
Max-Plank-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Boundary layer energies for nonconvex discrete

systems

by
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Abstract

In this work we consider a one-dimensional chain of atoms which interact through near-

est and next-to-nearest neighbour interactions of Lennard-Jones type. We impose Dirichlet

boundary conditions and in addition prescribe the deformation of the second and last but

one atoms of the chain. This corresponds to prescribing the slope at the boundary of the

discrete setting. We compute the Γ-limits of zero and first order, where the latter leads to

the occurrence of boundary layer contributions to the energy. These contributions depend

on whether the chain behaves elastically close to the boundary or whether there is a crack.

This in turn depends on the given boundary data. We also analyse the location of fracture in

dependence on the prescribed discrete slopes.

1 Introduction

Devices in engineering become smaller and smaller. The applicability of classical continuum the-
ories reaches its limit in the modelling of the physical properties of such devices. On the other
hand purely atomistic models are often still too complex to handle. To capture discreteness effects
and still to be able to model and analyse physical properties, we start from a discrete system and
derive its continuum limit. This approach is by now established in the literature and has been
successfully applied to different settings. Moreover, there are mathematically rigorous derivations
of discrete-to-continuum limits; see e.g. [BG06, BT08, BL05, Sch06] in the context of elasticity,
[BC07, BDMG99] for fracture mechanics and [Sch05, SS08] for magnetic materials.
In this work we focus on a model that describes fracture. The first important work on a discrete-
to-continuum derivation in this area is Truskinovsky’s article [Tru96]. Truskinovsky’s approach
consists of starting from a one-dimensional chain of atoms which interact by Lennard-Jones poten-
tials and to scale the strain in the region close to a crack differently than the strain in the region far
away from the crack. This yields a continuum theory which contains a small parameter with the
scale of length, which is thus able to reflect the fact that fracture is a size-dependent phenomenon.
Truskinovsky obtains a bulk energy as well as a contribution due to the crack. The latter energy
contribution depends on the crack opening and is formulated in the sense of Barenblatt [Bar62].
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Figure 1: A typical example of a Lennard-Jones potential.

In [BDMG99] Braides, Dal Maso and Garroni made Truskinovsky’s work mathematically rigorous
by using Γ-convergence methods (see [Bra02] and [DM93] for a comprehensive introduction to
Γ-convergence). While Braides, Dal Maso and Garroni assume different scaling behaviour of the
Lennard-Jones potential in the convex and concave regions, respectively, we follow Braides and
Cicalese [BC07] and derive an asymptotic expansion for the limiting continuum energy up to the
first order via Γ-convergence.

As in [BC07] we consider next-to-nearest neighbour interactions in addition to the nearest neigh-
bour interactions between the atoms in the energy functional (see also [CT02]). This leads to
boundary layer contributions to the limit energy and thus allows to describe fracture, as will be
extensively shown in this article. Throughout we assume that the interaction potentials between
nearest and next-to-nearest neighbouring atoms are of Lennard-Jones type. See Figure 1 for an
example of a Lennard-Jones potential, and see below for details. Note that our class of Lennard-
Jones type potentials also contains typical other interaction potentials of physical relevance, such
as Morse potentials or double Yukawa potentials, see Remark 4.1.

Since we deal with nearest and next-to-nearest neighbour interactions, we impose Dirichlet bound-
ary conditions (corresponding to a hard device) not only at the endpoints of the chain, as in [BC07],
but also at the second and last but one atoms, in agreement with [CT02]. We notice that this fur-
ther constraint can be equivalently interpreted as prescribing the discrete slopes at the boundary
of the chain.

It turns out that the Γ-limit of our discrete energy yields a bulk energy, cf. Theorem 3.1. The
bulk energy density is the convexification of a potential, J0, obtained by combining the Lennard-
Jones type potentials between consecutive atoms and between next-to-nearest neighbour atoms
through an inf-convolution, cf. (3.3) for details. In order to capture boundary layer contributions,
we then compute the first-order Γ-limit in Section 4. We distinguish the cases of elasticity (ℓ ≤ γ,
Subsection 4.1) and the case of the occurrence of fracture (ℓ > γ, Subsection 4.2), which depend
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on the parameter of the boundary value ℓ, and on the minimum point γ of the potential J0.

Therefore our results for the first-order Γ-limit depend on the Dirichlet boundary condition, i.e.,
on whether ℓ > γ or not, cf. Theorems 4.3 and 4.8. In other words, the limiting functional is
not uniform in ℓ. One of our future goals is to find an energy functional which is uniform in ℓ

in the sense of Braides and Truskinovsky [BT08]. Moreover, the limiting functional contains an
explicit dependence on the boundary slopes, so that it reduces to the energy functional obtained in
[BC07] only for special choices of these values. We point out that the presence of these additional
parameters in the boundary layer energy allows us to describe a wider range of possible limiting
behaviours for the discrete chain. In particular it turns out that prescribing appropriate discrete
slopes at the boundary yields a continuum model which allows for internal cracks for minimal
energy configurations, cf. Theorem 5.3. On the contrary, fixing only the first and last boundary
atoms leads to a location of fracture at the boundary always, as shown in [BC07, Theorem 5.9].

This is of particular interest having in mind as application the derivation of a model of cracks using
the quasicontinuum method. This method was developed to combine advantages of continuum as
well as of discrete descriptions (see [KO01, MTPO98, SMT+98]). The idea is to use the continuum
description away from the crack tip and to model the neighbourhood of a crack tip by an atomistic
model.
A first step to verify earlier works mathematically was done by Blanc, Le Bris and Legoll [BLBL05].
They consider nearest neighbour interactions, introduce an artificial scaling in the continuum
energy in terms of the lattice parameter in order to avoid an unnatural behaviour of the system,
and they compute a pointwise limit of the energy functional. Instead of dealing with this modified
energy we intend to consider the expansion obtained in the present work by Γ-convergence methods
since this contains the lattice parameter naturally.

We finally observe that, as in most of the related mathematical literature we consider a one-
dimensional model. This is of course a drawback since we head for a model of fracture in three-
dimensional materials, but for now it is not clear how to overcome the related mathematical
difficulties. However we hope that this one-dimensional model case will contribute to a better
understanding of three-dimensional fracture mechanics. Moreover the one-dimensional model can
be regarded as a model for trusses or a model for cleavage. In the latter case, the material breaks
along crystalline planes so that a model describing cleavage can be reduced to a one-dimensional
one by symmetry, cf. [BLO06, NO02].

2 Setting of the problem

The discrete model which we take as the starting point for the derivation of a continuum energy
functional describing the occurrence of fracture is as follows, We start from a one-dimensional
chain of n + 1 atoms in [0, 1] and consider the limit as n → ∞. For convenience we often set
λn = 1

n
. The deformation from the reference configuration is a function u : λnZ ∩ [0, 1] → R, and

ui is shorthand for u(iλn). Note that for a function v : Z → R we write vi = v(i) as shorthand.
The Lennard-Jones type potentials J1 and J2 describe the interactions between nearest neighbours
and next-to-nearest neighbours, respectively. Exact assumptions for both potentials are given in
Theorem 3.1 and in [H1]–[H5] below. The discrete energy reads

Hn(u) =

n−1∑

i=0

λnJ1

(
ui+1 − ui

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2 − ui

2λn

)
(2.1)
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and is defined on An(0, 1), the set of all functions u : λnZ ∩ [0, 1] → R, which we identify with
their piecewise affine interpolations. Thus

An(0, 1) = {u : [0, 1] → R : u(t) is affine for t ∈ (i, i + 1)λn, i ∈ {0, . . . , n − 1}} .

As in [BC07] we impose Dirichlet boundary conditions on the first and last atoms. In addition we
also fix the second and last but one atoms of the one-dimensional chain of atoms under consider-
ation. That is, for given ℓ, u

(1)
0 , u

(1)
1 > 0 we set

u(0) = u0 = 0, u(1) = un = ℓ,

u(λn) = u1 = λnu
(1)
0 , u(1 − λn) = un−1 = ℓ − λnu

(1)
1 .

(2.2)

Note that it is natural to have four boundary conditions in the case of next-to-nearest neighbour
interactions, cf. e.g. [CT02, CT08]. Since in nature cracks also occur in the interior of materials,
we head for a model that allows for a location of cracks in the interior. By imposing conditions on
the first and second as well as on the last and last but one atoms we obtain a model which allows
to have fracture in the interior in special cases, see Theorem 5.3.

Remark 2.1. We notice that prescribing the discrete boundary slope does not translate in the
continuum picture into prescribing the slope at 0 and 1. On the other hand, its effect is a
penalisation in terms of the energy, described by new boundary layer energies with respect to
[BC07], cf. (4.11), (4.12) and (4.25), (4.26).

Since we require physical configurations u to satisfy the boundary conditions, we incorporate the

boundary conditions in the definition of the functional. For given ℓ, u
(1)
0 , u

(1)
1 > 0 we consider the

functional Hℓ
n : An(0, 1) → (−∞,+∞] defined by

Hℓ
n(u) =

{
Hn(u) if u0 = 0, u1 = λnu

(1)
0 , un−1 = ℓ − λnu

(1)
1 , un = ℓ,

+∞ else.
(2.3)

It turns out that the zero and first-order Γ-limits of this functional depend on ℓ (cf. Theorems 3.1,
4.3 and 4.8 below). For this reason we make the ℓ-dependence also visible in the notation of the
energy in the discrete setting.

3 Zero-order Γ-limit of the discrete energy

The zero-order Γ-limit is the same as the Γ-limit of the discrete energy in (2.3) and yields the
bulk contribution of the energy. We derive the Γ-limit in Theorem 3.1, which is based on [BG04,
Theorem 3.2] and [BC07, Theorem 4.2]. The bulk energy density identifying the limiting functional
is a convexification of a potential that is obtained by combining the nearest neighbour and next-
to-nearest neighbour interaction potentials. The combination of the potentials is done by an
inf-convolution, see (3.3).

For given ℓ > 0 we denote by BV ℓ(0, 1) the space of functions u with bounded variation defined
on (0, 1) and satisfying the Dirichlet boundary conditions u(0+) = 0 and u(1−) = ℓ. The space
of special functions with bounded variation SBV ℓ(0, 1) is defined correspondingly. Moreover, for
a function u ∈ BV ℓ(0, 1) (or in SBV ℓ(0, 1)) we denote by Su the jump set of u, and for t ∈ Su we
set [u(t)] = u(t+) − u(t−).
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Theorem 3.1. Let Jj : R → (−∞,+∞] be Borel functions bounded from below, for j = 1, 2.
Suppose that there exists a convex function Ψ : R → [0,+∞] such that

lim
z→−∞

Ψ(z)

|z| = +∞ (3.1)

and there exist constants c
j
1, c

j
2 > 0 for j = 1, 2 such that

c
j
1(Ψ(z) − 1) ≤ Jj(z) ≤ c

j
2 max{Ψ(z), |z|} for all z ∈ R, j = 1, 2. (3.2)

Let ℓ, u
(1)
0 , u

(1)
1 > 0. Then the Γ-limit of Hℓ

n with respect to the L1-topology is the functional Hℓ

defined by

Hℓ(u) =





∫ 1

0

J∗∗
0 (u′(t)) dt if u ∈ BV ℓ(0, 1), [u] > 0 on Su,

+∞ otherwise

on L1(0, 1). Here J∗∗
0 denotes the convexification of the function

J0(z) = J2(z) +
1

2
inf {J1(z1) + J1(z2) : z1 + z2 = 2z} (3.3)

defined for all z ∈ R.

