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Abstract

We present several well-posed, well-conditioned integral equation formulations for the so-
lution of two-dimensional acoustic scattering problems with Neumann boundary conditions in
domains with corners. We call these integral equations Direct Regularized Combined Field In-
tegral Equations (DCFIE-R) formulations because (1) they consist of combinations of direct
boundary integral equations of the second-kind and first-kind integral equations which are pre-
conditioned on the left by coercive boundary single-layer operators, and (2) their unknowns are
physical quantities, i.e the total field on the boundary of the scatterer. The DCFIE-R equations
are shown to be uniquely solvable in appropriate function spaces under certain assumptions on
the coupling parameter. Using Calderón’s identities and the fact that the unknowns are bounded
in the neighborhood of the corners, the integral operators that enter the DCFIE-R formulations
are recast in a form that involves integral operators that are expressed by convergent integrals
only. The polynomially-graded mesh quadrature introduced by Kress [28] enables the high-order
resolution of the weak singularities of the kernels of the integral operators and the singularities
in the derivatives of the unknowns in the vicinity of the corners. This approach is shown to
lead to an efficient, high-order Nyström method capable of producing solutions of sound-hard
scattering problems in domains with corners which require small numbers of Krylov subspace
iterations throughout the frequency spectrum. We present a variety of numerical results that
support our claims.

Keywords: acoustic scattering, combined-field integral equations, geometric singularities.

1 Introduction

Numerical methods for the solution of acoustic two-dimensional homogeneous scattering problems
which are based on integral equation formulations possess certain advantages over their volumetric
counterparts. These advantages include not only the obvious reduction in dimensionality that is
achieved from posing the scattering problems on the one-dimensional boundary of the scatterers,
but also the built-in enforcement of the radiation conditions through choices of outgoing Green’s
functions. Among the numerical methods that use boundary integral equation formulations, the
ones that employ Nyström discretizations are particularly attractive owing to the reduced number
of evaluations of Green’s functions and the high-order convergence rates that can be achieved.
In a nutshell, in the case of one-dimensional smooth boundaries, Nyström methods use global
approximations of the unknowns and high-order quadrature rules to integrate weakly singular
functions (i.e. singular but integrable) against smooth densities. The case of non-smooth boundaries
is more complicated as the densities and/or their derivatives are singular and some of the kernels
of the boundary integral operators are no longer weakly singular. These obstacles were overcome
in the case of acoustic scattering problems with Dirichlet boundary conditions [19] through the use
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of integral equations whose solutions are Hölder continuous, so that polynomially-graded meshes
can resolve to high order the singularities in the derivatives of the solutions. In this paper we
present (a) several well-posed, well conditioned integral equation formulations for the solution of
two-dimensional acoustic scattering problems with sound-hard boundary conditions for domains
with corners and (b) a high-order Nyström method to obtain rapidly convergent solutions of these
integral equations. To the best of our knowledge, a Nyström method counterpart for the case
of Neumann boundary conditions has not been available, partly because of a host of additional
difficulties that we outline next.

In order to ensure that the solutions of the integral equation formulations of scattering problems
coincide with solutions to the differential formulations of these problems, the former must be
uniquely solvable. A wide class of integral equation formulations typically referred to as Combined
Field Integral Equations (CFIE) [13, 19] share the unique solvability property. However, CFIE
formulations for scattering problems with Neumann-boundary conditions (i.e the sound-hard case)
involve hyper-singular operators which resemble, in spirit, differentiation and consequently the
eigenvalues of the integral operators that enter these formulations accumulate at infinity. The
situation is further complicated by the singular behavior of the solutions of such equations in
the presence of corners: depending on the integral equation formulation, the solutions or their
derivatives may be singular (unbounded) in a neighborhood of the corner [9, 23, 41, 42].

Our approach to design a high-order Nyström method for the solution of acoustic scattering
problems with sound-hard boundary conditions for domains with corners is based on combination
of a suitable version of our recently introduced Regularized Combined Field Integral Equations
(CFIE-R) [7, 8] and the polynomially-graded mesh quadrature introduced in [28]. To this end, we
use direct integral equation formulations that result from applications of the Green’s formulas and
pose the scattering problem in terms of a physical unknown—that is the total field on the boundary
of the scatterer. A key advantage of such formulations is that the total field can be shown to be
Hölder continuous (and therefore bounded) in the neighborhood of corners [9, 41].

