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Abstract

In the present paper, we give a survey of the recent results and outline future prospects of the
tensor-structured numerical methods in applications to multidimensional problems in scientific
computing. The guiding principle of the tensor methods is an approximation of multivariate
functions and operators relying on certain separation of variables. Along with the traditional
canonical and Tucker models, we focus on the recent quantics-TT tensor approximation method
that allows to represent N -d tensors with log-volume complexity, O(d logN). We outline how
these methods can be applied in the framework of tensor truncated iteration for the solution of
the high-dimensional elliptic/parabolic equations and parametric PDEs. Numerical examples
demonstrate that the tensor-structured methods have proved their value in application to various
computational problems arising in quantum chemistry and in the multi-dimensional/parametric
FEM/BEM modeling—the tool apparently works and gives the promise for future use in chal-
lenging high-dimensional applications.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: High-dimensional problems, rank structured tensor approximation, quantics folding of
vectors, matrix valued functions, FEM/BEM, computational quantum chemistry, stochastic PDEs.

1 Introduction

In the recent years, the use of tensor-structured data formats was recognized as the basic con-
cept for breaking the “curse of dimensionality” in multidimensional numerical simulations. The
guiding principle of the tensor methods is an approximation of multivariate functions and opera-
tors relying on a certain separation of variables and keeping the computational process in a low
parametric tensor-structured manifold. Modern applications of tensor methods include the chal-
lenging high-dimensional problems arising in material sciences, bio-science, stochastic modeling,
signal processing, machine learning and data mining, financial mathematics, etc. A survey and
a comprehensive bibliography on the traditional tools of multilinear approximation in computer
science based on the Tucker and canonical models are presented in [90, 16, 65]. An overview on
the modern tensor-structured numerical methods in high-dimensional applications can be found in
[56].

In the present survey paper we discuss the prospects of tensor methods in scientific comput-
ing, intended for effective solution of certain classes of boundary value, eigenvalue and transient
equations posed in the high dimensional physical space.

1.1 Methods of separation of variables

The modern tensor-structured numerical methods are designed for the data-sparse representation of
the multivariate functions, related operators and for the construction of tensor-truncated iterative
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solvers for the high-dimensional physical equations by their “projection” onto the low separation
rank tensor manifold.

In the current discussion, a tensor of order d, or briefly N -d tensor, is thought as a function on
a product index set, A : I⊗d → R with the d-fold product I⊗d = I×·· ·×I, and I = {1, ..., N}. The
subsequent exponential scaling in the storage size, Nd, predisposes severe computational difficulties
when using the traditional numerical algorithms having the defect of the “curse of dimensionality”.
Hence, main efforts are focused on the construction of efficient low-complexity representations of
the higher order tensors and the related multilinear transforms.

Recent approaches, like the wavelet multiscale methods [12] and the hyperbolic cross (sparse
grids) approximation [8, 88, 95, 101, 28, 29, 30] allow to relax the curse of dimensionality, and
already enable to handle the moderate dimensional problems, e.g., with d ≤ 10. The sparse Schur
complement methods circumvent the curse of dimension by reduction to the interface or to the wire
basket of the boundary [51, 50].

The methods which lead to linear scaling in the dimension are distinctly linked with the idea
of separation of variables. The arising discretizations via “formatted” function related tensors
typically inherit the separability properties of the initial solutions on the continuous level, usually
providing fast exponential convergence in the separation rank. This favorable feature combined with
the modern multilinear algebra methods of nonlinear tensor approximation [21, 1, 42, 79, 57, 55]
lead to the new concept of numerical schemes in higher dimensions which scale linearly in the
dimension parameter d.

In the following, we describe the main ideas behind the tensor numerical methods, outline their
theoretical background, and present a number of numerical illustrations on the computational
efficiency for typical classes of multidimensional problems.

1.2 Advances of tensor methods in the recent decade

The particularly efficient tensor separation schemes are based on the global-additive type, for
example, canonical and Tucker models, and the local-multiplicative type, e.g., matrix product states
(MPS) tensor formats. Here we mean that the additive type tensor formats rely on representation
by a (global) sum over few separable (rank-1) elements, while the MPS formats count on the
contracted product representation correlating each single variable (state) only with a few local
neighbors (slightly entangled systems).

The orthogonal rank-(r1, ..., rd) Tucker tensor decomposition (cf. [96, 14]) allows to relax the
curse of dimension dramatically because of the reduced complexity, rd + drN , where, in practice,
the sufficient maximal Tucker rank r = max

1≤ℓ≤d
rℓ, can be much smaller than N , say, r = O(logN).

A special case of the (nonorthogonal) rank-(R, ..., R) Tucker representation, usually refereed as
the canonical model, implies the linear scaling in d, dRN . In general, the best R-term nonlinear
approximation shows rather slow polynomial convergence in the rank parameter R, [92], and it can
be calculated by the simple (but non-robust) greedy-type incremental algorithms. For the class of
(physically relevant) analytic multivariate functions and Green’s kernels the exponential conver-
gence in the separation rank R can be proved [25, 93, 49, 53, 54], that leads to the asymptotically
optimal bound on the canonical rank, R = O(logN), implying the approximation rate O(N−α),
with α ≥ 1.

Since the well-known limitations in approximation via the canonical model [17], the mixed
(primal-dual) orthogonal Tucker-canonical representation imposing the rank-R canonical core ten-
sor was introduced [49, 57]. It inherits the beneficial features of both models, orthogonality and
linear scaling in d. The multigrid accelerated version of the mixed Tucker-canonical format was
proved to be efficient in tensor computation of the 3D integral transforms in ab initio electronic
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structure calculations [57, 58]. Another interesting generalization of the Tucker (and canonical)
model, the so-called block Tucker format, was recently introduced [13].

The rank-structured tensor representations that scale linearly in the dimension d and, at the
same time, allow the direct SVD-based truncated multilinear operations can be constructed using
the idea of selected decoupling of dimensions. Methods based on the so-called matrix product states
factorization were introduced in density matrix renormalization group (DMRG) theory in [100] (see
also [97] for the algebra of MPS formats). In computational molecular dynamics such methods are
known for longer time as hierarchical or binary cascadic multi-configuration methods (MCTDH)
used in combination with the Tucker tensor format (see [2, 99, 68] for further details). In the
quantum information theory the concept of MPS was also introduced as the state decomposition
of slightly entangled systems [98]. The MPS is defined by the explicit one-level factorized repre-
sentation of an N -d tensor (beneficial feature for the numerical multilinear algebra) complemented
by the low complexity SVD/QR rank truncation procedure.

The idea of rank-r dimension splitting in the context of the canonical tensor approximation
was addressed in [49, Lemma 2.2] leading to the almost linear scaling in d, O(dNrlog d). Recently,
the tensor formats based on the MPS-type dimension splitting using the tree-type or hierarchical
Tucker (HT) models have attracted much attention (see [38], [79]). The non-hierarchical MPS-
type factorized separation of variables specified by the so-called Tensor Train (TT) format was
investigated in [79, 72]. The storage is estimated as O(dr2N), where r is the splitting rank. The
DMRG approach to fast linear algebra in the TT-format was addressed in [75]. As the important
step, in [80] the TT factorization is extended to the case of incomplete input data by using the
TT-Cross approximation via interpolation on the entries of a TT-cross.

1.3 Quantized N-d tensors lead to d logN complexity: “blessing of dimension”

In high resolution molecular/electronic structure calculations, in FEM applications and in stochastic
PDEs the univariate grid size N specifying N -d tensors may be rather large, say, N ≈ 104, thus
addressing a question on whether a better than linear asymptotic in N can be attained. For
example, it is known for longer time in signal processing, spectroscopy and higher-order statistics
that the folding of a sampling vector into a matrix or 3-tensor may reduce the number of essential
parameters (samplings) to reconstruct exactly the initial vector in R

N (cf. [44, 89, 43, 81]). This
is due to possible low rank decomposition of arising matrix or tensor data arrays. The relation to
a separable representation of polyadics was emphasized in [40, 11].

Clearly, the dyadic folding of a vector can be successively continued up-to tensor-order 3, 4, 5,
etc. until the irreducible mode-size of a tensor, 2× 2× ...× 2, is achieved [73, 55]. It was found in
[73] by numerical tests that in some cases the dyadic reshaping of 2L × 2L matrix leads to a small
TT-rank of the resultant quantized matrix of size (2 × 2)⊗L.

In [55] the diadically quantized representation of vectors (called there quantics1) was generalized
to q-adic folding applied to the general N -d tensors. There the principal question why the folding
of a vector to a higher dimensional tensor might lead to an essential data compression was first
addressed and rigorously analyses from the approximation aspects. The basic approximation result
was proven for a wide class of function generated tensors: the TT-rank of quantized exponential,
trigonometric, polynomial etc. N -vectors are shown to be uniformly bounded in N . Moreover,
it was shown that the QTT approximation of q-logq N tensors obtained by the q-adic multilevel
folding, and applied to a class of (analytic) function related N -vectors, N × N -matrices or N -d
tensors provides exponential convergence in the TT-rank (see [56] for more detail).

1The terminology is borrowed from the methods of separable representation of polyadics, see [11].
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This allows to understand why the multifolding of N -d tensors may lead to the d logN -
computational complexity (in log-volume size). In particular, the rank structured quantics ap-
proximation discovers the similarity patterns in the input data up to the finest resolution level (in
contrast to the principles of wavelets multi-resolution schemes), providing the way to the nearly
optimal compression rate within the chosen dimensional splitting model posed in the virtual di-
mension D = d logq N .

Along with the good approximation properties, the QTT format seems to be crucial for the
numerical efficiency of the DMRG type iteration (see [63]) since it reduces the mode size of a
tensor from N to 2 (the latter enters at least quadratically in the complexity of DMRG iteration).

In the subsequent paper [27] the uniform rank bound of the quantized polynomial N -vector
(renamed as “tensorization of vectors”) was proven in the case of hierarchical Tucker format. The
more general QTT-rank estimate in terms of the separation rank of a generating function f(x+ y)
was obtained in [74]. Explicit low-rank representation of the discrete quantized Laplacian and its
inverse was derived in [45].

The QTT representation of the Fast Fourier Transform and the Toeplitz matrices discovered
in [20] and [46], respectively, leads to logarithmic complexity of the corresponding matrix-vector
products. In particular, according to the above results, the convolution of N -d tensors in QTT
format can be computed in O(d logN) operations.

We summarize that the idea of quantized representation in d logN -complexity allows the func-
tion/operator calculus on large grids (practically unlimited grid-size) opening the way to accurate
quasi-analytic calculations of integrals, and other linear/bilinear mappings in fully discrete form.

1.4 SVD-based numerical tensor approximation

The key point of tensor numerical method based on separation of variables is the efficient com-
putability of formatted tensor decompositions (approximation) of higher order tensors.

The standard linear and multilinear operations on tensors can be realized in rank-structured
formats. Due to the increase of separation rank within tensor operations the efficient rank opti-
mization (tensor truncation) plays an important role in the tensor/operator numerical calculus.

The SVD-based approximation in the Tucker format is based on the HOSVD decomposition
of the full format tensors [15]. The so-called reduced HOSVD (RHOSVD) approximation applies
to the canonical target tensor [57]. The latter scales at most quadratically in the basic model
parameters, providing a good initial guess for the (local) ALS-type minimization in the mixed
Tucker-canonical format. The efficient multigrid accelerated canonical-to-Tucker rank reduction
scheme, which scales linearly in the input parameters, became a powerful tool in 3D electronic
structure calculations [48].

A direct method of the Tucker decomposition for d = 3, based on the adaptive cross approxi-
mation is presented in [76, 3].

Furthermore, the SVD/QR-based algorithms for the rank optimization in the TT/HT dimension
splitting schemes have been described in [98, 97, 79, 26].

