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Abstract

For the validity of the weak maximum principle for classical solutions of
elliptic partial differential equations it is sufficient that the coefficient ma-
trix a

ij(x) is non-negative. In this note we consider maximum principles
for weak solutions of elliptic partial differential equations in divergence
form with bounded coefficients a

ij . We demonstrate that the assumption
that the coefficient matrix a

ij(x) is positive almost everywhere is essen-
tial and cannot be weakened. To this end we give a counter example
originating from geometrically linear elasticity.

Note

After submission of this paper we learned that there are much
simpler examples which demonstrate that the positivity of the
coefficient matrix aij(x) is essential and cannot be weakened. In
two space dimensions, let the coefficient matrix be given by

aij(x1, x2) =

(
x2

2 −x1x2

−x1x2 x2
1

)
.

Then any u that is some C2-function of x2
1 + x2

2 is a solution of
Equation (1.3) below with f ≡ 0. Hence u does not need to satisfy
supΩ u = sup∂Ω u. We remark that this example works already
for classical solutions of equations in divergence form.
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1 Introduction

The weak maximum principle for classical solutions of second order linear el-
liptic partial differential equations also holds true if the coefficient matrix is
non-negative, see [4, Section 3.1] and the short review below. In this article we
show that the corresponding weak maximum principle for weak (sub-)solutions
of elliptic partial differential equations in divergence form does not allow a gener-
alisation to non-negative coefficient matrices, i.e., the strict ellipticity condition
on aij(x) is essential. We do so by constructing a counter example which arises
in the context of some non-convex variational problems describing microstruc-
tures in crystals.

First we fix the notations and briefly review some weak maximum principles
related to our result. Our counter example involves the highest order term of
general second-order linear elliptic partial differential equations only. Therefore
we restrict the presentation of the weak maximum principles to the highest
order term in second-order linear elliptic partial differential equations. We refer
to [4, 5, 7, 8] for the treatment of more general cases.

Let Ω ⊂ R
n be a bounded domain, f ∈Lp(Ω) and aij ∈L∞(Ω), 1 ≤ i, j ≤ n

such that aij = aji and uniformly for almost every x ∈ Ω

λ Id ≤ (aij(x))1≤i,j≤n ≤ Λ Id, (1.1)

where Id denotes the identity matrix in R
n×n and 0 ≤ λ ≤ Λ are two real

numbers. In case of λ > 0, this ensures the strict ellipticity of the partial
differential equation

−aij(x)∂iju(x) = f(x) in Ω (1.2)

as well as of the related partial differential equation in divergence form

−∂i
(
aij(x)∂ju(x)

)
= f(x) in Ω. (1.3)

Here and in the following, the summation convention of repeated indices is
applied. If the coefficient matrix is simply given to be positive for almost every
x ∈ Ω, we say that the above partial differential equations are elliptic.

We suppose tacitly in the following that the divergence theorem holds for
Ω. This enables us to speak about the weak formulation of the left hand side of
(1.3).

Next we recall the weak maximum principle for classical solutions of (1.2).

Theorem 1.1. Let u ∈ C2(Ω) ∩ C0(Ω) be such that

aij(x)∂iju(x) ≥ 0 (≤0) in Ω

and the coefficient matrix fulfils (1.1) with λ ≥ 0. Then the maximum (mini-
mum) of u in Ω is achieved on ∂Ω, that is

sup
Ω
u = sup

∂Ω
u (inf

Ω
u = inf

∂Ω
u).

Proof. See, e.g., [4, Section 3.1].
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We emphasise that this theorem holds true for non-negative coefficient ma-
trices. Moreover, if additionally aij(x) ∈ C1(Ω), Theorem 1.1 can be written in
divergence form and it holds true for non-negative coefficient matrices, too, see
[4, Section 3.6].

Next we recall the weak maximum principle for weak solutions of second
order elliptic partial differential equations in divergence form. As before we
restrict ourselves to the highest order term and assume aij ∈ L∞(Ω).

Theorem 1.2. Let u ∈ H1,2(Ω) be such that

∂i
(
aij(x)∂ju(x)

)
≥ 0 (≤0) in Ω (1.4)

and the coefficient matrix is positive for almost every x ∈ Ω. Then

sup
Ω
u ≤ sup

∂Ω
u+ (inf

Ω
u ≥ inf

∂Ω
u−),

where u+ := max{u, 0} and u− := min{u, 0}.

Proof. See [9] and, e.g., [4, Section 8.1].

