-Jones potential.](image-url)
on the parameter of the boundary value ℓ, and on the minimum point γ of the potential J_0.

Therefore our results for the first-order Γ-limit depend on the Dirichlet boundary condition, i.e., on whether $\ell > \gamma$ or not, cf. Theorems 4.3 and 4.8. In other words, the limiting functional is not uniform in ℓ. One of our future goals is to find an energy functional which is uniform in ℓ in the sense of Braides and Truskinovsky [BT08]. Moreover, the limiting functional contains an explicit dependence on the boundary slopes, so that it reduces to the energy functional obtained in [BC07] only for special choices of these values. We point out that the presence of these additional parameters in the boundary layer energy allows us to describe a wider range of possible limiting behaviours for the discrete chain. In particular it turns out that prescribing appropriate discrete slopes at the boundary yields a continuum model which allows for internal cracks for minimal energy configurations, cf. Theorem 5.3. On the contrary, fixing only the first and last boundary atoms leads to a location of fracture at the boundary always, as shown in [BC07, Theorem 5.9].

This is of particular interest having in mind as application the derivation of a model of cracks using the quasicontinuum method. This method was developed to combine advantages of continuum as well as of discrete descriptions (see [KO01, MTPO98, SMT+98]). The idea is to use the continuum description away from the crack tip and to model the neighbourhood of a crack tip by an atomistic model.

A first step to verify earlier works mathematically was done by Blanc, Le Bris and Legoll [BLBL05]. They consider nearest neighbour interactions, introduce an artificial scaling in the continuum energy in terms of the lattice parameter in order to avoid an unnatural behaviour of the system, and they compute a pointwise limit of the energy functional. Instead of dealing with this modified energy we intend to consider the expansion obtained in the present work by Γ-convergence methods since this contains the lattice parameter naturally.

We finally observe that, as in most of the related mathematical literature we consider a one-dimensional model. This is of course a drawback since we head for a model of fracture in three-dimensional materials, but for now it is not clear how to overcome the related mathematical difficulties. However we hope that this one-dimensional model case will contribute to a better understanding of three-dimensional fracture mechanics. Moreover the one-dimensional model can be regarded as a model for trusses or a model for cleavage. In the latter case, the material breaks along crystalline planes so that a model describing cleavage can be reduced to a one-dimensional one by symmetry, cf. [BLO06, NO02].

2 Setting of the problem

The discrete model which we take as the starting point for the derivation of a continuum energy functional describing the occurrence of fracture is as follows, We start from a one-dimensional chain of $n + 1$ atoms in $[0, 1]$ and consider the limit as $n \to \infty$. For convenience we often set $\lambda_n = \frac{1}{n}$. The deformation from the reference configuration is a function $u : \lambda_n \mathbb{Z} \cap [0, 1] \to \mathbb{R}$, and u^i is shorthand for $u(i\lambda_n)$. Note that for a function $v : \mathbb{Z} \to \mathbb{R}$ we write $v^i = v(i)$ as shorthand.

The Lennard-Jones type potentials J_1 and J_2 describe the interactions between nearest neighbours and next-to-nearest neighbours, respectively. Exact assumptions for both potentials are given in Theorem 3.1 and in [H1]–[H5] below. The discrete energy reads

$$H_n(u) = \sum_{i=0}^{n-1} \lambda_n J_1 \left(\frac{u^{i+1} - u^i}{\lambda_n} \right) + \sum_{i=0}^{n-2} \lambda_n J_2 \left(\frac{u^{i+2} - u^i}{2\lambda_n} \right) \quad (2.1)$$
and is defined on $A_n(0,1)$, the set of all functions $u : \lambda_n \mathbb{Z} \cap [0,1] \to \mathbb{R}$, which we identify with their piecewise affine interpolations. Thus

$$A_n(0,1) = \{ u : [0,1] \to \mathbb{R} : u(t) \text{ is affine for } t \in (i,i+1)\lambda_n, \ i \in \{0,\ldots,n-1\} \}.$$

As in [BC07] we impose Dirichlet boundary conditions on the first and last atoms. In addition we also fix the second and last but one atoms of the one-dimensional chain of atoms under consideration. That is, for given ℓ, $u^{(1)}_0 > 0$, $u^{(1)}_1 > 0$ we set

$$u(0) = u^0 = 0, \quad u(1) = u^n = \ell,$$

$$u(\lambda_n) = u^1 = \lambda_n u^{(1)}_0, \quad u(1 - \lambda_n) = u^{n-1} = \ell - \lambda_n u^{(1)}_1. \quad (2.2)$$

Note that it is natural to have four boundary conditions in the case of next-to-nearest neighbour interactions, cf. e.g. [CT02, CT08]. Since in nature cracks also occur in the interior of materials, we head for a model that allows for a location of cracks in the interior. By imposing conditions on the first and second as well as on the last and last but one atoms we obtain a model which allows to have fracture in the interior in special cases, see Theorem 5.3.

Remark 2.1. We notice that prescribing the discrete boundary slope does not translate in the continuum picture into prescribing the slope at 0 and 1. On the other hand, its effect is a penalisation in terms of the energy, described by new boundary layer energies with respect to [BC07], cf. (4.11), (4.12) and (4.25), (4.26).

Since we require physical configurations u to satisfy the boundary conditions, we incorporate the boundary conditions in the definition of the functional. For given ℓ, $u^{(1)}_0$, $u^{(1)}_1 > 0$ we consider the functional $H^\ell_n : A_n(0,1) \to (-\infty, +\infty]$ defined by

$$H^\ell_n(u) = \begin{cases} H_n(u) & \text{if } u^0 = 0, \ u^1 = \lambda_n u^{(1)}_0, \ u^{n-1} = \ell - \lambda_n u^{(1)}_1, \ u^n = \ell, \\ +\infty & \text{else.} \end{cases} \quad (2.3)$$

It turns out that the zero and first-order Γ-limits of this functional depend on ℓ (cf. Theorems 3.1, 4.3 and 4.8 below). For this reason we make the ℓ-dependence also visible in the notation of the energy in the discrete setting.

3 Zero-order Γ-limit of the discrete energy

The zero-order Γ-limit is the same as the Γ-limit of the discrete energy in (2.3) and yields the bulk contribution of the energy. We derive the Γ-limit in Theorem 3.1, which is based on [BG04, Theorem 3.2] and [BC07, Theorem 4.2]. The bulk energy density identifying the limiting functional is a convexification of a potential that is obtained by combining the nearest neighbour and next-to-nearest neighbour interaction potentials. The combination of the potentials is done by an inf-convolution, see (3.3).

For given $\ell > 0$ we denote by $BV^\ell(0,1)$ the space of functions u with bounded variation defined on $(0,1)$ and satisfying the Dirichlet boundary conditions $u(0+) = 0$ and $u(1-) = \ell$. The space of special functions with bounded variation $SBV^\ell(0,1)$ is defined correspondingly. Moreover, for a function $u \in BV^\ell(0,1)$ (or in $SBV^\ell(0,1)$) we denote by S_u the jump set of u, and for $t \in S_u$ we set $[u(t)] = u(t+) - u(t-)$.

4
Theorem 3.1. Let $J_j : \mathbb{R} \to (-\infty, +\infty]$ be Borel functions bounded from below, for $j = 1, 2$. Suppose that there exists a convex function $\Psi : \mathbb{R} \to [0, +\infty]$ such that

$$\lim_{z \to -\infty} \frac{\Psi(z)}{|z|} = +\infty$$

and there exist constants $c_1^j, c_2^j > 0$ for $j = 1, 2$ such that

$$c_1^j (\Psi(z) - 1) \leq J_j(z) \leq c_2^j \max\{\Psi(z), |z|\} \text{ for all } z \in \mathbb{R}, \ j = 1, 2. \quad (3.2)$$

Let $\ell, u_0^{(1)}, u_1^{(1)} > 0$. Then the Γ-limit of H_n^ℓ with respect to the L^1-topology is the functional H^ℓ defined by

$$H^\ell(u) = \begin{cases} \int_0^1 J_0^*(u'(t)) \, dt & \text{if } u \in BV^\ell(0,1), [u] > 0 \text{ on } S_u, \\ +\infty & \text{otherwise} \end{cases}$$

on $L^1(0,1)$. Here J^*_0 denotes the convexification of the function

$$J_0(z) = J_2(z) + \frac{1}{2} \inf \{J_1(z_1) + J_1(z_2) : z_1 + z_2 = 2z\} \quad (3.3)$$

defined for all $z \in \mathbb{R}$.

Proof. Compactness. For fixed $u_0^{(1)}, u_1^{(1)} > 0$, let (u_n) be a sequence with equibounded energy H^ℓ_n. By [BG04, Theorem 1.2, Theorem 3.2] we have that $u_n \in BV^\ell(0,1)$ and that there exists $u \in BV(0,1)$ such that u_n converges weakly to u in $BV(0,1)$. It remains to verify that the limit function u satisfies the boundary conditions in 0 and in 1. Since $u_0^0 = 0$ and $u_n^* = \ell$ for every n, we can define the extension $\tilde{u}_n \in BV_{loc}(\mathbb{R})$ as

$$\tilde{u}_n^i = \begin{cases} 0 & \text{if } i \leq 0, \\ u_n^i & \text{if } 0 \leq i \leq n, \\ \ell & \text{if } i \geq n. \end{cases}$$

Then we have that \tilde{u}_n converges weakly in $BV_{loc}(\mathbb{R})$ to the extension \tilde{u} of u and from this we deduce that

$$u(0-) = \lim_{t \to 0^-} \tilde{u}(t) = 0 \quad \text{and} \quad u(1+) = \lim_{t \to 1^+} \tilde{u}(t) = \ell.$$

Limsup inequality. It can be proved in the same way as in [BG04, Theorem 3.2].

Liminf inequality. Let $u \in BV^\ell(0,1)$, with $[u] > 0$. Then [BG04, Theorem 3.2] provides a recovery sequence (u_n) which does not satisfy the Dirichlet boundary conditions (2.2). Therefore we define the sequence \tilde{u}_n as the affine interpolation of the following discrete values

$$\hat{u}_n^i = \begin{cases} 0 & \text{if } i = 0, \\ \lambda_n u_0^{(1)} & \text{if } i = 1, \\ u_n^i & \text{if } 2 \leq i \leq n - 2, \\ \ell - \lambda_n u_1^{(1)} & \text{if } i = n - 1, \\ \ell & \text{if } i = n. \end{cases}$$

Clearly \tilde{u}_n converges to u, since we modify the recovery sequence only at a microscopic level. Moreover the change in the energy is of order λ_n, therefore \tilde{u}_n is a recovery sequence for u. \qed

\[5\]
4 First-order Γ-limit of the discrete energy

In order to obtain a continuum energy functional that contains boundary layer energies we are interested in the first-order Γ-limit of $H_{\ell,n}^\ell$. That is, we compute the Γ-limit of the functional $H_{\ell,n}^\ell$ defined by

$$H_{\ell,n}^\ell(u) = \frac{H_\ell^\ell(u) - \min_{\lambda} H_\ell^\lambda}{\lambda_n}.$$

With respect to deriving an asymptotic expansion of the limiting functional of $H_{\ell,n}^\ell$ in terms of λ_n, we remark that the first-order Γ-limit yields the second term of such an (formal) expansion, i.e., the term of order λ_n. More precisely, the minimisers of the first-order Γ-limit are the second term of an asymptotic expansion of the minimisers of the original functional in terms of λ_n, see [AB93].

First of all we state the assumptions on J_1, J_2 and J_0 under which the convergence result is obtained.

[H1] (strict convexity of J_0).

$$\{ z : J_0(z) = J_0^{**}(z) \} \cap \{ z : J_0(z) \text{ affine} \} = \emptyset.$$

[H2] (uniqueness of minimal energy configurations).

$$\#M^z = 1 \quad \text{for every } z \in \mathbb{R} : J_0(z) = J_0^{**}(z),$$

where the set M^z describes the minimising pairs for J_1, i.e.,

$$M^z = \left\{ (z_1, z_2) : z_1 + z_2 = 2z, J_0(z) = J_2(z) + \frac{1}{2} (J_1(z_1) + J_1(z_2)) \right\}.$$

(4.2)

Thus $M^z = \{(z, z)\}$, which implies that

$$J_0(z) = J_1(z) + J_2(z) \quad \text{for every } z \in \mathbb{R} : J_0(z) = J_0^{**}(z).$$

(4.3)

[H3] (regularity and behaviour at $+\infty$). $J_1, J_2 : \mathbb{R} \to (-\infty, +\infty]$ be in $C^1(\mathbb{R})$ and such that $J_0 \in C^2(\mathbb{R})$. The following limits exist in \mathbb{R}

$$\lim_{z \to +\infty} J_j(z) = 0, \quad j = 1, 2$$

and

$$\lim_{z \to +\infty} J_0(z) = J_0(+\infty).$$

[H4] (structure of J_1, J_2 and J_0). J_1, J_2 are such that there exists a convex function $\Psi : \mathbb{R} \to [0, +\infty]$ and constants $c_j^1, c_j^2 > 0$ for $j = 1, 2$ such that (3.1) and (3.2) are satisfied. J_j has a unique minimum point δ_j and it is strictly convex in $(-\infty, \delta_j)$ for $j = 1, 2$. Moreover J_0 has a unique minimum point γ.

[H5] (additional condition on J_0 in the case $\ell < \gamma$). $J_0(z) = J_0^{**}(z)$ for all $z \leq \gamma$ and there is a $\gamma_0 > 0$ such that $J_0''(z) \geq 0$ for all $z \leq \gamma + \gamma_0$.

Assumption [H5] is used in Proposition 4.2 and Subsection 4.1, see Theorem 4.3. Note that, since by [H3] $J_0 \in C^2$, condition [H5] ensures that the effective potential J_0 is locally convex on the interval $(-\infty, \gamma + \gamma_0]$. On the other hand, it fails to be convex globally: J_0 does not coincide with its convex envelope J_0^{**} on (γ, ∞).

6
Indeed, \([H5]\) entails in particular that the number of jumps and is such that \(J_1(\pm\infty) = J_2(\pm\infty) = 0\).