Quantized high-dimensional tensors can be represented (approximated) in the TT format (the
so-called QTT format [55]). In this way the SVD-based rank-truncated multilinear operations on
2 × ...× 2 TT tensors can be applied in the QTT tensor arithmetics.

1.5 On tensor-structured solution of multidimensional equations

Tensor numerical methods are proved to be efficient for data-sparse representation of functions
and operators in the Hartree-Fock and Kohn-Sham models in electronic structure calculations
[7, 39, 59, 57, 23, 76, 47]. Fully tensorized numerical approach for solving the Hartree-Fock equation,
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discretized over N × N × N grid, by tensor truncated iteration of complexity O(N logN), was
recently presented in [58]. Other successful applications to high-dimensional eigenvalue problems
[37, 54] and to stochastic PDEs [64, 62] are reported. A class of low tensor rank preconditioners
for the multidimensional elliptic problems with jumping coefficients in R

d is proposed in [18]. The
employment of separation of variables in machine learning is addressed in [6].

Numerical illustrations presented in Section 4 indicate surprisingly good compression rate,
O(d logN), of the QTT approximation applied to certain function related tensors and matrix-
valued functions. Particularly, this includes solutions of model boundary-value and eigenvalue
problems in R

d, examples of electron density, Hartree potential and the potential energy surface in
electronic structure calculations, as well as some matrix-valued functions of d-Laplacian.

The quantized-TT approximation of log-log complexity scaling, O(d logN log ε−1), where ε >
0 is the approximation error, opens the new perspectives for reliable and robust computational
methods in higher dimensions that are free from the “curse of dimensionality”, and noticeable
limitations on the grid-size (blessing of dimension). This approach can be interpreted as a kind of
“paradoxically” mesh-less method that is essentially based on the grid representation via reshaping
to the virtual higher dimension D = d logN , complemented by the SVD-based rank reduction
algorithms.

With impetus to real life applications, we discuss how the QTT approximation method can be
employed in the framework of truncated iteration for solving certain classes of elliptic/parabolic
equations in higher dimensions with log-scaling in the volume size.

The rest of the paper is organized as follows. Section 2 describes traditional tensor models based
on the canonical and Tucked decompositions and then addresses the MPS-type TT and quantized
TT (QTT) tensor formats. We discuss the approximation error estimate in terms of the TT/QTT
splitting ranks applied to the class of function related tensors. Section 3 analyses the canonical
and QTT approximations applied to the solution of certain elliptic boundary-value/eigenvalue
problems, as well as to the transient parabolic-type equations. Section 4 presents various numerical
examples on the QTT approximation of N -d tensors applied to the elliptic/parabolic equations and
to stochastic/multiparametric PDEs. Conclusions summarize the prospects of tensor-structured
numerical methods in high-dimensional scientific computing.

2 Introduction to rank-structured tensor formats

This section discusses the most frequently used rank-structured tensor formats. In §2.1 we introduce
the basic Tucker and canonical models. In §2.2, the generalized tensor chain (TC) representation
is addressed characterized by the periodic-type dimensional splitting scheme. §2.3 discusses the
two-level Tucker-TT model that is a combination of the orthogonal Tucker decomposition with the
TT-representation of the Tucker core. It benefits from almost linear complexity scaling in the rank
parameter r, O(drN+dr2 logN), due to the fact that usually in the case of function related tensors
both the Tucker and TT ranks appear to be much smaller than N , r ≪ N . The special case of
above model is a two-level canonical-TT format that is proved to be useful in the tensor-structured
operator calculus.

In our presentation of the Tucker/canonical formats we mainly follow standard notations in
[14, 65].
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2.1 Basic rank-structured tensor formats

The separable representation of multivariate functions is based on the constructions of a tensor-
product Hilbert space [83]. We mainly consider the case of high-order tensors, i.e. the real/complex
valued functions on the product index set.

Tensors of order d are defined as the elements of finite dimensional tensor-product Hilbert space
Wn ≡ Wn,d of the d-fold, N1 × ...×Nd︸ ︷︷ ︸

d

real/complex-valued arrays, which can be represented

componentwise,

A = [A(i1, ..., id)] with iℓ ∈ Iℓ := {1, ..., Nℓ}, and n = (N1, ..., Nd).

For the ease of presentation, we mainly consider the equal-size tensors, i.e., Iℓ = I = {1, ..., N}
(ℓ = 1, ..., d). We call the elements of Wn = R

I with I = I1× ...×Id, as N -d tensors and use several
equivalent notations for the corresponding d-dimensional arrays, A ≡ A(N,d) ≡ A(n,d) ∈ Wn. The
Euclidean scalar product, 〈·, ·〉 : Wn × Wn → R, is given by

〈A,B〉 :=
∑

i∈I
A(i)B(i), A,B ∈ Wn.

The storage demand for N -d tensors scales exponentially in d, dim Wn,d = Nd.
The rank-(r1, . . . , rd) Tucker format contains all tensors in Wn = R

I , that can be presented in
the form of a tensor-by-matrix contracted product over the product index set J := ×d

ℓ=1Jℓ, with
Jℓ = {1, ..., rℓ}, and r = (r1, ..., rd) ∈ N

d,

V = β ×1 T
(1) ×2 T

(2)...×d T
(d) ∈ Wn, (2.1)

and with certain (orthogonal) N × rℓ side matrices, T (ℓ) = [t1ℓ ...t
rℓ

ℓ ] ∈ R
I×Jℓ. The coefficients

tensor β = [β(ν1, ..., νd)], νℓ ∈ Jℓ, called the core tensor, is an element of a (dual) tensor space
Br = R

J1×...×Jd. We denote this tensor class by T r,n ⊂ Wn. The storage size is still exponential,
rd + drN , since the interdimensional connectivity tensor β is fully populated.

The R-term canonical format is defined as the particular case of Tucker model (2.1) specified by
rank parameters rℓ = R (ℓ = 1, ..., d), and by the diagonal Tucker core β := diag{β1, ..., βR}, such
that β(ν1, ..., νd) = 0 except when ν1 = ... = νd with β(ν, ..., ν) = βν . The orthogonality of T (ℓ) is
no longer required. We denote by CR,n the class of tensors in Wn whose rank does not exceed R,
rank(V) ≤ R, with the particular parametrization

V =

R∑

k=1

bkV
(1)
k ×2 ...×d V

(d)
k ≡

R∑

k=1

bk

d⊗

ℓ=1

V
(ℓ)
k , bk ∈ R, (2.2)

including the normalized canonical vectors V
(ℓ)
k ∈ R

Iℓ. In spite of linear scaling in d, dRN , the
inflexible and rather poor connectivity pattern of this format, parallel with the lack of orthogonality
and nonclosedeness of the nonlinear set CR,n, lead to the well understood computational difficulties
with the canonical decomposition. Another possible drawback is the “rigid“ constraints due to
the equal rank distribution for all dimensions, rℓ = R, ℓ = 1, ..., d, (though the latter seems
to be the intrinsic property in the case of symmetric/antisymmetric tensors). Notice that the
orthogonal canonical decomposition is well understood theoretically and allows robust greedy-type
computational schemes [103, 65], however, the approximating quality of such representations is
rather poor making this tensor format practically inapplicable.

On the other hand, the canonical format can be gainfully combined with the Tucker and some
other stable tensor representations (see §2.3). The example of combined tensor models is given by
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the rank-R mixed (primal-dual) Tucker-canonical format denoted by T [CR,r] ⊂ CR,n. It contains
all Tucker tensors in T r,n with the Tucker core in CR,r (see [49, 57]). This benefits from the linear
storage complexity, drN + dRr, orthogonality, and the opportunity for variable directional ranks,
r = (r1, ..., rd). Another example is given by the block Tucker model [13].

In some applications (see e.g. Example 4.2 in §4.1) the so-called weakly (locally) coupled
canonical representation is useful. The weakly coupled canonical tensor V ∈ R

J×I , J = {1, ..., N0},
is defined componentwise in the index j ∈ J ,

V(j) =

R∑

k=1

bkV
(1)
k (j) ×2 ...×d V

(d)
k (j) ≡

R∑

k=1

bk

d⊗

ℓ=1

V
(ℓ)
k (j), bk ∈ R, (2.3)

including the normalized canonical matrices V
(ℓ)
k ∈ R

Iℓ×J , with the column vectors V
(ℓ)
k (j) ∈ R

Iℓ,
j ∈ J .

2.2 Reduced Tucker sparsity: Tensor chain/train formats

The rank-r tensor train (TT) format belong to the class of MPS representations. It is defined in
the spirit of Tucker model, but with essentially reduced “connectivity” constraints (see [79, 72]) so
that its storage size scales linearly in both d and N . The generalization of the TT-format to the
case of “periodic” index chain is given by the following definition [55].

Definition 2.1 (Tensor chain/train format). Given the rank parameter r = (r0, ..., rd), and the
respective index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodicity constraints J0 = Jd. The
rank-r tensor chain (TC) format contains all elements V in Wn = R

I that can be represented as
the chain of contracted products of 3-tensors over the d-fold product index set J := ×d

ℓ=1Jℓ,

V = {×ℓ}d
ℓ=1G

(ℓ) with 3rd order core tensors G
(ℓ) ∈ R

Jℓ−1×Iℓ×Jℓ , (2.4)

or in the index notation,

V (i1, ..., id) =
∑

α1∈J1

· · ·
∑

αd∈Jd

G(1)(αd, i1, α1)G
(2)(α1, i2, α2) · · ·G(d)(αd−1, id, αd) ≡ G

(1)
i1

· · ·G(d)
id
,

where G
(ℓ)
iℓ

is an rℓ−1 × rℓ matrix. Denote this set of tensors by TC[r, d] ≡ TC[r,n, d] ⊂ Wn.
In the case J0 = Jd = {1} (open boundary conditions), this construction coincides with the

definition of TT format in [72], thus implying TT[r, d] ⊂ TC[r, d].

Storage requirement for the rank-r TC tensors in (2.4) is bounded by

d∑

ℓ=1

rℓ−1rℓN ≤ dr2N with r = max
ℓ
rℓ.

Notice that the standard linear and bilinear operations on TT/TC tensors can be performed with
the linear complexity scaling in d and n. In particular, for the Hadamard product we have

Z = X ◦Y : Z(k)(ik) = X(k)(ik) ⊗ Y (k)(ik),

implying the formatted representation of the scalar product (in O(dr3N) operations)

〈X,Y〉 = 〈X ◦ Y,1〉.
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The contracted product with rank-1 tensor is given by

Z = X ×1 U
(1) ...×d U

(d) : Z(k) =
∑

ik

X(k)(ik)U
(k)(ik).

For a sum of TT-tensors we have,

Z = X + Y : Z(k)(ik) =

[
X(k)(ik) 0

0 Y (k)(ik)

]
.

The above operations can be complemented by the SVD-based rank optimization procedure.
The beneficial properties of the TC/TT formats are collected in the following lemma.

Lemma 2.2 ([55]) The maximal TC rank of V ∈ TC[r, d], does not exceed its canonical rank,
r ≤ rank(V). The rank-R canonical tensor belongs to TC[r, d] with r = (R, ..., R), and with
diagonal cores.
TT[r] is the closed manifold [87], while TC[r] is closed on the subset TT[r] [97] (see Remark 2.3).

Recall that the k-th TT rank of a tensor X = [X(i1...id)] is the rank of its matrix unfolding X(k)

(1 ≥ k ≥ d− 1) with the elements

X(k)(i1...ik; ik+1...id) = X(i1, ..., id).

Applicability of the general TC format with J0 = Jd 6= {1}, can be motivated, in particular, by
the following computational tasks:

• DMRG in FCI electronic structure calculations and quantum information theory [100, 98, 97].

