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Abstract

In this paper, we describe a novel method for robust and accurate iterative solu-
tion of the self-consistent Hartree-Fock equation in R

3 based on the idea of tensor-
structured computation of the electron density and the nonlinear Hartree and (nonlo-
cal) Hartree-Fock exchange operators at all steps of the iterative process. We apply
the self-consistent field (SCF) iteration to the Galerkin discretisation in a set of low
separation rank basis functions that are solely specified by the respective values on the
3D Cartesian grid. The approximation error is estimated by O(h3), where h = O(n−1)
is the mesh size of n × n × n tensor grid, while the numerical complexity to compute
the Galerkin matrices scales linearly in n. We propose the tensor-truncated version
of the SCF iteration using the traditional direct inversion in the iterative subspace
(DIIS) scheme enhanced by the multilevel acceleration with the grid dependent termi-
nation criteria at each discretization level. This implies that the overall computational
cost scales linearly in the univariate problem size n. Various numerical illustrations
are presented for the all electron case of H2O, and pseudopotential case of CH4 and
CH3OH molecules. The proposed scheme is not restricted to a priori given analytically
integrable and/or rank-1 basis sets, that opens further perspectives for promotion of
the tensor-structured methods in computational quantum chemistry.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: Orthogonal Tucker tensor decomposition, canonical model, tensor-truncated
methods, discrete convolution, Hartree-Fock equation, Coloumb and exchange matrices, mul-
tilevel SCF iteration.

1 Introduction

In the recent years the concept of tensor-structured numerical methods has opened new per-
spectives for solving the basic equations of mathematical physics in R

d, d ≥ 3, in particular,
the many-particle Schrödinger equation [1, 11, 2, 27], and multidimensional elliptic spectral
problems [13, 21]. Tensor methods are based on the idea of separable approximation of
d-variate functions and related operators arising in the discretisation and solution process
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posed in a multivariate function space in R
d. This concept appears to be particularly at-

tractive for the simplified approaches, like the ab initio Hartree-Fock and density functional
theory methods reducing the dimensionality of the problem to d = 3, though the kernels of
the nonlocal operators involved are functions of six spatial dimensions.

The traditional numerical methods in ab initio electronic structure calculations are based
on the Galerkin approximation in the problem-dependent Gaussian-type orbitals (GTO) ba-
sis (meshless methods). Many efforts have been devoted to the development of rigorous
schemes for the analytical evaluation of the two- and four-electron integrals inherent for this
approach, which yielded state-of-the-art existing packages. The Hartree-Fock model presup-
poses at least cubic (or fourfold) scaling in the number of the basis functions, thus making
computations using the Gaussian bases rapidly increasing for large molecules, troublesome.
The simplified models based on the appropriately adjusted pseudopotentials, can be solved
by using the grid-oriented methods over n × n × n spacial grid via the traditional plane
waves, wavelet or finite element discretizations at the expense that scales at least linear in
the volume size, NV = n3, [9, 10]. In this way, the practically tractable grid-size for the
calculations using these traditional approaches is limited by the value n ≈ 500.

The principal question then arises: is it possible to solve the Hartree-Fock/Kohn-Sham
models by the grid-based methods with linear scaling in the univariate grid-size n (i.e.,

sublinear in the volume, O(N
1/3
V ))? In what follows, we give the promising answer to this

question by introducing the tensor-structured numerical scheme that solves the Hartree-
Fock equation with O(n)-complexity. To that end, we introduce the novel concept for the
numerical solution of the Hartree-Fock equation which is based on the use of a moderate
number of the problem-adapted discrete Galerkin basis functions living on 3D Cartesian grid,
and represented with a low separation rank (“global super-elements”). Such a basis can be
viewed as a kind of algebraic generalization/optimisation of the traditional GTO or Slater-
type orbitals providing the way to O(n) discrete evaluation of the various six-dimensional
volume integrals.

The core of our method is the tensor-structured computation of the electron density
and the Galerkin matrices of the nonlinear Hartree and (nonlocal) Hartree-Fock exchange
operators at all steps of iterations on nonlinearity, based on the systematic use of the rank-
truncated linear tensor operations [23, 24, 17]. Within the solution process, all principal
multilinear algebra operations, such as the scalar and Hadamard products, the laborious
3D convolution transform, and the rank truncation procedures are implemented with O(n)-
complexity. Due to linear scaling in n of the 3D tensor-structured arithmetics, we achieve
high accuracy of calculations due to accessibility of the large n×n×n tensor grids of size up
to 163843 at the finest approximation level. In electronic structure calculations this implies

rather fine resolution with the mesh size h ≈ 10−4
◦

A providing possibility for arbitrary space
orientation of a molecule in the computational box, as in the case of meshless methods.

Particularly, the self-consistent field (SCF) iteration applies to the Galerkin discretisa-
tion of the Hartree-Fock equation with respect to certain low separation rank “super-basis”.
Making use of piecewise linear grid representation of the Galerkin basis functions, and piece-
wise constant representation of the electron density, leads to the approximation error of
order O(h2), in the Hartree and exchange potentials, where h = O(n−1) is the respective
mesh size. In turn, the two-grid version of the algorithm improves the convergence rate up
to O(h3). In the case of only few spacial singularities, the locally refined tensor grids can be
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adapted.
In this paper the SCF iteration is the traditional direct inversion in the iterative subspace

(DIIS) scheme commonly used in the physical literature [30, 15, 3]. We propose the enhanced
DIIS iteration by the multigrid acceleration with the grid dependent termination criteria at
each discretization level. It has the two-fold effect, providing good initial guess on finer grids,
and allowing the improved approximation O(h3), via the Richardson extrapolation over a
sequence of grids. We update the discrete orbitals, represented by the respective coefficients
vectors, by diagonalising the Galerkin stiffness matrix at each iteration on nonlinearity at
the expence O(N3

b ), where Nb is the dimension of the Galerkin subspace. In general, the
convergence proof for the nonlinear DIIS iteration is still an open question [26]. We observe
that in numerical practice, our multigrid accelerated DIIS iteration exhibits fast and uniform
in n convergence (linear convergence rate) so that the overall computational time scales
linearly in n—the tool apparently works. It is worth to note that the current version of
our method still scales cubically in the size of approximating basis. Hence, any algebraic
optimisation of this basis set within the solution process gives the new opportunity to high
accuracy ab initio computations for large molecules. The quadratic scaling in the size of
approximating basis might be possible for iterative solving of the Galerkin spectral problem,
or in the framework of direct minimization algorithms (see [32] for detailed discussion on the
direct minimization).