Proof. Compactness. For fixed u
(1)
0 , u

(1)
1 > 0, let (un) be a sequence with equibounded energy

Hℓ
n. By [BG04, Theorem 1.2, Theorem 3.2] we have that un ∈ BV ℓ(0, 1) and that there exists

u ∈ BV (0, 1) such that un converges weakly to u in BV (0, 1). It remains to verify that the limit
function u satisfies the boundary conditions in 0 and in 1. Since u0

n = 0 and un
n = ℓ for every n,

we can define the extension ũn ∈ BVloc(R) as

ũi
n =





0 if i ≤ 0,

ui
n if 0 ≤ i ≤ n,

ℓ if i ≥ n.

Then we have that ũn converges weakly in BVloc(R) to the extension ũ of u and from this we
deduce that

u(0−) = lim
t→0−

ũ(t) = 0 and u(1+) = lim
t→1+

ũ(t) = ℓ.

Liminf inequality. It can be proved in the same way as in [BG04, Theorem 3.2].

Limsup inequality. Let u ∈ BV ℓ(0, 1), with [u] > 0. Then [BG04, Theorem 3.2] provides a
recovery sequence (un) which does not satisfy the Dirichlet boundary conditions (2.2). Therefore
we define the sequence ûn as the affine interpolation of the following discrete values

ûi
n =





0 if i = 0,

λnu
(1)
0 if i = 1,

ui
n if 2 ≤ i ≤ n − 2,

ℓ − λnu
(1)
1 if i = n − 1,

ℓ if i = n.

Clearly ûn converges to u, since we modify the recovery sequence only at a microscopic level.
Moreover the change in the energy is of order λn, therefore ûn is a recovery sequence for u.
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4 First-order Γ-limit of the discrete energy

In order to obtain a continuum energy functional that contains boundary layer energies we are
interested in the first-order Γ-limit of Hℓ

n. That is, we compute the Γ-limit of the functional Hℓ
1,n

defined by

Hℓ
1,n(u) =

Hℓ
n(u) − min Hℓ

λn

. (4.1)

With respect to deriving an asymptotic expansion of the limiting functional of Hℓ
1,n in terms of

λn, we remark that the first-order Γ-limit yields the second term of such an (formal) expansion,
i.e., the term of order λn. More precisely, the minimisers of the first-order Γ-limit are the second
term of an asymptotic expansion of the minimisers of the original functional in terms of λn, see
[AB93].

First of all we state the assumptions on J1, J2 and J0 under which the convergence result is
obtained.

[H1] (strict convexity of J0).

{z : J0(z) = J∗∗
0 (z)} ∩ {z : J0(z) affine} = ∅.

[H2] (uniqueness of minimal energy configurations).

#Mz = 1 for every z ∈ R : J0(z) = J∗∗
0 (z),

where the set Mz describes the minimising pairs for J1, i.e.,

Mz =

{
(z1, z2) : z1 + z2 = 2z, J0(z) = J2(z) +

1

2

(
J1(z1) + J1(z2)

)}
. (4.2)

Thus Mz = {(z, z)}, which implies that

J0(z) = J1(z) + J2(z) for every z ∈ R : J0(z) = J∗∗
0 (z). (4.3)

[H3] (regularity and behaviour at +∞). J1, J2 : R → (−∞,+∞] be in C1(R) and such that
J0 ∈ C2(R). The following limits exist in R

lim
z→+∞

Jj(z) = 0, j = 1, 2 and lim
z→+∞

J0(z) = J0(+∞).

[H4] (structure of J1, J2 and J0). J1, J2 are such that there exists a convex function Ψ : R →
[0,+∞] and constants c

j
1, c

j
2 > 0 for j = 1, 2 such that (3.1) and (3.2) are satisfied. Jj has a unique

minimum point δj and it is strictly convex in (−∞, δj) for j = 1, 2. Moreover J0 has a unique
minimum point γ.

[H5] (additional condition on J0 in the case ℓ < γ). J0(z) = J∗∗
0 (z) for all z ≤ γ and there is a

γ0 > 0 such that J ′′
0 (z) ≥ 0 for all z ≤ γ + γ0.

Assumption [H5] is used in Proposition 4.2 and Subsection 4.1, see Theorem 4.3. Note that, since
by [H3] J0 ∈ C2, condition [H5] ensures that the effective potential J0 is locally convex on the
interval (−∞, γ + γ0]. On the other hand, it fails to be convex globally: J0 does not coincide with
its convex envelope J∗∗

0 on (γ,∞).
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Note that, assumption [H2] rules out the possibility that the Lennard-Jones type potentials J1

and J2 have several wells. Our choice is due to the intention of focusing on the effect of pre-
scribed discrete slopes on the limiting functional, rather than presenting our results under more
general assumptions for the interaction potentials, cf. [BC07] for related work on the latter topic.
Analogous to [BC07] we could easily relax the assumption of J1(+∞) = J2(+∞) = 0.

Remark 4.1. The above conditions are satisfied by typical physical interaction potentials. The
main example that we have in mind is the Lennard-Jones potential, which is why we call potentials
satisfying [H1] − [H5] potentials of Lennard-Jones type. The classical Lennard-Jones potentials
are defined as follows

J1(z) =
k1

z12
− k2

z6
, J2(z) = J1(2z) for z > 0, (4.4)

where k1, k2 are positive constants, see Figure 1 for a plot. To prove [H5], we first note that

1

2
inf {J1(z1) + J1(z2) : z1 + z2 = 2z} =

1

2
inf {J1(z1) + J1(2z − z1) : z1} .

Setting the first derivative of this equal to zero, yields the condition J ′
1(z1) = J ′

1(2z − z1). Now
observe that J ′

1(z) is injective and J ′
1(z) ≤ 0 for all 0 < z ≤ δ1 with δ1 being the minimum point

of J1, and J ′
1(z) > 0 for all z > δ1. Moreover note that z ≤ δ1 implies that at least one of z1 and

2z − z1 is less than or equal to δ1. Hence the properties of the first derivative yield z1 = 2z − z1,
i.e., z1 = z for all z ≤ δ1. Therefore, for Lennard-Jones potentials as defined in (4.4) we have

J0(z) = J1(z) + J2(z) for all 0 < z ≤ δ1. (4.5)

An elementary calculation reveals that J1(z) + J2(z) has non-negative second derivative for all

z ≤
(

13
7

) 1
6 γ with γ being the minimum point of the effective energy J0 and

γ =

(
1 + 2−12

1 + 2−6

) 1
6

δ1 =

(
1 + 2−12

1 + 2−6

) 1
6
(

2k1

k2

) 1
6

(4.6)

as proven in [BC07, Example 4.8]. From δ1 =
(

1+2−6

1+2−12

) 1
6

γ <
(

13
7

) 1
6 γ and γ < δ1, we deduce [H5].

Since the double Yukawa potential, cf. [FA81], has a similar shape as the Lennard-Jones potential,
we expect that it also satisfies [H1] − [H5].
Another example is the so-called Morse-potential where for some k1, k2 > 0, the potential is defined

by J1(z) = k1

(
1 − e−k2(z−δ1)

)2 − k1 for z ≥ 0, and J2(z) = J1(2z). This is finite at 0, but the
structure is the same: the potential is strictly convex up to an inflection point, where it becomes
concave and approaches 0 as z → ∞, i.e., we have [H1] − [H4]. To prove [H5], one may proceed
as for the Lennard-Jones potential using properties of the first derivative of J1.

We notice that, by Jensen’s inequality, minHℓ = J∗∗
0 (ℓ) for every ℓ. More explicitly,

min Hℓ =

{
J0(ℓ) if ℓ ≤ γ,

J0(γ) if ℓ > γ.
(4.7)

Indeed, [H1]−[H4] imply J∗∗
0 (z) = J0(γ) for every z ≥ γ. Moreover, in the case ℓ ≤ γ, assumption

[H5] entails in particular J0(ℓ) = J∗∗
0 (ℓ).

The following compactness result states that for ℓ ≤ γ functions un with equibounded energy
Hℓ

1,n converge necessarily to the function u(t) = ℓt, while if ℓ > γ, the limit function u has a finite
number of jumps and is such that u′ = γ a.e. We recall that Su is the jump set of u.
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Proposition 4.2. 1. Let 0 < ℓ ≤ γ and suppose that hypotheses [H1]−[H5] hold. Let 0 < u
(1)
0 ,

u
(1)
1 ≤ γ. If (un) is a sequence of functions such that

sup
n

Hℓ
1,n(un) < +∞, (4.8)

then, up to subsequences, un → u in W 1,∞(0, 1) with u(t) = ℓt, t ∈ [0, 1].

2. Let ℓ > γ and suppose that hypotheses [H1] − [H4] hold. Let u
(1)
0 , u

(1)
1 > 0. If (un) is

a sequence of functions such that (4.8) is satisfied, then, up to subsequences, un → u in
L1(0, 1), where u ∈ SBV ℓ(0, 1) is such that

(i) 0 < #Su < +∞;

(ii) [u] > 0 on Su;

(iii) u′ = γ a.e.

Proof. The first result of the proposition follows from [BC07, Propositions 3.5 and 4.5]. The result
for ℓ > γ follows directly from [BC07, Proposition 4.5], since our approximating functionals are
finite on a smaller set than the corresponding ones in [BC07].

For simplicity of notation we define for ℓ > γ

SBV ℓ
c (0, 1) =

{
u ∈ SBV ℓ(0, 1) : conditions (i) − (iii) are satisfied

}
.

For what follows it is useful to rearrange the terms in the expression of the energy Hℓ
1,n in (4.1).

For given ℓ, u
(1)
0 , u

(1)
1 > 0 let (un) be a sequence of functions satisfying the boundary conditions

(2.2) for each n. Then by (2.1)

Hℓ
1,n(un) =

n−1∑

i=0

J1

(
ui+1 − ui

λn

)
+

n−2∑

i=0

J2

(
ui+2 − ui

2λn

)
− min Hℓ

λn

=
1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

{
J2

(
ui+2

n − ui
n

2λn

)
+

1

2
J1

(
ui+2

n − ui+1
n

λn

)

+
1

2
J1

(
ui+1

n − ui
n

λn

)}
+

1

2
J1

(
un

n − un−1
n

λn

)
− min Hℓ

λn

=
1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

σi
n +

1

2
J1

(
un

n − un−1
n

λn

)
− min Hℓ, (4.9)

where we set for i = 0, . . . , n − 2

σi
n = J2

(
ui+2

n − ui
n

2λn

)
+

1

2

(
J1

(
ui+2

n − ui+1
n

λn

)
+ J1

(
ui+1

n − ui
n

λn

))
− min Hℓ. (4.10)
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4.1 The case ℓ ≤ γ

First of all we consider the case ℓ ≤ γ, where we recall that ℓ denotes the Dirichlet condition
imposed on the last atom of the chain and γ denotes the minimum point of J0. By [H5] we have
that the effective potential J0 is locally convex in (−∞, γ + γ0].