• Rank optimization in the case of highly nonuniform distribution of the TT-rank parameters
rℓ, ℓ = 1, ..., d.

• Representation of a periodic MPS.

Remark 2.3 (On noncloseness of TC[r,d]). For given V ∈ TC[r, d], let the core tensor G
(d) be

defined by diagonal rd × rd-matrices. Then the TC-tensor V can be represented by a sum of rd TT
tensors. Hence, similar to the case of canonical tensors, it is easy to construct a sequence Vk → 0
such that the approximant Vk does not converge as k → ∞.

Notice that the suboptimal approximation of the full format, canonical or TT-tensors by using
the low TT-rank elements can be fulfilled by the algorithm based on SVD/QR decompositions
[72]. The best TT-approximation can be computed by ALS type iteration [84] (cf. the Tucker and
canonical approximations). In the case of general TC tensors the rank reduction operations require
certain modifications based on the use of ALS type iteration applied in the cyclic ordering similar
to the case ALS-TT approximation.

The next elegant result explains how to select real and imaginary part of the complex-valued
vector in the TT/TC formats [20].

Theorem 2.4 The complex-valued tensor train a(j1, . . . , jd) = A
(1)
j1
. . . A

(d)
jd
, with ranks

r0, r1, ..., rd−1, rd can be represented as tensor train a(j1, . . . , jd) = Â
(1)
j1
. . . Â

(d)
jd
, with ranks

r0, 2r1, ..., 2rd−1, rd, where the cores Â
(p)
jp
, p = 1, . . . , d− 1 are real-valued,

Â
(1)
j1

=
[
ℜA(1)

j1
ℑA(1)

j1

]
, Â

(p)
jp

=

[
ℜA(p)

jp
ℑA(p)

jp

−ℑA(p)
jp

ℜA(p)
jp
.

]
, p = 2, . . . , d− 1,

Â
(d)
jd

=

[
ℜA(d)

jd

−ℑA(d)
jd

]
+ ı

[
ℑA(d)

jd

ℜA(d)
jd

] (2.5)
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Example 2.1. Applying Theorem 2.4 to a tensor generated by a function ei(x1+...+xd), we de-
rive that TT-rank of the N -d tensor obtained by sampling f(x1, ..., xd) = sin(x1 + ... + xd) or
f(x1, ..., xd) = cos(x1 + ... + xd) over N⊗d tensor grid in R

d, is exactly 2 (see also [79]), while its
canonical rank is estimated by R = d [5].

2.3 Quantics representation of N-d tensors

In this section, we address the important statement saying that the class of discrete exponential
(resp. trigonometric) N -vectors allows the rank-1 (resp. rank-2) q-folding representation with small
q = 2, 3, ..., reducing the storage complexity O(N) to the logarithmic bound O(q logq N).

Given q = 2, 3, ..., we suppose that N = qL with some L = 1, 2, .... The folding (lifting) and
unfolding (reducing) transforms on N -d tensors can be interpreted as the dual reshaping operations
specified by the reordering scheme of the respective index sets. Next definition introduces the folding
of N -d tensors into the elements of auxiliary D-dimensional tensor space with D = d logq N .

Definition 2.5 ([55]) Introduce the q-adic folding transform of degree 2 ≤ p ≤ L,

Fq,d,p : Wn,d → Wm,dp, m = (m1, ...,mℓ), mℓ = (mℓ,1, ...,mℓ,p),

with mℓ,1 = qL−p+1, and mℓ,ν = q for ν = 2, ..., p, (ℓ = 1, ..., d), that reshapes the initial n-d tensor
in Wn,d to the quantics space Wm,dp as follows:
(A) For d = 1 a vector X(N,1) = [X(i)]i∈I ∈ WN,1, is reshaped to the element of WqL−p+1,p by

Fq,1,p : X(N,1) → Y(m,p) = [Y (j)] := [X(i)], j = {j1, ..., jp},

with j1 ∈ {1, ..., qL−p+1}, and jν ∈ {1, ..., q} for ν = 2, ..., p. For fixed i, jν = jν(i) is defined
by jν = 1 + CL−p−1+ν, (ν = 1, ..., p), where the CL−p−1+ν are found from the partial radix-q
representation of i− 1,

i− 1 = CL−p + CL−p+1q
L−p+1 + · · · + CL−1q

L−1.

(B) For d > 1 a tensor A(n,d) = [A(i1, ..., id)], iℓ ∈ Iℓ, ℓ = 1, ..., d, is reshaped by

Fq,d,p : A(n,d) → B(m,dp) = [B(j1, ..., jd)] := [A(i1, ..., id)], jℓ = {jℓ,1, ..., jℓ,p},

with jℓ,1 ∈ {1, ..., qL−p+1}, and jℓ,ν ∈ {1, ..., q}, for ν = 2, ..., p, and for all ℓ = 1, ..., d. Now the
univariate ℓ-mode index iℓ is represented by jℓ as in the case d = 1.

For the maximal degree folding corresponding to p = L, the multiindex jℓ − 1 is the q-adic
representation of iℓ − 1 for iℓ ∈ Iℓ, in radix-q system, such that jℓ,ν takes values in {1, ..., q}.

For the sake of higher compressibility, the maximal degree folding, Fq,d,L, can be applied.
Example 2.2. For d = 1 and p = 2, 3, the reshaping map Fq,1,p folds an N -vector to a N/q × q-

matrix or to N/q2 × q × q, 3-tensor, respectively.
The unfolding transform, e.g., tensor-to-matrix (matricization) or tensor-to-vector (vectoriza-

tion), may be viewed as the reverse to the folding, F−1
q,d,p, see [65] for the conventional definition.

The quantics (folding) transform Fq,d,p exhibits the following main properties:

(F1) Fq,d,p is the linear isometry between WN,d and WqL−p+1,dp.

(F2) The q-folding of a rank-1 tensor w = x1 × ... × xd ∈ WN,d, is given by the outer product of
componentwise vector reshaping transforms,

Fq,d,pw = Fq,1,px1 ⊗ ...⊗Fq,1,pxd.
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(F3) Let d = 1, then for any p = 2, ..., L and X = [X(i)] ∈ C
N we have a bound on the TT rank

of a tensor Fq,1,LX,
rp−1 ≤ rank(Xp),

where Xp is the reshaping of X to a N/qp−1 × qp−1 matrix.

Next lemma presents the basic results on the rank-1 (resp. rank-2) q-folding representation of
the exponential (resp. trigonometric) vectors [55].

Lemma 2.6 For given N = qL, with q = 2, 3, ... and L ∈ N, and for given ck, zk ∈ C (k = 1, ..., R),

the exponential sum N -vector, X := {xn :=
R∑

k=1

ckz
n−1
k }N

n=1, can be reshaped by the q-folding Fq,1,L,

to the rank-R, q-L tensor in Wq,L,

Fq,1,L : X → A(q,L) =

R∑

k=1

ck ⊗L
p=1 [1 zqp−1

k ... z
(q−1)qp−1

k ]T ∈ CR,q[TT [1]]. (2.6)

The number of representation parameters is reduced from (N + 1)R to (qL+ 1)R.

The trigonometric sum N -vector, X := {xn :=
R∑

k=1

ck sin(αk(n − 1))}N
n=1, αk ∈ R, can be

reshaped by the successive q-folding to the rank-R, q-L tensor A(q,L), where for each of R summands,
both the C-rank, and the TT-rank are exactly 2,

Fq,1,L : X → A(q,L) =
R∑

k=1

Ak ∈ Wq,L, with Ak ∈ TT [2, L].

The number of representation parameters does not exceed 4qLR.
In the case q = 2, the single sin-vector has the explicit rank-2 QTT representation (see Thm.

2.4 and [74]) (with yp = 2p−Lip − 1, ip ∈ {0, 1}),

X 7→ [sin y1 cos y1] ⊗L−1
p=2

[
cos yp − sin yp

sin yp cos yp

]
⊗

[
cos yL

sin yL

]
∈ {0, 1}⊗L,

It turns out that the exponential-trigonometric product vector allows the 4 logq N complexity
quantics representation as proven by the following lemma.

Lemma 2.7 For given N = qL, with q = 2, 3, ..., L ∈ N, and c, z ∈ C, α ∈ R, the single
exponential-trigonometric vector X := {xn := czn−1 sin(α(n − 1))}N

n=1, can be reshaped to the
q-L tensor, Fq,1,L : X → A(q,L) ∈ TT [2], whose both C- and TT-ranks do not exceed 2. The number
of representation parameters is bounded by 4q logq N .

Notice that Lemmas 2.6 - 2.7 outline the way to further improvement of the results in [89, 44]
on the identifiability of multidimensional harmonic retrieval.

Remark 2.8 Property (F3) of the quantics folding ensures that the QTT rank of a vector obtained
by the equidistant sampling the polynomial of degree m, does not exceed m+ 1. In fact, the column
space of the reshaped TT-unfolding matrix is spaned by at most m+1 polynomial vectors generated
by 1, x, ..., xm, respectively.

The similar result was proven in [27] for the case of quntized (renamed there as tensorization of
vectors) hierarchical Tucker representation.

It is worth to note that using equidistant sampling points is non mandatory.

10



Lemma 2.9 (A) For any n = 0, 1, ..., the Chebyshev polynomial Tn(x) = cos(n arccos x), |x| ≤ 1,
sampled over N + 1 = 2L Chebyshev nodes xj ∈ [−1, 1], can be represented in the quantics space of
2-logN tensors with both C-rank and QTT-rank ≤ 2, uniformly in N .
(B) The Chebyshev polynomial Tn(x), sampled as a vector X, at Chebyshev nodes, θj = arccos xj ,
has the explicit rank-2 QTT representation (with yp = 2p−Lip − 1, ip ∈ {0, 1}),

X 7→ [cos y1 − sin y1] ⊗L−1
p=2

[
cos yp − sin yp

sin yp cos yp

]
⊗

[
cos yL

sin yL

]
∈ {0, 1}⊗L,

The general concept on the explicit QTT representation of vectors and matrices can be found in
[74], [45], [20], [46], and [56].

Remark 2.10 The TT-rank of the q-folded discrete Gaussian function e−αt2 sampled over the
uniform grid, G := {e−αh2(n−1)2}N

n=1, h > 0, appears to be greater than 2. Numerical tests show
that it remains to be almost uniformly bounded in the vector size N (see Table 3.1 below). Lemma
2.6 implies that the rank-1 quantics representation of G arises in the case of quadratic mesh grading
toward the origin, i.e., by sampling over the points tn =

√
h(n− 1), (n = 1, ..., N).

Representation of tensors in low separation rank formats is the key point in the design of fast
tensor-structured numerical methods in higher dimension. In fact, it allows the implementation
of basic linear and bilinear algebraic operations on tensors such as addition, scalar, Hadamard
and convolution products with linear complexity in the univariate tensor size (see [49, 35, 52]).
These tensor operations (excepting scalar product) normally increase the separation rank of the
resultant tensor. Hence, the complexity control requires further “projection” of such intermediate
results to the set of tensors with smaller rank parameter (rank truncation). This leads to nonlinear
approximation problem to be addressed in the next section.

2.4 Combination of the Tucker, canonical and TC/TT formats

Following [55], let us denote by T r[TC[r1]] the Tucker-TC format containing all Tucker tensors in
T r,n with the Tucker core in the rank-r1 TC format. Now the complexity of representation scales
linearly in r, O(drN+d r21 r), while the representation basis is given explicitly by the “optimal” set of
orthogonal Tucker vectors. This may be gainfully applied in the framework of the Galerkin scheme.
Notice that the rank-R, T [CR,r]-format is embedded into the class T r[TT [r1]] with r1 = (R, ..., R)
(cf. Lemma 2.2, (C)). Hence, the further TT-rank optimisation of the initial element in T [CR,r] can
be accomplished with the SVD-based scheme applied to the small mode-size core tensor in Cr1,r,
(r ≪ N).