We present numerical illustrations for the all electron case of H2O, and pseudopotential
cases of the CH4 and CH3OH molecules using the particular Galerkin basis set via discretized
GTO basis functions. GTO basis is chosen only for the reasons of convenient comparison with
the standart MOLPRO package based on the analytical evaluation of the arising integrals
[34]. Numerical computations confirm the linear scaling in the grid-size n, indicating the
attractive features of the tensor-structured SCF iteration in the prospects of efficient ab
initio and DFT computations for large molecules.

The rest of the paper is organised as follows. In §2 we describe the standard Galerkin
scheme for the nonlinear Hartree-Fock equation, and discuss various types of commonly used
sets of Galerkin basis functions. Our choice can be only constrained by the requirements
on the low separation rank of the individual basis functions and possibly low dimension of
the Galerkin subspace. In §2.3, we introduce the nonstandard agglomerated representations
of the Coulomb and Hartree-Fock exchange Galerkin matrices, which are well suited for
tensor arithmetics. §2.5 describes the basic representation of the Fock operator in the rank-
structured tensor format, that is the key point for efficient O(n)-implementation of the
tensor-truncated SCF iteration. In §3, we first formulate the SCF iteration that implements
the unigrid tensor-truncated DIIS iteration. The (cascadic) multigrid version of the tensor-
truncated DIIS iteration includes the Richardson extrapolation over the pair of sequential
grids. We prove the O(N3

b n)-complexity of the proposed numerical method. In the particular
case of GTO basis, Nb is proportional to the number of electrons in the molecule. §4
presents various numerical illustrations in the case of moderate-size molecules which confirm
the theoretical prediction on O(n)-complexity. In §5 the main conclusions are formulated.
Appendix gives the description of tensor-structured formats being used in our computational
scheme.
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2 Galerkin scheme and tensor approximation

2.1 Problem setting

We introduce the tensor-truncated numerical method to compute valuable quantities in the
2N -electrons Hartree-Fock equation for pairwise L2-orthogonal electronic orbitals ψi : R

3 →
R, ψi ∈ H1(R3), that reads as

FΦψi(x) = λi ψi(x),

∫

R3

ψiψjdx = δij , i, j = 1, ..., N (2.1)

with FΦ being the nonlinear Fock operator

FΦ := −
1

2
∆ + Vc + VH + K.

Here we use the definitions

τ(x, y) := 2

N∑

i=1

ψi(x)ψi(y), ρ(x) := τ(x, x),

for the density matrix τ(x, y), and electron density ρ(x), and

Vc(x) = −
M∑

ν=1

Zν

‖x− aν‖
, Zν > 0, aν ∈ R

3,

for the nuclea potential. The Hartree potential VH(x) is given by

VH(x) := ρ ⋆
1

‖ · ‖
=

∫

R3

ρ(y)

‖x− y‖
dy, x ∈ R

3, (2.2)

while the nonlocal exchange operator K reads as

(Kψ) (x) := −

N∑

i=1

(
ψ ψi ⋆

1

‖ · ‖

)
ψ∗

i (x) = −
1

2

∫

R3

τ(x, y)

‖x− y‖
ψ(y)dy. (2.3)

2.2 Standard Galerkin scheme

We use the standard Galerkin approximation of the initial problem (2.1) posed in H1(R3)
(see [26] for more details). For a given finite basis set {gµ}1≤µ≤Nb

, gµ ∈ H1(R3), we expand
(approximately) the molecular orbitals ψi as

ψi =

Nb∑

µ=1

Cµigµ, i = 1, ..., N. (2.4)

To derive the equation for the unknown coefficients matrix C = {Cµi} ∈ R
Nb×N , we first

introduce the mass (overlap) matrix S = {Sµν}1≤µ,ν≤Nb
, given by

Sµν =

∫

R3

gµgνdx,
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the stiffness matrix H = {hµν} of the core Hamiltonian H = −1
2
∆ + Vc,

hµν =
1

2

∫

R3

∇gµ · ∇gνdx+

∫

R3

Vc(x)gµgνdx, 1 ≤ µ, ν ≤ Nb,

and the symmetric density matrix

D = 2CC∗ ∈ R
Nb×Nb . (2.5)

The nonlinear terms representing the Galerkin approximation of the Hartree and exchange
operators are usually constructed by using the so-called two-electron integrals, defined as

bµν,κλ =

∫

R3

∫

R3

gµ(x)gν(x)gκ(y)gλ(y)

‖x− y‖
dxdy, 1 ≤ µ, ν, κ, λ ≤ Nb.

Introducing the Nb ×Nb matrices J(D) and K(D), with D defined by (2.5),

J(D)µν =

Nb∑

κ,λ=1

bµν,κλDκλ, K(D)µν = −
1

2

Nb∑

κ,λ=1

bµλ,νκDκλ,

and then the complete Fock matrix F ,

F (C) = H +G(D), G(D) = G(C) = J(D) +K(D), (2.6)

we arrive at the respective Galerkin system of nonlinear equations for the coefficients matrix
CR

Nb×N ,

F (CC∗)C = SCΛ, Λ = diag(λ1, ..., λN), (2.7)

C∗SC = IN ,

where the second equation represents the orthogonality constraints
∫

R3 ψiψj = δij , with IN
being the N ×N identity matrix.