Remark 4.1. The above conditions are satisfied by typical physical interaction potentials. The main example that we have in mind is the Lennard-Jones potential, which is why we call potentials satisfying \([H1] - [H5]\) potentials of Lennard-Jones type. The classical Lennard-Jones potentials are defined as follows

\[
J_1(z) = \frac{k_1}{z^{12}} - \frac{k_2}{z^6}, \quad J_2(z) = J_1(2z) \quad \text{for } z > 0,
\]

where \(k_1, k_2\) are positive constants, see Figure 1 for a plot. To prove \([H5]\), we first note that

\[
\frac{1}{2} \inf \{J_1(z_1) + J_1(z_2) : z_1 + z_2 = 2z\} = \frac{1}{2} \inf \{J_1(z_1) + J_1(2z - z_1) : z_1\}.
\]

Setting the first derivative of this equal to zero, yields the condition \(J_1'(z_1) = J_1'(2z - z_1)\). Now observe that \(J_1'(z)\) is injective and \(J_1'(z) \leq 0\) for all \(0 < z \leq \delta_1\) with \(\delta_1\) being the minimum point of \(J_1\), and \(J_1'(z) > 0\) for all \(z > \delta_1\). Moreover note that \(z \leq \delta_1\) implies that at least one of \(z_1\) and \(2z - z_1\) is less than or equal to \(\delta_1\). Hence the properties of the first derivative yield \(z_1 = 2z - z_1\), i.e., \(z_1 = z\) for all \(z \leq \delta_1\). Therefore, for Lennard-Jones potentials as defined in (4.4) we have

\[
J_0(z) = J_1(z) + J_2(z) \quad \text{for all } 0 < z \leq \delta_1.
\]

An elementary calculation reveals that \(J_1(z) + J_2(z)\) has non-negative second derivative for all \(z \leq \left(\frac{13}{\gamma}\right)^\frac{1}{5} \gamma\) with \(\gamma\) being the minimum point of the effective energy \(J_0\) and

\[
\gamma = \left(\frac{1 + 2^{-12}}{1 + 2^{-6}}\right)^\frac{1}{5} \delta_1 = \left(\frac{1 + 2^{-12}}{1 + 2^{-6}}\right)^\frac{1}{5} \left(\frac{2k_1}{k_2}\right)^\frac{1}{5}
\]

as proven in [BC07, Example 4.8]. From \(\delta_1 = \left(\frac{1 + 2^{-6}}{1 + 2^{-12}}\right)^\frac{1}{5} \gamma < \left(\frac{13}{\gamma}\right)^\frac{1}{5} \gamma\) and \(\gamma < \delta_1\), we deduce \([H5]\).

Since the double Yukawa potential, cf. [FA81], has a similar shape as the Lennard-Jones potential, we expect that it also satisfies \([H1] - [H5]\).

Another example is the so-called Morse-potential where for some \(k_1, k_2 > 0\), the potential is defined by \(J_1(z) = k_1 \left(1 - e^{-k_2(z - \delta_1)}\right)^2 - k_1\) for \(z \geq 0\), and \(J_2(z) = J_1(2z)\). This is finite at 0, but the structure is the same: the potential is strictly convex up to an inflection point, where it becomes concave and approaches 0 as \(z \to \infty\), i.e., we have \([H1] - [H4]\). To prove \([H5]\), one may proceed as for the Lennard-Jones potential using properties of the first derivative of \(J_1\).

We notice that, by Jensen’s inequality, \(\min H^\ell = J_0^{**}(\ell)\) for every \(\ell\). More explicitly,

\[
\min H^\ell = \begin{cases}
J_0(\ell) & \text{if } \ell \leq \gamma, \\
J_0(\gamma) & \text{if } \ell > \gamma.
\end{cases}
\]

Indeed, \([H1] - [H4]\) imply \(J_0^{**}(z) = J_0(\gamma)\) for every \(z \geq \gamma\). Moreover, in the case \(\ell \leq \gamma\), assumption \([H5]\) entails in particular \(J_0(\ell) = J_0^{**}(\ell)\).

The following compactness result states that for \(\ell \leq \gamma\) functions \(u_n\) with equibounded energy \(H_{\ell,n}^u\) converge necessarily to the function \(u(t) = \ell t\), while if \(\ell > \gamma\), the limit function \(u\) has a finite number of jumps and is such that \(u' = \gamma\) a.e. We recall that \(S_u\) is the jump set of \(u\).
Proposition 4.2. 1. Let \(0 < \ell \leq \gamma\) and suppose that hypotheses \([H1] - [H5]\) hold. Let \(0 < u_0^{(1)}, u_1^{(1)} \leq \gamma\). If \((u_n)\) is a sequence of functions such that
\[
\sup_n H_{\ell, n}^I(u_n) < +\infty, \quad (4.8)
\]
then, up to subsequences, \(u_n \rightarrow u\) in \(W^{1,\infty}(0,1)\) with \(u(t) = \ell t, t \in [0,1]\).

2. Let \(\ell > \gamma\) and suppose that hypotheses \([H1] - [H4]\) hold. Let \(u_0^{(1)}, u_1^{(1)} > 0\). If \((u_n)\) is a sequence of functions such that \((4.8)\) is satisfied, then, up to subsequences, \(u_n \rightarrow u\) in \(L^1(0,1)\), where \(u \in SBV^\ell(0,1)\) is such that
(i) \(0 < \#S_u < +\infty\);
(ii) \([u] > 0\) on \(S_u\);
(iii) \(u' = \gamma\) a.e.

Proof. The first result of the proposition follows from [BC07, Propositions 3.5 and 4.5]. The result for \(\ell > \gamma\) follows directly from [BC07, Proposition 4.5], since our approximating functionals are finite on a smaller set than the corresponding ones in [BC07].

For simplicity of notation we define for \(\ell > \gamma\)
\[
SBV_c^\ell(0,1) = \{ u \in SBV^\ell(0,1) : \text{conditions (i) - (iii) are satisfied} \}.
\]

For what follows it is useful to rearrange the terms in the expression of the energy \(H_{\ell, n}^I\) in \((4.1)\).

For given \(u_0^{(1)}, u_1^{(1)} > 0\) let \((u_n)\) be a sequence of functions satisfying the boundary conditions \((2.2)\) for each \(n\). Then by \((2.1)\)
\[
H_{\ell, n}^I(u_n) = \sum_{i=0}^{n-1} J_1 \left(\frac{u_{i+1} - u_i}{\lambda_n} \right) + \sum_{i=0}^{n-2} J_2 \left(\frac{u_{i+2} - u_i}{2\lambda_n} \right) - \min H^\ell \lambda_n
\]
\[
= \frac{1}{2} J_1 \left(\frac{u_1 - u_0}{\lambda_n} \right) + \sum_{i=0}^{n-2} \left[J_2 \left(\frac{u_{i+2} - u_i}{2\lambda_n} \right) + \frac{1}{2} J_1 \left(\frac{u_{i+2} - u_{i+1}}{\lambda_n} \right) \right]
\]
\[
+ \frac{1}{2} J_1 \left(\frac{u_{n+1} - u_n}{\lambda_n} \right) + \sum_{i=0}^{n-2} \sigma_i^2 + \frac{1}{2} J_1 \left(\frac{u_{n} - u_{n-1}}{\lambda_n} \right) - \min H^\ell,
\]
where we set for \(i = 0, \ldots, n - 2\)
\[
\sigma_i^2 = J_2 \left(\frac{u_{i+2} - u_i}{2\lambda_n} \right) + \frac{1}{2} \left(J_1 \left(\frac{u_{i+2} - u_{i+1}}{\lambda_n} \right) + J_1 \left(\frac{u_{i+1} - u_{i}}{\lambda_n} \right) \right) - \min H^\ell.
\]

8
4.1 The case $\ell \leq \gamma$

First of all we consider the case $\ell \leq \gamma$, where we recall that ℓ denotes the Dirichlet condition imposed on the last atom of the chain and γ denotes the minimum point of J_0. By [H5] we have that the effective potential J_0 is locally convex in $(-\infty, \gamma + \gamma_0]$.

For $\ell \leq \gamma$ we have elastic behaviour and therefore no fracture occurs. We compute the discrete-to-continuum limit of the discrete energy of first order $H^1_{\ell,n}$ in terms of Γ-convergence. This yields in particular that our limiting functional depends on the prescribed slopes $u^{(1)}_0$ and $u^{(1)}_1$, see Theorem 4.3.

For any $0 < \ell$, $u^{(1)}_0$, $u^{(1)}_1 \leq \gamma$ we define the boundary layer energies in 0 and in 1 as follows

$$B_+ \left(u^{(1)}_0, \ell \right) = \inf_{N \in \mathbb{N}} \min \left\{ \frac{1}{2} J_1 \left(v^1 - v^0\right) + \sum_{i \geq 0} \left\{ J_2 \left(\frac{v^{i+2} - v^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v^{i+2} - v^{i+1}\right) + J_1 \left(v^{i+1} - v^i\right) \right) - J_0(\ell) \right\} : v : \mathbb{N} \rightarrow \mathbb{R}, v^0 = 0, v^1 - v^0 = u^{(1)}_0, v^{i+1} - v^i \leq \gamma + \gamma_0 \text{ for all } i, \right\} \right.$$

$$B_- \left(u^{(1)}_1, \ell \right) = \inf_{N \in \mathbb{N}} \min \left\{ \frac{1}{2} J_1 \left(w^0 - w^{-1}\right) + \sum_{i \leq 0} \left\{ J_2 \left(\frac{w^i - w^{i-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(w^i - w^{i-1}\right) + J_1 \left(w^{i-1} - w^{i-2}\right) \right) - J_0(\ell) - J_0(\ell) \left(\frac{w^i - w^{i-2}}{2} - \ell \right) \right\} : w : -\mathbb{N} \rightarrow \mathbb{R}, w^0 = 0, w^1 - w^0 = -w^{-1} = u^{(1)}_1, w^i - w^{i-1} \leq \gamma + \gamma_0 \text{ for all } i, \right\} \right. \right.$$

(4.11)

(4.12)

The conditions $v^1 - v^0 = u^{(1)}_0$ and $w^0 - w^{-1} = u^{(1)}_1$, respectively, are due to the boundary conditions which we impose on the second and last but one atoms, respectively. The technical assumption [H5] is crucial here to ensure, together with (4.3), that the terms in the sums are non-negative and thus that the boundary layer energies are bounded from below. Indeed,

$$J_2 \left(\frac{v^{i+2} - v^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v^{i+2} - v^{i+1}\right) + J_1 \left(v^{i+1} - v^i\right) \right) - J_0(\ell) - J_0(\ell) \left(\frac{v^{i+2} - v^i}{2} - \ell \right)$$

$$\geq J_0 \left(\frac{v^{i+2} - v^i}{2} \right) - J_0(\ell) \left(\frac{v^{i+2} - v^i}{2} - \ell \right)$$

$$= \frac{1}{2} J_0'(\ell, \xi_i, \ell) \left(\frac{v^{i+2} - v^i}{2} - \ell \right)^2$$

for some ξ_i, ℓ between ℓ and $\frac{v^{i+2} - v^i}{2}$ by Taylor’s Theorem and [H3]. Now, since $\xi_i, \ell \leq \gamma + \gamma_0$, we have $J_0'(\xi_i, \ell) \geq 0$ by [H5], which ensures that the terms in the sum of (4.11) are non-negative. Similarly for the terms in the sum of (4.12).

In the case $\ell = \gamma$, the constraints $v^{i+1} - v^i \leq \gamma + \gamma_0$ and $w^i - w^{i-1} \leq \gamma + \gamma_0$, respectively, for all i can be dropped. Indeed, by (3.3), $J_2 \left(\frac{v^{i+2} - v^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v^{i+2} - v^{i+1}\right) + J_1 \left(v^{i+1} - v^i\right) \right) - J_0(\gamma) \geq J_0 \left(\frac{v^{i+2} - v^i}{2} \right) - J_0(\gamma) \geq 0$ for all v^i, since γ is the minimum point of J_0.

9
For the definition of the corresponding boundary layers in the case $\ell > \gamma$ see (4.28) and (4.29).

Theorem 4.3. Suppose that hypotheses $[H1] - [H5]$ hold and let $0 < \ell, u_0^{(1)}, u_1^{(1)} \leq \gamma$. Then $H^\ell_{1,n}$ Γ-converges with respect to the L^∞-topology to the functional H^ℓ_1 defined by

$$H^\ell_1(u) = \begin{cases} B_+ \left(u_0^{(1)}, \ell \right) + B_- \left(u_1^{(1)}, \ell \right) - J_0(\ell) - J_0'(\ell) \left(\frac{u_0^{(1)} + u_1^{(1)}}{2} - \ell \right) & \text{if } u(t) = \ell t, \\ +\infty & \text{otherwise} \end{cases}$$

on $W^{1,\infty}(0, 1)$.

In Figure 2 we give an intuitive picture of the location of the occurring boundary layers in the elastic case, i.e., for $\ell \leq \gamma$.

![Figure 2: An intuitive picture of the location of boundary layers for $\ell \leq \gamma$.](image)

Proof. **Limsup inequality.** We show that for any sequence $u_n \to u$ in $L^\infty(0, 1)$ with equibounded energy $H^\ell_{1,n}$ we have

$$\limsup_{n \to \infty} H^\ell_{1,n}(u_n) \geq B_+ \left(u_0^{(1)}, \ell \right) + B_- \left(u_1^{(1)}, \ell \right) - J_0(\ell) - J_0'(\ell) \left(\frac{u_0^{(1)} + u_1^{(1)}}{2} - \ell \right).$$

From the compactness result in Proposition 4.2 we have that $u(t) = \ell t$ for all $t \in [0, 1]$. This allows us to choose a sequence of integer numbers $h_n \in \mathbb{N}$ such that $\lambda_n h_n \to \frac{1}{2}$ as $n \to \infty$ and moreover

$$\lim_{n \to \infty} \frac{u_n^{h_n+2} - u_n^{h_n+1}}{\lambda_n} = \ell. \quad (4.13)$$

We write $H^\ell_{1,n}(u_n)$ as in (4.9), where we make use of (4.7). Then we add and subtract the term $J_0'(\ell) \left(\frac{u_n^{i+2} - u_n^{i+1}}{2\lambda_n} \right)$ in the sum to obtain

$$H^\ell_{1,n}(u_n) = \frac{1}{2} J_1 \left(\frac{u_0^{i+1} - u_0^i}{\lambda_n} \right) + \sum_{i=0}^{n-2} \left\{ J_2 \left(\frac{u_n^{i+2} - u_n^i}{2\lambda_n} \right) + \frac{1}{2} J_1 \left(\frac{u_n^{i+2} - u_n^{i+1}}{\lambda_n} \right) \right\} + J_1 \left(\frac{u_n^{i+1} - u_n^i}{\lambda_n} \right) - J_0(\ell) - J_0'(\ell) \left(\frac{u_n^{i+2} - u_n^i}{2\lambda_n} - \ell \right)$$