For ℓ ≤ γ we have elastic behaviour and therefore no fracture occurs. We compute the discrete-
to-continuum limit of the discrete energy of first order Hℓ

1,n in terms of Γ-convergence. This

yields in particular that our limiting functional depends on the prescribed slopes u
(1)
0 and u

(1)
1 ,

see Theorem 4.3.

For any 0 < ℓ, u
(1)
0 , u

(1)
1 ≤ γ we define the boundary layer energies in 0 and in 1 as follows

B+

(
u

(1)
0 , ℓ

)
= inf

N∈N

min

{
1

2
J1

(
v1 − v0

)
+
∑

i≥0

{
J2

(
vi+2 − vi

2

)

+
1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)}
:

v : N → R, v0 = 0, v1 − v0 = v1 = u
(1)
0 , vi+1 − vi ≤ γ + γ0 for all i,

vi+1 − vi = ℓ if i ≥ N

}
, (4.11)

B−

(
u

(1)
1 , ℓ

)
= inf

N∈N

min

{
1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)

+
1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(ℓ) − J ′

0(ℓ)

(
wi − wi−2

2
− ℓ

)}
:

w : −N → R, w0 = 0, w0 − w−1 = −w−1 = u
(1)
1 , wi − wi−1 ≤ γ + γ0 for all i,

wi − wi−1 = ℓ if i ≤ −N

}
. (4.12)

The conditions v1−v0 = u
(1)
0 and w0−w−1 = u

(1)
1 , respectively, are due to the boundary conditions

which we impose on the second and last but one atoms, respectively. The technical assumption
[H5] is crucial here to ensure, together with (4.3), that the terms in the sums are non-negative
and thus that the boundary layer energies are bounded from below. Indeed,

J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)

≥ J0

(
vi+2 − vi

2

)
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)

=
1

2
J ′′

0 (ξi,ℓ)

(
vi+2 − vi

2
− ℓ

)2

for some ξi,ℓ between ℓ and vi+2−vi

2 by Taylor’s Theorem and [H3]. Now, since ξi,ℓ ≤ γ + γ0, we
have J ′′

0 (ξi,ℓ) ≥ 0 by [H5], which ensures that the terms in the sum of (4.11) are non-negative.
Similarly for the terms in the sum of (4.12).

In the case ℓ = γ, the constraints vi+1 − vi ≤ γ + γ0 and wi −wi−1 ≤ γ + γ0, respectively, for all i

can be dropped. Indeed, by (3.3), J2

(
vi+2−vi

2

)
+ 1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(γ) ≥

J0

(
vi+2−vi

2

)
− J0(γ) ≥ 0 for all vi, since γ is the minimum point of J0.
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For the definition of the corresponding boundary layers in the case ℓ > γ see (4.28) and (4.29).

Theorem 4.3. Suppose that hypotheses [H1]− [H5] hold and let 0 < ℓ, u
(1)
0 , u

(1)
1 ≤ γ. Then Hℓ

1,n

Γ-converges with respect to the L∞-topology to the functional Hℓ
1 defined by

Hℓ
1(u) =





B+

(
u

(1)
0 , ℓ

)
+ B−

(
u

(1)
1 , ℓ

)
− J0(ℓ) − J ′

0(ℓ)

(
u

(1)
0 +u

(1)
1

2 − ℓ

)
if u(t) = ℓt,

+∞ otherwise

on W 1,∞(0, 1).

In Figure 2 we give an intuitive picture of the location of the occurring boundary layers in the
elastic case, i.e., for ℓ ≤ γ.

u(t)

t
10

B−

“
u

(1)
1 , ℓ

”

B+

“
u

(1)
0 , ℓ

”

ℓ

Figure 2: An intuitive picture of the location of boundary layers for ℓ ≤ γ.

Proof. Liminf inequality. We show that for any sequence un → u in L∞(0, 1) with equibounded
energy Hℓ

1,n we have

lim inf
n→∞

Hℓ
1,n(un) ≥ B+

(
u

(1)
0 , ℓ

)
+ B−

(
u

(1)
1 , ℓ

)
− J0(ℓ) − J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)
.

From the compactness result in Proposition 4.2 we have that u(t) = ℓt for all t ∈ [0, 1]. This allows
us to choose a sequence of integer numbers hn ∈ N such that λnhn → 1

2 as n → ∞ and moreover

lim
n→∞

uhn+2
n − uhn+1

n

λn

= ℓ. (4.13)

We write Hℓ
1,n(un) as in (4.9), where we make use of (4.7). Then we add and subtract the term

J ′
0(ℓ)

(
ui+2

n −ui
n

2λn

)
in the sum to obtain

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

{
J2

(
ui+2

n − ui
n

2λn

)
+

1

2

(
J1

(
ui+2

n − ui+1
n

λn

)

+ J1

(
ui+1

n − ui
n

λn

))
− J0(ℓ) − J ′

0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)}

+

n−2∑

i=0

J ′
0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)
+

1

2
J1

(
un

n − un−1
n

λn

)
− J0(ℓ).

(4.14)
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Since
∑n−1

i=0 (ui+1
n − ui

n) = un
n − u0

n = ℓ by construction, we have

n−2∑

i=0

(
ui+2

n − ui
n

)
= 2

n−1∑

i=0

(
ui+1

n − ui
n

)
−
(
u1

n − u0
n

)
−
(
un

n − un−1
n

)
= 2ℓ − λn

(
u

(1)
0 + u

(1)
1

)
.

Thus

n−2∑

i=0

J ′
0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)
= J ′

0(ℓ)

(
ℓ

λn

− u
(1)
0 + u

(1)
1

2
− (n − 1)ℓ

)
= −J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)

(4.15)

and we already have the last term in the finite limiting energy Hℓ
1(u). By (4.14) and (4.15) the

energy Hℓ
1,n(un) reads

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

n−2∑

i=0

si
n +

1

2
J1

(
un

n − un−1
n

λn

)
− J0(ℓ) − J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)
,

(4.16)

where for i = 0, . . . , n − 2 we define

si
n =J2

(
ui+2

n − ui
n

2λn

)
+

1

2

(
J1

(
ui+2

n − ui+1
n

λn

)
+ J1

(
ui+1

n − ui
n

λn

))
− J0(ℓ)

− J ′
0(ℓ)

(
ui+2

n − ui
n

2λn

− ℓ

)
.

(4.17)

Note that, for ℓ = γ, si
n is the same as σi

n defined in (4.10) since J ′
0(γ) = 0 by [H4]. We define the

sequence vn : N → R as

vi
n =

{
ui

n

λn
if 0 ≤ i ≤ hn + 2,

ℓ(i − (hn + 2)) +
uhn+2

n

λn
if i ≥ hn + 2.

(4.18)

Then, in terms of vn we have

hn∑

i=0

si
n =

hn∑

i=0

{
J2

(
vi+2

n − vi
n

2

)
+

1

2

(
J1

(
vi+2

n − vi+1
n

)
+ J1

(
vi+1

n − vi
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
vi+2

n − vi
n

2
− ℓ

)}

=
∑

i≥0

{
J2

(
vi+2

n − vi
n

2

)
+

1

2

(
J1

(
vi+2

n − vi+1
n

)
+ J1

(
vi+1

n − vi
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
vi+2

n − vi
n

2
− ℓ

)}
− ω(n),

where ω(n) denotes an infinitesimal function for n → ∞ specified below. The last equality follows
observing that, by (4.18) and (4.3), the terms of the sum are identically 0 for every i ≥ hn + 2,
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while by (4.13) and (4.3) we have that the term corresponding to i = hn + 1 satisfies

shn+1
n = J2

(
uhn+2

n − uhn+1
n

2λn

+
ℓ

2

)
+

1

2

(
J1(ℓ) + J1

(
uhn+2

n − uhn+1
n

λn

))
− J0(ℓ)

− J ′
0(ℓ)

(
uhn+2

n − uhn+1
n

2λn

+
ℓ

2
− ℓ

)

= ω(n) → 0 as n → ∞.

Observe that v0
n =

u0
n

λn
= 0, v1

n − v0
n =

u1
n

λn
= u

(1)
0 and vi+1

n − vi
n = ℓ for i ≥ hn + 2. Moreover,

for n large enough, vi+1
n − vi

n ≤ γ + γ0 for all i since by Proposition 4.2 we have un → ℓt in
W 1,∞(0, 1) and thus, for n large enough, |u′

n − ℓ| < γ0 which implies for the discrete derivative:
ui+1

n −ui
n

λn
< ℓ+γ0 ≤ γ+γ0. Hence, for n large enough, vn is a competitor for the minimum problem

defining B+

(
u

(1)
0 , ℓ

)
, cf. (4.11). Therefore

1

2
J1

(
u1

n − u0
n

λn

)
+

hn∑

i=0

si
n

=
1

2
J1(v

1
n − v0

n) +
∑

i≥0

{
J2

(
vi+2

n − vi
n

2

)
+

1

2

(
J1

(
vi+2

n − vi+1
n

)
+ J1

(
vi+1

n − vi
n

))

− J0(ℓ) − J ′
0(ℓ)

(
vi+2

n − vi
n

2
− ℓ

)}
− ω(n)

≥ B+

(
u

(1)
0 , ℓ

)
− ω(n). (4.19)

In order to estimate the remaining part in the energy (4.16), we define wn : −N → R as

wj
n =

{
un+j

n

λn
− ℓ

λn
if hn − n + 1 ≤ j ≤ 0,

ℓ(j − (hn − n + 1)) − ℓ
λn

+
uhn+1

n

λn
if j ≤ hn − n + 1.

(4.20)

Then, in terms of wn we have

n−2∑

i=hn+1

si
n =

0∑

j=hn−n+3

{
J2

(
wj

n − wj−2
n

2

)
+

1

2

(
J1

(
wj

n − wj−1
n

)
+ J1

(
wj−1

n − wj−2
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
wj

n − wj−2
n

2
− ℓ

)}

=
∑

j≤0

{
J2

(
wj

n − wj−2
n

2

)
+

1

2

(
J1

(
wj

n − wj−1
n

)
+ J1

(
wj−1

n − wj−2
n

))
− J0(ℓ)

− J ′
0(ℓ)

(
wj

n − wj−2
n

2
− ℓ

)}
− ω(n),

where now ω(n) denotes the term corresponding to j = hn−n+2 in the sum, which is infinitesimal
by (4.13) and (4.3).

Since w0
n =

un
n−ℓ

λn
= 0, w0

n − w−1
n =

un
n−un−1

n

λn
= u

(1)
1 , wj

n − wj−1
n = ℓ for j ≤ hn − n + 1, and, for n

large enough, wj
n −wj−1

n ≤ γ +γ0 for all j, we deduce that, for n large enough, wn is a competitor
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for the minimum problem defining B−

(
u

(1)
1 , ℓ

)
, cf. (4.12). Therefore

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=hn+1

si
n

=
1

2
J1(w

0
n − w−1

n ) +
∑

i≤0

{
J2

(
wi

n − wi−2
n

2

)
+

1

2

(
J1

(
wi

n − wi−1
n

)
+ J1

(
wi−1

n − wi−2
n

))

− J0(ℓ) − J ′
0(ℓ)

(
wi

n − wi−2
n

2
− ℓ

)}
− ω(n)

≥ B−

(
u

(1)
1 , ℓ

)
− ω(n). (4.21)

In summary, from (4.16), (4.19) and (4.21) we obtain the desired liminf inequality.