In the standard implementation based on the precomputed two-electron integrals, the
complexity to build up the matrix G scales as O(N4

b ), that is dominated by computational
cost for the exchange matrix K(D). In turn, the core Hamiltonian H can be precomputed
in O(N2

b ) operations, hence, in the following, we will not focus on this issue.
The nonlinear system (2.7) can be solved by certain SCF iteration, where at each iterative

step the respective linear eigenvalue problem has to be solved with the updated matrix G(D).
Given F (C), using the direct diagonalization for solving the system (2.7) leads to the cost
O(N3

b ). The alternative approach can be based on the direct minimization of the Hartree-
Fock energy functional,

IHF = inf

{
1

2

N∑

i=1

∫

R3

|∇ψi|
2 +

∫

R3

ρVc +
1

2

∫ ∫

R3

ρ(x)ρ(y) − |τ(x, y)|2

‖x− y‖
dxdy

}
,

under the orthogonality constraints in (2.1), see [32] for more details.
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2.3 Agglomerated representation of the Galerkin matrices

In the present approach, the fast and accurate evaluation of the Galerkin matrices J(D)
and K(D) is based on certain reorganisation of the standard computational scheme given
in §2.2. Specifically, instead of precomputing the full set of two-electron integrals bµν,κλ and
the elements of the density matrix D, we use agglomerated representations for J(D) = J(C)
and K(D) = K(C). In particular, the Galerkin representation of the Hartree operator (the
Coloumb matrix) is now based on the agglomerated integrals,

J(C)µν =

∫

R3

gµ(x)VH(x)gν(x)dx, 1 ≤ µ, ν ≤ Nb, (2.8)

including a single convolution transform in R
3 to compute the Hartree potential in (2.2),

VH = ρ ∗
1

‖ · ‖
,

where the electron density is given by

ρ(y) =

N∑

a=1

(
Nb∑

κ,λ=1

CκaCλagκ(y)gλ(y)

)
. (2.9)

In turn, as proposed in [17], we represent the matrix entries of K(C) by the following three
loops: For a = 1, ..., N , compute the convolution integrals,

Waν(x) =

∫

R3

gν(y)
Nb∑

m=1

Cmagm(y)

‖x− y‖
dy, ν = 1, ..., Nb, (2.10)

and then the scalar products

Kµν,a =

∫

R3

[
Nb∑

m=1

Cmagm(x)

]
gµ(x)Waν(x)dx, µ, ν = 1, ..., Nb. (2.11)

Finally, the entries of the exchange matrix are given by sums over all orbitals,

K(C)µν =
N∑

a=1

Kµν,a, µ, ν = 1, ..., Nb. (2.12)

The advantage of above representations is due to the minimization of the number of con-
volution products that have to be computed by numerical quadratures. What is even more
important, that we have the possibility of efficient low-rank separable approximation of the
discretised density ρ(x) as well as of the auxiliary potentials Waν(x) at step (2.10).

Effective realization of such a concept is based on certain unrestrictive technical assump-
tions on the Galerkin basis functions gµ. First, we suppose that the initial problem is posed
in the finite volume box Ω = [−b, b]3 ∈ R

3 subject to the homogeneous Dirichlet boundary
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conditions on ∂Ω (due to the exponential decay of the orbitals ψi(x), as ‖x‖ → ∞). For
given discretization parameter n ∈ N, introduce the equidistant tensor grid

ω3,n := ω1 × ω2 × ω3, ωℓ := {−b+ (m− 1)h : m = 1, ..., n+ 1}, ℓ = 1, ..., 3, (2.13)

with the mesh-size h = 2b/n. Define the set of piecewise constant basis functions {φi},
i ∈ I := {1, ..., n}3, associated with the respective grid-cells in ω3,n (indicator functions),
and the corresponding set {χj}, j ∈ J := {1, ..., n − 1}3, of tensor-product continuous
piecewise linear (in each spacial variable) polynomials. We denote the corresponding FE
spaces as

Vn = span{φi}, and Wn = span{χj} ∈ H1
0 (Ω).

Now the basis set {gµ} is supposed to satisfy the following properties:

(A) (Approximability). The Galerkin approximation error over the quantities in (2.7) is
physically admissible.

(B) (Separability). Each basis function gµ(x) ∈ H1
0 (Ω), can be represented by the RG-term

separable expansion in x = (x1, x2, x3), with moderate number of terms RG,

gµ(x) =

RG∑

k=1

g
(1)
µ,k(x1)g

(2)
µ,k(x2)g

(3)
µ,k(x3), µ = 1, ..., Nb. (2.14)

(C) (Discrete separability). Functions gµ(x) allow the approximate representation in either
basis sets {φi} and {χj}, by the rank-RG coefficients tensors Gµ = [Gµ,i] ∈ R

I and
Xµ = [Xµ,j] ∈ R

J , respectively.

(D) (Separable quandratures). The Galerkin integrals for J(D) and K(D) given by (2.8)
- (2.12) can be accurately represented by the well separable numerical quadratures in
the discrete basis sets {Gµ} and {Xµ}, providing asymptotical convergence as h→ 0.

Notice that the basis sets {φi} and {χj} can be generalised to those based on the higher
order piecewise polynomials over nonuniform (locally refined) tensor grids. This will only
concern with the technical aspects of our approach. The particular numerical effects of such
generalisations should be carefully verified on realistic data in electronic structure calculation.

2.4 On the choice of the Galerkin basis functions

The examples of problem-independent grid-oriented basis sets are given by plane waves,
wavelets, and by the piecewise polynomial finite element (FE) basis functions already men-
tioned in Introduction. Usually, the dimension of the respective Galerkin spaces is much
larger than in the case of problem dependent basis sets (see below). The practically tractable
grids (indices) of size n× n× n are limited by the value n ≈ 500.

Several efficient “meshless” basis sets {gµ} are known in the literature on computational
quantum chemistry. In particular, we mention the linear combination of atomic orbitals
(LCAO) and their successors, Slater-type orbitals (STOs). The most popular are the so-
called Gaussian-type orbitals (GTOs) and their more general version, contracted Gaussian
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functions, which probably constitute the best compromise between STOs and GTOs (cf. [26]
for detailed discussion). The construction of such problem dependent basis sets is distinctively
based on the precomputed electronic orbitals for single atoms.

An alternative to the analytically given GTO-type basis functions are the so-called fully
numerical atomic orbitals [26], that are solely specified by their numerical values on a grid.
Such a choice of basis functions fits well the spirit of our tensor-structured numerical method.
On the one hand, this allows to utilise the already existing problem adapted basis sets taking
advantage of the important physical information, that is well known for the individual atoms.
At this step, in the present approach, one has the possibility to further algebraic optimization
of the Galerkin subspace (reduction of the Galerkin dimension Nb). On the other hand, the
(low-rank) separable representation of functions and operators reduces the 3D calculations
to fast numerical operations implemented only on the univariate grids (1D calculations). In
this way, the computation of the volume integrals, convolution transforms, scalar products
and function-function multiplications can be simplified dramatically.