Another tensor format that might be useful in numerical multilinear algebra is specified as a set
of N -d tensors in CR,n with N = qL, where each N -vector composing rank-1 terms is represented
by the q-L quantized tensor in the TC[r, L] format. We further denote by CR,n[TC[r, L]] the set
of canonical-TC tensors represented in form

V =

R∑

k=1

ckT
(1)
k ×2 T

(2)
k ...×d T

(d)
k ∈ CR,n[TC[r, L]], (2.7)

where, for ν = 1, ..., d, T
(ν)
k :=

⊗L
ℓ=1G

(ℓ)
k,ν ∈ TC[r, L] with small-size cores G

(ℓ)
k,ν ∈ R

rℓ−1×q×rℓ . The

complexity of respective representation scales logarithmically in N , O(Rr2d logN), hence, it has
advantages for large mode-size N (see §2.3).
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3 Multilinear approximation on tensor manifolds

In the following, we choose the manifold S of rank-structured tensors as one of the above defined
tensor classes, and call the elements in S as S-tensors.

To perform computation over nonlinear manifold (say, the truncated iteration) we need to
perform a “projection” of the current iterand onto S. This action is fulfilled by using the tensor
truncation operator TS : Wn,d → S defined by

A0 ∈ S0 ⊂ Wn,d : TSA0 = argminT∈S ‖A0 − T‖S , (3.1)

that is a challenging nonlinear approximation problem. In practice, the computation of the min-
imiser TSA0 can be performed only approximately. The replacement of A0 by its approximation
in S is called the tensor truncation to S and denoted by TSA0. We discuss the analytic and alge-
braic methods of approximate solution to the problem (3.1) for different classes of rank-structured
tensors S.

3.1 Analytic methods of approximation

Here we discuss the low rank approximation of a special class of higher-order tensors, further called
function-related tensors (FRTs), obtained by sampling the multi-variate function over tensor grid
in R

d. They directly arise from:
(a) A separable approximation of multi-variate functions;
(b) Nyström/collocation/Galerkin discretisations of integral operators;
(c) The tensor-product approximation of some analytic matrix-valued functions.

The constructive analytic approximation methods are based on sinc-quadrature representations
[91]. It applies, in particular, to the class of Green kernels (the Poisson, Yukawa, Helmholtz
potentials), cf. [69, 32], to certain functions arising in the Boltzmann equation, in electronic
structure calculations [39, 4, 57, 58], and to correlation functions in construction the Karhünen-
Loéve expansion [88].

3.1.1 Error estimate in terms of analytic generating function

In the following we define FRTs corresponding to collocation-type discretization.
Given the function g : Ω := Πd → R, with Π = [a, b]p and p = 1, 2, 3, grid-size n ∈ N, and the

mesh-size h = (b − a)/n. We denote by {x(1)
i1
, ..., x

(d)
id

} with iℓ ∈ Iℓ := Iℓ,1 × ... × Iℓ,p (ℓ = 1, ..., d)
a set of collocation points living in the midpoints of the tensor grid with mesh-size h = (b− a)/n.
Here for iℓ = (iℓ,1, ..., iℓ,p) ∈ Iℓ, we have iℓ,m ∈ In := {1, ..., n} (m = 1, ..., p).

In our applications we have d ≥ 2 with some fixed p ∈ {1, 2, 3}. In particular, the matrix
(operator) decompositions correspond to the choice p = 2. In this case we introduce the reordered
index set of pairs Mℓ := {mℓ : mℓ = (iℓ, jℓ), iℓ, jℓ ∈ In} (ℓ = 1, ..., d), so that I = M1 × ...×Md

with Mℓ = In × In.
The Nyström and Galerkin approximations to function related tensors are discussed in [33, 49].

Here we focus on the collocation-type schemes [32], which are based on tensor-product ansatz
functions

ψi(y1, ..., yd) =

d∏

ℓ=1

ψiℓ
ℓ (yℓ), i = (i1, ..., id) ∈ I1 × ...× Id. (3.2)
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Definition 3.1 (Collocation, FRT(C)). Given the tensor-product basis set (3.2), we introduce the

variable ζ
(ℓ)
iℓ

:= (x
(ℓ)
iℓ
, yℓ) with the collocation point x

(ℓ)
iℓ

and yℓ ∈ Π, the pair mℓ := (iℓ, jℓ) ∈ Mℓ

and define the collocation-type d-th order FRT by A ≡ A(g) := [am1...md
] ∈ R

M1×...×Md with

am1...md
:=

∫

Ω
g(ζ

(1)
i1
, ..., ζ

(d)
id

)ψj(y1, ..., yd)dy, mℓ ∈ Mℓ. (3.3)

The key observation is that there is a natural duality between separable approximation of
the multi-variate generating function and the tensor-product decomposition of the related multi-
dimensional array. Hence, the canonical decompositions can be derived by using a corresponding
separable expansion of the generating function g (see [33, 35] for more details).

Lemma 3.2 ([32]) Suppose that a multi-variate function g : Ω ⊂ R
d → R can be approximated by

a separable expansion

gr(ζ) :=
r∑

k=1

µkΦ
(1)
k (ζ(1)) · · ·Φ(d)

k (ζ(d)) ≈ g(ζ), ζ = (ζ(1), ..., ζ(d)) ∈ R
d, (3.4)

where µk ∈ R and Φℓ
k : Π ⊂ R

2 → R. Define the canonical decomposition (2.2) via A(r) := A(gr)
(cf. Definition 3.1) with the choice,

V
(ℓ)
k =

{∫
Φ

(ℓ)
k (ζ

(ℓ)
i )ψj

ℓ (yℓ)dyℓ

}

(i,j)∈Mℓ

∈ R
Iℓ×Jℓ , ℓ = 1, ..., d, k = 1, ..., r. (3.5)

Then the FRT(C) A(r) allows the error estimate

‖A(g) − A(r)(gr)‖∞ ≤ C‖g − gr‖L∞(Ω).

Though in general a decomposition (3.4) with small separation rank r is a complicated numerical
task, in many interesting applications efficient approximation methods are available. In particular,
for a class of multi-variate functions (say, for certain shift-invariant Green’s kernels in R

d) it is
possible to obtain a dimensionally-independent Kronecker rank r = O(log n| log ε|), e.g., based on
sinc-quadrature methods or an approximation by exponential sums (see examples in [33, 49]).

Next, we discuss the constructive canonical and Tucker decomposition of FRTs applied to a
general class of analytic generating functions characterized in terms of their Laplace transform.

3.1.2 sinc-quadrature approximation in the Hardy space

We use constructive approximation based on the sinc-quadrature methods. For the readers conve-
nience we recall the standard approximation results by the sinc-methods (cf. [91, 24]). First, we
introduce the Hardy space H1(Dδ) as the set of all complex-valued functions f , which are analytic
in the strip Dδ := {z ∈ C : |ℑm z| < δ}, such that

N(f,Dδ) :=

∫

∂Dδ

|f(z)| |dz| =

∫

R

(|f(x+ iδ)| + |f(x− iδ)|) dx <∞.

Given f ∈ H1(Dδ), h > 0, and M ∈ N0, the corresponding sinc-quadrature reads as

TM (f, h) := h

M∑

k=−M

f(kh) ≈
∫

R

f(ξ)dξ. (3.6)
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Proposition 3.3 Let f ∈ H1(Dδ), h > 0, and M ∈ N0 be given. If

|f(ξ)| ≤ C exp(−b|ξ|) for all ξ ∈ R with b, C > 0, (3.7)

then the quadrature error satisfies
∣∣∣∣
∫

R

f(ξ)dξ − TM (f, h)

∣∣∣∣ ≤ Ce−
√

2πδbM with h =
√

2πδ/bM

and with a positive constant C depending only on f, δ, b (cf. [91]). If f possesses the hyper-
exponential decay

|f(ξ)| ≤ C exp(−bea|ξ|) for all ξ ∈ R with a, b, C > 0, (3.8)

then the choice h = log(2πaM
b )/ (aM) leads to (cf. [24])

∣∣∣∣
∫

R

f(ξ)dξ − TM (f, h)

∣∣∣∣ ≤ C N(f,Dδ) e−2πδaM/ log(2πaM/b).

Note that 2M + 1 is the number of quadrature/interpolation points. If f is an even function,
the number of quadrature/interpolation points reduces to M + 1.

3.1.3 Error bounds for canonical decomposition

We consider a class of multi-variate functions g : R
d → R parametrised by g(ζ) = G(ρ(ζ)) ≡ G(ρ)

with ρ ≡ ρ(ζ) = ρ1(ζ
(1)) + ... + ρd(ζ

(d)) > 0, ρℓ : R
2 → R+, where the univariate function

G : R+ → R can be represented via the Laplace transform

G(ρ) =

∫

R+

G(τ)e−ρτdτ.

The FRT(C) approximation corresponds to p = 2, ζ(ℓ) = (xℓ, yℓ) (cf. Definition 3.1). Without loss
of generality, we introduce one and the same scaling function

ψi(·) = ψ(· + (i− 1)h), i ∈ In, (3.9)

for all spatial dimensions ℓ = 1, ..., d, where h > 0 is the mesh parameter. We simplify further and
set ρ ≡ ρ(ζ) =

∑d
ℓ=1 ρ0(ζ

(ℓ)), i.e., ρℓ = ρ0(xℓ, yℓ) (ℓ = 1, ..., d) with ρ0 : [a, b]2 → R+. For i ∈ In,
let {x̄i} be the set of cell-centered collocation points on [a, b]. For each i, j ∈ In, we introduce the
parameter dependent integral

Ψi,j(τ) :=

∫

R2

e−ρ0(x̄i,y)τψ(y + (j − 1)h)dy, τ ≥ 0. (3.10)

Theorem 3.4 (FRT(C) approximation [32]). Assume that:
(a) G(τ) has an analytic extension G(w), w ∈ ΩG, into a certain domain ΩG ⊂ C, that can be

mapped conformally onto the strip Dδ, such that w = ϕ(z), z ∈ Dδ and ϕ−1 : ΩG → Dδ;
(b) for all (i, j) ∈ I × J the transformed integrand

f(z) := ϕ′(z)G(ϕ(z))
d∏

ℓ=1

Ψiℓjℓ
(ϕ(z)) (3.11)

belongs to the Hardy space H1(Dδ) with N(f,Dδ) <∞ uniformly in (i, j);
(c) the function f(t), t ∈ R, in (3.11) has either exponential (c1) or hyper-exponential (c2)

decay as t→ ±∞ (see Proposition 3.3).
Under the assumptions (a)-(c), we have that, for each M ∈ N, the FRT(C), A(g), defined on

[a, b]d, allows an exponentially convergent symmetric2 canonical approximation A(r) ∈ Cr with V
(ℓ)
k

2A d-th order tensor is called symmetric if it is invariant under arbitrary permutations of indices in {1, ..., d}.
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as in (3.5), where the expansion (3.4) is obtained by the substitution of f from (3.11) into the
sinc-quadrature (3.6), such that we have

‖A(g) − A(r)‖∞ ≤ Ce−αMν

with r = 2M + 1, (3.12)

where ν = 1
2 , α =

√
2πδb in the case (c1) and ν = 1, α = 2πδb

log(2πaM/b) in the case (c2).

Theorem 3.4 proves the existence of the canonical decomposition of the FRT A(g) with the
Kronecker rank r = O(| log ε| log 1/h) (in the case (c2)) or r = O(log2 ε) (in the case (c1)), which
provide an approximation of order O(ε). In our applications we usually have 1/h = O(n), where n
is the number of grid-points in one spacial direction. Theorem 3.4 applies to translation invariant
or spherically symmetric functions, e.g. to the classical Newton, Yukawa and Helmholtz kernels

1
‖x−y‖ ,

e−λ‖x−y‖

‖x−y‖ and cos(λ‖x−y‖)
‖x−y‖ with x, y ∈ R

3, λ > 0.