In Theorem 2.1 below we show that the above theorem does not generalise to
non-negative coefficients. As a corollary to our result in Theorem 2.1 we obtain
that also the maximum principles for weak solutions of elliptic equations in di-
vergence form with a non-zero right hand side do not generalise to non-negative
coefficient matrices. To give an example, we recall a recent theorem by Li and
Wang [6], which gives an Alexandrov-Bakelman-Pucci maximum principle for
elliptic equations in divergence form. To recall this theorem, we first fix some
more notions and notations.

As Ω is bounded, we may assume throughout that there exists an open ball
Bd(0) in R

n with radius d > 0 centred at the origin such that

Ω ⊂ Bd(0).

A weak subsolution of (1.3) is a function u ∈ H1,2(Ω) for which

∫

Ω

aij(x)∂ju(x)∂iv(x) dx ≤

∫

Ω

f(x)v(x) dx (1.5)

holds for all v ∈ C1
0 (Ω).

Let Yψ be the solution of the obstacle problem

Find u ∈ Kψ such that J(u) = inf
w∈Kψ

J(w),

where

J(w) :=

∫

B2d(0)

aij∂iw∂jw dx
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for w ∈ H
1,2
0 (B2d(0)) and the set Kψ is defined by

Kψ := {w ∈ H
1,2
0 (B2d(0)) | w ≥ ψ a.e. in Ω}

with arbitrary ψ ∈ H
1,2
0 (Ω), ψ ≤ 0 on ∂Ω.

As is shown in [6, Lemma 1.2], there exists a unique function Yψ ∈ Kψ with
the property

J(Yψ) = inf
w∈Kψ

J(w). (1.6)

Theorem 1.3. Let (1.1) hold for 0 < λ ≤ Λ, let f ∈ Lp(Ω) with p > n
2 if n ≥ 4

or p = 2 if n = 1, 2, 3, and let u ∈ H1,2(Ω) be a weak subsolution of (1.3). Then
there exists a constant C depending only on λ, n and p such that

sup
Ω
u ≤ sup

∂Ω
u+ + Cd2−n

p

(∫

{ψ=Yψ}∩Ω

(f+)p dx

) 1

p

,

where ψ := u− sup∂Ω u
+ and Yψ is the function in (1.6).

Proof. See [6][Theorem 1.3].

Furthermore we mention the estimate, see [6, Theorem 3.1],

sup
Ω
u ≤ sup

∂Ω
u+ + Cr2−

n
p ‖f‖Lp(Ω)

with |Ω| = ωnr
n and ωn denoting the volume of the unit ball in R

n, which
is similar to Theorem 1.3 but with a different right hand side. Our counter
example applies for this altered formulation, too. That is, we deduce that those
theorems cannot be extended to non-negative coefficients, see Corollary 2.2.

2 Non-negative coefficient matrices

We shall prove by a counter example in space dimensions n ≤ 3 that the assump-
tion on the positivity of aij in Theorem 1.2 is essential and may not be replaced
by aij being non-negative. We expect that our result holds for arbitrary space
dimensions n. In particular, Theorem 1.2 is violated when the set

{
x ∈ Ω

∣∣ aij(x) = 0
}

has positive measure.
For this counter example we take resort to specific elastic energy functionals

and make use of the explicit formulas for the relaxation of those functionals
found in [3] for space dimensions n = 2, 3. For n = 1 we newly derive the
explicit formula of the relaxed elastic energy in the appendix. Subsequently we
introduce our example and illuminate the physical background.

The steady state of elastically stressed solids can be characterised as the
minimiser of an elastic energy functional in the vector-valued variable u ∈
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H1,2(Ω; Rn) that represents the deformation of the material with respect to
the chosen reference state. Due to the inherent rotational symmetry (frame in-
difference), the Euler-Lagrange equation leads to an elliptic partial differential
equation in the (linearised) strain

ε = ε(u) :=
1

2

(
∇u+ ∇tu

)
,

which defines a symmetric n × n-matrix. Let A : B := tr(AtB) denote the
scalar product between symmetric n × n matrices A, B. For the construction
of the counter example we consider a solid consisting of two homogeneous con-
stituents with different mechanical properties, as studied for instance in [1, 3].
For constituent k ∈ {1, 2}, the elastic energy density is given by

Wk(ε̃) :=
1

2
αk
(
ε̃− εTk

)
:
(
ε̃− εTk

)
+ wk, ε̃ ∈ R

n×n
sym , (2.1)

and αk, ε
T
k , wk ≥ 0 are material parameters which denote the elasticity tensor,

the transformation strain tensor and the value of the local minima, respectively.
The material can form microstructure which is described by a function

d̃ : Ω → {0, 1} which gives the spatial distribution of the two phases. In conse-
quence, the energy on the micro scale reads