$$+ \frac{1}{2} J_1 \left(\frac{u_n^{i+3} - u_n^{i+2}}{\lambda_n} \right)$$

$$+ \sum_{i=0}^{n-2} J_0'(\ell) \left(\frac{u_n^{i+2} - u_n^i}{2\lambda_n} - \ell \right) + \frac{1}{2} J_1 \left(\frac{u_n^n - u_n^{n-1}}{\lambda_n} \right) - J_0(\ell). \quad (4.14)$$
Since $\sum_{i=0}^{n-1}(u_n^{i+1} - u_n^i) = u_n^0 - u_n^0 = 0$ by construction, we have
\[
\sum_{i=0}^{n-2}(u_n^{i+2} - u_n^i) = 2 \sum_{i=0}^{n-1}(u_n^{i+1} - u_n^i) - (u_n^1 - u_n^0) - (u_n^n - u_n^{n-1}) = 2\ell - \lambda_n \left(u_n^{(1)} + u_1^{(1)} \right).
\]
Thus
\[
\sum_{i=0}^{n-2} J'_0(\ell) \left(\frac{u_n^{i+2} - u_n^i}{2\lambda_n} - \ell \right) = J'_0(\ell) \left(\frac{\ell}{\lambda_n} - \frac{u_n^{(1)} + u_1^{(1)}}{2} - (n-1)\ell \right) = -J'_0(\ell) \left(\frac{u_n^{(1)} + u_1^{(1)}}{2} - \ell \right)
\]
and we already have the last term in the finite limiting energy $H'_{1n}(u)$. By (4.14) and (4.15) the energy $H'_{1n}(u)$ reads
\[
H'_{1n}(u) = \frac{1}{2}J_1 \left(\frac{u_n^{(1)} - u_0^{(1)}}{\lambda_n} \right) + \sum_{i=0}^{n-2} s_i \left[J_1 \left(\frac{u_n^{i+1} - u_n^{i}}{\lambda_n} \right) + J_1 \left(\frac{u_n^{i+1} - u_n^i}{\lambda_n} \right) \right] - J_0(\ell) - J'_0(\ell) \left(\frac{u_n^{(1)} + u_1^{(1)}}{2} - \ell \right),
\]
where for $i = 0, \ldots, n - 2$ we define
\[
s_i = J_2 \left(\frac{u_n^{i+2} - u_n^i}{2\lambda_n} \right) + \frac{1}{2} \left(J_1 \left(\frac{u_n^{i+2} - u_n^{i+1}}{\lambda_n} \right) + J_1 \left(\frac{u_n^{i+1} - u_n^i}{\lambda_n} \right) \right) - J_0(\ell)
\]
\[
\quad \quad - J'_0(\ell) \left(\frac{u_n^{i+2} - u_n^i}{2\lambda_n} - \ell \right).
\]
Note that, for $\ell = \gamma$, s_i is the same as σ_i defined in (4.10) since $J'_0(\gamma) = 0$ by [H4]. We define the sequence $v_n : \mathbb{N} \to \mathbb{R}$ as
\[
v_n^i = \begin{cases} \frac{u_n^0}{\lambda_n} \ell(i - (h_n + 2)) \frac{u_n^{h_n+2}}{\lambda_n} & \text{if } 0 \leq i \leq h_n + 2, \\ \frac{u_n^{h_n+2}}{\lambda_n} & \text{if } i \geq h_n + 2. \end{cases}
\]
Then, in terms of v_n we have
\[
\sum_{i=0}^{h_n} s_i = \sum_{i=0}^{h_n} \left\{ J_2 \left(\frac{v_n^{i+2} - v_n^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v_n^{i+2} - v_n^{i+1} \right) + J_1 \left(v_n^{i+1} - v_n^i \right) \right) - J_0(\ell) \right. \\
\left. - J'_0(\ell) \left(\frac{v_n^{i+2} - v_n^i}{2} - \ell \right) \right\}
\]
\[
= \sum_{i \geq 0} \left\{ J_2 \left(\frac{v_n^{i+2} - v_n^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v_n^{i+2} - v_n^{i+1} \right) + J_1 \left(v_n^{i+1} - v_n^i \right) \right) - J_0(\ell) \right. \\
\left. - J'_0(\ell) \left(\frac{v_n^{i+2} - v_n^i}{2} - \ell \right) \right\} - \omega(n),
\]
where $\omega(n)$ denotes an infinitesimal function for $n \to \infty$ specified below. The last equality follows observing that, by (4.18) and (4.3), the terms of the sum are identically 0 for every $i \geq h_n + 2$.
while by (4.13) and (4.3) we have that the term corresponding to \(i = h_n + 1 \) satisfies
\[
\begin{align*}
 s_{h_n+1}^n &= J_2 \left(\frac{u_{h_n+2}^n - u_{h_n+1}^n}{2\lambda_n} + \frac{\ell}{2} \right) + \frac{1}{2} \left(J_1(\ell) + \frac{u_{h_n+2}^n - u_{h_n+1}^n}{\lambda_n} \right) - J_0(\ell) \\
 &= -J_0(\ell) \left(\frac{u_{h_n+2}^n - u_{h_n+1}^n}{2\lambda_n} + \frac{\ell}{2} - \ell \right) \\
 &= \omega(n) \to 0 \text{ as } n \to \infty.
\end{align*}
\]

Observe that \(v_i^0 = \frac{u_i^0}{\lambda_n} = 0 \), \(v_i^1 - v_i^0 = \frac{u_i^1}{\lambda_n} \) and \(v_i^{n+1} - v_i^n = \ell \) for \(i \geq h_n + 2 \). Moreover, for \(n \) large enough, \(v_i^{n+1} - v_i^n \leq \gamma + \gamma_0 \) for all \(i \) since by Proposition 4.2 we have \(u_n \to \ell t \) in \(W^{1,\infty}(0,1) \) and thus, for \(n \) large enough, \(|u_n - \ell| < \gamma_0 \) which implies for the discrete derivative:
\[
\frac{v_i^{n+1} - v_i^n}{\lambda_n} < \ell + \gamma_0 \leq \gamma + \gamma_0.
\]
Hence, for \(n \) large enough, \(v_n \) is a competitor for the minimum problem defined \(B_+ \left(u_{(1)}^0, \ell \right) \), cf. (4.11). Therefore
\[
\begin{align*}
 \frac{1}{2} J_1 \left(\frac{u_i^1 - u_i^0}{\lambda_n} \right) + \sum_{i=0}^{h_n} s_i^n \\
 = \frac{1}{2} J_1(v_i^1 - v_i^0) + \sum_{i \geq 0} \left\{ J_2 \left(\frac{v_i^{n+2} - v_i^n}{2} \right) + \frac{1}{2} \left(J_1(v_i^{n+2} - v_i^{n+1}) + J_1(v_i^{n+1} - v_i^n) \right) \right\} \\
 - J_0(\ell) - \omega(n).
\end{align*}
\]
In order to estimate the remaining part in the energy (4.16), we define \(w_n : -N \to \mathbb{R} \) as
\[
\begin{align*}
 w_n^j &= \begin{cases}
 \frac{u_n^{j-1}}{\lambda_n} - \frac{\ell}{\lambda_n} & \text{if } h_n - n + 1 \leq j \leq 0, \\
 \ell(j - (h_n - n + 1)) - \frac{\ell}{\lambda_n} + \frac{u_n^{j+1}}{\lambda_n} & \text{if } j \leq h_n - n + 1.
 \end{cases}
\end{align*}
\]
Then, in terms of \(w_n \) we have
\[
\begin{align*}
 \sum_{i=h_n+1}^{n-2} s_i^n &= \sum_{j=h_n-n+3}^{0} \left\{ J_2 \left(\frac{w_n^j - w_n^{j-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(w_n^j - w_n^{j-1} \right) + J_1 \left(w_n^{j-1} - w_n^{j-2} \right) \right) \right\} \\
 &= \sum_{j \geq 0} \left\{ J_2 \left(\frac{w_n^j - w_n^{j-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(w_n^j - w_n^{j-1} \right) + J_1 \left(w_n^{j-1} - w_n^{j-2} \right) \right) \right\} \\
 &= \omega(n),
\end{align*}
\]
where now \(\omega(n) \) denotes the term corresponding to \(j = h_n - n + 2 \) in the sum, which is infinitesimal by (4.13) and (4.3).

Since \(w_n^0 = \frac{w_n^0 - w_n^2}{\lambda_n} = 0 \), \(w_n^0 - w_n^{-1} = \frac{u_n^0 - u_n^{-1}}{\lambda_n} = u_1^{(1)} \), \(w_n^j - w_n^{j-1} = \ell \) for \(j \leq h_n - n + 1 \), and, for \(n \) large enough, \(w_n^j - w_n^{j-1} \leq \gamma + \gamma_0 \) for all \(j \), we deduce that, for \(n \) large enough, \(w_n \) is a competitor
for the minimum problem defining \(B_- (u_1^{(1)}, \ell) \), cf. (4.12). Therefore

\[
\frac{1}{2} J_1 \left(\frac{u_n^1 - u_n^{i-1}}{\lambda_n} \right) + \sum_{i=b_n+1}^{n-2} s_i^1 \\
= \frac{1}{2} J_1 (w_n^1 - w_n^{1-1}) + \sum_{i=0}^{\lambda_n} \left\{ J_2 \left(\frac{w_n^1 - w_n^{i-1}}{2} \right) + \frac{1}{2} \left(J_1 \left(w_n^1 - w_n^{i-1} \right) + J_1 \left(w_n^{i-1} - w_n^{i-2} \right) \right) \\
- J_0(\ell) - J'_0(\ell) \left(\frac{w_n^1 - w_n^{i-1}}{2} - \ell \right) \right\} - \omega(n) \\
\geq B_- (u_1^{(1)}, \ell) = \omega(n). \quad (4.21)
\]

In summary, from (4.16), (4.19) and (4.21) we obtain the desired liminf inequality.

Limsup inequality. By the compactness result in Proposition 4.2 it is sufficient to consider the case \(u(\ell) = \ell t \). We construct a sequence \((u_n)\) converging to \(u \) in \(L^\infty(0,1) \) satisfying (2.2) and such that

\[
\limsup_{n \to \infty} H_{1,n}^\ell (u_n) \leq B_+ \left(u_0^{(1)}, \ell \right) + B_- \left(u_1^{(1)}, \ell \right) - J_0(\ell) - J'_0(\ell) \left(\frac{u_0^{(1)} + u_1^{(1)}}{2} - \ell \right).
\]

Let \(\eta > 0 \). Then, by definition of \(B_+ (u^{(1)}, \ell) \), we can find \(v : N \to \mathbb{R} \) and \(N_1 \in \mathbb{N} \) such that \(v^0 = 0, \ v^1 - v^0 = u_0^{(1)}, \ v^i+1 - v^i \leq \gamma + \gamma_0 \) for all \(i, \ v^i+1 - v^i = \ell \) for \(i \geq N_1 \) and

\[
\frac{1}{2} J_1 (v^i - v^0) + \sum_{i \geq 0} \left\{ J_2 \left(\frac{v^{i+2} - v^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v^{i+2} - v^{i+1} \right) + J_1 \left(v^{i+1} - v^i \right) \right) - J_0(\ell) \\
- J'_0(\ell) \left(\frac{v^{i+2} - v^i}{2} - \ell \right) \right\} \\
\leq B_+ \left(u_0^{(1)}, \ell \right) + \eta. \quad (4.22)
\]

In the same way, by the definition of \(B_- (u^{(1)}, \ell) \) there exist \(w : -N \to \mathbb{R} \) and \(N_2 \in \mathbb{N} \) with \(w^0 = 0, \ w^0 - w^{-1} = u_1^{(1)}, \ w^i - w^{-1} \leq \gamma + \gamma_0 \) for all \(i, \ w^i - w^{i-1} = \ell \) if \(i \leq -N_2 \), such that

\[
\frac{1}{2} J_1 (w^0 - w^{-1}) + \sum_{i \leq 0} \left\{ J_2 \left(\frac{w^0 - w^{-1}}{2} \right) + \frac{1}{2} \left(J_1 \left(w^0 - w^{-1} \right) + J_1 \left(w^{i-1} - w^{i-2} \right) \right) - J_0(\ell) \\
- J'_0(\ell) \left(\frac{w^0 - w^{-1}}{2} - \ell \right) \right\} \\
\leq B_- \left(u_1^{(1)}, \ell \right) + \eta. \quad (4.23)
\]

We construct a recovery sequence for \(u \) by means of the functions \(v \) and \(w \). Indeed, we set

\[
u_n^i = \begin{cases}
\lambda_n v^i & \text{if } 0 \leq i \leq N_1 + 2, \\
\lambda_n v_{N_1+2} + \frac{\ell + \lambda_n (w_{N_2-2} - w_{N_2-1})}{n-N_1-N_2-4} (i - N_1 - 2) & \text{if } N_1 + 2 \leq i \leq n - N_2 - 2, \\
\ell + \lambda_n w_{i-n} & \text{if } n - N_2 - 2 \leq i \leq n.
\end{cases}
\]
We note that, for each \(n, u_n \) satisfies the boundary conditions (2.2). We write \(H_{1,n}^i(u_n) \) as in (4.16) and thus only need to show that the first three terms on the right-hand side of (4.16) yield \(B_+ \left(u_0^{(1)}, \ell \right) \) and \(B_- \left(u_1^{(1)}, \ell \right) \) in order to prove that \(H_{1,n}^i(u_n) \) converges to \(H_1^i(u) \). To this end we split the sum as follows

\[
\sum_{i=0}^{n-2} s_n^i = \sum_{i=0}^{N_1} s_n^i + \sum_{i=N_1+1}^{n-N_2-3} s_n^i + \sum_{i=n-N_2-2}^{n-2} s_n^i.
\]

We observe that

\[
\sum_{i=0}^{N_1} s_n^i = \frac{1}{2} J_1 \left(u_n^1 - u_n^0 \right) + \frac{1}{2} J_1 \left(v^1 - v^0 \right) + \sum_{i=0}^{N_1} \left\{ J_2 \left(\frac{v^{i+2} - v^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v^{i+2} - v^{i+1} \right) + J_1 \left(v^{i+1} - v^i \right) \right) - J_0(\ell) \left(\frac{v^{i+2} - v^i}{2} - \ell \right) \right\},
\]

where we can replace the sum of the right-hand side with the same sum up to +∞ since \(v^{i+1} - v^i = \ell \) for \(i \geq N_1 \). Hence, by (4.22) we obtain the upper bound \(B_+ \left(u_0^{(1)}, \ell \right) + \eta \). Similarly,

\[
\frac{1}{2} J_1 \left(u_n^0 - u_n^{0-1} \right) + \sum_{i=n-N_2-2}^{n-2} s_n^i
\]

\[
= \frac{1}{2} J_1 (w^0 - w^{-1}) + \sum_{i=0}^{n-N_2-3} \left\{ J_2 \left(\frac{w^{-i} - w^{i-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(w^{i-1} - w^{i-2} \right) + J_1 \left(w^i - w^{i-1} \right) \right) - J_0(\ell) \left(\frac{w^{-i} - w^{i-2}}{2} - \ell \right) \right\},
\]

which is less or equal than \(B_- \left(u_1^{(1)}, \ell \right) + \eta \) by construction, see (4.3). Thus it remains to prove that \(\sum_{i=N_1+1}^{n-N_2-3} s_n^i \) is infinitesimal as \(n \to \infty \). For \(N_1 + 2 \leq i \leq n - N_2 - 4 \) we have

\[
\frac{u_n^{i+1} - u_n^i}{\lambda_n} = \frac{\ell + \xi_n (w^{-N_2-2} - w^{N_1+2})}{\lambda_n (n-N_1-N_2-4)} = \frac{\ell}{1 - \lambda_n (N_1 + N_2 + 4)} + \frac{w^{-N_2-2} - w^{N_1+2}}{n - N_1 - N_2 - 4},
\]

which is of the order of \(\ell + \frac{c}{n} \) for some constant \(c \). Hence by continuity

\[
s_n^i \approx J_2 \left(\ell + \frac{c}{n} \right) + J_1 \left(\ell + \frac{c}{n} \right) - J_0(\ell) \left(\frac{c}{n} \right)
\]

for \(N_1 + 2 \leq i \leq n - N_2 - 4 \). Now, since \(J_0'(\ell) = J_1'(\ell) + J_2'(\ell) \) by (4.3) and [H3]

\[
s_n^i \approx J_2 \left(\ell + \frac{c}{n} \right) + J_1 \left(\ell + \frac{c}{n} \right) = J_1'(\ell) - J_2(\ell) - J_0'(\ell) \left(\frac{c}{n} \right) = \frac{1}{2} J''_0 \left(\xi_2, n \right) \left(\frac{c}{n} \right)^2 + \frac{1}{2} J''_1 \left(\xi_1, n \right) \left(\frac{c}{n} \right)^2
\]

for some \(\xi_1, n \) and \(\xi_2, n \), between \(\ell \) and \(\ell + \frac{c}{n} \) by Taylor’s Theorem. So, by [H5] and since \(\xi_1, n \) and \(\xi_2, n \) are less or equal to \(\gamma + \gamma_0 \) for \(n \) large enough, and for a possibly different constant \(c \),

\[
\sum_{i=N_1+2}^{n-N_2-4} s_n^i \approx \sum_{i=1}^{n} \frac{c}{n^i} = \frac{c}{n} \to 0 \quad \text{as} \quad n \to \infty.
\]
It remains to estimate the terms for $i = N_1 + 1$ and $i = n - N_2 - 3$. Note that

\[
\frac{u_n^{N_1+3} - u_n^{N_1+1}}{2\lambda_n} = \frac{1}{2} \left(\frac{\ell + \lambda_n(w^{-N_2-2} - v_{N_1+2})}{\lambda_n(n - N_1 - N_2 - 4)} \right) - \frac{1}{2} \ell v_{N_1+1}
\]

\[
= \frac{2}{2} \ell - \frac{2}{2} \lambda_n(N_1 + N_2 + 4) + \frac{w^{-N_2-2} - v_{N_1+2}}{2(n - N_1 - N_2 - 4)}
\]

\[
\approx \frac{\ell}{2} + \frac{\ell}{2} + \frac{c}{2n} \to 0.
\]