Limsup inequality. By the compactness result in Proposition 4.2 it is sufficient to consider the
case u(t) = ℓt. We construct a sequence (un) converging to u in L∞(0, 1) satisfying (2.2) and such
that

lim sup
n→∞

Hℓ
1,n(un) ≤ B+

(
u

(1)
0 , ℓ

)
+ B−

(
u

(1)
1 , ℓ

)
− J0(ℓ) − J ′

0(ℓ)

(
u

(1)
0 + u

(1)
1

2
− ℓ

)
.

Let η > 0. Then, by definition of B+

(
u(1), ℓ

)
, we can find v : N → R and N1 ∈ N such that

v0 = 0, v1 − v0 = u
(1)
0 , vi+1 − vi ≤ γ + γ0 for all i, vi+1 − vi = ℓ for i ≥ N1 and

1

2
J1

(
v1 − v0

)
+
∑

i≥0

{
J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(ℓ)

− J ′
0(ℓ)

(
vi+2 − vi

2
− ℓ

)}

≤ B+

(
u

(1)
0 , ℓ

)
+ η. (4.22)

In the same way, by the definition of B−

(
u(1), ℓ

)
there exist w : −N → R and N2 ∈ N with w0 = 0,

w0 − w−1 = u
(1)
1 , wi − wi−1 ≤ γ + γ0 for all i, wi − wi−1 = ℓ if i ≤ −N2, such that

1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(ℓ)

− J ′
0(ℓ)

(
wi − wi−2

2
− ℓ

)}

≤ B−

(
u

(1)
1 , ℓ

)
+ η. (4.23)

We construct a recovery sequence for u by means of the functions v and w. Indeed, we set

ui
n =





λnvi if 0 ≤ i ≤ N1 + 2,

λnvN1+2 + ℓ+λn(w−N2−2−vN1+2)
n−N1−N2−4 (i − N1 − 2) if N1 + 2 ≤ i ≤ n − N2 − 2,

ℓ + λnwi−n if n − N2 − 2 ≤ i ≤ n.
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We note that, for each n, un satisfies the boundary conditions (2.2). We write Hℓ
1,n(un) as in

(4.16) and thus only need to show that the first three terms on the right-hand side of (4.16) yield

B+

(
u

(1)
0 , ℓ

)
and B−

(
u

(1)
1 , ℓ

)
in order to prove that Hℓ

1,n(un) converges to Hℓ
1(u). To this end we

split the sum as follows

n−2∑

i=0

si
n =

N1∑

i=0

si
n +

n−N2−3∑

i=N1+1

si
n +

n−2∑

i=n−N2−2

si
n.

We observe that

1

2
J1

(
u1

n − u0
n

λn

)
+

N1∑

i=0

si
n =

1

2
J1

(
v1 − v0

)
+

N1∑

i=0

{
J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)

+ J1

(
vi+1 − vi

) )
− J0(ℓ) − J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)}
,

where we can replace the sum of the right-hand side with the same sum up to +∞ since vi+1−vi = ℓ

for i ≥ N1. Hence, by (4.22) we obtain the upper bound B+

(
u

(1)
0 , ℓ

)
+ η. Similarly,

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=n−N2−2

si
n

=
1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(ℓ)

− J ′
0(ℓ)

(
wi − wi−2

2
− ℓ

)}
,

which is less or equal than B−

(
u

(1)
1 , ℓ

)
+ η by construction, see (4.23). Thus it remains to prove

that
∑n−N2−3

i=N1+1 si
n is infinitesimal as n → ∞. For N1 + 2 ≤ i ≤ n − N2 − 4 we have

ui+1
n − ui

n

λn

=
ℓ + λn

(
w−N2−2 − vN1+2

)

λn(n − N1 − N2 − 4)
=

ℓ

1 − λn(N1 + N2 + 4)
+

w−N2−2 − vN1+2

n − N1 − N2 − 4
,

which is of the order of ℓ + c
n

for some constant c. Hence by continuity

si
n ≃ J2

(
ℓ +

c

n

)
+ J1

(
ℓ +

c

n

)
− J0(ℓ) − J ′

0(ℓ)
( c

n

)

for N1 + 2 ≤ i ≤ n − N2 − 4. Now, since J ′
0(ℓ) = J ′

1(ℓ) + J ′
2(ℓ) by (4.3) and [H3]

si
n ≃ J2

(
ℓ +

c

n

)
+ J1

(
ℓ +

c

n

)
− J1(ℓ) − J2(ℓ) − J ′

1(ℓ)
( c

n

)
− J ′

2(ℓ)
( c

n

)

=
1

2
J ′′

2 (ξ2,n)
( c

n

)2

+
1

2
J ′′

1 (ξ1,n)
( c

n

)2

for some ξ1.n and ξ2,n between ℓ and ℓ + c
n

by Taylor’s Theorem. So, by [H5] and since ξ1,n and
ξ2,n are less or equal to γ + γ0 for n large enough, and for a possibly different constant c,

n−N2−4∑

i=N1+2

si
n ≃

n∑

i=1

c

n2
=

c

n
→ 0 as n → ∞.

14



It remains to estimate the terms for i = N1 + 1 and i = n − N2 − 3. Note that

uN1+3
n − uN1+1

n

2λn

=
1

2

(
vN1+2 +

ℓ + λn(w−N2−2 − vN1+2)

λn(n − N1 − N2 − 4)

)
− 1

2
vN1+1

=
vN1+2 − vN1+1

2
+

ℓ

2 − 2λn(N1 + N2 + 4)
+

w−N2−2 − vN1+2

2(n − N1 − N2 − 4)

≃ ℓ

2
+

ℓ

2
+

c

2n
−→ ℓ.

Hence sN1+1
n converges to 0 as n → ∞ by (4.3). Similarly,

un−N2−1
n − un−N2−3

n

2λn

=
1

2

(
ℓ

λn

+ w−N2−1 − vN1+2 − ℓ + λn(w−N2−2 − vN1+2)

λn(n − N1 − N2 − 4)
(n − N2 − 3 − N1 − 2)

)

−→ ℓ

since n−N2−3−N1−2
λn(n−N1−N2−4) is of order 1

λn
−1 and w−N2−1−w−N2−2 = ℓ. Hence, again by (4.3), sn−N2−3

n

converges to 0 as n tends to infinity, which proves the convergence of the energy. Moreover, since
the discrete derivative of un converges to ℓ we have in particular that (un) converges to u(t) = ℓt

in L∞(0, 1).

Next we discuss a special case: let ℓ = γ and u
(1)
0 = u

(1)
1 = γ. Notice that the problems defining

the boundary layer energies are perfectly symmetric, therefore B+ (γ, γ) = B− (γ, γ). Indeed, if
(vi, N) is a minimiser for B+(γ, γ), then (−v−i,−N) is a minimiser for B−(γ, γ), having the same
energy. Moreover, in this case it is immediate to notice that (γi, 0) is a minimiser, hence the
boundary layer energies take the simple explicit form

B+ (γ, γ) = B− (γ, γ) =
1

2
J1(γ). (4.24)

The following corollary is then a consequence of Theorem 4.3.

Corollary 4.4. Suppose that hypotheses [H1] − [H5] hold and let ℓ = γ and u
(1)
0 = u

(1)
1 = γ.

The sequence of functionals H
γ
1,n Γ-converges with respect to the L∞-topology to the functional

H
γ
1 given by

H
γ
1 (u) =

{
J1(γ) − J0(γ) if u(t) = γt,

+∞ otherwise

on W 1,∞(0, 1).

Remark 4.5. Notice that if the Dirichlet boundary conditions for the second and last but one
atoms are not prescribed, then the limit functional is 2B(γ)−J0(γ) [BC07, Theorem 4.6], see also
(4.27) for a definition of B(γ). By Proposition 5.4 we know that B(γ) < 1

2J1(γ) in some relevant
examples, more precisely for the classical Lennard-Jones potentials as defined in (4.4). Hence, at
least for these examples, prescribing the second and last but one atoms leads to a different limiting
functional even for ℓ = γ.

Remark 4.6. Proving directly the assertion of Corollary 4.4 shows that assumption [H5] is not
needed.
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4.2 The case ℓ > γ

According to the compactness result in Proposition 4.2, we expect fracture in the case ℓ > γ.
To this end we define boundary layer energies which are due to cracks that occur at 0 and 1,

respectively, in the continuum limit. For given u
(1)
0 , u

(1)
1 > 0 we set

B0
(
u

(1)
0

)
= inf

k∈N

min

{
1

2
J1

(
ŵ0 − ŵ−1

)
+

0∑

i=−k+1

{
J2

(
ŵi − ŵi−2

2

)

+
1

2

(
J1

(
ŵi − ŵi−1

)
+ J1

(
ŵi−1 − ŵi−2

))
− J0(γ)

}
:

ŵ : −N → R, ŵ−k−1 = 0, ŵ−k − ŵ−k−1 = ŵ−k = u
(1)
0

}
,

(4.25)

B1
(
u

(1)
1

)
= inf

k∈N

min

{
1

2
J1

(
v̂1 − v̂0

)
+

k−1∑

i=0

{
J2

(
v̂i+2 − v̂i

2

)

+
1

2

(
J1

(
v̂i+2 − v̂i+1

)
+ J1

(
v̂i+1 − v̂i

))
− J0(γ)

}
:

v̂ : N → R, v̂k+1 = 0, v̂k+1 − v̂k = −v̂k = u
(1)
1

}
.

(4.26)

Remark 4.7. The boundary layer energy B0
(
u

(1)
0

)
describes the optimal position, at a microscopic

scale, of a fracture that occurs in 0 at a macroscopic scale. Analogously, B1
(
u

(1)
1

)
does this for a

crack in 1. See the end of Section 5 for examples about the optimal position of microscopic cracks.
In this case we use again (3.3) and that J0 has a unique minimum point γ to deduce that the
terms in the sums are non-negative.

Next we recall the definition of B(γ), which is the boundary layer energy of a free boundary and
was introduced in [BC07].

B(γ) = inf
N∈N

min

{
1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J2

(
ũi+2 − ũi

2

)

+
1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}
:

ũ : N → R, ũ0 = 0, ũi+1 − ũi = γ if i ≥ N

}
.

(4.27)

For ℓ ≤ γ, the case of elasticity, we have already defined boundary layer energies in 0 and in 1,
see (4.11) and (4.12). Similar boundary layer energies occur for ℓ > γ at 0 and in 1 if there is no
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crack: for any ℓ > γ, u
(1)
0 , u

(1)
1 > 0 we define

B+

(
u

(1)
0 , γ

)
= inf

N∈N

min

{
1

2
J1

(
v1 − v0

)
+
∑

i≥0

{
J2

(
vi+2 − vi

2

)

+
1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(γ)

}
:

v : N → R, v0 = 0, v1 − v0 = v1 = u
(1)
0 , vi+1 − vi = γ if i ≥ N

}
, (4.28)

B−

(
u

(1)
1 , γ

)
= inf

N∈N

min

{
1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)

+
1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(γ)

}
:

w : −N → R, w0 = 0, w0 − w−1 = −w−1 = u
(1)
1 , wi − wi−1 = γ if i ≤ −N

}
.