3.2 SVD-based and ALS-type optimization

The nonlinear approximation problem (3.1) can be solved approximately by algebraic methods that
may combine the SVD-based procedures to compute the initial guess, with nonlinear iterations like
ALS, gradient or quasi-Newton methods to find the local mimima. We refer to [65, 42, 85] and
references therein concerning iterative methods of Tucker-type approximation (computation of local
minima in (3.1)).

In the following, we briefly discuss the quasi-optimal direct (non-iterative) approximation based
on the robust QR/SVD matrix decompositions. In our context, such methods can be basically
considered as a kind of rank truncation procedures applied to the target tensors already given in
some tensor-structured format, but with unsatisfactory large rank parameters. Specifically, these
may be canonical, Tucker, TT/TC or QTT input tensors.

Since the approximation procedure in the TT-format is performed by finite SVD-based algo-
rithm, we arrive at the robust SVD-based quasi-optimal TT/QTT approximation [79, 72, 55, 61].

Proposition 3.5 (Tensor truncation). The operator TS : Wq,dL → S := TT [r,q, dL] is well
defined [55].

For given A0 ∈ TT [r0,q, dL] ⊂ Wq,dL, and r < r0, the quasi-optimal approximation to TSA0

can be computed by QR/SVD based algorithm in O(qdLr30) operations [79, 72].
The quasi-optimal Tucker approximation can be computed by the truncation of singular matrices

from higher order SVD (HOSVD), cf. [15].
If A0 ∈ CR, then the quasi-optimal rank-r Tucker approximation can be computed by SVD-based

RHOSVD algorithm, cf. [57].

Best orthogonal Tucker approximation can be computed by the ALS iteration provided that
the initial guess is given by the HOSVD/RHOSVD methods. Likewise, the best TT/TC tensor
approximations can be calculated by ALS iteration starting with the SVD-based representations
as above. The ALS iteration in TT format was considered in [84].

3.3 Quantics approximation of function related tensors

The quantics representation of exponential-trigonometric N -vectors can be adapted to the more
general class of multidimensional N -d tensors. First, one can apply the previous results to a sum
of R exponential-trigonometric terms in d dimensions [55].
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Lemma 3.6 Given N = qL, with some q = 2, 3, ... and L ∈ N. Let ck, zk,ℓ ∈ C, (k = 1, ..., R,
ℓ = 1, ..., d), be given, then the exponential sum N -d tensor,

A(n,d) := {xn :=

R∑

k=1

ck

d∏

ℓ=1

znℓ−1
k,ℓ }n∈I⊗d , I = {1, ..., N}, (3.13)

can be reshaped to the rank-R, q-dL quantics tensor, Fq,d,L : A → B(q,dL) ∈ CR,q[TT [1, dL]]. The
number of representation parameters amounts to dqR logq N .

Notice that the outer product of d rank-r tensors of order L leads, in general, to the canonical rank-
rd−1 tensor in the dL-dimensional tensor space. This is the reason why in the case of exponential
sum tensor in (3.13), we obtain the better structured rank-R representation in auxiliary dimension,
which is not the case for the trigonometric R-term sum of tensors.

To describe the analytic tensor approximation, let us consider the class EM of function related
tensors generated by certain (analytic) functions f that allow the efficient approximation in the set
of exponential sums on [a, b] ⊂ R+,

EM :=

{
u(x) =

M∑

k=1

cke
−tkx, ck, tk ∈ R

}
, x ∈ [a, b].

In particular, such approximations can be based on the sinc method.

Conjecture 3.7 ([55]) Based on our extensive numerical tests, we assume that the Gaussian-,
polynomial- and sinc-vectors obtained via the uniform sampling, allow the quantics approximation
by the q-folding, whose TT-rank remains bounded by a small constant (at most 4) uniformly in the
vector size N (see Table 3.1).

Next statement proves the error bound for the semi-analytic quantics approximation of function
related tensors.

Lemma 3.8 ([55]) Suppose that for given continuous function f : [a, b] → R, and given ε > 0,
there is u ∈ EM , such that

max
x∈[a,b]

∣∣∣∣∣f(x) −
M∑

k=1

cke
−tkx

∣∣∣∣∣ ≤ ε. (3.14)

Then for any N = qL, with some q = 2, 3, ..., and L ∈ N, we have:
(A) The function related N -d tensor F = [Fi], defined by the entries

Fi = f(hi1 + hi2 + ...+ hid), i ∈ I⊗d, a ≤ dh ≤ b/N, h > 0,

and discretising the multivariate function g(x1, ..., xd) = f(
∑d

ℓ=1 xℓ) over the uniform grid can be
approximated by the rank-M , q-dL tensor up to the tolerance ε in the max-norm.

(B) Under condition a ≤ dh ≤ b/N , the function related N -d tensor G = [Gi], with the entries

Gi = f(

d∑

ℓ=1

x2
ℓ,iℓ

), xℓ,iℓ =
√
hiℓ, i ∈ I⊗d,

discretising the multivariate function g1(x1, ..., xd) = f(
∑d

ℓ=1 x
2
ℓ ) on the quadratically graded grid

{xℓ,iℓ}, embedded into the region a ≤ ∑d
ℓ=1 x

2
ℓ ≤ b, can be approximated by the rank-M , q-dL tensor

with the tolerance ε in the max-norm.
In both cases, the number of representation parameters is bounded by O(dqM logq N).
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Lemma 3.8 allows us to derive the accurate O(d logN)-approximations to the wide class of func-
tion related tensors in high dimension. For a class of analytic functions the basic approximability
assumption (3.14) can be verified with

ε = O(e−αM/ log M ), α > 0,

by applying the sinc-approximation [32, 49, 53]. The semi-analytic quantics approximations via
Lemma 3.8 can be further optimized by applying the rank-r, r < M , TT-compression.

Based on Conjuncture 3.7, the quantics representations similar to those in Lemma 3.8 can
be derived based on the product-polynomial or product-trigonometric, exponentially convergent
approximations, taking into account (3.14).

3.4 Numerics on QTT approximation of N-vectors and N-d-tensors

The following numerics illustrates the behavior of approximation error vs. the TT-rank of the dyadic
folding approximation (q = 2) applied to different classes of function related vectors/tensors. We
apply the MATLAB subroutines in [73] implementing the binary folding of vectors and the low
rank TT approximation.

Recall that for any q = 2, 3, ..., the QTT-rank (or more precisely, QTTq-rank) of the exponen-
tial and trigonometric vectors equals 1 and 2, respectively. Moreover, it can be proven that the
Kronecker-TT rank of the diagonal matrices generated by the exponential and trigonometric vec-
tors equals 1 and 2, respectively (see Lemma 3.12). Furthermore, the product of exponential and
sin-functions in arbitrary frequency range has the Q-rank equals to 2, as for the single sin-function.

N \ r e−αx2

, α = 0.1, 1, 10, 102 sin(αx)
x , α = 1, 10, 102 1/x e−x/x x, x10, x1/10

210 3.2/2.8/2.8/2.2 4.0/4.7/5.5 4 3.5 1.9/2.7/3.9

212 3.1/2.9/2.9/2.6 3.8/4.8/5.6 4.2 3.8 1.9/2.6/3.9

214 2.9/2.8/2.8/2.8 3.6/4.7/5.5 4.2 3.8 1.9/2.5/3.9

216 2.8/2.7/2.8/2.8 (0.03) 3.6/4.5/5.4 (0.048) 4.2 (0.05) 5.3 (0.04) 1.9/2.4/3.9

Table 3.1: QTT2-ranks of functional N -vectors on large grids, N = 2p.

Tables 3.1 and 3.2, present numerical results on the binary quantics ε-approximation with
ε = 10−6, of the function related vectors/tensors corresponding to monomials and fractional power
of x, as well as to the functions

1

x1 + ...+ xd
,

1

‖x‖ ,
e−α‖x‖

‖x‖ , e−α‖x‖,
sin(α‖x‖)

‖x‖ x ∈ R
d.

For the following discussion, the average splitting rank of the TT-model, r, is defined by

r :=

√√√√1

d

d∑

ℓ−1

rℓ=1rℓ,

providing the complexity bound ≤ 2dr2 logN . The CPU time (sec.) corresponding to the finest
grid is given in the brackets (see Table 3.1). It scales linearly in the input vector size, N . Notice
for comparison that the FFTN on finest grid requires tFFT (216) ≈ 0.006 sec., indicating that the
QTT2 vector-transform to the low rank TT-format in higher dimension D = logN , is almost as
fast as the FFT on the same vector size.
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Table 3.2 represents the QTT2-ranks of the functional N×N -arrays generated by sampling over
large equidistant grids on [0, 1]2, approximated up to the tolerance ε = 10−6. Here ∆d denotes the
d-Laplacian as in (3.16). The matrix notation diag(f(x)) means the diagonal N ×N -matrix built
by the N -vector generated via f(x) sampled on the uniform N -grid. Approximation properties by
QTT-format are similar in the case d ≥ 3.

N \ r 1/(x1 + x2) e−‖x‖ e−‖x‖2

diag(e−x2

) ∆−1
2 1, ε = 10−6, 10−7, 10−8

29 5.0 9.4 7.8 3.8 3.6/3.6/3.6

210 5.1 9.4 7.7 3.9 3.6/3.6/3.6

211 5.2 9.3 7.5 3.9 3.7/3.7/3.7

Table 3.2: QTT2-ranks of functional N ×N -arrays on large grids, N = 2p.

The above numerical illustrations lead to the following observations.

• The QTT-rank remains almost independent on the vector/matrix size, hence being specified
only by analytic properties of generating function.

• The QTT-rank of the discrete Gaussians and polynomials is very small (≤ 3), that means
that any M -term exponential or polynomial expansion on large N -grid can be represented
with the complexity O(M logN), and with small constant in front of.

• Vectors generated by singular functions like 1/x, e−x/x, sin (αx)/x, and xα, (α > 0) exhibit
almost the same QTT-rank as analytic functions, uniformly in N .

• The computation time for TT-approximation scales linearly in the grid size N , hence, being
proportional to the cost of FFTN transform.

3.5 Tensor-structured representation of matrices on N-d tensors

3.5.1 General definitions

The MPS decomposition induces the important concept of matrix product operators (MPO) acting
between two tensor-product Hilbert spaces, A : X = ⊗Xℓ → Y = ⊗Yℓ, each of dimension d.

Definition 3.9 Introduce the rank-r operator TC (OTC) decomposition symbolized by a set of
factorized operators A,

A =
∑

α∈J
A(1)(αd, α1)A

(2)(α1, α2) · · ·A(d)(αd−1, αd),

with A(ℓ) = [A(ℓ)(αℓ, αℓ+1)] being the operator valued rℓ × rℓ+1 matrix, where A(ℓ)(αℓ, αℓ+1) : Xℓ →
Yℓ, (ℓ = 1, ..., d), or in the index notation

A (i1, j1, . . . , id, jd) =

r1∑

α1=1

. . .

rd−1∑

αd−1=1

A(1) (i1, j1, α1)A
(2) (α1, i2, j2, α2) · . . . ·

· A(D−1) (αd−2, id−1, jd−1, αd−1)A
(D) (αd−1, id, jd) . (3.15)

The action AX on rank-rX TT-tensor X ∈ X is defined as the TT/TC element in Y,

(AX) (i1, ..., id) :=
∑

α∈J
Y (1)(αd, i1, α1)Y

(2)(α1, i2, α2) · · · Y (d)(αd−1, id, αd),

18



with

Y (ℓ)(iℓ) =

nℓ∑

jℓ=1

A(ℓ)(iℓ, jℓ) ⊗X(ℓ)(jℓ).