W (d̃, ε̃) := d̃W1(ε̃) +
(
1 − d̃

)
W2(ε̃). (2.2)

As introduced and explained in [3], the relaxation of the effective elastic energy
functional for d ∈ [0, 1] and ε ∈ R

n×n
sym is given by

Ŵ (d, ε) := inf
〈d̃〉=d
d̃∈{0,1}

inf
ũ|∂Ω=εx

∫

Ω

− W
(
d̃, ε(ũ)

)
dx, (2.3)

where
〈
d̃
〉

:=
∫
Ω
− d̃(x) dx := 1

|Ω|

∫
Ω
d̃(x) dx. The infimum over d̃ is the result

of homogenisation subject to the constraint that the volume fraction of the
selected phase is preset by d. This infimum is taken over functions d̃ with
bounded variation in Ω and values 0 or 1 a.e.,

d̃ ∈ BV (Ω; {0, 1}), (2.4)

ensuring Ŵ ≥ 0. Due to (2.4), the definition (2.3) is meaningful only for d ∈
[0, 1]. The second infimum in (2.3) is taken over functions ũ ∈ H1,2(Ω; R

n),
where the condition ũ|∂Ω = εx has to be read as ũ(x) = εx for a.e. x ∈ ∂Ω.

The minimisation problem (2.3) gives rise to an elliptic partial differential
equation in divergence form (1.3) with coefficients in L∞(Ω), see Eqn. (2.5)
below, where due to (2.4) the ellipticity condition (1.1) holds with λ = 0 on
a set of positive measure. We will show that the extension of Theorem 1.2 to
0 ≤ λ contradicts the results in [3], i.e. the assumption aij being positive almost
everywhere in Theorem 1.2 is essential.
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Theorem 2.1. Let n ≤ 3 and let aij be non-negative. If u ∈ H1,2(Ω) is such
that (1.4) is satisfied, then the conclusion of Theorem 1.2 does not hold true in
general.

Proof. Set d̃1 ≡ d̃, d̃2 ≡ (1 − d̃). Then (2.1)–(2.3) yield for given d0 ∈ [0, 1],
ε0 ∈ R

n×n
sym

Ŵ (d0, ε0) := inf
〈d̃〉=d0
d̃∈{0,1}

inf
ũ|∂Ω=ε0x

∫

Ω

− d̃1W1(ε(ũ)) + d̃2W2(ε(ũ)) dx

= inf
〈d̃〉=d0
d̃∈{0,1}

inf
ũ|∂Ω=ε0x

∫

Ω

−
2∑

k=1

d̃k
αk

2

(
ε(ũ) − εTk

)
:
(
ε(ũ) − εTk

)
dx.

We look at the minimisation problem in ũ, i.e., for fixed d̃ ∈ BV (Ω; {0, 1}) with〈
d̃
〉

= d0, we consider

Ed̃(ũ) :=

∫

Ω

−
2∑

k=1

d̃k
αk

2

(
ε(ũ) − εTk

)
:
(
ε(ũ) − εTk

)
dx,

which we need to minimise over all ũ ∈ H1,2(Ω; R
n) with ũ(x) = ε0x for a.e.

x ∈ ∂Ω. A necessary condition for the optimal u = uopt is that the first variation
equals zero,

∫

Ω

2∑

k=1

d̃kαk
(
ε(u) − εTk

)
: ε(ζ) dx = 0 for all ζ ∈ H1,2(Ω; Rn). (2.5)

Next we would like to integrate (2.5) by parts in order to obtain a partial dif-
ferential equation of the form (1.3). Since d̃k ∈ BV (Ω; {0, 1}) yields additional
terms, we consider a regularized problem. Let δ > 0. According to [10, Theo-
rem 5.3.3] there exists a function d̃δ ∈ C∞(Ω) such that 0 ≤ d̃δ ≤ 1 and

lim
δց0

∫

Ω

∣∣∣d̃− d̃δ
∣∣∣ dx = 0, lim

δց0

∥∥∥∇d̃δ
∥∥∥ =

∥∥∥∇d̃
∥∥∥ , (2.6)

where
∥∥∇d̃

∥∥ denotes the total variation of u ∈ BV (Ω; {0, 1}). With d̃δ1 := d̃δ,

d̃δ2 := 1 − d̃δ, Eqn. (2.5) becomes

∫

Ω

2∑

k=1

d̃δkαk
(
ε(u) − εTk

)
: ε(ζ) dx = 0 for all ζ ∈ H1,2(Ω; Rn). (2.7)

The corresponding Euler-Lagrange equations are

div

(
2∑

k=1

d̃δkαkε(u)

)
=

2∑

k=1

αkε
T
k∇d̃

δ
k in Ω,

u(x) = ε0x, x ∈ ∂Ω,

(2.8)
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which form a system of elliptic partial differential equations in divergence form
with coefficients in L∞(Ω) that vanish locally.