(4.29)

Theorem 4.8. Suppose that hypotheses [H1]− [H4] hold and let ℓ > γ, u
(1)
0 , u

(1)
1 > 0. Then Hℓ

1,n

Γ-converges with respect to the L1-topology to the functional Hℓ
1 defined by

Hℓ
1(u) =





B+

(
u

(1)
0 , γ

)
(1 − #(Su ∩ {0}))

+B−

(
u

(1)
1 , γ

)
(1 − #(Su ∩ {1})) − J0(γ)

+BIJ#(Su ∩ (0, 1)) + B0
BJ#(Su ∩ {0}) + B1

BJ#(Su ∩ {1}) if u ∈ SBV ℓ
c (0, 1),

+∞ else,

on L1(0, 1), where

B0
BJ =

1

2
J1

(
u

(1)
0

)
+ B0

(
u

(1)
0

)
+ B(γ) − 2J0(γ), (4.30)

B1
BJ =

1

2
J1

(
u

(1)
1

)
+ B1

(
u

(1)
1

)
+ B(γ) − 2J0(γ) (4.31)

are the boundary layer energies due to a jump at the boundary (at 0 and at 1, respectively), while

BIJ = 2B(γ) − 2J0(γ) (4.32)

is the boundary layer energy due to a jump at an internal point of (0, 1).

In Figures 3 and 4 we give an intuitive picture of the location of occurring boundary layers in the
case of a crack in 0 and in the interior, respectively.

Proof. Liminf inequality. Without loss of generality we can assume that there is only one jump
point , i.e., #Su = 1. In the following we consider the case of having a jump at the boundary or
in the interior separately. Since the jumps at 0 and 1, respectively, are similar due to symmetry,
we only treat the boundary jump at 0.
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u(t)

t
10

B−

“
u

(1)
1 , γ

”

B(γ) − J0(γ)

ℓ

1
2 J1(u

(1)
0 ) + B0(u

(1)
0 ) − J0(γ)

Figure 3: An intuitive picture of the location of boundary layers for a crack in 0.

u(t)

t
10

B−

“
u

(1)
1 , γ

”

B+

“
u

(1)
0 , γ

”

B(γ) − J0(γ)

B(γ) − J0(γ)

ℓ

Figure 4: An intuitive picture of the location of boundary layers for a crack in the interior.

Jump at 0. Assume that Su = {0} and let (un) be a sequence such that supn Hℓ
1,n(un) < +∞. By

the compactness result Proposition 4.2 we know that un → u in L1(0, 1) with

u(t) =

{
0 if t = 0,

γt + (ℓ − γ) if t ∈ (0, 1].
(4.33)

We prove that

lim inf
n

Hℓ
1,n(un) ≥ 1

2
J1

(
u

(1)
0

)
+ B0

(
u

(1)
0

)
+ B(γ) − 2J0(γ) + B−

(
u

(1)
1 , γ

)
− J0(γ). (4.34)

Let k1
n ∈ N with λnk1

n → 3
4 be such that

lim
n→∞

u
k1

n+2
n − u

k1
n+1

n

λn

= γ. (4.35)

We start from (4.9) and decompose the sum into a sum from 0 to k1
n and a sum from k1

n + 1 to
n− 2. In the following we adapt parts of the proof of Theorem 4.3; note that σi

n defined in (4.10)
is the same as si

n defined in (4.17) for ℓ = γ. Instead of (4.20) we set

wj
n =

{
un+j

n

λn
− ℓ

λn
if hn − n + 1 ≤ j ≤ 0,

γ(j − (hn − n + 1)) − ℓ
λn

+
uhn+1

n

λn
if j ≤ hn − n + 1.

18



and then can prove analogously to (4.21) that

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=k1
n+1

σi
n ≥ B−

(
u

(1)
1 , γ

)
− ω(n) (4.36)

with an appropriate function ω converging to 0 as n → ∞. Therefore, in order to obtain (4.34)
we focus now on the sum of the terms σi

n for i ranging between 0 and k1
n.

Since, by assumption, un → u and Su = {0}, we have that there exists hn ∈ N with λnhn → 0
such that

lim
n→∞

∣∣∣∣
uhn+1

n − uhn
n

λn

∣∣∣∣ = +∞. (4.37)

We then split the sum, by isolating the terms i = hn − 1 and i = hn which contain terms as in
(4.37):

k1
n∑

i=0

σi
n =

hn−2∑

i=0

σi
n + σhn−1

n + σhn
n +

k1
n∑

i=hn+1

σi
n. (4.38)

According to (4.37), since J1(+∞) = J2(+∞) = 0, we have that some terms in σhn−1
n and in σhn

n

are infinitesimal. We collect them in the function r1(n) defined by

r1(n) = J2

(
uhn+1

n − uhn−1
n

2λn

)
+ J2

(
uhn+2

n − uhn
n

2λn

)
+ J1

(
uhn+1

n − uhn
n

λn

)

and converging to 0 as n → ∞. Hence, from (4.38) we have

k1
n∑

i=0

σi
n =

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=0

σi
n +

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n − 2J0(γ) + r1(n).

(4.39)
We show that

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=0

σi
n ≥ B0

(
u

(1)
0

)
, (4.40)

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n ≥ B(γ) + r2(n), (4.41)

with r2(n) → 0 as n → ∞, see below for details. Indeed, (4.40)-(4.41) together with (4.36) and
(4.39) then give (4.34).

Let us start by proving the inequality in (4.40). We define for j = −hn + 2, . . . , 0

ŵj
n =

uj+hn
n

λn

.

Then

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=0

σi
n =

1

2
J1

(
ŵ0

n − ŵ−1
n

)
+

0∑

j=−hn+2

{
J2

(
ŵj

n − ŵj−2
n

2

)

+
1

2

(
J1(ŵ

j
n − ŵj−1

n ) + J1(ŵ
j−1
n − ŵj−2

n )
)
− J0(γ)

}
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and, moreover, ŵ−hn
n = 0, ŵ1−hn

n − ŵ−hn
n = u

(1)
0 , which means that ŵn is an admissible test for

B0
(
u

(1)
0

)
and thus (4.40) holds true.

It remains to prove (4.41). We define, for j ≥ 0

ũj
n =





uhn+1+j
n

λn

− uhn+1
n

λn

if j ≤ k1
n − hn + 1,

γ
(
j − k1

n + hn − 1
)

+
u

k1
n+2

n

λn

− uhn+1
n

λn

if j ≥ k1
n − hn + 1.

Therefore, we find

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n =

1

2
J1

(
ũ1

n − ũ0
n

)
+
∑

j≥0

{
J2

(
ũj+2

n − ũj
n

2

)

+
1

2

(
J1

(
ũj+2

n − ũj+1
n

)
+ J1

(
ũj+1

n − ũj
n

))
− J0(γ)

}
− r2(n),

where r2(n) corresponds to the term j = k1
n − hn, and we can consider an infinite sum since the

terms for j ≥ k1
n − hn + 1 are identically 0. We observe that

r2(n) = J2

(
1

2

(
γ +

u
k1

n+2
n − u

k1
n+1

n

λn

))
+

1

2

(
J1 (γ) + J1

(
u

k1
n+2

n − u
k1

n+1
n

λn

))
− J0(γ) → 0

as n → ∞, since, by (4.35), u
k1

n+2
n −u

k1
n+1

n

λn
→ γ, and J2(γ) + J1(γ) = J0(γ) by (4.3). Note that

ũ0
n = 0, ũj+1

n − ũj
n = γ for all j ≥ k1

n − hn + 1. According to the definition of B(γ) recalled in
(4.27), we thus obtain (4.41), which concludes the proof of (4.34).

Internal jump. Assume that Su = {t̄}, where t̄ ∈ (0, 1). Without loss of generality we consider t̄ =
1
2 . Let (un) be a sequence converging to u such that supn Hℓ

1,n(un) < +∞. Then Proposition 4.2
implies that un → u in L1(0, 1) with

u(t) =

{
γt if 0 ≤ t ≤ 1

2 ,

(ℓ − γ) + γt if 1
2 < t ≤ 1.

(4.42)

We prove

lim inf
n

Hℓ
1,n(un) ≥ B+

(
u

(1)
0 , γ

)
+ B−

(
u

(1)
1 , γ

)
− J0(γ) + 2B(γ) − 2J0(γ). (4.43)

Let k0
n, k1

n, hn be integers with λnk0
n → 1

4 , λnk1
n → 3

4 , λnhn ≤ 1
2 and λnhn → 1

2 such that
∣∣∣∣∣
u

k0
n+2

n − u
k0

n+1
n

λn

∣∣∣∣∣→ γ,

∣∣∣∣∣
u

k1
n+2

n − u
k1

n+1
n

λn

∣∣∣∣∣→ γ,

∣∣∣∣
uhn+1

n − uhn
n

λn

∣∣∣∣→ +∞ as n → ∞. (4.44)

By using again the definition of σi
n, i = 0, . . . , n − 2, given in (4.10), we decompose the energy

Hℓ
1,n(un) as follows to extract the occurring boundary layer energies.

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

k0
n∑

i=0

σi
n +

hn−2∑

i=k0
n+1

σi
n + σhn−1

n + σhn
n +

k1
n∑

i=hn+1

σi
n +

n−2∑

i=k1
n+1

σi
n

+
1

2
J1

(
un

n − un−1
n

λn

)
− J0(γ).

(4.45)
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As in (4.36) we have

1

2
J1

(
un

n − un−1
n

λn

)
+

n−2∑

i=k1
n+1

σi
n ≥ B−

(
u

(1)
1 , γ

)
− ω(n). (4.46)

In a similar way (see also (4.19)) we get

1

2
J1

(
u1

n − u0
n

λn

)
+

k0
n∑

i=0

σi
n ≥ B+

(
u

(1)
0 , γ

)
− ω(n) (4.47)

for some (in general different) functions ω(n), see above, converging to 0 as n → ∞. Therefore,
in order to obtain (4.43), we focus on

Σ =

hn−2∑

i=k0
n+1

σi
n + σhn−1

n + σhn
n +

k1
n∑

i=hn+1

σi
n.

According to the third limit in (4.44), since J1(+∞) = J2(+∞) = 0, we deduce (as in the case of
boundary jumps) that some terms defining σhn−1

n and σhn
n are infinitesimal. Therefore, rearranging

the terms, we can rewrite Σ as follows:

Σ =
1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=k0
n+1

σi
n +

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n − 2J0(γ) + ω(n),

(4.48)
where

ω(n) = J2

(
uhn+1

n − uhn−1
n

2λn

)
+

1

2
J1

(
uhn+1

n − uhn
n

λn

)
+ J2

(
uhn+2

n − uhn
n

2λn

)
+

1

2
J1

(
uhn+1

n − uhn
n

λn

)

converges to 0 as n → ∞. It remains to prove that

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=k0
n+1

σi
n ≥ B(γ) + r1(n), (4.49)

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n ≥ B(γ) + r2(n), (4.50)

with ri(n) → 0, for i = 1, 2, as n → ∞. Indeed, (4.49)–(4.50) together with (4.45), (4.48) will
then give (4.43). We start by proving (4.49). We define ũn : N → R as

ũj
n =





uhn
n − uhn−j

n

λn

if 0 ≤ j ≤ hn − k0
n − 1,

γ(j − hn + k0
n + 1) +

uhn
n − u

k0
n+1

n

λn

if j ≥ hn − k0
n − 1.