The particular requirements on the approximating basis set to be fulfilled in the frame-
work of our tensor-structured numerical scheme are formulated in the previous section (see
conditions (A)-(D) in §2.3). The systematic construction of the high-quality low tensor rank
approximating basis can be established on:

• Algebraic optimization of the conventional ‘meshless” GTO-type basis sets (RG = 1);

• Rank reduction of the Slater-type basis (RG = O(log ε−1), up to the tolerance ε > 0,
cf. [18]);

• Using the united (agglomerated) orthogonal Tucker vectors, whose rank is supposed to
be weakly dependent on the particular molecule and the grid parameters [22, 23, 24].

All these concepts still require further theoretical and numerical analysis and will be ad-
dressed alsewhere.

The main advantage of the low tensor rank approximating basis sets is the linear scaling
of the resultant algorithms in n, that already allows to advent the huge n × n × n-grids in
R

3 (specifically, n ≤ 2 · 104, in the contemporary computing practice on the base of tensor-
structured methods). This can be the important benefit in the FEM-DFT computations
applied to large molecular clusters.

2.5 Tensor computation of the Galerkin integrals in J(C), K(C)

The benefitial fieture of our method is that functions and operators involved in the compu-
tational scheme (2.8) - (2.12) are efficiently evaluated using (approximate) low-rank tensor-
product representations in the basis sets {Gµ} and {Xµ} at the expence that scales linear-
logarithmic in n, O(n logn).

To that end, we introduce some interpolation/prolongation operators interconnecting the
continuous functions on Ω and their discrete representation on the grid via the coefficients
tensors in R

I (or in R
J ). Note that the coefficients space of 3-tensors

Vn = R
I := V1 ⊗ V2 ⊗ V3,
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is the tensor-product space with Vℓ = R
n, (ℓ = 1, 2, 3), cf. Appendix. Conventionally, we

use the canonical isomorphism between Vn and Vn,

Vn ∋ f(x) =
∑

i

fiφi(x) ⇐⇒ F := [fi]i∈I ∈ Vn.

We make use of similar entities for the pair Wn and Wn = R
J := W1 ⊗ W2 ⊗ W3, with

Wℓ = R
n−1, (ℓ = 1, 2, 3).

Now we define the collocation and L2-projection mappings onto Vn. For the continuous
function f , we introduce the collocation “projection” operator by

PC : f 7→
∑

i

f(yi)φi(x) ⇐⇒ F := [f(yi)]i∈I ∈ Vn,

where {yi} is the set of cell-centered points with respect to the grid ω3,n. Furthermore, for
functions f ∈ L2(Ω), we define L2-projection by

P0 : f 7→
∑

i

〈f, φi〉φi(x) ⇐⇒ F := [〈f, φi〉]i∈I ∈ Vn.

Likewise, we denote the L2-projection onto Wn by Q0.
Using the discrete representations as above, we are able to rewrite all functional and

integral transforms in (2.8) - (2.12), in terms of tensor operations in Vn. In particular,
for the continuous targets, the function-times-function, and the L2-scalar product can be
dicretised by tensor operations as

f · g 7→ F ⊙G ∈ Vn, and 〈f, g〉 7→ h3〈F,G〉,

with
F = PC(f), G = PC(g),

where the scaling constant defines the grid-cell volume h3, and ⊙ means the Hadamard
(entrywise) product of tensors.

The convolution product is represented by

f ∗ g 7→ F ∗T G ∈ Vn, with F = PC(f) ∈ Vn, G = P0(g) ∈ Vn,

where the tensor operation ∗T stands for the tensor-structured convolution transform in
Vn described in [19] (see also [24, 23] concerning the application of fast ∗T transform in
electronic structure calculations). Related to separable quadrature assumption (cf. item (D)
in §2.3), we notice that under certain assumptions on the regularity of the input functions
the tensor product convolution ∗T can be proven to provide the approximation error of order
O(h2), while the two-grid version via the Richardson extrapolation leads to the improved
error bound O(h3) (cf. [19]).

Representations (2.8) - (2.9) can be now rewritten (approximately) in the discrete tensor
form as follows,

ρ ≈ Θ :=

N∑

a=1

(
Nb∑

κ,λ=1

CκaCλaGκ ⊙Gλ

)
, where Gκ = PC(gκ),
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and then

VH = ρ ∗ g ≈ Θ ∗T PN , where PN = P0(g), g =
1

‖ · ‖
, (2.15)

with PN ∈ Vn being the collocation tensor for the Coloumb potential. This implies the
tensor representation of the Coloumb matrix,

J(C)µν ≈ 〈Gµ ⊙Gν ,Θ ∗T PN〉, 1 ≤ µ, ν ≤ Nb. (2.16)

The separability property (A) ensures that rank(Gµ) ≤ RG, while tensors Θ and PN are to
be approximated by low-rank tensors. Hence, in our method, the corresponding tensor oper-
ations are implemented using fast multilinear algebra accomplished with the corresponding
rank optimization (tensor truncation).

Likewise, tensor representations (2.10) - (2.12) realised in [17], now look as follows,

Waν ≈ Υaν :=

[
Gν ⊙

Nb∑

m=1

Cma ⊙Gm

]
∗T PN , ν = 1, ..., Nb, (2.17)

with the tensor PN ∈ Vn defined by (2.15),

Kµν,a ≈ χµν,a := 〈

[
Nb∑

m=1

CmaGm

]
⊙Gµ,Υaν〉, µ, ν = 1, ..., Nb, (2.18)

finally providing the entries of the exchange matrix,

K(C)µν =

N∑

a=1

χµν,a, µ, ν = 1, ..., Nb. (2.19)

Again, the auxiliary tensors and respective algebraic operations have to implemented with
truncation to low-rank tensor formats.