Next we want to apply Theorem 1.2 to this system of partial differential
equations. To this end, we choose εT1 = εT2 = 0 and make the assumptions
αk ∈ R>0, k = 1, 2, and (∇u)t = ∇u. This ensures that the system (2.8)
decouples and that the right hand side is zero. Then (2.8) reads

div

(
2∑

k=1

d̃δkαk∇uℓ

)
= 0 in Ω,

uℓ(x) = (ε0x)ℓ , x ∈ ∂Ω,





ℓ = 1, . . . , n. (2.9)

For each ℓ, this corresponds to (1.3) with f = 0 and aij(x) = −
∑2
k=1 d̃

δ
k(x)αkδ

ij ,
where δij denotes the Kronecker Delta.

If Theorem 1.2 extended to non-negative coefficients, it would hold uℓ(x) =
(ε0x)ℓ in Ω for a weak (sub-)solution uℓ ∈ H1,2(Ω) of (2.9). Indeed, the solution
to (2.9) would be unique, and uℓ(x) = (ε0x)ℓ solves the partial differential
equation (2.9)1

1 and satisfies the boundary conditions (2.9)2. Then also (2.7)
with εTk = 0, αk ∈ R>0 for k = 1, 2 and with (∇u)t = ∇u would be fulfiled with
ε(uopt) = ∇uopt = ε0 in Ω (as follows by an integration by parts). So we would
obtain

Ed̃δ(u) =

∫

Ω

−

2∑

k=1

d̃δk
αk

2
ε0 :ε0 dx

=
2∑

k=1

αk

2
ε0 :ε0

∫

Ω

− d̃δk dx

−→ d0W1(ε0) + (1 − d0)W2(ε0) = Ed̃(u) for δ ց 0,

since, by (2.6),
∫
Ω
− d̃δ(x) dx −→

∫
Ω
− d̃(x) dx = d0 as δ ց 0. Consequently,

Ŵ (d0, ε0) = d0W1(ε0) + (1 − d0)W2(ε0). (2.10)

It turns out that the identity (2.10) is in contradiction to the explicit formulas

of Ŵ (d0, ε0) for n = 2, 3 in [3] and for n = 1 derived in the appendix. For
illustration, if n = 2, we have

Ŵ (d0, ε0) = d0W1(ε
∗
1) + (1 − d0)W2(ε

∗
2) + β∗d0(1 − d0) det(ε∗2 − ε∗1), (2.11)

where β∗ ∈ R and ε∗k ∈ R
n×n
sym depend in an involved nonlinear way on d0, ε0

and αk, see the appendix, in particular (2.12), for details. The formulas (2.10)
and (2.11) coincide if and only if ε∗k = ε0, k = 1, 2. From ε∗1 = ε∗2 we learn, cf.
(2.13),

(α2 − α1)ε0 =
(
α2ε

T
2 − α1ε

T
1

)
= 0

1A note after submission of this paper: with the definition of δ̃δ
k

as in the text, ul(x) =
(ε0x)l is not a solution of (2.9) as wrongly stated.
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for all ε0 ∈ R
n×n
sym , which yields α1 = α2. Thus (2.10) and (2.11) are different in

general.
Similarly, if n = 1, we obtain equality of (2.10) (with d0 replaced by d and

ε0 replaced by e) and (2.16) in the appendix if and only if e∗k = e, k = 1, 2,

which yields the constraint α1 = α2. So the two formulas for Ŵ are different in
general.

The same conclusion can be drawn for n = 3, taking resort to the explicit
formula of Ŵ (d0, ε0) in [3]. Hence the conclusion of Theorem 1.2 does not hold
in general when aij(x) vanishes on a set with positive measure.

Corollary 2.2. Let n ≤ 3 and let (1.1) hold for 0 ≤ λ ≤ Λ. If u ∈ H1,2(Ω) is
a weak subsolution of (1.3) for f ∈ L2(Ω), the conclusion of Theorem 1.3 does
not hold true.

Proof. With f = 0, the same proof as of Theorem 2.1 applies.