We observe that ũ0
n = 0, ũj+1

n − ũj
n = γ for all j ≥ hn−k0

n−1. The idea is to rewrite the left-hand
side in (4.49) as an infinite sum involving ũj

n as follows

1

2
J1

(
uhn

n − uhn−1
n

λn

)
+

hn−2∑

i=k0
n+1

σi
n =

1

2
J1

(
ũ1

n − ũ0
n

)
+
∑

j≥0

{
J2

(
ũj+2

n − ũj
n

2

)

+
1

2

(
J1

(
ũj+2

n − ũj+1
n

)
+ J1

(
ũj+1

n − ũj
n

))
− J0(γ)

}
− r1(n),
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where r1(n) is an infinitesimal term corresponding to j = hn − k0
n − 2; we can consider the sum as

an infinite sum since the terms for j ≥ hn − k0
n − 1 are identically 0. According to the definition

of B(γ) given by (4.27), we thus obtain (4.49).

We pass now to (4.50). We define another test function ũn : N → R, again denoted by ũn, such
that

ũj
n =





uj+hn+1
n − uhn+1

n

λn

if 0 ≤ j ≤ k1
n − hn + 1,

γ(j + hn − k1
n − 1) +

u
k1

n+2
n − uhn+1

n

λn

if j ≥ k1
n − hn + 1.

Thus, ũ0
n = 0 and ũj+1

n − ũj
n = γ for j ≥ k1

n − hn + 1. We can rewrite the left-hand side of (4.50)
in terms of an infinite sum involving ũj

n:

1

2
J1

(
uhn+2

n − uhn+1
n

λn

)
+

k1
n∑

i=hn+1

σi
n =

1

2
J1

(
ũ1

n − ũ0
n

)
+
∑

j≥0

{
J2

(
ũj+2

n − ũj
n

2

)

+
1

2

(
J1

(
ũj+2

n − ũj+1
n

)
+ J1

(
ũj+1

n − ũj
n

))
− J0(γ)

}
− r2(n),

where r2(n) corresponds to the term j = k1
n − hn and converges to 0 as n → ∞ by (4.44) and by

(4.3). Thus (4.50) follows, and this concludes the proof of the liminf inequality.

Limsup inequality. As before, we distinguish between the different situations.

Jump at 0. We assume that Su = {0} where u is given by (4.33). We need to prove that there
exists a sequence (un) converging to u in L1(0, 1), satisfying (2.2) and such that

lim sup
n

Hℓ
1,n(un) ≤ 1

2
J1

(
u

(1)
0

)
+ B0

(
u

(1)
0

)
+ B(γ) − 2J0(γ) + B−

(
u

(1)
1 , γ

)
− J0(γ). (4.51)

Let us fix η > 0. Then, by the definition of B(γ) (see (4.27)), we can find ũ : N → R and Ñ ∈ N

such that ũ0 = 0, ũi+1 − ũi = γ if i ≥ Ñ and

1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J2

(
ũi+2 − ũi

2

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}

≤ B(γ) + η. (4.52)

In the same way, by the definition of B−

(
u

(1)
1 , γ

)
there exist w : −N → R and N2 ∈ N with

w0 = 0, w0 − w−1 = −w−1 = u
(1)
1 , wi − wi−1 = γ if i ≤ −N2, such that

1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(γ)

}

≤ B−

(
u

(1)
1 , γ

)
+ η. (4.53)

Analogously, by the definition of B0
(
u

(1)
0

)
given in (4.25), there exist ŵ : −N → R and k̂0 ∈ N
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such that ŵ−bk0−1 = 0, ŵ−bk0 − ŵ−bk0−1 = ŵ−bk0 = u
(1)
0 and

1

2
J1

(
ŵ0 − ŵ−1

)
+

0∑

i=−bk0+1

{
J2

(
ŵi − ŵi−2

2

)
+

1

2

(
J1

(
ŵi − ŵi−1

)
+ J1

(
ŵi−1 − ŵi−2

))
− J0(γ)

}

≤ B0
(
u

(1)
0

)
+ η. (4.54)

Let {k1
n} be a sequence of integers with λnk1

n → 3
4 as n → ∞ such that

k1
n − (k̂0 + 2) ≥ Ñ and k1

n − n + 2 ≤ −N2 for all n ∈ N. (4.55)

We construct the sequence (un) by means of the functions ũ, w and ŵ. Indeed, we define

ui
n =





λnŵi−bk0−1 if 0 ≤ i ≤ k̂0 + 1,

ℓ + λn

(
wk1

n+1−n + ũi−(bk0+2) − ũk1
n+1−(bk0+2)

)
if k̂0 + 2 ≤ i ≤ k1

n + 1,

ℓ + λnwi−n if k1
n + 1 ≤ i ≤ n.

Note that the sequence (un) satisfies the boundary conditions

u0
n = λnŵ−bk0−1 = 0, u1

n = λnŵ−bk0 = λnu
(1)
0 ,

un
n = ℓ + λnw0 = ℓ, un

n − un−1
n = λn(w0 − w−1) = λnu

(1)
1 ,

and satisfies ui+1
n − ui

n = γ for Ñ + k̂0 + 2 ≤ i ≤ k1
n and for k1

n + 1 ≤ i ≤ n− 1−N2 by definition.
Moreover we have that

u
bk0+2
n − u

bk0+1
n → ℓ − γ. (4.56)

Indeed, by using the facts that ũi+1 − ũi = γ if i ≥ Ñ and wi − wi−1 = γ if i ≤ −N2, together
with (4.55) we obtain

u
bk0+2
n − u

bk0+1
n = ℓ + λn

(
wk1

n+1−n + (ũ0 − ũk1
n+1−(bk0+2)) − ŵ0

)

= ℓ + λn

(
(wk1

n+1−n − w−N2) + w−N2 + (ũ
eN1 − ũk1

n+1−(bk0+2)) − ũ
eN − ŵ0

)

= ℓ + λn

(
γ(k1

n + 1 − n + N2) + w−N2 − γ(k1
n + 1 − (k̂0 + 2) − Ñ) − ũ

eN − ŵ0
)

= ℓ − γnλn + λn

(
γ(N2 + (k̂0 + 2) + Ñ) + w−N2 − ũ

eN − ŵ0
)
−→ ℓ − γ.

Hence un → u in L1(0, 1), where u is defined by (4.33), as n → ∞.

To prove (4.51), we rewrite Hℓ
1,n(un) as

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

bk0−1∑

i=0

σi
n + σ

bk0
n + σ

bk0+1
n +

k1
n−1∑

i=bk0+2

σi
n + σ

k1
n

n +

n−2∑

i=k1
n+1

σi
n

+
1

2
J1

(
un

n − un−1
n

λn

)
− J0(γ),

(4.57)

where σi
n is defined in (4.10), and we use the definition of (un) above.
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We start with the sum from i = 0 to k̂0 − 1, and involve ŵj by introducing the new index
j = i − k̂0 + 1 and summing then from j = −k̂0 + 1 up to 0, namely,

bk0−1∑

i=0

σi
n =

0∑

j=−bk0+1

{
J2

(
ŵj − ŵj−2

2

)
+

1

2

(
J1

(
ŵj − ŵj−1

)
+ J1

(
ŵj−1 − ŵj−2

))
−J0(γ)

}
. (4.58)

We continue with the term σ
bk0
n by observing that

σ
bk0
n =

1

2
J1

(
ŵ0 − ŵ−1

)
− J0(γ) + r̂(n), (4.59)

where r̂(n) is defined by

r̂(n) =J2

(
ℓ

2λn

+
1

2

(
wk1

n+1−n − ũk1
n+1−(bk0+2) − ŵ−1

))

+
1

2
J1

(
ℓ

λn

+ wk1
n+1−n − ũk1

n+1−(bk0+2) − ŵ0

)

and converges to 0 as n → ∞, since J2(+∞) = J1(+∞) = 0. Similarly,

σ
bk0+1
n =

1

2
J1

(
ũ1 − ũ0

)
− J0(γ) + r(n), (4.60)

where

r(n) =J2

(
ℓ

2λn

+
1

2

(
wk1

n+1−n + ũ1 − ũk1
n+1−(bk0+2) − ŵ0

))

+
1

2
J1

(
ℓ

λn

+ wk1
n+1−n − ũk1

n+1−(bk0+2) − ŵ0

)

converges to 0 as n → ∞.

The sum from i = k̂0 + 2 to k1
n − 1 can be rewritten in terms of ũ by introducing the new index

j = i− (k̂0 +2) ranging between 0 and k1
n − 1− (k̂0 +2). Actually, we can pass to an infinite sum,

since the term for j ≥ Ñ gives zero contribution by (4.3) and, by (4.55), k1
n − (k̂0 + 2) ≥ Ñ . Thus

we have

k1
n−1∑

i=bk0+2

σi
n =

∑

j≥0

{
J2

(
ũj+2 − ũj

2

)
+

1

2

(
J1

(
ũj+2 − ũj+1

)
+ J1

(
ũj+1 − ũj

))
− J0(γ)

}
. (4.61)

Next, we observe that

σ
k1

n
n = 0. (4.62)

Indeed, by (4.55),

σ
k1

n
n =J2

(
(wk1

n+2−n − wk1
n+1−n) + (ũk1

n+1−(bk0+2) − ũk1
n−(bk0+2))

2

)
+ J1(γ) − J0(γ)

=J2(γ) + J1(γ) − J0(γ) = 0.
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It remains to consider the sum from i = k1
n + 1 up to n − 2, which involves w by introducing the

new index j = i−n+2. Moreover, we can pass to the infinite sum for j ≤ 0, since k1
n−n+2 ≤ −N2

and the terms in the sum are 0 for j ≤ −N2. Therefore, we have

n−2∑

i=k1
n+1

σi
n =

∑

j≤0

{
J2

(
wj − wj−2

2

)
+

1

2

(
J1

(
wj − wj−1

)
+ J1

(
wj−1 − wj−2

))
− J0(γ)

}
. (4.63)

In conclusion, by (4.57), (4.58)–(4.63) together with (4.52)–(4.54), we obtain

Hℓ
1,n(un) =

1

2
J1

(
u

(1)
0

)
− 3J0(γ) + r̂(n) + r(n) +

1

2
J1

(
ŵ0 − ŵ−1

)

+

0∑

i=−bk0+1

{
J2

(
ŵi − ŵi−2

2

)
+

1

2

(
J1

(
ŵi − ŵi−1

)
+ J1

(
ŵi−1 − ŵi−2

))
− J0(γ)

}

+
1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J2

(
ũi+2 − ũi

2

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}

+
1

2
J1(w

0 − w−1) +
∑

i≤0

{
J2

(
wi − wi−2

2

)
+

1

2

(
J1

(
wi − wi−1

)
+ J1

(
wi−1 − wi−2

))
− J0(γ)

}

≤ 1

2
J1

(
u

(1)
0

)
− 3J0(γ) + B0

(
u

(1)
0

)
+ B(γ) + B−

(
u

(1)
1 , γ

)
+ 3η + r̂(n) + r(n).

Hence, (4.51) follows.

Internal jump. Without loss of generality we assume that Su =
{

1
2

}
where u is given by (4.42).