If a matrix is considered merely as a vector in (3.15), and its neither possibility to map vectors to
vectors nor related properties are taken into consideration, then we arrive at the same concept of
matrix vector TT ranks.

Definition 3.10 A multi-way m1 × n1 × . . .×md × nd-matrix

A : R
n1 × . . .× R

nd 7→ R
m1 × . . .× R

md

is given, its k-th vector TT rank is the rank of its unfolding A(k) (1 ≤ k ≤ d−1) with the elements

A(k) (i1j1 . . . ikjk ; ik+1jk+1 . . . idjd) = A(i1j1 . . . idjd).

In particular this means that the minimal vector ranks of TT decomposition of a certain matrix
are somewhat independent from one other, depending on the matrix in the aggregate. So we may
consider a minimal rank decomposition, which it holds for that no one of d−1 ranks can be reduced
without introducing an error in (3.15) even if we allow the others to grow. This makes it reasonable
to compare ranks elementwise.

Definition 3.11 Let us say that a multiway matrix (vector) is of ranks not greater than r1 . . . rd−1

if and only if for any k: 1 ≤ k ≤ d− 1 its k-th vector TT rank is not greater than rk.

Their complexity of storage and such basic operations as dot product, multi-dimensional contrac-
tion, matrix-by-vector multiplication, rank reduction and orthogonalization of a tensor train is
linear with respect to vector TT rank upper bound raised to the power 2 or 3.

Next lemma shows that the diagonal matrices generated by the exponential and trigonometric
vectors can be proven to have fixed vector QTT rank [55].

Lemma 3.12 Quantics Kronecker-TT rank of the diagonal matrices generated by the exponential
and trigonometric vectors of size N = qL, equals 1 and 2, respectively.

Developing iterative solvers we are likely to be concerned with vector TT ranks of a matrix-by-
vector product. Below we introduce the concept of operator TT rank.

Definition 3.13 A multi-way matrix A : R
n1 × . . . × R

nd 7→ R
m1 × . . . × R

md given, for any
vector X ∈ R

n1 × . . .× R
nd let us denote vector TT ranks of the matrix-by-vector product AX by

r1 . . . rd−1. Then let us refer to
max

k=1...d−1,
X is of vector TT rank 1...1

rk

as the operator TT rank of A.

Obviously, the operator TT rank does not exceed the maximum component of vector TT rank.
The QTT rank estimates for a class of Laplacian related operators will be discussed in §3.5.3.
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3.5.2 Matrix exponential

We are interested in tensor representation of a matrix exponential exp(B), where B is a matrix that
is already presented in some Kronecker tensor-product format. For the (approximate) computation
of the matrix exponential, the traditional scaling-and-squaring method can be used, which is the
most suitable for rank-structured formats. The matrix B is first scaled by 1

2s with s ≈ log2 ||B||, so
that C := 1

2s ||B|| ≤ 1. Then for a scaled matrix C the exponent is computed by truncated Taylor
series

exp(C) ≈
p∑

k=0

Ck

k!
,

in p multiplications using a Horner rule: Ck = 1
kCk+1C + I, k = p− 1, p − 2, . . . , 1, 0, and Cp = I.

All multiplications are performed in a structured format (QTT format here) and the compression
is done at each step. After exp(C) = C0 is computed, the target exponent is obtained by squaring,

exp(B) = exp(C)2
s

,

in s ≈ log2 ||B|| steps. This iteration requires p+ s matrix-by-matrix multiplications with the sub-
sequent rank compression. In the case of rank-r QTT format the complexity is of order O(r6 logN)
operations, since after multiplication of two rank-r QTT matrices the result has, in general, the
TT ranks r2, and recompression requires O(r6 logN) operations. It is worth to note that the re-
compression step usually dominates over the multiplication step, since all mode sizes are equal to
4.

3.5.3 Elliptic operator and its inverse

Our basic example would be the finite difference negative d-Laplacian over uniform tensor grid. It
is known to have the Kronecker rank-d representation,

∆d = A⊗ IN ⊗ ...⊗ IN + IN ⊗A⊗ IN ...⊗ IN + ...+ IN ⊗ IN ...⊗A ∈ R
I⊗d×I⊗d

, (3.16)

with A = ∆1 = tridiag{−1, 2,−1} ∈ R
N×N , and IN being the N ×N identity.

Notice that for the canonical rank we have rankC(∆d) = d, while TT-rank of ∆d is equal to 2
for any dimension due to the explicit representation

∆d =
[
∆1 I

]
⋊⋉

[
I 0

∆1 I

]⊗(d−2)

⋊⋉

[
I

∆1

]
,

where the rank product operation “⋊⋉” is defined as a regular matrix product of the two corre-
sponding core matrices, their blocks being multiplied by means of tensor product (see [45]). The
similar bound is true for the Tucker rank rankTuck(∆d) = 2.

The explicit rank-4 QTT representation of ∆d for d ≥ 2 is obtained in [45], while for d = 1, we
have

∆1 =
[
I J ′ J

]
⋊⋉



I J ′ J

J
J ′



⊗(d−2)

⋊⋉




2I − J − J ′

−J
−J ′


 ,

with the Pauli matrices

I =

[
1 0
0 1

]
, J =

[
0 1
0 0

]
.

The analysis of the low QTT-rank approximations of elliptic operator inverse for d ≥ 2 is based
on certain assumptions on the QTT-rank of the matrix exponential family.
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Conjecture 3.14 For any given ε > 0, and for fixed a, b > 0, let us assume that the family of
matrix exponentials, {exp(−tk∆1)}, tk > 0, k = −M, ...,M , allows the QTT ε-approximation with
rank-r∆ being uniformly bounded in the grid size N and in the scaling factors tk ∈ [a, b] ⊂ R>0 (see
Table 3.3 for numerical justification).

With the previous assumption on the QTT-rank of the family of “univariate” matrix exponen-
tials, {exp(−tk∆1)}, tk > 0, ∆1 ∈ R

N×N , one can prove the following Lemma [55].

Lemma 3.15 Under assumptions of Conjecture 3.14 the matrix

BM :=

M∑

k=−M

ck

d⊗

ℓ=1

exp(−tkaℓ∆1), tk = ekh, ck = htk, h = π/
√
M, (3.17)

possesses the rank-O(log2 ε), QTT ε-approximation (or preconditioner if M is small) to the
anisotropic d-Laplacian inverse ∆−1

d,α, where

∆d,α :=
d∑

ℓ=1

aℓ

d⊗

k=1

∆
δℓ,k

1 , aℓ > 0, δℓ,k is the Kronecker symbol. (3.18)

The following Lemma summarize the previous discussion (see also [45]).

Proposition 3.16 The following canonical and TT/QTT rank estimates hold:
rankC(∆d) = d, rankTT (∆d) = 2, rankQTT (∆d) = 4, d ≥ 2.
rankQTT (∆1) = 3, rankQTT (∆−1

1 ) ≤ 5.
Given a ∈ R

N , then for d = 1, rankQTT

(
∇Tdiag{a}∇

)
≤ 7 rankQTT (a).

rankTT (∆−1
d ) ≤ rankC(∆−1

d ) ≤ C| log ε| logN for ε-rank.
rankQTT (∆−1

d ) ≤ C| log ε|2 logN for ε-rank.

Table 3.3 represents the average QTT-ranks in approximation of certain function related ma-
trices up to fixed tolerance ε = 10−5. Among others, it includes the important example of matrix
exponential (cf. Conjecture 3.14). As above, the matrix diag(f(‖x‖2)), x = (x1, x2), is a diagonal
matrix with diagonal entries obtained by sampling a function f(‖x‖2) over uniform grid points
situated on the line x1 = x2. One can observe that rank parameters are small, and depend very
mildly on the grid size.

N \ r e−α∆1 , α = 0.1, 1, 10, 102 ∆−1
1 diag(1/‖x‖2) diag(e−‖x‖2

)

29 6.2/6.8/9.7/11.2 6.2 5.1 4.0

210 6.3/6.8/9.5/10.8 6.3 5.3 4.0

211 6.4/6.8/9.0/10.4 6.2 5.5 4.1

Table 3.3: QTT2-matrix-ranks of N ×N -matrices for large N = 2p.

3.5.4 Fast multi-dimensional FFT and convolution in QTT format

d-dimensional FFT over N⊗d grid can be realized on the rank-k tensor with the linear-logarithmic
cost O(dkN log2N), due to the rank-1 factorized representation

F
(d)
N = (F

(1)
N ⊗ IN ...⊗ IN )(IN ⊗ F

(2)
N ...⊗ IN )...(IN ⊗ IN ...⊗ F

(d)
N ) ≡ F

(1)
N ⊗ ...⊗ F

(d)
N ,

where F
(ℓ)
N ∈ R

N×N represents the univariate FFT matrix along mode ℓ.
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Remark 3.17 Let each canonical vector in the target rank-k tensor contain only p ≤ N essen-
tial Fourier frequencies. Then the total cost of Q-FFT amounts to O(dpk logN) that is of order
O(dk logN) if p = O(1). The claim is justified by observation that each column (row) of 1D
FFT matrix has a rank-1 QTT image. Hence, the QTT representation can be derived first for the
columns of 1D FFT matrix and then substituted to the factorised tensor-product decomposition of

F
(d)
N . We conclude the argument by noticing that the complex (resp. real) Fourier harmonics have

QTT-rank equals to 1 (resp. 2).

Fourier and convolution transforms of N -d tensors in log-volume complexity, O(d log2N), can be
computed by using the QTT approximation as proposed in [20]. Direct convolution transform of
N -d tensors in O(d logN) operations using the explicit QTT representation of multilevel Toeplitz
matrices is developed in [46] (see also the discussion in [31]).

4 O(d log N)-solvers for elliptic/parabolic problems

In the present section, we show how the Tucker and QTT approximation method can be applied
in the framework of truncated iteration for solving certain elliptic/parabolic equations in higher
dimensions, and providing log-complexity scaling in the volume size Nd. The construction of such
methods is based on the fact that solutions of some classes of boundary-value/eigenvalue problems
are well approximated in the canonical, Tucker and quantics-TT formats.

We follow the concept of approximate (truncated) iteration based on use of the rank-structured
tensor representation of matrix-vector operations in the framework of preconditioned iterative
solvers (cf. [53, 37, 54]).

4.1 Tensor-truncated iteration for linear elliptic systems

Consider the model discrete elliptic problem of stationary type,

LU ≡ (D + V)U = F, U ∈ R
I , (4.1)

where D ∈ R
I×I represents the elliptic diffusion operator, −∇a(x)∇, defined on tensor-product

domain in R
d, and a matrix V ∈ R

I×I, represents some physically relevant potential. We assume
that a∆d ≤ D + V ≤ b∆d, for some a, b > 0. Moreover, matrices D and V are supposed to have a
low-rank Kronecker S-tensor representation.

Example 4.1. The solution of the discrete Poisson equation in R
d,

∆dU = F with rank-1 r.h.s. F = ⊗d
ℓ=1fℓ, fℓ ∈ R

N , (4.2)

is (approximately) represented in the rank-(2M + 1), canonical tensor format,

U = ∆−1
d F ≃ UM :=

M∑

k=−M

ck

d⊗

ℓ=1

exp(−tk∆1) fℓ, (4.3)

providing the exponential convergence rate in the rank parameter (see sinc-approximation in [25]),

∥∥∆−1
d F − UM

∥∥ ≤ Ce−π
√

M‖F‖.

Hence, the low-rank QTT-representation of the univariate vectors fℓ implies the existence of the
low QTT-rank solution UM .