Hence $s_n^{N_1+1}$ converges to 0 as $n \to \infty$ by (4.3). Similarly,

\[
\frac{u_n^{n-N_2-1} - u_n^{n-N_2-3}}{2\lambda_n}
\]

\[
= \frac{1}{2} \left(\frac{\ell}{\lambda_n} + w^{-N_2-1} - v_{N_1+2} - \frac{\ell + \lambda_n(w^{-N_2-2} - v_{N_1+2})}{\lambda_n(n - N_1 - N_2 - 4)}(n - N_2 - 3 - N_1 - 2) \right)
\]

\[
\to 0.
\]

since $\frac{n-N_2-3-N_1-2}{\lambda_0(n-N_1-N_2-4)}$ is of order $\frac{1}{\lambda_0} - 1$ and $w^{-N_2-1} - w^{-N_2-2} = \ell$. Hence, again by (4.3), $s_n^{n-N_2-3}$ converges to 0 as n tends to infinity, which proves the convergence of the energy. Moreover, since the discrete derivative of u_n converges to ℓ we have in particular that (u_n) converges to $u(t) = \ell t$ in $L^\infty(0,1)$.

Next we discuss a special case: let $\ell = \gamma$ and $u_0^{(1)} = u_1^{(1)} = \gamma$. Notice that the problems defining the boundary layer energies are perfectly symmetric, therefore $B_+(\gamma, \gamma) = B_-(\gamma, \gamma)$. Indeed, if (v, N) is a minimiser for $B_+(\gamma, \gamma)$, then $(-v, -N)$ is a minimiser for $B_-(\gamma, \gamma)$, having the same energy. Moreover, in this case it is immediate to notice that $(\gamma i, 0)$ is a minimiser, hence the boundary layer energies take the simple explicit form

\[
B_+(\gamma, \gamma) = B_-(\gamma, \gamma) = \frac{1}{2} J_1(\gamma).
\]

(4.24)

The following corollary is then a consequence of Theorem 4.3.

Corollary 4.4. Suppose that hypotheses [H1] – [H5] hold and let $\ell = \gamma$ and $u_0^{(1)} = u_1^{(1)} = \gamma$. The sequence of functionals $H_{\gamma, n}^{1, \infty}$ Γ-converges with respect to the L^∞-topology to the functional H_1^1 given by

\[
H_1^1(u) = \begin{cases}
J_1(\gamma) - J_0(\gamma) & \text{if } u(t) = \gamma t, \\
+\infty & \text{otherwise}
\end{cases}
\]

on $W^{1,\infty}(0,1)$.

Remark 4.5. Notice that if the Dirichlet boundary conditions for the second and last but one atoms are not prescribed, then the limit functional is $2B(\gamma) - J_0(\gamma)$ [BC07, Theorem 4.6], see also (4.27) for a definition of $B(\gamma)$. By Proposition 5.4 we know that $B(\gamma) < \frac{1}{2} J_1(\gamma)$ in some relevant examples, more precisely for the classical Lennard-Jones potentials as defined in (4.4). Hence, at least for these examples, prescribing the second and last but one atoms leads to a different limiting functional even for $\ell = \gamma$.

Remark 4.6. Proving directly the assertion of Corollary 4.4 shows that assumption [H5] is not needed.
4.2 The case $\ell > \gamma$

According to the compactness result in Proposition 4.2, we expect fracture in the case $\ell > \gamma$. To this end we define boundary layer energies which are due to cracks that occur at 0 and 1, respectively, in the continuum limit. For given $u_{0}^{(1)}, u_{1}^{(1)} > 0$ we set

$$B_{0}^{0} \left(u_{0}^{(1)} \right) = \inf_{k \in \mathbb{N}} \min \left\{ \frac{1}{2} J_{1} \left(\tilde{w}^{0} - \tilde{w}^{-1} \right) + \sum_{i=-k+1}^{0} \left\{ J_{2} \left(\frac{\tilde{w}^{i} - \tilde{w}^{i-2}}{2} \right) + \frac{1}{2} \left(J_{1} \left(\tilde{w}^{i} + 1 - \tilde{w}^{i-1} \right) + J_{1} \left(\tilde{w}^{i} - 1 - \tilde{w}^{i+2} \right) \right) - J_{0}(\gamma) \right\} ; \right\} \quad (4.25)$$

$$\tilde{w} : -\mathbb{N} \to \mathbb{R}, \tilde{w}^{-k-1} = 0, \tilde{w}^{-k} - \tilde{w}^{-k-1} = \tilde{w}^{-k} = u_{0}^{(1)} ,$$

$$B_{1}^{1} \left(u_{1}^{(1)} \right) = \inf_{k \in \mathbb{N}} \min \left\{ \frac{1}{2} J_{1} \left(\tilde{v}^{1} - \tilde{v}^{0} \right) + \sum_{i=0}^{k-1} \left\{ J_{2} \left(\frac{\tilde{v}^{i+2} - \tilde{v}^{i}}{2} \right) + \frac{1}{2} \left(J_{1} \left(\tilde{v}^{i+2} - \tilde{v}^{i+1} \right) + J_{1} \left(\tilde{v}^{i+1} - \tilde{v}^{i} \right) \right) - J_{0}(\gamma) \right\} ; \right\} \quad (4.26)$$

$$\tilde{v} : \mathbb{N} \to \mathbb{R}, \tilde{v}^{k+1} = 0, \tilde{v}^{k+1} - \tilde{v}^{k} = \tilde{v}^{k} = u_{1}^{(1)} .$$

Remark 4.7. The boundary layer energy $B_{0}^{0} \left(u_{0}^{(1)} \right)$ describes the optimal position, at a microscopic scale, of a fracture that occurs in 0 at a macroscopic scale. Analogously, $B_{1}^{1} \left(u_{1}^{(1)} \right)$ does this for a crack in 1. See the end of Section 5 for examples about the optimal position of microscopic cracks. In this case we use again (3.3) and that J_{0} has a unique minimum point γ to deduce that the terms in the sums are non-negative.

Next we recall the definition of $B(\gamma)$, which is the boundary layer energy of a free boundary and was introduced in [BC07].

$$B(\gamma) = \inf_{N \in \mathbb{N}} \min \left\{ \frac{1}{2} J_{1} \left(\tilde{u}^{1} - \tilde{u}^{0} \right) + \sum_{i \geq 0} \left\{ J_{2} \left(\frac{\tilde{u}^{i+2} - \tilde{u}^{i}}{2} \right) + \frac{1}{2} \left(J_{1} \left(\tilde{u}^{i+2} - \tilde{u}^{i+1} \right) + J_{1} \left(\tilde{u}^{i+1} - \tilde{u}^{i} \right) \right) - J_{0}(\gamma) \right\} ; \right\} \quad (4.27)$$

$$\tilde{u} : \mathbb{N} \to \mathbb{R}, \tilde{u}^{0} = 0, \tilde{u}^{i+1} - \tilde{u}^{i} = \gamma \text{ if } i \geq N .$$

For $\ell \leq \gamma$; the case of elasticity, we have already defined boundary layer energies in 0 and in 1, see (4.11) and (4.12). Similar boundary layer energies occur for $\ell > \gamma$ at 0 and in 1 if there is no
crack: for any $\ell > \gamma$, $u_0^{(1)}, u_1^{(1)} > 0$ we define

$$B_+ \left(u_0^{(1)}, \gamma \right) = \inf_{N \in \mathbb{N}} \min \left\{ \frac{1}{2} J_1 (v^1 - v^0) + \sum_{i \geq 0} J_2 \left(\frac{v^{i+2} - v^i}{2} \right) + \frac{1}{2} (J_1 (v^{i+2} - v^{i+1}) + J_1 (v^{i+1} - v^i)) - J_0(\gamma) \right\} ;$$

$$v : \mathbb{N} \to \mathbb{R}, v^0 = 0, v^1 - v^0 = v^1 = u_0^{(1)}, v^{i+1} - v^i = \gamma \text{ if } i \geq N \right\}, \quad (4.28)$$

$$B_- \left(u_1^{(1)}, \gamma \right) = \inf_{N \in \mathbb{N}} \min \left\{ \frac{1}{2} J_1 (w^0 - w^{-1}) + \sum_{i \leq 0} J_2 \left(\frac{w^i - w^{i-2}}{2} \right) + \frac{1}{2} (J_1 (w^i - w^{i-1}) + J_1 (w^{i-1} - w^{i-2})) - J_0(\gamma) \right\} ;$$

$$w : -\mathbb{N} \to \mathbb{R}, w^0 = 0, w^0 - w^{-1} = -w^{-1} = u_1^{(1)}, w^i - w^{i-1} = \gamma \text{ if } i \leq -N \right\}. \quad (4.29)$$

Theorem 4.8. Suppose that hypotheses [H1] - [H4] hold and let $\ell > \gamma$, $u_0^{(1)}, u_1^{(1)} > 0$. Then $H^S_{\ell,n}$ Γ-converges with respect to the L^1-topology to the functional H^S_1 defined by

$$H^S_1(u) = \begin{cases} B_+ \left(u_0^{(1)}, \gamma \right) \left(1 - \# (S_u \cap \{0\}) \right) \\
+ B_- \left(u_1^{(1)}, \gamma \right) \left(1 - \# (S_u \cap \{1\}) \right) - J_0(\gamma) \\
+ B_{BJ} \#(S_u \cap (0,1)) + B_{BJ}^0 \#(S_u \cap \{0\}) + B_{BJ}^1 \#(S_u \cap \{1\}) & \text{if } u \in SBV^e_\ell(0,1), \\
+ \infty & \text{else,} \end{cases}$$

on $L^1(0,1)$, where

$$B_{BJ}^0 = \frac{1}{2} J_1 \left(u_0^{(1)} \right) + B^0 \left(u_0^{(1)} \right) + B(\gamma) - 2J_0(\gamma), \quad (4.30)$$

$$B_{BJ}^1 = \frac{1}{2} J_1 \left(u_1^{(1)} \right) + B^1 \left(u_1^{(1)} \right) + B(\gamma) - 2J_0(\gamma) \quad (4.31)$$

are the boundary layer energies due to a jump at the boundary (at 0 and at 1, respectively), while

$$B_{BJ} = 2B(\gamma) - 2J_0(\gamma) \quad (4.32)$$

is the boundary layer energy due to a jump at an internal point of $(0,1)$.

In Figures 3 and 4 we give an intuitive picture of the location of occurring boundary layers in the case of a crack in 0 and in the interior, respectively.

Proof. Liminf inequality. Without loss of generality we can assume that there is only one jump point, i.e., $\# S_u = 1$. In the following we consider the case of having a jump at the boundary or in the interior separately. Since the jumps at 0 and 1, respectively, are similar due to symmetry, we only treat the boundary jump at 0.
Jump at 0. Assume that $S_u = \{0\}$ and let (u_n) be a sequence such that $\sup_n H_{1,n}^I (u_n) < +\infty$. By the compactness result Proposition 4.2 we know that $u_n \to u$ in $L^1(0,1)$ with

$$u(t) = \begin{cases} 0 & \text{if } t = 0, \\ \gamma t + (\ell - \gamma) & \text{if } t \in (0,1]. \end{cases}$$ \hspace{1cm} (4.33)$$

We prove that

$$\liminf_n H_{1,n}^I (u_n) \geq \frac{1}{2} J_1 \left(u_0^{(1)} \right) + B^0 \left(u_0^{(1)} \right) + B(\gamma) - 2 J_0(\gamma) + B_-(u_1^{(1)}, \gamma) - J_0(\gamma).$$ \hspace{1cm} (4.34)$$

Let $k_n \in \mathbb{N}$ with $\lambda_n k_n \to \frac{3}{2}$ be such that

$$\lim_{n \to \infty} \frac{u_n^{k_n + 2} - u_n^{k_n + 1}}{\lambda_n} = \gamma.$$ \hspace{1cm} (4.35)$$

We start from (4.9) and decompose the sum into a sum from 0 to k_n and a sum from $k_n + 1$ to $n - 2$. In the following we adapt parts of the proof of Theorem 4.3; note that σ_n^I defined in (4.10) is the same as s_n^I defined in (4.17) for $\ell = \gamma$. Instead of (4.20) we set

$$u_n^j = \begin{cases} u_n^{h_n + j} - \frac{j}{\lambda_n} & \text{if } h_n - n + 1 \leq j \leq 0, \\ \gamma (j - (h_n - n + 1)) - \frac{j}{\lambda_n} + u_n^{h_n + 1} & \text{if } j \leq h_n - n + 1. \end{cases}$$
and then can prove analogously to (4.21) that

\[\frac{1}{2} J_1 \left(\frac{u_n^n - u_{n-1}^n}{\lambda_n} \right) + \sum_{i=k_1+1}^{n-2} \sigma_n^i \geq B_1 \left(u_0^{(1)}, \gamma \right) - \omega(n) \]

(4.36)

with an appropriate function \(\omega \) converging to 0 as \(n \to \infty \). Therefore, in order to obtain (4.34) we focus now on the sum of the terms \(\sigma_n^i \) for \(i \) ranging between 0 and \(k_1^n \).