Notice that the core Hamiltonian H = {hµν} can be computed by the respective tensor
operations in Wn, and Vn,

hµν ≈
1

2
〈∇TGµ,∇TGν〉(Wn)3 + 〈V0, Gµ ⊙Gν〉Vn

, 1 ≤ µ, ν ≤ Nb, (2.20)

where V0 = P0(Vc) ∈ Vn, and where the rank-RG tensors Gµ (µ = 1, ..., Nb) represent the
Galerkin basis functions gµ in Wn by Gµ = Q0(gµ). Furthermore, the operator

∇T : Wn → (Wn)3 := {w =




w1

w2

w3


 : wk ∈ Wn, k = 1, 2, 3},

denotes the discrete gradient map by 3-way central differences at yj, j ∈ J , where (Wn)
3 is

the “vector space” of 3-tensors.
With the particular requirements on the rank, rank(Gµ) ≤ RG, the operator ∇T applies

to each individual rank-1 canonical 3-tensor in Wn by

∇T (x1 ⊗ x2 ⊗ x3) :=




∇1x1 ⊗ x2 ⊗ x3

x1 ⊗∇2x1 ⊗ x3

x1 ⊗ x2 ⊗∇3x3


 ∈ (Wn)3,
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where the univariate discrete gradient matrix ∇k (k = 1, 2, 3) is defined conventionally by
central differences on the vectors in R

n−1 with zero extension, imposed by the homogeneous
Dirichlet boundary conditions (recall that Wn ∈ H1

0(Ω)).

3 Multilevel tensor-truncated SCF iteration via DIIS

3.1 General SCF iteration

The standard SCF algorithm can be formulated as the following “fixed-point” iteration:
Starting from initial guess C0, perform iterations of the form

F̃kCk+1 = SCk+1Λk+1, Λk+1 = diag(λk+1
1 , ..., λk+1

N ) (3.1)

C∗
k+1SCk+1 = IN ,

Dk+1 = Ck+1C
∗
k+1,

where F̃k, k = 0, 1, ..., is specified by the particular method of choice. For example, for
the simplest approach, called the Roothaan algorithm, one has F̃k = F (Ck). In practically
interesting situations this algorithm usually leads to “flip-flop” stagnation.

Recall that here, λk+1
1 ≤ λk+1

2 ≤ ... ≤ λk+1
N are the smallest N eigenvalues of the linear

generalized eigenvalue problem
F̃kU = λSU,

and Ck+1 are Nb ×N matrices containing the respective N orthonormal eigenvectors.
We propose a modification to the standard SCF iteration that includes its implementation

on a sequence of successively refined grids with the grid-dependent stopping criteria. We use
the particular choice of F̃k, k = 0, 1, ..., via the DIIS-algorithm, (cf. [30]), with the starting

value F̃0 = F (C0) = H . The principal feature of our tensor-truncated iteration is revealed
on the fast update of the Fock matrix F (C) by using tensor-product multilinear algebra of
3-tensors described in §2.5, and accomplished with the rank truncation.

3.2 SCF iteration using DIIS scheme

Recall that in the case of orthonormal basis, i.e., the overlap matrix equals identity, the DIIS
iteration is substituated by the commutation property, [F (D), D] = 0, on the exact solution.
In the general case, the DIIS algorithm is based on the fact that the equation

e(C) := F (C)DS − SDF (C) = 0

is the equivalent formulation of the initial Hartree-Fock Galerkin equation (2.7), see [26].
In the present paper, we use the original version of DIIS scheme, defined by the following

choice of the residual error vectors (cf. [15]),

e(Ci) := [C∗
i F (Ci)Ci]|{1≤µ≤N ;N+1≤ν≤Nb} ∈ R

N×(Nb−N), i = 0, 1, ..., k, (3.2)

that should wanish on the exact solutions of the Hartree-Fock Galerkin equation due to the
orthogonality constraint.
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The minimizing coefficients vector c := (c0, ..., ck)
T ∈ R

k+1 is being computed by solv-
ing the constrained quadratic minimisation problem for the respective cost functional (the
averaged residual error vector over previous iterands),

f(c) :=
1

2

∥∥∥∥∥

k∑

i=0

cie(Ci)

∥∥∥∥∥

2

0

≡
1

2
〈Bc, c〉 → min, provided that

k∑

i=0

ci = 1,

where
B = {Bij}

k
i,j=0 with Bij = 〈e(Ci), e(Cj)〉,

and with e(Ci) defined by (3.2). Introducing the Lagrange multiplier λ, the problem is
reduced to minimization of the Lagrangian functional

L(c, λ) = f(c) − λ(〈1, c〉 − 1),

where 1 = (1, ..., 1)T ∈ R
k+1, that leads to the linear augmented system of equations

Bc− λ1 = 0, (3.3)

〈1, c〉 = 1.

Finally, the Fock operator F̃k is built up by

F̃k =

k−1∑

i=0

copt
i F̃i + copt

k F (Ck), k = 0, 1, 2, ..., (3.4)

where the minimizing coefficients copt
i = ci (i = 0, 1, ..., k) solve the linear system (3.3). Now

check the stopping criteria and solve, if required, the eigenvalue problem (3.1) for Ck+1.
Note that in practice one can compute the averaged residual vector on a reduced subse-

quence of iterands, e(Ck), e(Ck−1), ..., e(Ck−k0
).

3.3 Tensor-truncated multilevel DIIS iteration

Now we describe the resultant numerical algorithm. Recall that the discrete Fock operator
is specified by the matrix

F (C) = H + J(D) +K(D), D = 2CC∗ ∈ R
Nb×Nb,

where the core Hamiltonian and the Hartree and exchange operators are given by tensor
representations (2.20), (2.16) and (2.19), respectively.

First, we describe the unigrid tensor-truncated DIIS scheme.
Algorithm TT DIIS (Unigrid tensor-truncated DIIS scheme).

0. Given the grid parameter n and termination parameter εn > 0.
1. Compute the core Hamiltonian matrix H. Set up J = 0, K = 0, and initialize C0 as the
solution of (3.1) providing F̃0(C0) = H.
For k = 0, 1, ..., perform
2a. Solve the full linear eigenvalue problem of size Nb ×Nb,

F̃kU = λSU,

12



and define Ck+1 as matrices containing the respective N orthonormal eigenvectors.
2b. Compute F (Ck+1) in tensor format via discrete representations in Vn and Wn described

in §2.5, and update F̃k+1 by DISS scheme (3.4).
2c. Terminate iteration by checking the stoping criteria ‖e(Ck+1) − e(Ck)‖ ≤ εn.