We have to prove that there exists a sequence (un) converging to u in L1(0, 1), satisfying (2.2)
and such that

lim sup
n

Hℓ
1,n(un) ≤ B+

(
u

(1)
0 , γ

)
+ B−

(
u

(1)
1 , γ

)
− J0(γ) + 2B(γ) − 2J0(γ). (4.64)

Let us fix η > 0. By the definition of B+

(
u

(1)
0 , γ

)
we can find v : N → R and N1 ∈ N with v0 = 0,

v1 − v0 = v1 = u
(1)
0 , vi+1 − vi = γ if i ≥ N1, such that

1

2
J1(v

1 − v0) +
∑

i≥0

{
J2

(
vi+2 − vi

2

)
+

1

2

(
J1

(
vi+2 − vi+1

)
+ J1

(
vi+1 − vi

))
− J0(γ)

}

≤ B+

(
u

(1)
0 , γ

)
+ η. (4.65)

Moreover, by the definition of B(γ) there exist ũ : N → R and Ñ ∈ N satisfying (4.52). Finally,

by the definition of B−

(
u

(1)
1 , γ

)
there exist w : −N → R and N2 ∈ N as in (4.53).

Let k0
n, k1

n, hn be sequences of integers with λnk0
n → 1

4 , λnk1
n → 3

4 , λnhn → 1
2 as n → ∞, such

that

k0
n ≥ N1 + 1 and k1

n − n + 2 ≤ −N2 (4.66)

Ñ ≤ min{hn − k0
n − 1, k1

n − hn − 1} for all n ∈ N. (4.67)
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We construct now the sequence (un) by means of the functions v, ũ and w:

ui
n =





λnvi if 0 ≤ i ≤ k0
n,

λn

(
vk0

n − ũhn−i + ũhn−k0
n

)
if k0

n ≤ i ≤ hn,

ℓ + λn

(
wk1

n+1−n + ũi−(hn+1) − ũk1
n−hn

)
if hn + 1 ≤ i ≤ k1

n + 1,

ℓ + λnwi−n if k1
n + 1 ≤ i ≤ n.

We observe that the sequence (un) satisfies the boundary conditions

u0
n = λnv0 = 0, u1

n = λnv1 = λnu
(1)
0 , un

n = ℓ + λnw0 = ℓ, un
n − un−1

n = λn(w0 − w−1) = λnu
(1)
1 ,

moreover, ui+1
n −ui

n = γ for N1 ≤ i ≤ hn − Ñ and for Ñ +hn +1 ≤ i ≤ n−N2. We also have that

uhn+1
n − uhn

n −→ ℓ − γ. (4.68)

Indeed, by using the facts that vi+1−vi = γ for i ≥ N1, ũi+1− ũi = γ for i ≥ Ñ and wi−wi−1 = γ

for i ≤ −N2, we have:

uhn+1
n − uhn

n = ℓ + λn

(
wk1

n+1−n + ũ0 − ũk1
n−hn − vk0

n + ũ0 − ũhn−k0
n

)

= ℓ + 2λnũ0 − λn

(
γ(k0

n − N1 + k1
n − hn − Ñ) + vN1 + ũ

eN
)

+ λn

(
γ(k1

n − n + 1 + N2 + k0
n − hn + Ñ) + w−N2 − ũ

eN
)

= ℓ + 2λnũ0 − γnλn + λn

(
γ(N1 + 2Ñ + N2 + 1) − vN1 − 2ũ

eN + w−N2

)
.

Therefore (4.68) holds. In conclusion, un → u in L1(0, 1) as n → ∞. We compute now Hℓ
1,n(un),

which turns out to be useful to write as follows.

Hℓ
1,n(un) =

1

2
J1

(
u1

n − u0
n

λn

)
+

k0
n−2∑

i=0

σi
n + σ

k0
n−1

n +

hn−2∑

i=k0
n

σi
n + σhn−1

n + σhn
n +

k1
n−1∑

i=hn+1

σi
n

+ σ
k1

n
n +

n−2∑

i=k1
n+1

σi
n +

1

2
J1

(
un

n − un−1
n

λn

)
− J0(γ),

(4.69)

where σi
n is defined in (4.10). We observe that

σ
k0

n−1
n = 0 (4.70)

since, by (4.66),

J2

(
vk0

n − ũhn−k0
n−1 + ũhn−k0

n − vk0
n−1

2

)
+

1

2

(
J1(ũ

hn−k0
n − ũhn−k0

n−1) + J1(v
k0

n − vk0
n−1)

)

= J2(γ) + J1(γ)

which equals J0(γ) by (4.3). Similarly,

σ
k1

n
n = 0 (4.71)
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because, by (4.67),

J2

(
wk1

n+2−n − wk1
n+1−n − ũk1

n−(hn+1) + ũk1
n−hn

2

)
+

1

2
J1(w

k1
n+2−n − wk1

n+1−n)

+
1

2
J1(ũ

k1
n−hn − ũk1

n−(hn+1))

= J2(γ) + J1(γ) = J0(γ).

By (4.69)–(4.71), (4.65), (4.52) and (4.53), and computations analogous as in the case of the
boundary jumps, we finally get

lim sup
n

Hℓ
1,n(un) ≤ B+

(
u

(1)
0 , γ

)
+ B−

(
u

(1)
1 , γ

)
− 3J0(γ) + 2B(γ) + 4η,

which yields (4.64).

5 Properties of boundary layer energies and location of

fracture

In the previous sections we derived the energy contributions due to boundary layers which occur in
several different cases, see Theorems 4.3 and 4.8. Here we derive some properties of the boundary
layer energies and look for the location of fracture, at which we proceed in the spirit of [BC07,
Theorem 5.9].

First of all we establish some relations among the three different types of boundary layer ener-

gies that we used, namely B(γ) as recalled in (4.27), B+

(
u

(1)
0 , γ

)
and B−

(
u

(1)
1 , γ

)
as defined in

(4.11) and (4.12), respectively, as well as B0
(
u

(1)
0

)
and B1

(
u

(1)
1

)
as defined in (4.25) and (4.26),

respectively.

Lemma 5.1. Let [H1] − [H4] be satisfied. Then the following estimates hold true:

(1) 1
2J1(δ1) ≤ B(γ) ≤ 1

2J1(γ);

(2) B(γ) = B0(γ) = B1(γ);

(3) B+(γ, γ) = B−(γ, γ) = 1
2J1(γ);

(4) B+

(
u

(1)
0 , γ

)
≥ 1

2J1

(
u

(1)
0

)
, B−

(
u

(1)
1 , γ

)
≥ 1

2J1

(
u

(1)
1

)
for all u

(1)
0 , u

(1)
1 > 0;

(5) B(γ) = inf
u

(1)
0 >0

B+

(
u

(1)
0 , γ

)
= inf

u
(1)
1 >0

B−

(
u

(1)
1 , γ

)
;

(6) B1
(
u

(1)
1

)
≥ 1

2J1(δ1), B0
(
u

(1)
0

)
≥ 1

2J1(δ1) for all u
(1)
0 , u

(1)
1 > 0;

(7) B1 (δ1) = 1
2J1(δ1) = B0 (δ1).
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Proof. (1) The infinite sum in the definition (4.27) of B(γ) is non-negative since γ is the minimum
point of J0. Hence

B(γ) ≥ 1

2
min J1 =

1

2
J1(δ1).

On the other hand, since the function ui = γi is a competitor in the minimum problem defining
B(γ), we have that

B(γ) ≤ 1

2
J1(γ) +

∑

i≥0

{J2(γ) + J1(γ) − J0(γ)} =
1

2
J1(γ),

where we again apply (4.3).

(2) First of all notice that for u
(1)
0 = u

(1)
1 the problems (4.25) and (4.26) are symmetric. Indeed,

in the particular case where u
(1)
0 = u

(1)
1 = γ, if (v̂i, k) is a minimiser for B1(γ), then (−v̂−i,−k) is

a minimiser for B0(γ), having the same energy. Therefore, B1(γ) = B0(γ). Moreover in this case
it is immediate to notice that the definitions (4.25) and (4.26) reduce to (4.27).

(3) See the derivation of (4.24).

(4) It is an immediate consequence of the definition of the boundary layer energies (4.11) and
(4.12), since the infinite sum is non-negative because γ is the minimum point of J0.

(5) This follows directly comparing the definitions (4.27) and (4.11) and (4.12), respectively.

(6) Here we again apply that γ is the minimum point of J0, which makes the terms in the sum
defining the boundary layer energies (4.25) and (4.26) non-negative. Moreover recall that δ1 is the
minimum point of J1.

(7) From (4.26) we notice that (v̂i, k) = (δ1i, 0) is a competitor which gives the reverse inequality
in (6), therefore we have equality. The second equality follows similarly.

Remark 5.2. From the proof of Lemma 5.1 we deduce that, if u
(1)
0 = δ1, then B0(δ1) = 1

2J1(δ1) is

attained for k = 0. Similarly, if u
(1)
1 = δ1, then B1(δ1) = 1

2J1(δ1) is attained for k = 0.

Next we present our result which asserts the location of fracture. More precisely we compare the
costs for fracture in the interior and at the boundary.

Theorem 5.3. Suppose that hypotheses [H1] − [H4] hold. Let ℓ > γ. For u
(1)
0 = u

(1)
1 = γ, the

fracture can appear indifferently inside or at the boundary of the chain. If instead u
(1)
0 or u

(1)
1 is

equal to δ1 and δ1 6= γ, then a boundary jump is more convenient than an internal jump, in terms
of the energy.

Proof. Since ℓ > γ, we obtain by Theorem 4.8, in the case of bounded energy, that

Hℓ
1(u) =B+

(
u

(1)
0 , γ

)
+ B−

(
u

(1)
1 , γ

)
− J0(γ) + # (Su ∩ {0})

(
B0

BJ − B+

(
u

(1)
0 , γ

))

+ #(Su ∩ {1})
(
B1

BJ − B−

(
u

(1)
1 , γ

))
+ #(Su ∩ (0, 1))BIJ ,

where B0
BJ , B1

BJ and BIJ are defined in (4.30), (4.31) and (4.32).
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Notice that if u
(1)
0 = γ, then by Lemma 5.1 (2) and (3) we obtain

B0
BJ − B+ (γ, γ) =

1

2
J1 (γ) + B0 (γ) + B(γ) − 2J0(γ) − B+ (γ, γ)

= 2B(γ) − 2J0(γ) = BIJ .

Analogously, if u
(1)
1 = γ, then B1

BJ −B− (γ, γ) = BIJ . Hence a jump in the interior costs as much
energy as a jump at the boundary.

Now assume that u
(1)
0 = δ1. We show that B0

BJ −B+ (δ1, γ) < BIJ . This is equivalent to proving

1

2
J1

(
δ1

)
+ B0

(
δ1

)
− B+ (δ1, γ) < B(γ),

which follows by Lemma 5.1 (1), (4) and (7) and the observation that the first inequality in (1)
of Lemma 5.1 is strict if δ1 6= γ.

In the remaining part of this section we show properties of the boundary layer energies in the case
of a certain class of interaction potentials, namely the classical Lennard-Jones potentials J1 and
J2 defined in Remark 4.1.

First we show that the second inequality in (1) of Lemma 5.1 is strict. This observation is applied
in Remark 4.5, where we discuss that the first-order Γ-limit for ℓ = γ depends on whether the
second and last but one atoms of the chain are prescribed.

Proposition 5.4. Let J1 and J2 be Lennard-Jones potentials as defined in (4.4). Then

B(γ) <
1

2
J1(γ). (5.1)

Moreover, there exists an a > 1 such that B+(aγ, γ) < B+(γ, γ).