Since, by assumption, \(u_n \to u \) and \(S_u = \{ 0 \} \), we have that there exists \(h_n \in \mathbb{N} \) with \(\lambda_n h_n \to 0 \) such that

\[\lim_{n \to \infty} \left| \frac{u_n^{h_n+1} - u_n^{h_n}}{\lambda_n} \right| = +\infty. \]

(4.37)

We then split the sum, by isolating the terms \(i = h_n - 1 \) and \(i = h_n \) which contain terms as in (4.37):

\[\sum_{i=0}^{k_1^n} \sigma_n^i = \sum_{i=0}^{h_n-2} \sigma_n^i + \sigma_n^{h_n-1} + \sigma_n^{h_n} + \sum_{i=h_n+1}^{k_1^n} \sigma_n^i. \]

(4.38)

According to (4.37), since \(J_1(\infty) = J_2(\infty) = 0 \), we have that some terms in \(\sigma_n^{h_n-1} \) and in \(\sigma_n^{h_n} \) are infinitesimal. We collect them in the function \(r_1(n) \) defined by

\[r_1(n) = J_2 \left(\frac{u_n^{h_n+1} - u_n^{h_n}}{2\lambda_n} \right) + J_2 \left(\frac{u_n^{h_n+2} - u_n^{h_n}}{2\lambda_n} \right) + J_1 \left(\frac{u_n^{h_n+1} - u_n^{h_n}}{\lambda_n} \right) \]

and converging to 0 as \(n \to \infty \). Hence, from (4.38) we have

\[\sum_{i=0}^{k_1^n} \sigma_n^i = \frac{1}{2} J_1 \left(\frac{u_n^{h_n} - u_n^{h_n-1}}{\lambda_n} \right) + \sum_{i=0}^{h_n-2} \sigma_n^i + \frac{1}{2} J_1 \left(\frac{u_n^{h_n+2} - u_n^{h_n+1}}{\lambda_n} \right) + \sum_{i=h_n+1}^{k_1^n} \sigma_n^i - 2J_0(\gamma) + r_1(n). \]

(4.39)

We show that

\[\frac{1}{2} J_1 \left(\frac{u_n^{h_n} - u_n^{h_n-1}}{\lambda_n} \right) + \sum_{i=0}^{h_n-2} \sigma_n^i \geq B_0 \left(u_0^{(1)} \right), \]

(4.40)

\[\frac{1}{2} J_1 \left(\frac{u_n^{h_n+2} - u_n^{h_n+1}}{\lambda_n} \right) + \sum_{i=h_n+1}^{k_1^n} \sigma_n^i \geq B(\gamma) + r_2(n), \]

(4.41)

with \(r_2(n) \to 0 \) as \(n \to \infty \), see below for details. Indeed, (4.40)-(4.41) together with (4.36) and (4.39) then give (4.34).

Let us start by proving the inequality in (4.40). We define for \(j = -h_n + 2, \ldots, 0 \)

\[\tilde{\omega}_n^j = \frac{u_n^{j+h_n}}{\lambda_n}. \]

Then

\[\frac{1}{2} J_1 \left(\frac{u_n^{h_n} - u_n^{h_n-1}}{\lambda_n} \right) + \sum_{i=0}^{h_n-2} \sigma_n^i = \frac{1}{2} J_1 \left(\tilde{\omega}_n^0 - \tilde{\omega}_n^{-1} \right) + \sum_{j=-h_n+2}^{0} \left\{ J_2 \left(\frac{\tilde{\omega}_n^j - \tilde{\omega}_n^{j-2}}{2} \right) + \frac{1}{2} \left(J_1(\tilde{\omega}_n^j - \tilde{\omega}_n^{j+1}) + J_1(\tilde{\omega}_n^{j-1} - \tilde{\omega}_n^{j-2}) \right) - J_0(\gamma) \right\} \]

19
and, moreover, \(\hat{w}_n^{h_n} = 0 \), \(\hat{w}_n^{1-h_n} - \hat{w}_n^{h_n} = u_0^{(1)} \), which means that \(\hat{w}_n \) is an admissible test for \(B^0 \left(u_0^{(1)} \right) \) and thus (4.40) holds true.

It remains to prove (4.41). We define, for \(j \geq 0 \)

\[
\tilde{u}_n^j = \begin{cases}
\frac{u_n^{h_n+1+j} - u_n^{h_n+1}}{\lambda_n} & \text{if } j \leq k_n^1 - h_n + 1, \\
\gamma (j - k_n^1 + h_n - 1) + \frac{k_n^1 + 2}{\lambda_n} - \frac{u_n^{h_n+1}}{\lambda_n} & \text{if } j \geq k_n^1 - h_n + 1.
\end{cases}
\]

Therefore, we find

\[
\frac{1}{2} J_1 \left(\frac{u_n^{h_n+2} - u_n^{h_n+1}}{\lambda_n} \right) + \sum_{i=h_n+1}^{k_n^1} \sigma_i^+ = \frac{1}{2} J_1 \left(\tilde{u}_n^0 - \tilde{u}_n^0 \right) + \sum_{j \geq 0} \left\{ J_2 \left(\frac{\tilde{u}_n^{j+2} - \tilde{u}_n^j}{2} \right) + \frac{1}{2} \left(J_1 \left(\tilde{u}_n^{j+2} - \tilde{u}_n^{j+1} \right) + J_1 \left(\tilde{u}_n^{j+1} - \tilde{u}_n^j \right) \right) \right\} - r_2(n),
\]

where \(r_2(n) \) corresponds to the term \(j = k_n^1 - h_n \), and we can consider an infinite sum since the terms for \(j \geq k_n^1 - h_n + 1 \) are identically 0. We observe that

\[
\lim_{n \to \infty} J_2 \left(\frac{1}{2} \left(\gamma + \frac{u_n^{k_n^1+2} - u_n^{k_n^1+1}}{\lambda_n} \right) \right) + \frac{1}{2} \left(J_1 \left(\gamma + J_1 \left(\frac{u_n^{k_n^1+2} - u_n^{k_n^1+1}}{\lambda_n} \right) \right) \right) - J_0(\gamma) = 0
\]

as \(n \to \infty \), since, by (4.35), \(\frac{u_n^{k_n^1+2} - u_n^{k_n^1+1}}{\lambda_n} \to \gamma \), and \(J_2(\gamma) + J_1(\gamma) = J_0(\gamma) \) by (4.3). Note that \(\tilde{u}_n^0 = 0 \), \(\tilde{u}_n^{h_n+1} - \tilde{u}_n^0 = \gamma \) for all \(j \geq k_n^1 - h_n + 1 \). According to the definition of \(B(\gamma) \) recalled in (4.27), we thus obtain (4.41), which concludes the proof of (4.34).

Internal jump. Assume that \(S_0 = \{ \bar{t} \} \), where \(\bar{t} \in (0, 1) \). Without loss of generality we consider \(\bar{t} = \frac{1}{2} \). Let \((u_n) \) be a sequence converging to \(u \) such that \(\sup_n H_1^{i,n}(u_n) < +\infty \). Then Proposition 4.2 implies that \(u_n \to u \) in \(L^1(0, 1) \) with

\[
u(t) = \begin{cases}
\gamma t & \text{if } 0 \leq t \leq \frac{1}{2}, \\
(\ell - \gamma) + \gamma t & \text{if } \frac{1}{2} < t \leq 1.
\end{cases}
\]

We prove

\[
\liminf_n H_1^{i,n}(u_n) \geq B_+ \left(u_0^{(1)}, \gamma \right) + B_- \left(u_1^{(1)}, \gamma \right) - J_0(\gamma) + 2B(\gamma) - 2J_0(\gamma).
\]

(4.43)

Let \(k_n^0, k_n^1, h_n \) be integers with \(n_0 n_0 \to \frac{1}{4}, \lambda_n k_n^0 \to \frac{3}{4}, \lambda_n h_n \to \frac{1}{2} \) and \(\lambda_n h_n \to \frac{1}{2} \) such that

\[
\left| u_n^{h_n+1} - u_n^{h_n} \right| \to \gamma, \left| u_n^{k_n^1+2} - u_n^{k_n^1+1} \right| \to \gamma, \left| u_n^{h_n+1} - u_n^{h_n} \right| \to +\infty \quad \text{as } n \to \infty.
\]

(4.44)

By using again the definition of \(\sigma_n^i, i = 0, \ldots, n-2 \), given in (4.10), we decompose the energy \(H_1^{i,n}(u_n) \) as follows to extract the occurring boundary layer energies.

\[
H_1^{i,n}(u_n) = \frac{1}{2} J_1 \left(u_n^{k_n^0} - u_n^{h_n} \right) + \sum_{i=0}^{k_n^0} \sigma_i^+ + \sum_{i=k_n^0+1}^{h_n-2} \sigma_i^+ + \sigma_n^{h_n-1} + \sigma_n^{h_n} + \sum_{i=h_n+1}^{k_n^1} \sigma_i^+ + \sum_{i=k_n^1+1}^{n-2} \sigma_i^+ + \frac{1}{2} J_1 \left(u_n^{h_n} - u_n^{h_n-1} \right) - J_0(\gamma).
\]

(4.45)
As in (4.36) we have
\[
\frac{1}{2} J_1 \left(\frac{u_n^1 - u_n^{n-1}}{\lambda_n} \right) + \sum_{i=1}^{n-2} \sigma_i^1 \geq B_+ \left(u_1^{(1)}, \gamma \right) - \omega(n).
\] (4.46)

In a similar way (see also (4.19)) we get
\[
\frac{1}{2} J_1 \left(\frac{u_n^0 - u_n^0}{\lambda_n} \right) + \sum_{i=0}^{k_0} \sigma_i^0 \geq B_+ \left(u_0^{(1)}, \gamma \right) - \omega(n)
\] (4.47)
for some (in general different) functions \(\omega(n)\), see above, converging to 0 as \(n \to \infty\). Therefore, in order to obtain (4.43), we focus on
\[
\Sigma = \sum_{i=k_0+1}^{h_n-1} \sigma_i^1 + \sum_{i=h_n+1}^{k_n} \sigma_i^1 - 2J_0(\gamma) + \omega(n),
\]
where
\[
\omega(n) = J_2 \left(\frac{u_n^{h_n+1} - u_n^{h_n-1}}{2\lambda_n} \right) + \frac{1}{2} J_1 \left(\frac{u_n^{h_n+1} - u_n^{h_n-1}}{\lambda_n} \right) + \frac{1}{2} J_1 \left(\frac{u_n^{h_n+2} - u_n^{h_n}}{2\lambda_n} \right) + \frac{1}{2} J_1 \left(\frac{u_n^{h_n+1} - u_n^{h_n}}{\lambda_n} \right)
\]
converges to 0 as \(n \to \infty\). It remains to prove that
\[
\frac{1}{2} J_1 \left(\frac{u_n^{h_n} - u_n^{h_n-j}}{\lambda_n} \right) + \sum_{i=k_0+1}^{h_n-2} \sigma_i^1 \geq B(\gamma) + r_1(n),
\] (4.49)
\[
\frac{1}{2} J_1 \left(\frac{u_n^{h_n+2} - u_n^{h_n+1}}{\lambda_n} \right) + \sum_{i=h_n+1}^{k_n} \sigma_i^1 \geq B(\gamma) + r_2(n),
\] (4.50)
with \(r_i(n) \to 0\), for \(i = 1, 2\), as \(n \to \infty\). Indeed, (4.49)–(4.50) together with (4.45), (4.48) will then give (4.43). We start by proving (4.49). We define \(\tilde{u}_n : \mathbb{N} \to \mathbb{R}\) as
\[
\tilde{u}_n^j = \begin{cases}
\frac{u_n^{h_n} - u_n^{h_n-j}}{\lambda_n} & \text{if } 0 \leq j \leq h_n - k_0^0 - 1, \\
\gamma(j - h_n + k_0^0 + 1) + \frac{u_n^{h_n} - k_0^0 + 1}{\lambda_n} & \text{if } j \geq h_n - k_0^0 - 1.
\end{cases}
\]
We observe that \(\tilde{u}_n^0 = 0, \tilde{u}_n^{j+1} - \tilde{u}_n^j = \gamma\) for all \(j \geq h_n - k_0^0 - 1\). The idea is to rewrite the left-hand side in (4.49) as an infinite sum involving \(\tilde{u}_n^j\) as follows
\[
\frac{1}{2} J_1 \left(\frac{u_n^{h_n} - u_n^{h_n-1}}{\lambda_n} \right) + \sum_{i=k_0+1}^{h_n-2} \sigma_i^1 = \frac{1}{2} J_1 \left(\tilde{u}_n^1 - \tilde{u}_n^0 \right) + \sum_{j \geq 0} \left\{ J_2 \left(\frac{\tilde{u}_n^{j+2} - \tilde{u}_n^j}{2} \right) + \frac{1}{2} J_1 \left(\tilde{u}_n^{j+2} - \tilde{u}_n^{j+1} \right) + J_1 \left(\tilde{u}_n^{j+1} - \tilde{u}_n^j \right) \right\} - r_1(n),
\]
where $r_1(n)$ is an infinitesimal term corresponding to $j = h_n - k_n^0 - 2$; we can consider the sum as an infinite sum since the terms for $j \geq h_n - k_n^0 - 1$ are identically 0. According to the definition of $B(\gamma)$ given by (4.27), we thus obtain (4.49).

We pass now to (4.50). We define another test function $\tilde{u}_n : \mathbb{N} \to \mathbb{R}$, again denoted by \tilde{u}_n, such that

$$\tilde{u}_n = \begin{cases} u_n^{j+h_n+1} - u_n^{h_n+1} & \text{if } 0 \leq j \leq k_n^1 - h_n + 1, \\ \frac{\gamma(j + h_n - k_n^1 - 1)}{\lambda_n} + \frac{k_n^1 + 1 - u_n^{h_n+1}}{\lambda_n} & \text{if } j \geq k_n^1 - h_n + 1. \end{cases}$$

Thus, $\tilde{u}_n^0 = 0$ and $\tilde{u}_n^{j+1} - \tilde{u}_n^j = \gamma$ for $j \geq k_n^1 - h_n + 1$. We can rewrite the left-hand side of (4.50) in terms of an infinite sum involving \tilde{u}_n^j:

$$\frac{1}{2} J_1 \left(\frac{u_n^{h_n+2} - u_n^{h_n+1}}{\lambda_n} \right) + \sum_{i=h_n+1}^{k_n^1} \sigma_i^j - \frac{1}{2} J_1 \left(\tilde{u}_n^j - \tilde{u}_n^0 \right) + \sum_{j \geq 0} \left\{ J_2 \left(\frac{\tilde{u}_n^{j+2} - \tilde{u}_n^j}{2} \right) \right. \right.$$

$$+ \frac{1}{2} \left(J_1 \left(\tilde{u}_n^{j+2} - \tilde{u}_n^{j+1} \right) + J_1 \left(\tilde{u}_n^{j+1} - \tilde{u}_n^j \right) \right) - J_0(\gamma) \left\} - r_2(n), \right.$$

where $r_2(n)$ corresponds to the term $j = k_n^1 - h_n$ and converges to 0 as $n \to \infty$ by (4.44) and by (4.3). Thus (4.50) follows, and this concludes the proof of the liminf inequality.

Limsup inequality. As before, we distinguish between the different situations.