The multilevel version of Algorithm TT DIIS is defined on a sequence of grid parameters
np = n0, 2n0, . . . , 2

Mn0, p = 0, ...,M , corresponding to the succession of dyadically refined
spacial grids. Denote the computed spectral data at level p by λ∗p ∈ R

N and C∗
p ∈ R

Nb×N ,
and let kp = 1, ... be the number of DIIS iterations at level p.

Algorithm MTT DIIS (Multilevel tensor-truncated DIIS scheme).
0. Given the coarse grid parameter n0, termination parameter ε0 > 0, and the number of
grid refinements M .
1. For p = 0 apply Algorithm TT DIIS with n = n0, εn := ε0.
2. For p = 1, ...,M apply Algorithm TT DIIS successively with the input parameters
np := 2pn0, εp := ε02

−2p, and F̃k−1, keeping the continuous numbering of the DIIS itera-

tions starting from, k = 1 +
p−1∑
ℓ=0

kℓ. Count the curent number of iterations on level p, kp.

3. Compute final solution pair by the Richardson extrapolation of data corresponding to the
grid parameters nM and nM−1,

λ̃ = (4λ∗M − λ∗M−1)/3, C̃ = (4C∗
M − C∗

M−1)/3.

In large scale computations to be presented in §4, the multilevel Algorithm MTT DIIS

allows us to perform most of iterative steps on coarse grids thus reducing dramatically the
computational cost, and at the same time, providing the good initial guess for DIIS iteration
on nonlinearity at each approximation level.

3.4 Complexity estimate in terms of RG, Nb and n

The rest of this section addresses the complexity estimate of the multilevel tensor-truncated
iteration in terms of RG, Nb, n and other governing parameters of the algorithm.

Lemma 3.1 Let rank(Gµ) ≤ RG and rank(PN) ≤ RN . Suppose that canonical rank reduc-
tion of convolution products Υaν in (2.17) provides the estimate rank(Υaν) ≤ r0. Then the
numerical cost of one iterative step in Algorithm MTT DIIS at level p, can be bounded by

Q = O(NbR
2
GRNnp lognp +N3

bR
2
Gr0RNnp).

Assume that the number of multigrid DIIS iterations at each level is bounded by the unique
constant I0, then the total cost of Algorithm MTT DIIS does not exceed the double cost at
the finest level n = nM , 2Q = O(I0N

3
bR

2
Gr0RNn).

Proof. The rank bound rank(gk) ≤ RG implies rank(
Nb∑

m=1

Cma ⊙ Gm) ≤ RGNb. Hence, the

numerical cost to compute tensor-product convolution Υaν in (2.17) amounts to

Q(Υaν) = O(NbR
2
GRNnp log np).

13



Since the initial canonical rank of Υaν is estimated by rank(Υaν) ≤ NbR
2
GRN , the multigrid

rank reduction algorithm, having linear scaling in rank(Υaν) (cf. [23]), provides the com-
plexity bound O(r0NbR

2
GRNnp). Hence the total cost to compute scalar products in χµν,a

(see (2.18)) can be estimated by

Q(χµν,a) = O(N3
bR

2
Gr0RNnp),

which completes the first part of our proof. The second assertion is due to the linear scaling
of unigrid algorithm in np, so that we arrive at the bound

n0 + 2n0 + ...+ 2pn0 ≤ 2p+1n0 = 2nM ,

that proves our claim.

Remark 3.2 Notice that in the case of large molecules further optimisation of the algorithm
up to O(RNN

2
b np)-complexity is possible on the base of rank reduction applied to the rank-

RGNb orbitals and by using an iterative eigenvalue solver instead of currently employed direct
solver by diagonalization.

4 Numerical illustrations

4.1 General discussion

Our algorithm for the ab initio solution of the Hartree-Fock equation in tensor-structured
format is examined numerically on some moderate size molecules. These include the all
electron case of H2O, and the case of pseudopotential of CH4 and CH3OH molecules. In
the present numerical examples, we use the discrete GTO basis functions for the reasons of
convenient comparison of the results with the output from the standard MOLPRO package
based on the analytical evaluation of the integral operators in the GTO basis.

The size of the computational box introduced in §2.3 varies from 2b = 11.21
◦

A and

2b = 15.45
◦

A for H2O, and CH4 molecules, respectively. The finest step-size of the grid

h = 0.0027
◦

A is reached in the SCF iterations for H2O molecule, using the finest level grid
with n = 4096, while the average step size for the computations using the pseudopotentials

of the moderate size molecules is about h = 0.015
◦

A, corresponding to the grid size n = 1024.
Using the equidistant n × n × n tensor grid given by (2.13), the functions in Vn of the

type (2.14) are discretized in the intervals [−b, b], with b depending on the molecule size.
In this way, we obtain the canonical representation of the electron densities and orbitals
on 3D Cartesian grid, further applied for the tensor-structured calculation of the Hartree
(2.2) and the nonlocal exchange (2.3) potentials. Notice, that the Galerkin representation of
the exchange operator leads to the evaluation of the six-dimensional integral over R

3 × R
3,

which formerly stated complicated problems for its analytical computation. Our tensor-
structured techniques provide means for the discrete evaluation of this integral using the
fast tensor-product convolution and other tensor-product operations which are of linear
complexity with respect to the one-dimension grid size n. The convolving Poisson kernel is
effectively represented in the rank-RN canonical format with the rank parameter in the range
20 ≤ RN ≤ 30, depending logarithmically on the univariate grid size n, RN = O(logn).

14



4.2 Tensor computation of the Coulomb and exchange matrices

A detailed description of the tensor-product numerical schemes for the Coulomb and ex-
change matrices in the case of closed shell systems is presented in [23, 17]. In this section,
we verify the performance of the tensor-structured computations of the Coulomb and ex-
change matrices by using the true solutions for the orbitals of molecules, taking the expansion
coefficients Cµi for the GTO basis in (2.4) from the MOLPRO package.

The orbitals and the electron density are discretized in the corresponding computational
box, thus yielding the canonical representation of the relevant functions (electron density
and orbitals) on 3D Cartesian grid. The Hartree and exchange potentials and their Galerkin
representations in the GTO basis, are then computed numerically using the tensor-product
operations for the canonical and Tucker tensors (see Appendix), which exhibit the linear
complexity with respect to one-dimension grid size n.
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Figure 4.1: Left: Absolute approximation error (blue line: ≈ 10−6) in the tensor-product
computation of the Hartree potential of C2H6, measured in the grid line Ω = [−5, 7]×{0}×
{0}. Right: the absolute error for the Coulomb matrix of H2O, (≈ 10−5).