Appendix

In this appendix we derive the explicit formula for Ŵ (d, ε) if n = 1. We start
from the explicit formula (2.11) in two dimensions and consider situations where
the input data such as the applied macroscopic strain or the eigenstrains can
be projected to a one-dimensional manifold.

First we recall some notations and refer to [2] for further details. The scalar
β∗ ∈ [0, γ∗] determines certain classes of microstructures in 2D, where the con-
stant γ∗ > 0 depends on the elastic moduli αk only. We set

ε∗1(d, ε) = α−1(β∗, d)[(α2 − β∗Q)ε− (1 − d)
(
α2ε

T
2 − α1ε

T
1

)
],

ε∗2(d, ε) = α−1(β∗, d)[(α1 − β∗Q)ε+ d
(
α2ε

T
2 − α1ε

T
1

)
],

(2.12)

where α(β∗, d) := (1− d)α1 + dα2 −β∗Q with Qε := ε− tr(ε)Id, ε ∈ R
2×2
sym. The

function ϕ(β∗, d, ε) := −det(ε∗2−ε
∗
1) plays an important role, compare also with

(2.11). As explained thoroughly in [2], Regime 0, where there is no dependence
on the microstructure, is characterised by ϕ ≡ 0; Regime I, where there are two
optimal laminates of rank I, is defined by ϕ(0, d, ε) > 0; Regime III, where two
optimal microstructures of rank II exist, is defined by ϕ(γ∗, d, ε) < 0; and finally
Regime II, where there is a unique microstructure of rank I, is characterised by
ϕ(0, d, ε) ≤ 0 and ϕ(γ∗, d, ε) ≥ 0. In particular, in Regime II, there is a unique
solution βII of ϕ(·, d, ε) = 0.

To derive the formula in one space dimension, we pick data constant in the
y-direction such that ε = diag(e, 0), εT1 = diag

(
eT1 , 0

)
, ε2 = diag

(
eT2 , 0

)
with

e, eT1 , e
T
2 ∈ R. Moreover, we require that the stresses αkε are diagonal matrices

of the form diag(·, 0). This allows us to assume that C1,12 = C2,12 = 0, where
we use a scaled version of the Voigt notation, see e.g. [1], and restrict ourselves
to a cubic material.

Under these assumptions, we will verify below that ε∗1, ε
∗
2 are also contained

in the selected one-dimensional submanifold of R
2.
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Using this fact we first prove that Regime II is of no relevance in 1D. Indeed,
in order to compute the value of β∗ in Regime II in 1D, cf. [2], we observe that

(ε∗1 − ε∗2)(d, ε) = 0

⇔ (α2 − β∗Q)ε− (1 − d)
(
α2ε

T
2 − α1ε

T
1

)
= (α1 − β∗Q)ε+ d

(
α2ε

T
2 − α1ε

T
1

)
,

which is equivalent to

(α2 − α1)ε =
(
α2ε

T
2 − α1ε

T
1

)
. (2.13)

For α1 = α2 we then obtain ϕ ≡ 0, i.e. we are in Regime 0. Otherwise we obtain

ε = (α2 − α1)
−1
(
α2ε

T
2 − α1ε

T
1

)
. (2.14)

By formula (2.14) only ε is determined; the other two parameters β∗ and d for
Regime II are free. Hence there is no unique βII solving ϕ(·, d, ε) = 0, i.e.,
Regime II does not occur. Furthermore, since rank-II-laminates cannot occur
in 1D, Regime III does not play a role in this case. Hence γ∗ = 0. Thus β∗ is
identically zero in one dimension.

With β∗ = 0, taking resort to the Voigt notation (see the computations in
[2]), we show that for k = 1, 2

ε∗k(d, ε) = diag(e∗k, 0). (2.15)

Indeed,

αkε =




Ck,11 0 0

0 Ck,11 0
0 0 2Ck,44








e

0
0



 =




Ck,11e

0
0



 .

Thus

α(0, d) = (1 − d)α1 + dα2

= diag(dC1,11+(1−d)C2,11, dC1,11+(1−d)C2,11, 2dC1,44+2(1−d)C2,44)

and α2ε
T
2 −α1ε

T
1 =

(
C2,11e

T
2 − C1,11e

T
1 , 0, 0

)
. Hence, by (2.12), we obtain (2.15).

Finally (2.11) now yields the formula in 1D

Ŵ (d, e) = dW1(e
∗
1) + (1−d)W2(e

∗
2) (2.16)

for all d ∈ [0, 1] and e ∈ R.
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