Jump at 0. We assume that $S_u = \{0\}$ where u is given by (4.33). We need to prove that there exists a sequence (u_n) converging to u in $L^1(0,1)$, satisfying (2.2) and such that

$$\limsup_n H_{1,n}^\gamma(u_n) \leq \frac{1}{2} J_1 \left(\frac{u_0^{(1)}}{u_0^0} \right) + B_0^0 \left(u_0^{(1)} \right) + B(\gamma) - 2 J_0(\gamma) + B_-(u_1^{(1)}, \gamma) - J_0(\gamma). \quad (4.51)$$

Let us fix $\eta > 0$. Then, by the definition of $B(\gamma)$ (see (4.27)), we can find $\tilde{u} : \mathbb{N} \to \mathbb{R}$ and $\tilde{N} \in \mathbb{N}$ such that $\tilde{u}_0^0 = 0$, $\tilde{u}_i^{j+1} - \tilde{u}_i^j = \gamma$ if $i \geq \tilde{N}$ and

$$\frac{1}{2} J_1 \left(\frac{\tilde{u}_i^0 - \tilde{u}_i^0}{\lambda_n} \right) + \sum_{j \geq 0} \left\{ J_2 \left(\frac{\tilde{u}_i^{j+2} - \tilde{u}_i^j}{2} \right) + \frac{1}{2} \left(J_1 \left(\tilde{u}_i^{j+2} - \tilde{u}_i^{j+1} \right) + J_1 \left(\tilde{u}_i^{j+1} - \tilde{u}_i^j \right) \right) - J_0(\gamma) \right\} \leq B(\gamma) + \eta. \quad (4.52)$$

In the same way, by the definition of $B_-(u_1^{(1)}, \gamma)$ there exist $w : -\mathbb{N} \to \mathbb{R}$ and $N_2 \in \mathbb{N}$ with $w^0 = 0$, $w^0 - w^{-1} = -w^{-1} = u_1^{(1)}$, $w^i - w^{i-1} = \gamma$ if $i \leq -N_2$, such that

$$\frac{1}{2} J_1 \left(w^0 - w^{-1} \right) + \sum_{i \leq 0} \left\{ J_2 \left(\frac{w^i - w^{i-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(w^i - w^{i-1} \right) + J_1 \left(w^{i-1} - w^{-2} \right) \right) - J_0(\gamma) \right\} \leq B_-(u_1^{(1)}, \gamma) + \eta. \quad (4.53)$$

Analogously, by the definition of $B_0^0 \left(u_0^{(1)} \right)$ given in (4.25), there exist $\tilde{w} : -\mathbb{N} \to \mathbb{R}$ and $\tilde{k}_0 \in \mathbb{N}$
such that \(\hat{w}^{-k_0 - 1} = 0 \), \(\hat{w}^{-k_0} - \hat{w}^{-k_0 - 1} = \hat{w}^{-k_0} = u^{(1)}_0 \)
and
\[
\frac{1}{2} J_1 (w^0 - \hat{w}^{-1}) + \sum_{i=0}^{k_0 - 1} \left\{ J_2 \left(\frac{w^i - \hat{w}^{-2}}{2} \right) + \frac{1}{2} (J_1 \left(w^i - \hat{w}^{-1} \right) + J_1 \left(\hat{w}^{-1} - \hat{w}^{-2} \right) - J_0 (\gamma) \right) \right\}
\leq B^0 (u^{(1)}_0) + \eta.
\tag{4.54}
\]

Let \(\{k_n^1\} \) be a sequence of integers with \(\lambda_n k_n^1 \to \frac{3}{4} \) as \(n \to \infty \) such that
\[
k_n^1 - (\hat{k}_0 + 2) \geq \tilde{N} \quad \text{and} \quad k_n^1 - n + 2 \leq -N_2 \quad \text{for all} \quad n \in \mathbb{N}.
\tag{4.55}
\]

We construct the sequence \(\{u_n\} \) by means of the functions \(\tilde{u}, w \) and \(\hat{w} \). Indeed, we define
\[
u_n = \begin{cases} \lambda_n \hat{w}^{-i-k_0-1} & \text{if } 0 \leq i \leq \hat{k}_0 + 1, \\ \ell + \lambda_n \left(w^{k_1^1+1-n} + \hat{w}^{-i-(\hat{k}_0+2)} - \hat{u}^{k_1^1+1-(\hat{k}_0+2)} \right) & \text{if } \hat{k}_0 + 2 \leq i \leq k_n^1 + 1, \\ \ell + \lambda_n w^{i-n} & \text{if } k_n^1 + 1 \leq i \leq n.
\end{cases}
\]

Note that the sequence \(\{u_n\} \) satisfies the boundary conditions
\[
u^0 = \lambda_n \hat{w}^{-k_0-1} = 0, \quad u^1 = \lambda_n \hat{w}^{-k_0} = \lambda_n u^{(1)}_0, \\
u^n = \ell + \lambda_n w^0 = \ell, \quad u^n - u^{n-1} = \lambda_n (w^0 - w^{-1}) = \lambda_n u^{(1)}_n,
\]
and satisfies \(u^{i+1} = \gamma \) for \(\tilde{N} + \hat{k}_0 + 2 \leq i \leq k_n^1 \) and for \(k_n^1 + 1 \leq i \leq n - 1 - N_2 \) by definition. Moreover we have that
\[
u^\hat{k}_0 + 2 - u^\hat{k}_0 + 1 \to \ell - \gamma.
\tag{4.56}
\]

Indeed, by using the facts that \(\hat{w}^{i+1} - \hat{w}^{i} = \gamma \) if \(i \geq \tilde{N} \) and \(w^i - w^{i-1} = \gamma \) if \(i \leq -N_2 \), together with (4.55) we obtain
\[
u^n = \ell + \lambda_n \left(w^{k_1^1+1-n} + (\hat{w}^0 - \hat{u}^{k_1^1+1-(\hat{k}_0+2)}) - \hat{w}^0 \right)
= \ell + \lambda_n \left((w^{k_1^1+1-n} - w^{-N_2}) + w^{-N_2} + (\hat{w}^{N_2} - \hat{u}^{k_1^1+1-(\hat{k}_0+2)}) - \hat{w}(N_2) - \hat{w}^0 \right)
= \ell + \gamma_n \lambda_n \left(\gamma (N_2 + (\hat{k}_0 + 2) + \tilde{N}) + w^{-N_2} - \hat{w}(N_2) - \hat{w}^0 \right) \to \ell - \gamma.
\]

Hence \(u_n \to u \) in \(L^1 (0, 1) \), where \(u \) is defined by (4.33), as \(n \to \infty \).

To prove (4.51), we rewrite \(H_{1,n}^\ell (u_n) \) as
\[
H_{1,n}^\ell (u_n) = \frac{1}{2} J_1 \left(\frac{u_n^{\ell} - u_n^{\ell-1}}{\lambda_n} \right) + \sum_{i=0}^{k_0 - 1} \sigma_n^i + \sigma_n^{\hat{k}_0} + \sigma_n^{\hat{k}_0 + 1} + \sum_{i=k_0 + 2}^{k_n^1 - 1} \sigma_n^i + \sigma_n^{k_n^1} + \sum_{i=k_n^1 + 1}^{n - 2} \sigma_n^i
+ \frac{1}{2} J_1 \left(\frac{u_n^{\ell} - u_n^{\ell-1}}{\lambda_n} \right) - J_0 (\gamma),
\tag{4.57}
\]

where \(\sigma_n^i \) is defined in (4.10), and we use the definition of \(\{u_n\} \) above.

23
We start with the sum from $i = 0$ to $\hat{k}_0 - 1$, and involve \hat{w}^j by introducing the new index $j = i - \hat{k}_0 + 1$ and summing then from $j = -\hat{k}_0 + 1$ up to 0, namely,

$$
\sum_{i=0}^{\hat{k}_0-1} \sigma_n^i = \sum_{j=-\hat{k}_0+1}^0 \left\{ J_2 \left(\frac{\hat{w}^j - \hat{w}^{j-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(\hat{w}^j - \hat{w}^{j-1} \right) + J_1 \left(\hat{w}^{j+1} - \hat{w}^{j-2} \right) \right) - J_0(\gamma) \right\}. \tag{4.58}
$$

We continue with the term $\hat{\sigma}_n^{\hat{k}_0}$ by observing that

$$
\hat{\sigma}_n^{\hat{k}_0} = \frac{1}{2} J_1 \left(\hat{w}^0 - \hat{w}^{-1} \right) - J_0(\gamma) + \hat{r}(n), \tag{4.59}
$$

where $\hat{r}(n)$ is defined by

$$
\hat{r}(n) = J_2 \left(\frac{\ell}{2\lambda_n} + \frac{1}{2} \left(w^{k_n+1-n} - \hat{w}^{k_n+1-(\hat{k}_0+2)} - \hat{w}^{-1} \right) \right)
$$

and converges to 0 as $n \to \infty$, since $J_2(+\infty) = J_1(+\infty) = 0$. Similarly,

$$
\hat{\sigma}_n^{\hat{k}_0+1} = \frac{1}{2} J_1 \left(\hat{w}^0 - \hat{w}^{-1} \right) - J_0(\gamma) + r(n), \tag{4.60}
$$

where

$$
r(n) = J_2 \left(\frac{\ell}{2\lambda_n} + \frac{1}{2} \left(w^{k_n+1-n} + \hat{w}^{k_n+1-(\hat{k}_0+2)} - \hat{w}^{-1} \right) \right)
$$

converges to 0 as $n \to \infty$.

The sum from $i = \hat{k}_0 + 2$ to $k_n^1 - 1$ can be rewritten in terms of \tilde{u} by introducing the new index $j = i - (\hat{k}_0 + 2)$ ranging between 0 and $k_n^1 - 1 - (\hat{k}_0 + 2)$. Actually, we can pass to an infinite sum, since the term for $j \geq \tilde{N}$ gives zero contribution by (4.3) and, by (4.55), $k_n^1 - (\hat{k}_0 + 2) \geq \tilde{N}$. Thus we have

$$
\sum_{i=\hat{k}_0+2}^{k_n^1-1} \sigma_n^i = \sum_{j=0}^{k_n^1-1} \left\{ J_2 \left(\frac{\tilde{u}^{j+2} - \tilde{u}^{j}}{2} \right) + \frac{1}{2} \left(J_1 \left(\tilde{u}^{j+2} - \tilde{u}^{j+1} \right) + J_1 \left(\tilde{u}^{j+1} - \tilde{u}^{j} \right) \right) - J_0(\gamma) \right\}. \tag{4.61}
$$

Next, we observe that

$$
\sigma_n^{k_n^1} = 0. \tag{4.62}
$$

Indeed, by (4.55),

$$
\sigma_n^{k_n^1} = J_2 \left(\frac{\left(w^{k_n^1+2-n} - w^{k_n^1+1-n} \right) + \left(\hat{w}^{k_n^1+1-(\hat{k}_0+2)} - \hat{w}^{k_n^1-(\hat{k}_0+2)} \right) + \left(J_1(\hat{\gamma}) - J_0(\gamma) \right)
$$

$$
= J_2(\gamma) + J_1(\gamma) - J_0(\gamma) = 0.
$$

24
It remains to consider the sum from $i = k_1^1 + 1$ up to $n - 2$, which involves w by introducing the new index $j = i - n + 2$. Moreover, we can pass to the infinite sum for $j \leq 0$, since $k_1^1 - n + 2 \leq -N_2$. Therefore, we have

$$
\sum_{i=k_1^1+1}^{n-2} \sigma_i^L = \sum_{j \leq 0} \left\{ \frac{1}{2} J_2 \left(\frac{w_j - w_j^{-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(w_j - w_j^{-1} \right) + J_1 \left(w_j^{-1} - w_j^{-2} \right) \right) - J_0(\gamma) \right\}. \tag{4.63}
$$

In conclusion, by (4.57), (4.58)–(4.63) together with (4.52)–(4.54), we obtain

$$
H_{1,n}(u_n) = \frac{1}{2} J_1 \left(u_0^{(1)} \right) - 3 J_0(\gamma) + \tilde{r}(n) + r(n) + \frac{1}{2} J_1 \left(\tilde{w}^0 - \tilde{w}^{-1} \right)
+ \sum_{i=-k_0+1}^{0} \left\{ J_2 \left(\frac{\tilde{w}^i - \tilde{w}^{i-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(\tilde{w}^i - \tilde{w}^{i-1} \right) + J_1 \left(\tilde{w}^{i-1} - \tilde{w}^{i-2} \right) \right) - J_0(\gamma) \right\}
+ \frac{1}{2} J_1 \left(\tilde{u} - \tilde{u}^0 \right) + \sum_{i \geq 0} \left\{ J_2 \left(\frac{\tilde{w}^{i+2} - \tilde{u}^i}{2} \right) + \frac{1}{2} \left(J_1 \left(\tilde{w}^{i+2} - \tilde{u}^{i+1} \right) + J_1 \left(\tilde{u}^{i+1} - \tilde{u}^i \right) \right) - J_0(\gamma) \right\}
+ \frac{1}{2} J_1 \left(w^0 - w^{-1} \right) + \sum_{i \leq 0} \left\{ J_2 \left(\frac{w^i - w^{i-2}}{2} \right) + \frac{1}{2} \left(J_1 \left(w^i - w^{i-1} \right) + J_1 \left(w^{i-1} - w^{i-2} \right) \right) - J_0(\gamma) \right\}
\leq \frac{1}{2} J_1 \left(u_0^{(1)} \right) - 3 J_0(\gamma) + B^0 \left(u_0^{(1)} \right) + B(\gamma) + B_- \left(u_1^{(1)}, \gamma \right) + 3\eta + \tilde{r}(n) + r(n).
$$

Hence, (4.51) follows.

Internal jump. Without loss of generality we assume that $S_n = \left\{ \frac{1}{2} \right\}$ where u is given by (4.42). We have to prove that there exists a sequence (u_n) converging to u in $L^1(0,1)$, satisfying (2.2) and such that

$$
\limsup_n H_{1,n}(u_n) \leq B_+ \left(u_0^{(1)}, \gamma \right) + B_- \left(u_1^{(1)}, \gamma \right) - J_0(\gamma) + 2B(\gamma) - 2J_0(\gamma). \tag{4.64}
$$

Let us fix $\eta > 0$. By the definition of $B_+ \left(u_0^{(1)}, \gamma \right)$ we can find $v : N \to \mathbb{R}$ and $N_1 \in \mathbb{N}$ with $v^0 = 0$, $v^1 - v^0 = u_0^{(1)}$, $v^{i+1} - v^i = \gamma$ if $i \geq N_1$, such that

$$
\frac{1}{2} J_1 (v^1 - v^0) + \sum_{i \geq 0} \left\{ J_2 \left(\frac{v^{i+2} - v^i}{2} \right) + \frac{1}{2} \left(J_1 \left(v^{i+2} - v^{i+1} \right) + J_1 \left(v^{i+1} - v^i \right) \right) - J_0(\gamma) \right\}
\leq B_+ \left(u_0^{(1)}, \gamma \right) + \eta. \tag{4.65}
$$

Moreover, by the definition of $B(\gamma)$ there exist $\tilde{u} : \mathbb{N} \to \mathbb{R}$ and $\tilde{N} \in \mathbb{N}$ satisfying (4.52). Finally, by the definition of $B_- \left(u_1^{(1)}, \gamma \right)$ there exist $w : -\mathbb{N} \to \mathbb{R}$ and $N_2 \in \mathbb{N}$ as in (4.53).