The Coulomb (Galerkin) matrix of the Hartree potential, VH , is computed by tensor
inner products in {gk},

Jkm :=

∫

R3

gk(x)VH(x)gm(x)dx, k,m = 1, . . .R0, x ∈ R
3.

Figure 4.1,left shows the absolute approximation error (blue line: ≈ 10−6) in the tensor-
product representation of the Hartree potential of C2H6 molecule, measured in the subinter-
val Ω = [−5, 7]×{0}×{0}. Figure 4.1,right presents the absolute accuracy for the Coloumb
matrix of H2O, computed by tensor-structured techniques on the large grid with the one-
dimension size n = 8192, providing the absolute accuracy ≈ 10−5. This corresponds to the

approximation error O(h3) achieved on the grid with high resolution, h ≈ 0.0008
◦

A.
The exchange matrix in the Galerkin GTO basis is given by

Kk,m := −
1

2

∫

R3

gk(x)
τ(x, y)

|x− y|
gm(y)dxdy, k,m = 1, . . . R0.
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Figure 4.2,right shows the L∞-error in the matrix elements of K for the pseudodensity of
CH3OH computed on the grid with n = 1024. Figures 4.2,left illustrate high accuracy
achieved in the computation of the exchange matrix of H2O molecule on the grids n = 8192,

that corresponds to the fine step-size h ≈ 0.0016
◦

A, and the asymptotic approximation error
O(h3), h = 1/n.

4.3 Multilevel tensor-truncated SCF iteration

The tensor-structured algorithms for the calculation of the Coulomb and exchange parts of
the Fock operator pioneer the way to solve numerically the ab initio Hartree-Fock equation,
by using Algorithms TT DIIS and MTT DIIS in §3.3. Starting with the zero initial guess
for matrices J(D) = 0 and K(D) = 0 in the Galerkin Fock matrix (2.6), we solve the
eigenvalue problem at the first iterative step (p = 0) using only the H part of the Fock
matrix in (2.6), that does not depend on the solution.

Figure 4.2: L∞-error in Kex = K for the density of H2 and pseudodensity of CH3OH.

Thus, SCF iterations start with the expansion coefficients Cµi for orbitals in the GTO
basis, computed using only the core Hamiltonian H. At every iteration step, the Hartree
and exchange potentials and the corresponding Galerkin matrices, are computed using the
updated expansions coefficients Cµi. The renewed Coloumb and exchange matrices are again
used in the updated Fock matrix for the solution of the eigenvalue problem. The L∞-error
in the virtual block of the Fock operator in solutions of the consequent iterations, e(Ck), is
used as the residual for the convergence control. Figure 4.3 shows the convergence of the
single-grid scheme for the solution of the Hartree-Fock equation in the pseudopotential case
of CH4.

The multilevel solution of the nonlinear eigenvalue problem (2.7) is realised via SCF
iteration on a sequence of uniform grids, beginning from the initial coarse grid, say, with
n0 = 64, and proceeding on the diadically refined grids, np = n02

p, p = 1, ...,M . We use
the grid dependent termination criteria εnp

:= ε02
−2p, keeping the continuous numbering of

the iterations. Figure 4.4 (left) shows the convergence of the iterative scheme in the case of
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Figure 4.3: Convergence of the unigrid SCF iteration for the pseudopotentail case of the
CH4 molecule on the grid sizes n = 64 (left) and n = 256 (right).

pseudopotential of CH4. Convergence in the total Hartree-Fock energy reaching the absolute
error 9 · 10−6 on the grid size n = 1024 is shown in Figure 4.4 (right). The total energy is
calculated by

EHF = 2

N∑

a=1

λa −

N∑

a=1

(
J̃a − K̃a

)

with J̃a = (ψa, VHψa)L2, and K̃a = (ψa,Vexψa)L2 , being the so-called Coulomb and exchange
integrals, respectively, computed in the orbital basis ψa (a = 1, ..., N).
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Figure 4.4: Multilevel convergence (left) for the pseudopotential of CH4 molecule, and con-
vergence of the HF energy in the grid levels (right). The initial level 1 corresponds to n = 64,
while the final level 5 corresponds to n = 1024.

Figure 4.5 (left) shows the linear scaling in n, corresponding to CPU time at one iteration.
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Figure 4.5 (right) shows the number of “effective” iterations counted by rescaling the total
computational time to the iteration time-unit observed at each iterative step at the finest
grid-level.

200 400 600 800 1000
0

5

10

15

20

25

30

univariate grid size

m
in

u
te

s

time per SCF iteration

0 1 2 3 4
10

−4

10
−3

10
−2

10
−1

10
0

conv.in eff.iterations, CH4, pseudo, n=512

Figure 4.5: Linear scaling in n (left) and convergence in the effective iterations (right).

Figure 4.6 represents the convergence history of the nonlinear iteration for CH3OH mea-
sured by the iteration residual error (left), and by the energy error (right), respectively.
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Figure 4.6: Residual (left) and the energy (right) iteration history for CH3OH molecule.

Figure 4.7 (left) shows convergence of the SCF iteration for all electron case of H2O.
This challenging problem is solved efficiently due to usage of large 3D Cartesian grids up to
the volume size N = 81923. Figure 4.7 (right) shows convergence of the HF energy for the
corresponding grid levels.
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5 Conclusions and further perspectives

We present the grid-based tensor-truncated numerical method for the robust and accurate
iterative solution of the self-consistent Hartree-Fock equation at the cost O(N1/3) in the
volume size N = n3, over the 3D Cartesian grid. The computational scheme is based on
the discrete tensor representation of the Fock operator at each step of the multilevel SCF
iteration applied to the nonlinear 3D eigenvalue problem.

This scheme is neither restricted to the analytically separable basis functions like GTO
orbitals nor to the traditional plane waves approximations. The Galerkin basis can be
modified by adapting to the particular problem in the framework of the tensor-structured
solution process.