22



Lemma 4.1 Under the choice M = C log2 ε, representation (4.3) approximates the exact solution
U in (4.1) up to the relative tolerance ε > 0. This representation has the storage complexity
O(d rankQTT (∆1) log2 ε logN).

For the linear system (4.1) the simple truncated preconditioned iteration takes the form

U0 ∈ S : Ũm+1 = Um − B(LUm − F ), Um+1 := TS(Ũm+1), m = 0, 1, ....

The preconditioner B = BM can be chosen as inverse of the shifted anisotropic Laplacian. The
truncated preconditioned iteration as above can be applied (with the respective modification of
the matrix L) to the numerical problems arising in FEM/BEM applications, in quantum chemistry
(calculation of the Hartree potential), as well as in the implicit time-stepping schemes in financial
mathematics (the Black-Schole equation), and in many-particles dynamics (the master and Fokker-
Planck equations).

Table 4.1 presents the average QTT2-ranks of the finite difference solution to the Poisson equa-
tion in the unite cube in R

d, up to the tolerance ε = 10−5,

∆dU = F ∈ R
N×...×N , considered on large N × ...×N︸ ︷︷ ︸

d

uniform grids

with N = 2p, and for d = 25, 50, 100, 200. We study the case F = 1, that corresponds to the non-
separable solution with weak singularities at the edges and corner points (non-analytic solutions),
requiring large spacial grids to provide higher resolution. The CPU time (sec.) is presented,
that does not count the (problem independent) preprocessing cost required to compute the QTT2

representation of 1D matrix exponentials, {exp(−tk∆1)}, tk > 0, k = −M, ...,M , of size N × N
(the latter can be precomputed once and stored).

N \ d 25 50 100 200
r time r time r time r time

27 10.0 0.0124 8.0 0.023 7.8 0.047 5.2 0.089

28 10.1 0.015 8.2 0.026 6.4 0.05 5.1 0.1

29 10.2 0.016 8.2 0.03 6.4 0.06 5.1 0.12

210 10.2 0.0177 8.4 0.03 6.4 0.061 5.0 0.127

Table 4.1: QTT2-ranks for solution of the Poisson equation on large N⊗d grids, N = 2p.

One observes the systematic decay of the average rank parameter r, in the growing dimension
d, with stabilization to the small value about several ones. It is worth to note that the CPU
computing time increases only logarithmically in the grid size N and linearly in d, as predicted by
the theory: The total numerical cost is estimated by O(d log ε−1 logN).

For the loading vector F , corresponding to the R-term sum of trigonometric functions, the QTT-
rank is estimated by r ≤ R, again leading to the log-log computational cost O(dR log ε−1 logN).

Example 4.2. (Tensor-truncated solvers in the case of parameter-dependent coefficients). Con-
sider a class of high dimensional parametric elliptic problems, arising, for example, in stochastic
PDEs (parameter-dependent coefficients in L, [88, 64]). The governing equation is formulated as
follows: Given an elliptic operator

A := −divx (aM (y, x)gradx) and f ∈ L2 (D) , D ∈ R
d, d = 1, 2, 3,
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where the coefficient aM (y, x) is smooth in x ∈ D, y = (y1, ..., yM ) ∈ Γ := [−1, 1]M , M ≤ ∞. Find
uM ∈ L2(Γ) ×H1

0 (D), such that

AuM(y, x) = f(x) in D, ∀y ∈ Γ,
uM (y, x) = 0 on ∂D, ∀y ∈ Γ.

In the simplest case of random field that is linear in the stochastic variable (additive case), we have

aM (y, x) := a0(x) +
M∑

m=1

am(x)ym, M → ∞, (4.4)

am ∈ L∞(D), m = 0, ...,M , obtained via the truncated Karhunen-Loéve expansion [88]. In the
so-called log-additive case the coefficient is given by

aM (y, x) := e
a0(x)+

M
P

m=1

am(x)ym

. (4.5)

In discretizations of diffusion problems with random input, the dimension M of the parameter
space could become arbitrarily large. Concerning the coefficient function aM (y, x), we assume that
there exists amin > 0, such that (see [64]),

(A) amin ≤ a0(x) <∞,

(B)

∣∣∣∣
M∑

m=1
am(x)ym

∣∣∣∣ ≤ γamin with γ < 1, and for |ym| < 1 (m = 1, ...,M).

In the case d = 1, under some technical assumptions, we are able to derive an estimate on the
separation rank in variables y1, ..., yM , in the weakly coupled format,

gradxuM (y, x) ≈
K∑

k=−K

f
(1)
k (y1, x) · · · f (M)

k (yM , x), (4.6)

that separates terms in coupled variables zm = (ym, x) ∈ [−1, 1] × R
d (m = 1, ...,M).

Denote by v = (−∆−1
x )f the solution of the associated Poisson equation in D, introduce

the waiting coefficients σm = ‖am‖/(∑M
m=1 ‖am‖) > 0, and define the reassembled coefficients

bm(ym, x) = σma0(x) + am(x)ym, (m = 1, ...,M).

Proposition 4.2 Assume that d = 1, gradxuM (y, x) ∈ C(D) for all y ∈ Γ, gradxv(x) ∈ C(D),
bm(ym, x) ≥ 0, and let conditions (A), (B) above be valid. Then, in the additive case, there exist
positive constants ck, tk ∈ R, such that

∥∥∥∥∥gradxuM (y, x) −
K∑

k=−K

ck

M∏

m=1

e−tkbm(ym,x)(gradxv(x) + C0)

∥∥∥∥∥
L∞

≤ Ce−βK/ log K ,

where C, β > 0 do not depend on M and K. In log-additive case, the above expansion is exact with
K = 0.

Proof. Our assumptions imply the pointwise equality

gradxuM (y, x) =
1

aM (y, x)
(gradxv(x) + C0), x ∈ D, y ∈ Γ,
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where the reciprocal coefficient 1
aM (y,x) = (

M∑
m=1

bm(ym, x))
−1 can be separated by the (2K+1)-term

sinc-quadrature, with the exponential convergence in the number of terms (similar to [33, 64]).
Proposition 4.2 leads to the constructive rank-(2K + 1) approximation of gradxuM (y, x) in the

weakly coupled format (2.3), and it opens the way to the design of direct QTT-truncated solver for
the class of elliptic problems with parameter-dependent coefficients for d = 1. In fact, the solution
uM (y, x) can be obtained at any collocation point by N0-term quadrature including the weakly
separable representation of gradxuM (y, x) that leads to the complexity estimate O(M(2K+1)N0N),
where N is the disretization parameter in the variables ym (linear scaling in M). In the log-additive
case (4.5), the previous result remains valid with K = 0 since the reciprocal coefficient is separable
with rank one. This lead to the complexity bound O(MN0N).

In the case d ≥ 2 this construction can be used as the rank-structured preconditioner (see [18]
on the efficient preconditioning in the canonical format).

Notice that the rank estimate for the Tucker-type approximation of uM (y, x) in (M + 1)-
dimensional space can be derived based on the analyticity results in [10].

We end up with numerical illustrations. For this application a fully separable low-rank canonical
approximations are constructed in (M + 1)-dimensional tensor space [64], where the d-dimensional
physical variable enters the tensor space as a single argument. S-truncated preconditioned iteration
applies to solving discrete sPDE in the form

L(J)U(J) = F, J ∈ R
J1×...×JM ,

leaving on the huge index set of size N⊗(M+1). Both the solution vector U = U(J), and the
stochastic-FEM system matrix L = L(J) depend on J ∈ R

J1×...×JM discretizing the continuous
multi-parameter y ∈ Γ.

In the following example, presented in [64], we choose d = 1, M = 20, S = CR, and B := L(0)−1.
Figure 4.1 illustrates numerics in the case of variable coefficients with exponential decay (α = 1,
N = 63, R ≤ 5),

am(x) = 0.5 e−αmsin(mx), m = 1, 2, ....,M, x ∈ (0, π).

Numerical results for sPDEs based on QTT and hierarchical formats are presented in [62, 66].
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Figure 4.1: Rank approximation (left) and convergence of S-truncated iteration (right).
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4.2 Spectral problems

We proceed with the spectral problem as follows,

LU ≡ (∆d + V)U = λU, U ∈ R
I . (4.7)

The example on existence of low QTT-rank solutions of eigenvalue problems can be observed in
the case of d-Laplacian.

Example 4.3. The eigenvectors Ui, i ∈ I⊗d, of the algebraic eigenvalue problem

∆dU = λU, U ∈ R
I ,

are exactly in the rank-2 quantics tensor format with the oscillating trigonometric canonical vectors,

Ui =
d⊗

ℓ=1

sin(iℓxℓ). Lemma 3.6,(B) allows us to verify this representation in the rank-2, q-quantics

format for any q = 2, 3, ....
Solving the spectral problem (4.7) in the rank structured format S can be realized via the

tensor-truncated preconditioned inverse iteration as follows,

U0 ∈ S : Ũm+1 = Um − B(LUm − µmUm), Um+1 := TS(Ũm+1),

Um+1 : Um+1/‖Um+1‖, µm+1 = (LUm+1, Um+1), m = 0, 1, ....

The preconditioner B = BM can be chosen as inverse of the shifted Laplacian (see [37, 54] for more
details).

Alternatively, one can apply the tensor-truncated Green function iteration that takes the form
(cf. [53] and references therein)

Ũm+1 = (∆d − EmI)
−1VUm, Um+1 := TS(Ũm+1), Um+1 :=

Um+1

||Um+1||
,

and Em+1 is updated at each step as a Rayleigh quotient, Em+1 = 〈LUm+1, Um+1〉.
Example 4.4. In the case of Schrödinger equation for hydrogen atom,

(−1

2
∆ − 1

‖x‖)u = λu, x ∈ R
3, u ∈ H1(R3), (4.8)

the physically relevant eigenpair with minimal eigenvalue is given by u1(x) = e−‖x‖, λ1 = −0.5,
where both e−‖x‖ and 1

‖x‖ , can be proven to provide accurate approximation in the low rank binary

folding format, due to Lemma 3.8, and applying the sinc-quadrature approximation in [49, 53, 4]
(see Tables 3.2 and 4.3 for numerical examples). The particular numerical illustrations on the
truncated Green function iteration for the equation (4.8) are presented in Table 4.2, see [61] for
more details. We use N ×N ×N -grid, and demonstrate the O(logN) CPU-time scaling.

N Time for 1 iter. Iter. Eigenvalue error
27 8.5 8 6.1e-03
28 13 8 1.5e-03
29 18 8 4.0e-04
210 25 8 1.0e-04

Table 4.2: Schrödinger equation for hydrogen atom, M = 20.
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The tensor truncated iteration can be applied, with the respective modification to the nonlinear
case, L = L(U), arising in the spectral problems in electronic structure calculations (the Hartree-
Fock and Kohn-Sham equations).

Example 4.5. The Hartree-Fock (HF) equation for determination of the ground state of
a molecular system consisting of M nuclei and N electrons is given by the following nonlinear
eigenvalue problem in L2(R3),

(FΦφi)(x) = λi φi(x),

∫

R3

φi(x)φj(x) dx = δij , i, j = 1, ..., N , (4.9)

with FΦ being the non-linear Fock operator

FΦ(·) := −1

2
∆(·) −

M∑

ν=1

Zν

‖x−Aν‖
(·) + VH(x)(·) + VE(·) ,

where the Hartree potential is defined by VH(x) :=
∫

R3

τ(y,y)
‖x−y‖ dy, and the nonlocal exchange operator

is given as VEφ := −1
2

∫
R3

τ(x,y)
‖x−y‖φ(y) dy. Here, 1/‖ · ‖ : R

3 → R corresponds to the Newton potential,

and Zν ∈ R+, Aν ∈ R
3 (ν = 1, ...,M) specify charges and positions of M nuclei. The electron

density matrix τ : R
3 × R

3 → R, is given by τ(x, y) = 2
∑N

i=1 φi(x)φ
∗
i (y).