Proof. Due to property (5) in Lemma 5.1, it is sufficient to show that there exists u
(1)
0 > 0 such

that B+

(
u

(1)
0 , γ

)
< 1

2J1(γ). We set u
(1)
0 = aγ, a > 0. Therefore our claim reduces to proving the

existence of a > 0 such that B+(aγ, γ) < 1
2J1(γ).

Our strategy consists in exhibiting a competitor for the minimum problem defining B+(aγ, γ) and
in proving that, for some a > 0, its energy is strictly smaller than 1

2J1(γ).

Since the function u : N → R defined as

ui =





0 if i = 0,

aγ if i = 1,

γi if i ≥ 2,

is an admissible competitor for B+(aγ, γ), we have that

B+(aγ, γ) ≤ J1(aγ) + J1

(
(2 − a)γ

)
+

1

2
J1(γ) + J1(2γ) + J1

(
(3 − a)γ

)
− 2J0(γ).

Therefore our claim reduces to showing that there exists an a > 0 such that

J1(aγ) + J1

(
(2 − a)γ

)
+

1

2
J1(γ) + J1(2γ) + J1

(
(3 − a)γ

)
− 2J0(γ) <

1

2
J1(γ), (5.2)
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that is, equivalently, to showing that there exists an a > 0 such that the function f : R → R,
defined as

f(a) := J1(aγ) + J1

(
(2 − a)γ

)
+ J1

(
(3 − a)γ

)
− J1(2γ) − 2J1(γ), (5.3)

is strictly negative. Computing its derivative with respect to a we have, using the explicit expres-
sion of J1 given in (4.4),

f ′(a) = − 12k1γ

(aγ)13
+

12k1γ

((2 − a)γ)13
+

12k1γ

((3 − a)γ)13
+

6k2γ

(aγ)7
− 6k2γ

((2 − a)γ)7
− 6k2γ

((3 − a)γ)7
.

In particular, choosing a = 1 in the previous formula leads to

f ′(1) =
12k1γ

(2γ)13
− 6k2γ

(2γ)7
=

6γk2

(2γ)7

(
1

26

2k1

k2γ6
− 1

)
=

6γk2

(2γ)7

(
1 + 2−6

26 + 2−6
− 1

)
< 0.

Therefore, since f(1) = 0 and f ′(1) < 0, we have that the function f is strictly negative in a right
neighbourhood of 1, i.e., there exists an a > 1 such that f(a) < 0. This proves (5.1). In particular
we deduce that it is more convenient to have an initial slope strictly bigger than γ, which implies
the second part of the assertion.

Finally we discuss the “depth” of boundary layers and the occurrence of cracks on the microscopic
scale.

Proposition 5.5. Let J1 and J2 be Lennard-Jones potentials as defined in (4.4). Then the
infimum in B(γ) is obtained for N → ∞.

Proof. For any N ∈ N we define AN such that B(γ) = infN∈N AN , that is, using also (4.4),

AN = min

{
1

2
J1

(
ũ1 − ũ0

)
+
∑

i≥0

{
J1

(
ũi+2 − ũi

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))

− J0(γ)

}
: ũ : N → R, ũ0 = 0, ũi+1 − ũi = γ if i ≥ N

}
.

We note that if (ui
N ) is a minimiser for AN , then it is an admissible competitor for AN+1, since

ui+1
N − ui

N = γ for i ≥ N + 1. Therefore AN ≥ AN+1 for all N ≥ 0 and the sequence N 7→ AN is
non-increasing.

Let Ñ be the smallest integer such that B(γ) = A eN , and assume for contradiction that Ñ < +∞.
Hence we have that

A eN = AN for all N ≥ Ñ . (5.4)

Notice that Ñ ≥ 1, since the optimal deformation has the initial slope different from γ, by
Proposition 5.4. Let us denote by (ũi) a minimiser of A eN , then

ũi =

{
ũi if i ≤ Ñ ,

ũ
eN + γ(i − Ñ) if i ≥ Ñ .

Again by γ not being the slope of the optimal deformation, there exists j ∈ {1, . . . , Ñ} with

ũj − ũj−1 6= γ. By our previous assumptions, we may take j = Ñ .
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We are going to prove that A eN > A eN+2, so that (5.4) will give the contradiction. More precisely,

starting with (ũi) we construct a sequence (ṽi) which is an admissible competitor for the minimum
problem A eN+2, and whose energy, denoted by A eN+2(ṽ), is strictly smaller than A eN . The idea

is that the forces due to next-to-nearest neighbour interactions acting on atom Ñ + 1 in the
sequence (ũi) are asymmetric, whereas the forces due to nearest neighbour interactions cancel

since the distance from atom Ñ +1 to atom Ñ is the same as the distance to atom Ñ +2, namely
γ. Because of the asymmetry of the forces on atom Ñ + 1 due to next-to-nearest neighbour
interactions we expect that this atom is moved to a different position in equilibrium. Therefore,
for some δ 6= 0, specified later, we set

ṽi =

{
ũi if i 6= Ñ + 1,

(ũ
eN + γ) + δ if i = Ñ + 1.

We show that shifting the position of atom Ñ + 1 by an amount δ reduces the energy, i.e.,
A eN+2(ṽ) < A eN . Indeed we have

A eN − A eN+2(ṽ) =

eN+1∑

i= eN−1

({
J1

(
ũi+2 − ũi

)
+

1

2

(
J1

(
ũi+2 − ũi+1

)
+ J1

(
ũi+1 − ũi

))
− J0(γ)

}

−
{

J1

(
ṽi+2 − ṽi

)
+

1

2

(
J1

(
ṽi+2 − ṽi+1

)
+ J1

(
ṽi+1 − ṽi

))
− J0(γ)

})

=J1

(
(ũ

eN − ũ
eN−1) + γ

)
− J1

(
(ũ

eN − ũ
eN−1) + γ + δ

)
− J1(2γ)

− J1(γ − δ) − J1(γ + δ) − J1 (2γ − δ) + 2J0(γ).

For the minimising sequence (ũi) we set ũ
eN − ũ

eN−1 = aγ. We know from the non-interpenetration

of atoms that a > 0, and from the choice of Ñ that a 6= 1 (we specify further properties of a

below). Then, we continue the computations above and we obtain by using also the equality
J0(γ) = J1(γ) + J1(2γ)

A eN − A eN+2(ṽ) = J1((a + 1)γ) − J1((a + 1)γ + δ) − J1(γ − δ) − J1(γ + δ)

− J1(2γ − δ) + 2J1(γ) + J1(2γ)

=: f(δ). (5.5)

We show below that there exists a δ 6= 0 such that f(δ) > 0, or equivalently A eN − A eN+2(ṽ) > 0,

in contradiction to our assumption B(γ) = A eN with finite Ñ .

Next we elaborate on further properties of the parameter a. We will deduce that we can exclude
a being close to zero by exhibiting a competitor having strictly smaller energy.

For the moment we assume Ñ ≥ 2. Let b > 0 be such that ũ
eN−1 − ũ

eN−2 = bγ and consider the
competitor w̃ : N → R defined as

w̃i =

{
ũi if i ≤ Ñ − 1,

ũ
eN−1 + γ(i − Ñ + 1) if i ≥ Ñ − 1.
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Let us denote by A eN−1(w̃) the energy associated to w̃. Then

A eN − A eN−1(w̃) = J1 ((a + b)γ) + J1(aγ) + J1((a + 1)γ) − J1((1 + b)γ) − J1(γ) − J1(2γ).

Note that J1(γ) = k1k2

γ6

1+2−6−2(1+2−12)
2k1(1+2−12) < 0. Furthermore, by the assumptions on the potential

J1, there holds J1(z) ≤ 0 for every z ≥ γ. Hence we have in particular that J1((1 + b)γ) < 0 and
J1(2γ) < 0. Moreover, J1(z) ≥ J1(δ1) = − k2

2δ6
1

for every z. Thus

A eN − A eN−1(w̃) ≥ J1(aγ) + 2J1(δ1) − J1(2γ) − J1(γ) > J1(aγ) − k2

δ6
1

. (5.6)

Since J1(z) → +∞ as z → 0+, we have that if a is close to zero, then A eN − A eN−1(w̃) > 0, in

contradiction to the minimality of ũi. We actually have more: since J1(aγ) > k2

δ6
1

for all a < a1

with

a1 :=

(√
3 − 1

2

1 + 2−6

1 + 2−12

) 1
6

,

we have that w̃i has an energy strictly smaller than A eN at least for all a < a1. Therefore we can

assume that a ≥ a1 in the case Ñ ≥ 2.

Now, if Ñ = 1, the minimising sequence (ũi) reads

ũi =

{
0 if i = 0,

aγ + γ(i − 1) if i ≥ 1,

whose energy is denoted by A1. We consider the competitor w̃ : N → R defined as w̃i = γi and
denote its energy by A0(w̃). Then

A1 − A0(w̃) = J1(aγ) + J1((a + 1)γ) − J1(γ) − J1(2γ) > J1(aγ) − k2

2δ6
1

, (5.7)

where the inequality follows by a similar reasoning as above. Since estimate (5.7) implies estimate

(5.6), the properties deduced from the latter also hold for Ñ = 1. Thus a ≥ a1 for all Ñ ≥ 1.

Summarising, we can restrict to the case of slope aγ for a ≥ a1 and a 6= 1. We finally prove that
the function f(δ) defined in (5.5) is strictly positive for some δ 6= 0. In order to show this we
observe that f(0) = 0 and then show that f ′(0) 6= 0 for every admissible a. As in the proof of
Proposition 5.4 this allows to deduce that there exists a δ close to 0 but different from 0, such
that f(δ) > 0 and hence the assertion. Since

f ′(δ) = −J ′
1((a + 1)γ + δ) + J ′

1(γ − δ) − J ′
1(γ + δ) + J ′

1(2γ − δ),

we have f ′(0) = −J ′
1((a + 1)γ) + J ′

1(2γ) =: g(a). Therefore the claim reduces to describing the
zero-set of the function g and proving that it does not intersect the set of admissible a’s. Observe

that g′(a) = −γJ
′′

1 ((a+1)γ) is positive if and only if a >
(

13
7

1+2−6

1+2−12

) 1
6 −1 := a0. Therefore, since

a0 < a1, the function g is strictly increasing for a ≥ a1. Since a1 < 1 and g(1) = 0, we deduce
that a = 1 is the only zero of g in the interval a ≥ a1. Hence g does not have any zeros which are
admissible. Thus the assertion follows.
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By Lemma 5.1 (2) we know B0(γ) = B(γ). Hence if J1 and J2 are Lennard-Jones potentials as

defined in (4.4), then the infimum in B0(γ) is obtained for k → ∞. Similarly, if u
(1)
1 = γ, then the

infimum in B1(γ) is obtained for k → ∞. On the contrary, as noted in Remark 5.2, B0(δ1) and
B1(δ1) are attained for k = 0. Furthermore, recall that for the boundary layer energies related
to elastic behaviour at the boundaries, cf. (4.11) and (4.12) we show in the derivation of (4.24)

that: if ℓ = γ and u
(1)
0 = γ, then B+(γ, γ) = 1

2J1(γ) is attained for N = 0. Similarly, if ℓ = γ and

u
(1)
1 = γ, then B−(γ, γ) = 1

2J1(γ) is attained for N = 0.
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