Further improvement of the algorithm toward the O(logn)-complexity on the base of
quantics approximation [20], may open new perspectives for efficient ab initio numerical
simulation of complex molecules and for the FEM-DFT computations of large molecular
clusters.

The main computational blocks of the numerical scheme allow the natural parallelization
on the level of matrix elements computation, rank decompositions, and the multilinear tensor
operations.

6 Appendix: Description of tensor-structured formats

Let H = H1 ⊗ ... ⊗ Hd be a tensor-product Hilbert space (see [31]), where Hℓ (ℓ = 1, ..., d)
is a real, separable Hilbert space of functions of the continuous or discrete argument (say,
Hℓ = L2([a, b]) or Hℓ = R

n). Each w ∈ H can be written as a sum of rank-1 (elementary,
separable) tensors

w =
∑

k

w
(1)
k ⊗ w

(2)
k ⊗ . . .⊗ w

(d)
k (w

(ℓ)
k ∈ Hℓ).
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The scalar product of rank-1 tensors in H is defined by

〈w(1) ⊗ . . .⊗ w(d), h(1) ⊗ . . .⊗ h(d)〉 =
d∏

ℓ=1

〈w(ℓ), h(ℓ)〉.

A dth order tensor is a function of d discrete arguments, f : R
I1×...×Id → R, specified by a

multi-dimensional array over I = I1 × ...× Id, with Iℓ = {1, ..., nℓ}, ℓ = 1, ..., d. We write

V = [vi1,...,id : iℓ ∈ Iℓ] ∈ R
I , ℓ = 1, ..., d,

to denote a real-valued dth order tensor, that is an element of the tensor-product Hilbert
space H := Vn = ⊗d

ℓ=1Vℓ, with Vℓ = R
Iℓ , and n being the d-tuple (n1, ..., nd). Vn is equipped

with the Euclidean inner product 〈·, ·〉 : Vn×Vn → R. Tensor V ∈ Vn requires
∏d

ℓ=1 nℓ reals
for storage.

The concept of tensor methods is based on approximation of multivariate functions with
low separation rank. In particular, we are interested in decomposition of a tensor f ∈ Vn,
in the set of separable tensors, i.e., in some classes S ⊂ Vn of “rank structured” elements
based on sums of rank-1 tensors. In this way, the canonical rank-1 tensor is represented by
outer product of vectors t(ℓ) = {t

(ℓ)
iℓ
}iℓ∈Iℓ

∈ Vℓ (ℓ = 1, ..., d),

T ≡ [ti]i∈I = t(1) ⊗ ...⊗ t(d) ∈ Vn with entries ti = t
(1)
i1

· · · t
(d)
id
,

requiring only
∑d

ℓ=1 nℓ ≪
∏d

ℓ=1 nℓ reals to store it (now linear scaling in the dimension d).
In the present paper, we apply data sparse representation to high order tensors based on

the Tucker and canonical models.
The rank-(r1, . . . , rd) Tucker approximation [4] is based on subspaces Tn := ⊗d

ℓ=1Tℓ of
Vn for certain Tℓ ⊂ Vℓ with rℓ := dim Tℓ ≪ nℓ. Given the rank parameter r = (r1, ..., rd),
we denote by T r,n (or simply T r) the subset of tensors in Vn represented in the so-called
Tucker format

V(r) =
∑r1

ν1=1
. . .
∑rd

νd=1
βν1,...,νd

t(1)ν1
⊗ . . .⊗ t(d)

νd
, (6.1)

with some vectors t
(ℓ)
νℓ ∈ Vℓ = R

Iℓ (1 ≤ νℓ ≤ rℓ), which form the orthonormal basis of

Tℓ = span{t
(ℓ)
ν }rℓ

ν=1 (ℓ = 1, ..., d). The coefficients tensor β = [βν1,...,νd
], that is an element of

a dual tensor space Vr = R
r1×...×rd, is called the core tensor. The parameter r = max

ℓ
{rℓ}

is called the maximal Tucker rank. In our applications, we normally have r ≪ n = maxnℓ,
say r = O(logn).

Given a rank parameter R ∈ N, we denote by CR,n = CR ⊂ Vn a set of tensors which
can be represented in the canonical format

V(R) =
∑R

ν=1
µνu

(1)
ν ⊗ . . .⊗ u(d)

ν , µν ∈ R, (6.2)

with normalized vectors u
(ℓ)
ν ∈ Vℓ (ℓ = 1, ..., d). The minimal parameter R in (6.2) is called

the rank (or canonical rank) of a tensor V(R).
The storage requirement for the Tucker (resp. canonical) decomposition is bounded by

rd + drn (resp. R + dRn), where usually r ≪ R.
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The above defined classes of rank-structured tensors are being applied in our tensor-
product approximation schemes.

It is worth to note that linear transforms of elements in tensor-structured representa-
tion are reduced to 1D-operations, that can be acomplished with the rank truncation. In
particular, for tensors A1, A2 in the canonical format

A1 =

R1∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , A2 =

R2∑

m=1

bmv
(1)
m ⊗ . . .⊗ v(d)

m ,

we make use of the following operations:
1. Euclidean inner product (complexity O(dR1R2n) ≪ nd),

〈A1, A2〉 :=

R1∑

k=1

R2∑

m=1

ckbm

d∏

ℓ=1

〈
u

(ℓ)
k , v(ℓ)

m

〉
.

2. Hadamard product (complexity O(dR1R2n) ≪ nd),

A1 ⊙A2 :=

R1∑

k=1

R2∑

m=1

ckbm

(
u

(1)
k ⊙ v(1)

m

)
⊗ . . .⊗

(
u

(d)
k ⊙ v(d)

m

)
∈ CR1R2

.

3. Convolution of two 3rd order tensors A1, A2 (same for high order tensors),

A1 ∗ A2 =

R1∑

k=1

R2∑

m=1

ckbm(u(1)
m ∗ v

(1)
k ) ⊗ (u(2)

m ∗ v
(2)
k ) ⊗ (u(3)

m ∗ v
(3)
k ) ∈ CR1R2

,

with linear scaling in n, O(R1R2n logn) ≪ n3 logn (corresponds to 3D FFT).
These basic properties lead to the linear scaling in n of tensor-structured multilinear

algebra applied in the framework of tensor-truncated iteration.
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