Note that both exchange and the Hartree potentials include the 3D convolution transform
with the Newton convolving kernel, that has to be computed at each step of the iterations on
nonlinearity. Hence these terms represent the most complicated part in the numerical treatment
of the Hartree-Fock equation. Efficient tensor-structured methods to compute these operators are
presented in [52, 57, 58].

In this case, instead of truncated preconditioned inverse iteration, one can employ the S-
truncated Krylov subspace-type iteration (the so-called DIIS iteration [9, 82]) applied to the
Galerkin system in the problem adapted basis, (see [58]), leading to the numerical cost O(N logN).
Figure 4.2 (left) shows convergence of the SCF iteration for all electron case of H2O. This chal-
lenging problem is solved efficiently by the multigrid-accelerated tensor method [57, 58] that made
possible calculations on large 3D Cartesian grids up to the volume size N = 81923. Figure 4.2
(right) shows convergence of the HF energy for the corresponding grid levels.

Numerical illustrations on the QTT approximation of functions and operators arising in the
solution of Hartree-Fock equation are given in Table 4.3. It illustrates the low QTT-rank approx-
imability of the Newton potential 1/‖x‖, in R

3, the electron density ρ(x) = τ(x, x), x ∈ R
3, and the

Hartree potential, VH := 1/‖x‖ ∗ ρ, of CH4 molecule discretized over large N ×N ×N spatial grid,
and computed in [57] by the multigrid Tucker-canonical decomposition. In all cases the approxi-
mation accuracy ε = 10−6 in the QTT-format is achieved. In Table 4.3, Hartree(S) and Hartree(F)
correspond to the middle N × N matrix slice and to the full N × N × N -array representing the
discrete Hartree potential, respectively.

N 128 256 512 1024

1/‖x‖ 13.8 16.0 17.5 18.0

ρ(x) 32.0 40.0 45.8 48.6

Hartree(S) 13.7 14.2 14.2 13.9

Hartree(F) 32.1 34.9 20.2 28.2

Table 4.3: QTT2-ranks of 1/‖x‖, the Hartree potential, and electron density of CH4.

27



5 10 15
10

−6

10
−4

10
−2

10
0

iterations

residual in HF EVP, all electron case H
2
O

128 256 512 1024 2048 4096 8192
10

−4

10
−3

10
−2

10
−1

10
0

10
1

univariate grid size

Figure 4.2: Multilevel convergence of the tensor-truncated SCF iteration applied to the all electron
case of H2O (left), and the energy error vs. N (right).

We conclude that QTT-ranks of the Newton and Hartree potentials are rather small and increase
merely logarithmically in N , ensuring O(logN) scaling. In turn, the QTT-rank of the electron
density ρ, has the tendency to approach the canonical rank of the respective density tensor.

This numerics indicates the way toward solving the nonlinear Hartree-Fock equation in quantics
tensor format with the almost grid-independent computational cost O(log ε−1 logN), that may
provide the tool to efficient ab initio numerical grid-based simulation of large molecules.

4.3 Parabolic equations

Consider the transient semi-discrete equation of parabolic type,

U(0) ∈ R
I :

∂U

∂t
+ LU = 0, U(t) ∈ R

I , t > 0, (4.10)

with L = ∆d + V(t), where the matrix V ∈ R
I×I may represent certain interaction potential.

Commonly used solvers are based on spectral decomposition of L and then treating dynamics
explicitly. We discuss some alternative approaches.

Example 4.6 (Iterative solvers with time-stepping). The simple truncated implicit integrator
(say, the Euler scheme) takes the form (the scheme of better choice, say Crank-Nicolsol scheme,
can be used),

U0 = TS(U(0)) : Ũm+1 = (I + τmL)−1Um, Um+1 := TS(Ũm+1), m = 0, 1, ... (4.11)

with time stepping parameter τm > 0, where the action of inverse matrix can be implemented as
the solution of the stationary equation (4.1) with F = Um, and with singularly perturbed elliptic
operator Lm = τ−1

m I + L, and with the initial guess taken from the previous time step. At this
point also the ALS and DMRG type preconditioned iteration can be applied [19].

In the case of unbounded domains, the low tensor rank preconditioner can be chosen as inverse
of the translated Laplacian with positive shift (separable approximation to the Yukawa type Green
kernel), that is proven to have the low canonical rank approximation [53, 54]. In the case of finite
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Figure 4.3: Absolute error in the Coulomb matrix of C2H6, 81923-grid (left); Absolute error of the
exchange matrix for the pseudopotential case of CH3OH on the n× n× n grid, n = 1024.

computational domain, one can apply the rank-(2M + 1) preconditioner like (3.17) in the form,

BM :=

M∑

k=−M

ck

d⊗

ℓ=1

exp(−tk(
1

dτm
In + ∆ℓ)), (4.12)

providing exponentially convergent in M approximation of Lm.
The tensor truncated implicit integrator described above can be applicable to the transient

Hartree-Fock model (cf. [2, 68]), the heat transfer equation, to the time-dependent Stocks and
Navier-Stockes equations in fluid dynamics, to the multidimensional Black-Schole equation of fi-
nancial mathematics, as well as to the deterministic/stochastic equations of chemical kinetics (the
chemical master and Fokker-Planck equations).

Example 4.7 (Direct tensor approximation of the solution operator). In the case of heat
equation the formal representation of the matrix exponential family

U(t) = e−LtU0 ≈ TS(e−Lt)U0, t ≥ 0,

provides mean for application of the tensor-structured (say in QTT format) matrix exponential to
each fixed t > 0, described in Section 3.5.2 (scaling-and-squaring method with tensor truncation).
This approach allows a considerable coarsening in the time stepping, reducing the number of grid
points in the time domain to O(log T ), to compute the solution at t = T . In the case of moderate
T the time stepping can be avoided completely.

Example 4.8 (Molecular dynamics without time stepping). Important example in molecular
dynamics is given by the Schrödinger equation for the motion of d nuclei obtained from the Born-
Oppenheimer approximation (see [68] for more detail),

i
∂ψ

∂t
= Hψ, H = T + V, ψ(0) = ψ0, (4.13)

with kinetic energy T = −
d∑

n=1

~2

2Mn
∆xn and a potential V = V (x1, ..., xd), xℓ ∈ R

3 (ℓ = 1, ..., d)

being an approximation to an electronic potential energy surface E(x1, ..., xd).
The explicit solution operator e−iHt could not be approximated by QTT -matrix exponential

with uniform bound on the TT-ranks.
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To get rid of this problem we introduce the operator regularization scheme Σp = H−pe−iHt,
Up = HpU(x, 0), p ≥ 1, leading to stable QTT approximation,

U(x, t) = e−iHtU(x, 0) ≈ (TSΣp)TSUp, t ≥ 0.

For the numerical example, we consider 1D quantum harmonic oscillator, V (x) = 1
2‖x‖2, propagat-

ing the wave packet (exact eigenfunction) by Un(x)e−i(n+1/2)t on level n = 0, with d = 1, T = 1.0,
ε = 10−6, p = 2, and with spatial grid-size N . Denote the average rank by rankQTT . The next
table indicates that QTT-ranks of both initial wave packet and the resultant solutions are about
several ones.

N rank(H−pcos(HT )) rank(H−pcos(Ht)Up) rank(Up)
28 33.8 3.7 4.7
29 33.2 3.7 4.7
210 32.5 3.6 4.9

The computational cost is bounded by = O(log T logN).
Results on spectral calculations for high-dimensional Hamiltonians in (4.13) by using the implicit

integrators via GMRES and DMRG solvers will be presented in forthcoming paper.

5 Conclusions

In the present survey, we discuss the prospects of tensor-structured data formats as the basic
numerical tools for applications in high-dimensional scientific computing.

We address the traditional canonical, Tucker and mixed models as well as the matrix product
states formats in the form of tensor train expansion. Then we present the modern O(d logN)-
complexity quantics-TT (QTT) approximation method applied to high-order N -d tensors. In our
applications these tensors arise as the grid representation of physically relevant functions and
operators in R

d. The idea of QTT method is based on the folding of initial N -d tensor to the
auxiliary higher dimensional space of q-D tensors with D = d logq N and q = 2, 3. The rigorous
analysis on the low-rank quantics-TT tensor approximation to the class of function related N -
d arrays, indicates the log-log complexity scaling, O(d log ε−1 logN), in both the grid size and
numerical precision ε > 0. The nonlinear QTT tensor approximation can be implemented on the
base of stable, QR/SVD algebraic decompositions with controlled accuracy ε > 0.

It is described how the mixed Tucker-canonical and QTT approximation methods can be applied
in the framework of truncated iteration for solving certain classes of elliptic/parabolic equations in
higher dimensions with log-scaling in the basic discretisation parameters. In particular, the QTT
method can be applied to electronic structure calculations, molecular dynamics, stochastic PDEs
and in the traditional FEM/BEM modeling in R

d.
Various numerical tests illustrate the high compression rate provided by the quantics-TT

method applied to multidimensional data arrays arising in the traditional FEM calculations, in
numerical quantum chemistry and in stochastic PDEs.

We hope that the mixed Tucker-canonical model combined with the QTT numerical methods
will open the new prospects for developing reliable and robust computational schemes in higher
dimensions that are free from the “curse of dimensionality” and noticeable limitations on the
univariate grid-size.
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[89] N.D. Sidiropoulos, Generalized Carathéodory’s Uniqueness of Harmonic Parametrization to N
Dimensions. IEEE Trans. Inform. Theory, 47 (2001) 1687-1690.

[90] A. Smilde, R. Bro and P.Geladi. Multiway analysis. Wiley, 2004.

[91] F. Stenger: Numerical methods based on Sinc and analytic functions. Springer-Verlag, 1993.

[92] V.N. Temlyakov, Nonlinear methods of approximation. Foundation of Comp. Math., Springer,
2008.

[93] E.E. Tyrtyshnikov: Kronecker-product approximations for some function-related matrices. Lin-
ear Algebra Appl. 379 (2004), 423–437.

[94] E.E. Tyrtyshnikov, Tensor approximations of matrices generated by asymptotically smooth
functions, Sbornik: Mathematics 194, No. 5-6 (2003), 941–954.

[95] R.-A. Todor, and Ch. Schwab: Convergence rate for sparse approximation of elliptic problems
with stochastic coefficients. IMA J. of Numer. Anal. (2007) 27, 232-261.

[96] L.R. Tucker, Some mathematical notes on three-mode factor analysis. Psychometrika 31 (1966)
279-311.

[97] F. Verstraete, D. Porras, and J.I. Cirac, DMRG and periodic boundary conditions: A quantum
information perspective. Phys. Rev. Lett., 93(22): 227205, Nov. 2004.

[98] G. Vidal, Efficient classical simulation of slightly entangled quantum computations. Phys. Rev.
Lett. 91(14), 2003, 147902-1 147902-4.

36



[99] H. Wang, and M. Thoss, Multilayer formulation of the multiconfiguration time-dependent
Hartree theory. J. Chem. Phys. 119 (2003), 1289-1299.

[100] S.R. White, Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B,
v. 48(14), 1993, 10345-10356.

[101] H. Yserentant, The hyperbolic cross space approximation of electronic wavefunctions. Numer.
Math., 105 (2007) 659-690.

[102] N.Zamarashkin, I.Oseledets, E.Tyrtyshnikov, The tensor structure of the inverse of a banded
Toeplitz matrix, Doklady Mathematics, vol. 80, no. 2 (2009), pp. 669–670.

[103] T. Zhang, and G.H. Golub, Rank-one approximation to high order tensors. SIAM J. Matrix
Anal. Appl. 23 (2001), 534-550.

37