Let k_0^0, k_1^1, h_n be sequences of integers with $\lambda_n k_0^0 \to \frac{1}{4}$, $\lambda_n k_1^1 \to \frac{3}{4}$, $\lambda_n h_n \to \frac{1}{2}$ as $n \to \infty$, such that

$$
k_0^0 \geq N_1 + 1 \quad \text{and} \quad k_1^1 - n + 2 \leq -N_2 \tag{4.66}
$$

$$
\tilde{N} \leq \min \{ h_n - k_0^0 - 1, k_1^1 - h_n - 1 \} \quad \text{for all} \ n \in \mathbb{N}. \tag{4.67}
$$
We construct now the sequence \((u_n)\) by means of the functions \(v, \tilde{u}\) and \(w\):

\[
\begin{align*}
 u_n^0 &= \lambda_n v^i \\
 u_n^1 &= \lambda_n \left(v_{n}^{k^0_n} - \tilde{u}_{n}^{h_k - k^0_n} + \tilde{u}_{n}^{h_k - k^0_n} \right) \\
 u_n^i &= \lambda_n \left(\ell \left(v_{n}^{k^1_n + 1 - n} + \tilde{u}_{n}^{h_k - (h_k + 1)} - \tilde{u}_{n}^{h_k - h_k} \right) \right) \\
 \ell &= \lambda_n w^{i-n} \\
 \ell &= \lambda_n w^{i-n}
\end{align*}
\]

if \(0 \leq i \leq k^0_n\),

if \(k^0_n < i \leq h_k\),

if \(h_k + 1 \leq i \leq k^1_n + 1\),

if \(k^1_n + 1 < i \leq n\).

We observe that the sequence \((u_n)\) satisfies the boundary conditions

\[
u_n^0 = \lambda_n v^0 = 0, \quad u_n^1 = \lambda_n v^1 = \lambda_n u_0^{(1)} \quad \text{if } i = \ell, \quad u_n^n = \lambda_n \left(w^0 - w^{-1} \right) = \lambda_n u_1^{(1)},
\]

moreover, \(u_n^{i+1} - u_n^i = \gamma\) for \(N_1 \leq i \leq h_k - N\) and for \(N + h_k + 1 \leq i \leq n - N_2\). We also have that

\[
u_n^{h_k+1} - u_n^h \rightarrow \ell - \gamma.
\]

Indeed, by using the facts that \(v^{i+1} - v^i = \gamma\) for \(i \geq N_1\), \(\tilde{u}^{i+1} - \tilde{u}^i = \gamma\) for \(i \geq N\) and \(w^i - w^{-1} = \gamma\) for \(i \leq -N_2\), we have:

\[
u_n^{h_k+1} - u_n^h = \ell + \lambda_n \left(w^{k^1_n + 1 - n} + \tilde{u}^0 + \tilde{u}^{h_k - h_k} - w^{k^0_n} + \tilde{u}^0 - \tilde{u}^{h_k - h_k} \right) \]

\[
= \ell + 2 \lambda_n \tilde{u}^0 - \lambda_n \left(\gamma (k^0_n - N_1 + k^1_n - h_k + \tilde{N} + v^N + w^\tilde{N}) \right) + \lambda_n \left(\gamma (k^0_n - n + 1 + N_2 + k^1_n - h_k + \tilde{N}) + w^N - \tilde{u}^N \right) \]

\[
= \ell + 2 \lambda_n \tilde{u}^0 + \gamma n \lambda_n + \lambda_n \left(\gamma (N_1 + 2 \tilde{N} + N_2 + 1) - v^N - 2 \tilde{u}^N + w^N \right).
\]

Therefore (4.68) holds. In conclusion, \(u_n \rightarrow u\) in \(L^1(0, 1)\) as \(n \rightarrow \infty\). We compute now \(H_{1,n}^e(u_n)\), which turns out to be useful to write as follows.

\[
H_{1,n}^e(u_n) = \frac{1}{2} J_1 \left(\frac{u_n^0 - u_n^h}{\lambda_n} \right) + \sum_{i=0}^{k^0_n - 2} \sigma_i^n + \sigma_i^{k^0_n - 1} + \sum_{i=k^0_n}^{h_k - 2} \sigma_i^n + \sigma_i^{h_k - 1} + \sigma_i^{h_k} + \sum_{i=h_k + 1}^{k^1_n - 1} \sigma_i^n
\]

\[
+ \sigma_i^{k^1_n} + \sum_{i=k^1_n + 1}^{n-2} \sigma_i^n + \frac{1}{2} J_1 \left(\frac{u_n^0 - u_n^{h_k - 1}}{\lambda_n} \right) - J_0(\gamma),
\]

where \(\sigma_i^n\) is defined in (4.10). We observe that

\[
\sigma_i^{k^0_n - 1} = 0
\]

since, by (4.66),

\[
J_2 \left(\frac{v_{k^0_n}^{k^0_n} - \tilde{u}_{k^0_n - h_k - k^0_n} + \tilde{u}_{k^0_n - k^0_n} - w^{k^0_n - 1}}{2} \right) + \frac{1}{2} \left(J_1(v_{k^0_n}^{k^0_n} - \tilde{u}_{k^0_n - k^0_n} - \tilde{u}_{k^0_n} - 1) + J_1(w^{k^0_n} - w^{k^0_n - 1}) \right)
\]

\[
= J_2(\gamma) + J_1(\gamma)
\]

which equals \(J_0(\gamma)\) by (4.3). Similarly,

\[
\sigma_i^{k^1_n} = 0
\]
because, by (4.67),
\[
\begin{align*}
J_2 & \left(w^{k_n^1+2-n}_{w^{k_n^1+1-n} - \tilde{w}^{k_n^1}_{(h_n+1)} + \tilde{w}^{k_n^1}_{h_n}} \right) + \frac{1}{2} J_1(w^{k_n^1+2-n}_{w^{k_n^1+1-n}}) \\
& + \frac{1}{2} J_1(\tilde{w}^{k_n^1}_{h_n} - \tilde{w}^{k_n^1}_{(h_n+1)}) \\
& = J_2(\gamma) + J_1(\gamma) = J_0(\gamma).
\end{align*}
\]

By (4.69)–(4.71), (4.65), (4.52) and (4.53), and computations analogous as in the case of the boundary jumps, we finally get
\[
\limsup_n H_{1, n}(u_n) \leq B + B_0(\gamma) + B_1(\gamma) - 3 J_0(\gamma) + 2 B(\gamma) + 4 \eta,
\]
which yields (4.64).

\section{5 Properties of boundary layer energies and location of fracture}

In the previous sections we derived the energy contributions due to boundary layers which occur in several different cases, see Theorems 4.3 and 4.8. Here we derive some properties of the boundary layer energies and look for the location of fracture, at which we proceed in the spirit of [BC07, Theorem 5.9].

First of all we establish some relations among the three different types of boundary layer energies that we used, namely $B(\gamma)$ as recalled in (4.27), $B_0(u_0^{(1)}, \gamma)$ and $B_1(u_1^{(1)}, \gamma)$ as defined in (4.11) and (4.12), respectively, as well as $B_0(u_0^{(1)})$ and $B_1(u_1^{(1)})$ as defined in (4.25) and (4.26), respectively.

\begin{lemma}
Let $[H1] - [H4]$ be satisfied. Then the following estimates hold true:
\begin{enumerate}
\item $\frac{1}{2} J_1(\delta_1) \leq B(\gamma) \leq \frac{1}{2} J_1(\gamma)$;
\item $B(\gamma) = B_0(\gamma) = B_1(\gamma)$;
\item $B_+(\gamma, \gamma) = B_-(\gamma, \gamma) = \frac{1}{2} J_1(\gamma)$;
\item $B_+\left(u_0^{(1)}, \gamma\right) \geq \frac{1}{2} J_1\left(u_0^{(1)}\right), \quad B_-\left(u_1^{(1)}, \gamma\right) \geq \frac{1}{2} J_1\left(u_1^{(1)}\right)$ for all $u_0^{(1)}, u_1^{(1)} > 0$;
\item $B(\gamma) = \inf_{u_0^{(1)} > 0} B_+\left(u_0^{(1)}, \gamma\right) = \inf_{u_1^{(1)} > 0} B_-\left(u_1^{(1)}, \gamma\right)$;
\item $B_1\left(u_1^{(1)}\right) \geq \frac{1}{2} J_1(\delta_1), \quad B_0\left(u_0^{(1)}\right) \geq \frac{1}{2} J_1(\delta_1)$ for all $u_0^{(1)}, u_1^{(1)} > 0$;
\item $B_1(\delta_1) = \frac{1}{2} J_1(\delta_1) = B_0(\delta_1)$.
\end{enumerate}
\end{lemma}
Proof. (1) The infinite sum in the definition (4.27) of $B(\gamma)$ is non-negative since γ is the minimum point of J_0. Hence

$$B(\gamma) \geq \frac{1}{2} \min J_1 = \frac{1}{2} J_1(\delta_1).$$

On the other hand, since the function $u^i = \gamma i$ is a competitor in the minimum problem defining $B(\gamma)$, we have that

$$B(\gamma) \leq \frac{1}{2} J_1(\gamma) + \sum_{i \geq 0} \{J_2(\gamma) + J_1(\gamma) - J_0(\gamma)\} = \frac{1}{2} J_1(\gamma),$$

where we again apply (4.3).

(2) First of all notice that for $u_0^{(1)} = u_1^{(1)}$ the problems (4.25) and (4.26) are symmetric. Indeed, in the particular case where $u_0^{(1)} = u_1^{(1)} = \gamma$, if (\tilde{v}^i, k) is a minimiser for $B_1^1(\gamma)$, then $(-\tilde{v}^{-1} - k)$ is a minimiser for $B^0_0(\gamma)$, having the same energy. Therefore, $B^1_1(\gamma) = B^0_0(\gamma)$. Moreover in this case it is immediate to notice that the definitions (4.25) and (4.26) reduce to (4.27).

(3) See the derivation of (4.24).

(4) It is an immediate consequence of the definition of the boundary layer energies (4.11) and (4.12), since the infinite sum is non-negative because γ is the minimum point of J_0.

(5) This follows directly comparing the definitions (4.27) and (4.11) and (4.12), respectively.

(6) Here we again apply that γ is the minimum point of J_0, which makes the terms in the sum defining the boundary layer energies (4.25) and (4.26) non-negative. Moreover recall that δ_1 is the minimum point of J_1.

(7) From (4.26) we notice that $(\tilde{v}^i, k) = (\delta_1 i, 0)$ is a competitor which gives the reverse inequality in (6), therefore we have equality. The second equality follows similarly.

Remark 5.2. From the proof of Lemma 5.1 we deduce that, if $u_0^{(1)} = \delta_1$, then $B^0_0(\delta_1) = \frac{1}{2} J_1(\delta_1)$ is attained for $k = 0$. Similarly, if $u_1^{(1)} = \delta_1$, then $B^1_1(\delta_1) = \frac{1}{2} J_1(\delta_1)$ is attained for $k = 0$.

Next we present our result which asserts the location of fracture. More precisely we compare the costs for fracture in the interior and at the boundary.

Theorem 5.3. Suppose that hypotheses $[H1] - [H4]$ hold. Let $\ell > \gamma$. For $u_0^{(1)} = u_1^{(1)} = \gamma$, the fracture can appear indifferently inside or at the boundary of the chain. If instead $u_0^{(1)}$ or $u_1^{(1)}$ is equal to δ_1 and $\delta_1 \neq \gamma$, then a boundary jump is more convenient than an internal jump, in terms of the energy.

Proof. Since $\ell > \gamma$, we obtain by Theorem 4.8, in the case of bounded energy, that

$$H_1^0(u) = B_+ \left(u_0^{(1)}, \gamma \right) + B_- \left(u_1^{(1)}, \gamma \right) - J_0(\gamma) + \#(S_u \cap \{0\}) \left(B^0_{B,I} - B_+ \left(u_0^{(1)}, \gamma \right)\right) + \#(S_u \cap \{1\}) \left(B^1_{B,J} - B_- \left(u_1^{(1)}, \gamma \right)\right) + \#(S_u \cap (0,1)) B_{I,J},$$

where $B^0_{B,I}$, $B^1_{B,J}$ and $B_{I,J}$ are defined in (4.30), (4.31) and (4.32).
Notice that if $u_0^{(1)} = \gamma$, then by Lemma 5.1 (2) and (3) we obtain
\[B_{0,J}^0 - B_+ (\gamma, \gamma) = \frac{1}{2} J_1 (\gamma) + B^0 (\gamma) + B (\gamma) - 2 J_0 (\gamma) - B_+ (\gamma, \gamma) = 2 B (\gamma) - 2 J_0 (\gamma) = B_{IJ}. \]

Analogously, if $u_1^{(1)} = \gamma$, then $B_{1,J}^1 - B_- (\gamma, \gamma) = B_{IJ}$. Hence a jump in the interior costs as much energy as a jump at the boundary.

Now assume that $u_0^{(1)} = \delta_1$. We show that $B_{0,J}^0 - B_+ (\delta_1, \gamma) < B_{IJ}$. This is equivalent to proving
\[\frac{1}{2} J_1 (\delta_1) + B^0 (\delta_1) - B_+ (\delta_1, \gamma) < B (\gamma), \]
which follows by Lemma 5.1 (1), (4) and (7) and the observation that the first inequality in (1) of Lemma 5.1 is strict if $\delta_1 \neq \gamma$.

In the remaining part of this section we show properties of the boundary layer energies in the case of a certain class of interaction potentials, namely the classical Lennard-Jones potentials J_1 and J_2 defined in Remark 4.1.

First we show that the second inequality in (1) of Lemma 5.1 is strict. This observation is applied in Remark 4.5, where we discuss that the first-order Γ-limit for $\ell = \gamma$ depends on whether the second and last but one atoms of the chain are prescribed.

Proposition 5.4. Let J_1 and J_2 be Lennard-Jones potentials as defined in (4.4). Then
\[B(\gamma) < \frac{1}{2} J_1(\gamma). \] (5.1)

Moreover, there exists an $a > 1$ such that $B_+ (a \gamma, \gamma) < B_+ (\gamma, \gamma)$.

Proof. Due to property (5) in Lemma 5.1, it is sufficient to show that there exists $u_0^{(1)} > 0$ such that $B_+ (u_0^{(1)}, \gamma) < \frac{1}{2} J_1 (\gamma)$. We set $u_0^{(1)} = a \gamma$, $a > 0$. Therefore our claim reduces to proving the existence of $a > 0$ such that $B_+ (a \gamma, \gamma) < \frac{1}{2} J_1 (\gamma)$.

Our strategy consists in exhibiting a competitor for the minimum problem defining $B_+ (a \gamma, \gamma)$ and in proving that, for some $a > 0$, its energy is strictly smaller than $\frac{1}{2} J_1 (\gamma)$.

Since the function $u : \mathbb{N} \to \mathbb{R}$ defined as
\[u^i = \begin{cases} 0 & \text{if } i = 0, \\ a \gamma & \text{if } i = 1, \\ \gamma i & \text{if } i \geq 2, \end{cases} \]
is an admissible competitor for $B_+ (a \gamma, \gamma)$, we have that
\[B_+ (a \gamma, \gamma) \leq J_1 (a \gamma) + J_1 ((2 - a) \gamma) + \frac{1}{2} J_1 (\gamma) + J_1 (2 \gamma) + J_1 ((3 - a) \gamma) - 2 J_0 (\gamma). \]

Therefore our claim reduces to showing that there exists an $a > 0$ such that
\[J_1 (a \gamma) + J_1 ((2 - a) \gamma) + \frac{1}{2} J_1 (\gamma) + J_1 (2 \gamma) + J_1 ((3 - a) \gamma) - 2 J_0 (\gamma) < \frac{1}{2} J_1 (\gamma), \] (5.2)
that is, equivalently, to showing that there exists an \(a > 0 \) such that the function \(f : \mathbb{R} \to \mathbb{R} \), defined as
\[
f(a) := J_1(a\gamma) + J_1((2-a)\gamma) + J_1((3-a)\gamma) - J_1(2\gamma) - 2J_1(\gamma),
\]
is strictly negative. Computing its derivative with respect to \(a \) we have, using the explicit expression of \(J_1 \) given in (4.4),
\[
f'(a) = -\frac{12k_1\gamma}{(a\gamma)^{13}} + \frac{12k_1\gamma}{((2-a)\gamma)^{13}} + \frac{12k_1\gamma}{((3-a)\gamma)^{13}} - \frac{6k_2\gamma}{(a\gamma)^{7}} - \frac{6k_2\gamma}{((2-a)\gamma)^{7}} - \frac{6k_2\gamma}{((3-a)\gamma)^{7}}.
\]
In particular, choosing \(a = 1 \) in the previous formula leads to
\[
f'(1) = \frac{12k_1\gamma}{(2\gamma)^{13}} - \frac{6k_2\gamma}{(2\gamma)^{7}} - \frac{6\gamma k_2}{(2\gamma)^{7}} \left(\frac{1}{2^6 k_2^6} - 1 \right) = \frac{6\gamma k_2}{(2\gamma)^{7}} \left(\frac{1 + 2^{-6}}{2^6 + 2^{-6}} - 1 \right) < 0.
\]
Therefore, since \(f(1) = 0 \) and \(f'(1) < 0 \), we have that the function \(f \) is strictly negative in a right neighbourhood of 1, i.e., there exists an \(a > 1 \) such that \(f(a) < 0 \). This proves (5.1). In particular we deduce that it is more convenient to have an initial slope strictly bigger than \(\gamma \), which implies the second part of the assertion.

Finally we discuss the “depth” of boundary layers and the occurrence of cracks on the microscopic scale.

Proposition 5.5. Let \(J_1 \) and \(J_2 \) be Lennard-Jones potentials as defined in (4.4). Then the infimum in \(B(\gamma) \) is obtained for \(N \to \infty \).

Proof. For any \(N \in \mathbb{N} \) we define \(A_N \) such that \(B(\gamma) = \inf_{N \in \mathbb{N}} A_N \), that is, using also (4.4),
\[
A_N = \min \left\{ \frac{1}{2} J_1 (\tilde{a}^1 - \tilde{a}^0) + \sum_{i \geq 0} \left\{ J_1(\tilde{a}^{i+2} - \tilde{a}^i) + \frac{1}{2} (J_1(\tilde{a}^{i+2} - \tilde{a}^i) + J_1(\tilde{a}^{i+2} - \tilde{a}^i)) - J_0(\gamma) \right\} : \tilde{a} : \mathbb{N} \to \mathbb{R}, \tilde{a}^0 = 0, \tilde{a}^{i+1} - \tilde{a}^i = \gamma \text{ if } i \geq N \right\}.
\]
We note that if \((u_N) \) is a minimiser for \(A_N \), then it is an admissible competitor for \(A_{N+1} \), since \(u_{N+1}^i - u_N^i = \gamma \) for \(i \geq N + 1 \). Therefore \(A_N \geq A_{N+1} \) for all \(N \geq 0 \) and the sequence \(N \mapsto A_N \) is non-increasing.

Let \(\tilde{N} \) be the smallest integer such that \(B(\gamma) = A_{\tilde{N}} \), and assume for contradiction that \(\tilde{N} < +\infty \). Hence we have that
\[
A_{\tilde{N}} = A_N \quad \text{for all } N \geq \tilde{N}.
\]
Notice that \(\tilde{N} \geq 1 \), since the optimal deformation has the initial slope different from \(\gamma \), by Proposition 5.4. Let us denote by \((\tilde{u}^i) \) a minimiser of \(A_{\tilde{N}} \), then
\[
\tilde{u}^i = \begin{cases}
\tilde{u}^i & \text{if } i \leq \tilde{N}, \\
\tilde{u}^\tilde{N} + \gamma(i - \tilde{N}) & \text{if } i \geq \tilde{N}.
\end{cases}
\]
Again by \(\gamma \) not being the slope of the optimal deformation, there exists \(j \in \{1, \ldots, \tilde{N}\} \) with \(\tilde{u}^j - \tilde{u}^{j-1} \neq \gamma \). By our previous assumptions, we may take \(j = \tilde{N} \).
We are going to prove that $A_{\tilde{N}} > A_{\tilde{N}+2}$, so that (5.4) will give the contradiction. More precisely, starting with (\tilde{u}^i) we construct a sequence (\tilde{v}^i) which is an admissible competitor for the minimum problem $A_{\tilde{N}+2}$, and whose energy, denoted by $A_{\tilde{N}+2}(\tilde{v})$, is strictly smaller than $A_{\tilde{N}}$. The idea is that the forces due to next-to-nearest neighbour interactions acting on atom $\tilde{N} + 1$ in the sequence (\tilde{u}^i) are asymmetric, whereas the forces due to nearest neighbour interactions cancel since the distance from atom $\tilde{N} + 1$ to atom \tilde{N} is the same as the distance to atom $\tilde{N} + 2$, namely γ. Because of the asymmetry of the forces on atom $\tilde{N} + 1$ due to next-to-nearest neighbour interactions we expect that this atom is moved to a different position in equilibrium. Therefore, for some $\delta \neq 0$, specified later, we set

$$
\tilde{v}^i = \begin{cases}
\tilde{u}^i & \text{if } i \neq \tilde{N} + 1, \\
(\tilde{u}^{\tilde{N}} + \gamma) + \delta & \text{if } i = \tilde{N} + 1.
\end{cases}
$$

We show that shifting the position of atom $\tilde{N} + 1$ by an amount δ reduces the energy, i.e., $A_{\tilde{N}+2}(\tilde{v}) < A_{\tilde{N}}$. Indeed we have

$$
A_{\tilde{N}} - A_{\tilde{N}+2}(\tilde{v}) = \sum_{i=\tilde{N}-1}^{\tilde{N}+1} \left(J_1(\tilde{u}^{i+2} - \tilde{v}^i) + \frac{1}{2} J_1(\tilde{u}^{i+2} - \tilde{u}^{i+1}) + J_1(\tilde{u}^{i+1} - \tilde{v}^i) - J_0(\gamma) \right) \\
- \left(J_1(\tilde{v}^{i+2} - \tilde{v}^i) + \frac{1}{2} J_1(\tilde{v}^{i+2} - \tilde{v}^{i+1}) + J_1(\tilde{v}^{i+1} - \tilde{v}^i) - J_0(\gamma) \right)
$$

$$
= J_1(\tilde{u}^{\tilde{N}} - \tilde{u}^{\tilde{N}-1}) + \gamma - J_1(\tilde{u}^{\tilde{N}} - \tilde{u}^{\tilde{N}-1}) + \gamma + \delta - J_1(2\gamma) \\
- J_1(\gamma - \delta) - J_1(\gamma + \delta) - J_1(2\gamma - \delta) + 2J_0(\gamma).
$$

For the minimising sequence (\tilde{u}^i) we set $\tilde{u}^{\tilde{N}} - \tilde{u}^{\tilde{N}-1} = a\gamma$. We know from the non-interpenetration of atoms that $a > 0$, and from the choice of \tilde{N} that $a \neq 1$ (we specify further properties of a below). Then, we continue the computations above and we obtain by using also the equality $J_0(\gamma) = J_1(\gamma) + J_1(2\gamma)$

$$
A_{\tilde{N}} - A_{\tilde{N}+2}(\tilde{v}) = J_1((a + 1)\gamma) - J_1((a + 1)\gamma + \delta) - J_1(\gamma - \delta) - J_1(\gamma + \delta) \\
- J_1(2\gamma - \delta) + 2J_1(\gamma) + J_1(2\gamma) \\
=: f(\delta).
$$

(5.5)

We show below that there exists a $\delta \neq 0$ such that $f(\delta) > 0$, or equivalently $A_{\tilde{N}} - A_{\tilde{N}+2}(\tilde{v}) > 0$, in contradiction to our assumption $B(\gamma) = A_{\tilde{N}}$ with finite \tilde{N}.

Next we elaborate on further properties of the parameter a. We will deduce that we can exclude a being close to zero by exhibiting a competitor having strictly smaller energy. For the moment we assume $\tilde{N} \geq 2$. Let $b > 0$ be such that $\tilde{u}^{\tilde{N}-1} - \tilde{u}^{\tilde{N}-2} = b\gamma$ and consider the competitor $\tilde{w} : \tilde{N} \rightarrow \mathbb{R}$ defined as

$$
\tilde{w}^i = \begin{cases}
\tilde{u}^i & \text{if } i \leq \tilde{N} - 1, \\
\tilde{u}^{\tilde{N}-1} + \gamma(i - \tilde{N} + 1) & \text{if } i \geq \tilde{N} - 1.
\end{cases}
$$
Let us denote by $A_{\tilde{N}-1}(\tilde{w})$ the energy associated to \tilde{w}. Then

$$A_{\tilde{N}} - A_{\tilde{N}-1}(\tilde{w}) = J_1((a+b)\gamma) + J_1(a\gamma) + J_1((a+1)\gamma) - J_1((1+b)\gamma) - J_1(\gamma) - J_1(2\gamma).$$

Note that $J_1(\gamma) = \frac{k_1 k_2}{2\bar{\gamma}} \frac{1+2^{-6} - 2(1+2^{-12})}{2\bar{\gamma}(1+2^{-12})} < 0$. Furthermore, by the assumptions on the potential J_1, there holds $J_1(z) \leq 0$ for every $z \geq \gamma$. Hence we have in particular that $J_1((1+b)\gamma) < 0$ and $J_1(2\gamma) < 0$. Moreover, $J_1(z) \geq J_1(\delta_1) = -\frac{k_2}{2\delta_1}$ for every z. Thus

$$A_{\tilde{N}} - A_{\tilde{N}-1}(\tilde{w}) \geq J_1(a\gamma) + 2J_1(\delta_1) - J_1(2\gamma) - J_1(\gamma) > J_1(a\gamma) - \frac{k_2}{\delta_1}.$$ \hspace{1cm} (5.6)

Since $J_1(z) \to +\infty$ as $z \to 0^+$, we have that if a is close to zero, then $A_{\tilde{N}} - A_{\tilde{N}-1}(\tilde{w}) > 0$, in contradiction to the minimality of \tilde{w}^i. We actually have more: since $J_1(a\gamma) > \frac{k_2}{\delta_1}$ for all $a < a_1$ with

$$a_1 := \left(\frac{\sqrt{3} - 1 + 2^{-6}}{2} \frac{1}{1 + 2^{-12}}\right)^\gamma,$$

we have that \tilde{w}^i has an energy strictly smaller than $A_{\tilde{N}}$ at least for all $a < a_1$. Therefore we can assume that $a \geq a_1$ in the case $\tilde{N} \geq 2$.

Now, if $\tilde{N} = 1$, the minimising sequence (\tilde{w}^i) reads

$$\tilde{w}^i = \begin{cases} 0 & \text{if } i = 0, \\ a\gamma + \gamma(i-1) & \text{if } i \geq 1, \end{cases}$$

whose energy is denoted by A_1. We consider the competitor $\tilde{w} : \mathbb{N} \to \mathbb{R}$ defined as $\tilde{w}^i = \gamma i$ and denote its energy by $A_0(\tilde{w})$. Then

$$A_1 - A_0(\tilde{w}) = J_1(a\gamma) + J_1((a+1)\gamma) - J_1(\gamma) - J_1(2\gamma) > J_1(a\gamma) - \frac{k_2}{2\delta_1}.$$ \hspace{1cm} (5.7)

where the inequality follows by a similar reasoning as above. Since estimate (5.7) implies estimate (5.6), the properties deduced from the latter also hold for $\tilde{N} = 1$. Thus $a \geq a_1$ for all $N \geq 1$.

Summarising, we can restrict to the case of slope $a\gamma$ for $a \geq a_1$ and $a \neq 1$. We finally prove that the function $f(\delta)$ defined in (5.5) is strictly positive for some $\delta \neq 0$. In order to show this we observe that $f(0) = 0$ and then show that $f'(0) \neq 0$ for every admissible a. As in the proof of Proposition 5.4 this allows to deduce that there exists a δ close to 0 but different from 0, such that $f(\delta) > 0$ and hence the assertion. Since

$$f'(\delta) = -J'_1((a+1)\gamma + \delta) + J'_1(\gamma - \delta) - J'_1(\gamma + \delta) + J'_1(2\gamma - \delta),$$

we have $f'(0) = -J'_1((a+1)\gamma) + J'_1(2\gamma) =: g(a)$. Therefore the claim reduces to describing the zero-set of the function g and proving that it does not intersect the set of admissible a’s. Observe that $g(a) = -\gamma J''_1((a+1)\gamma)$ is positive if and only if $a > \left(\frac{12 + \sqrt{5}}{2} \frac{1}{1 + 2^{-12}}\right)^\gamma - 1 := a_0$. Therefore, since $a_0 < a_1$, the function g is strictly increasing for $a \geq a_1$. Since $a_1 < 1$ and $g(1) = 0$, we deduce that $a = 1$ is the only zero of g in the interval $a \geq a_1$. Hence g does not have any zeros which are admissible. Thus the assertion follows. \hspace{1cm} \square
By Lemma 5.1 (2) we know $B^0(\gamma) = B(\gamma)$. Hence if J_1 and J_2 are Lennard-Jones potentials as defined in (4.4), then the infimum in $B^0(\gamma)$ is obtained for $k \to \infty$. Similarly, if $u_1^{(1)} = \gamma$, then the infimum in $B^1(\gamma)$ is obtained for $k \to \infty$. On the contrary, as noted in Remark 5.2, $B^0(\delta_1)$ and $B^1(\delta_1)$ are attained for $k = 0$. Furthermore, recall that for the boundary layer energies related to elastic behaviour at the boundaries, cf. (4.11) and (4.12) we show in the derivation of (4.24) that: if $\ell = \gamma$ and $u_0^{(1)} = \gamma$, then $B_+(\gamma, \gamma) = \frac{1}{2} J_1(\gamma)$ is attained for $N = 0$. Similarly, if $\ell = \gamma$ and $u_1^{(1)} = \gamma$, then $B_-(\gamma, \gamma) = \frac{1}{2} J_1(\gamma)$ is attained for $N = 0$.

Acknowledgement. We would like to express our gratitude to Andrea Braides for proposing to work on the topic of this article and for several helpful suggestions. Moreover we benefited from discussions with Marco Cicalese about [BC07] and with Lev Truskinovsky about boundary layers. Thanks are also due to Bernd Schmidt for a discussion inspiring the proof of Proposition 5.5.

Part of this work was performed while CZ was affiliated with the Max Planck Institute for Mathematics in the Sciences in Leipzig. This work was supported by the Marie Curie Research Training Network MRTN-CT-2004-505226 (MULTIMAT).

References