We obtain Direct Regularized Combined Field Integral Equations (DCFIE-R) by combining
compositions of direct integral equations of the first and second kind with suitably defined sin-
gle layer operators that effectively act as regularizing operators. The regularization strategy is
motivated by and directed towards (a) Stabilizing the differentiation effect of the hypersingular
operators and (b) Obtaining uniquely solvable integral equations with superior spectral properties.
The unique solvability and favorable spectral property in part (b) are established in the framework
of Fredholm theory; to the best of our knowledge, we believe that this is the first proof of such
properties for integral equations for sound-hard problems in domains with corners. The proof of the
Fredholm property of the operators in the DCFIE-R formulations is based on the Fredholm property
of boundary integral operators associated to Laplace’s equations in Lipschitz domains [17, 25, 40]
and the fact that the differences between the acoustic boundary integral operators and their Laplace
counterparts are compact [15, 35]. Based on the Fredholm property of the DCFIE-R operators, we
show that the unique solvability property is a consequence of a certain coercivity property enjoyed
by the regularizing operators that we use. Furthermore, unlike the classical CFIE formulations, our
approach bypasses the evaluation of hypersingular operators in the DCFIE-R formulations through
the use of Calderón’s identities. The methodology that we present in this paper can be extended
to the case of sound-hard scattering problems in three dimensions, and the implementation of such
strategy is currently underway [3].

The idea of using regularizing operators in the boundary integral equations for acoustic scatter-
ing from sound-hard obstacles was originally proposed as a theoretical tool in [12, 19, 37] for the case
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of smooth boundaries. Specifically, the scattered fields are represented in the form of combinations
of single layer potentials and double layer potentials that act on the regularizing operators, so that
the resulting integral operators have bounded spectra. A variety of regularizing/preconditioning
strategies of a similar flavor have since been proposed in order to improve the conditioning of
boundary integral equations for sound-hard scattering applications [2, 4, 5, 16, 31], yet none of these
works addresses directly the case of domains with corners. In the case of Lipschitz domains, a dif-
ferent kind of regularizing technique was introduced in [10, 11] with the goal of obtaining coercive
boundary integral formulations for acoustic scattering problems. In contrast with the regularizing
techniques introduced in [2, 4, 5, 12, 16, 19, 31, 37], the regularizing operators proposed in [10, 11] act
on the single layer operators, and the integral equations that are obtained are first-kind integral
equations.

The numerical implementation of the Direct Regularized Combined Field Integral Equations fol-
lows the methodology of the Nyström algorithms introduced in [28, 29]. Specifically, our algorithm
is based on global trigonometric approximations of the densities, polynomial changes-of-variables,
and analytic integration of the most singular part of the kernels of the acoustic integral boundary
layer against the Fourier harmonics. The use of the regularizing operators in conjunction with the
Calderón’s identities bypasses entirely the need to evaluate hypersingular operators. The double-
layer operators, on the other hand, whose kernels are singular are recast into a form that involves
two parts: one with integrable quantities whose integrals can be evaluated very accurately using the
polynomial change of variables and another part which can be evaluated exactly, just as in [28]. We
present numerical results for domains with convex and concave corners, various incident fields and
frequencies. The DCFIE-R formulations are well-conditioned and their solutions exhibit high-order
convergence under Nyström discretizations.

The paper is organized as follows: in Section 2 we introduce and briefly derive our Direct
Regularized Combined Field Integral Equations, in Sections 3 we present the numerical algorithm,
while numerical results are presented in Section 4.

2 Regularized Combined Field Integral Equations

We are interested in the time-harmonic acoustic scattering problem for a two-dimensional sound-
hard obstacle that occupies a bounded domain D ⊂ R

2, with boundary Γ which is a Lipschitz
curve. Given an incident field ui, defined throughout R

2, we seek a scattered field us satisfying the
Helmholtz equation outside D,

∆us + k2us = 0 in Dc = R
2 \D ,

∂us

∂n
= −∂u

i

∂n
on Γ , (1)

together with the radiation conditions

lim
r→∞

√
r

(

∂us

∂r
− ikus

)

= 0 , r = |x| . (2)

In the equations above, the normal derivative operator can be understood in the sense of the
Neumann trace, i.e. the operator ∂

∂n
: {u : u ∈ H1

loc(D
c), ∆u ∈ L2

loc(D
c)} → H− 1

2 (Γ) which

satisfies ∂v
∂n

= ∇v · n for smooth functions v ∈ C∞(D̄c), where n is the almost everywhere defined
unit normal to the curve Γ pointing into Dc. In practice, the given incident field also satisfies the
Helmholtz equation as well: ∆ui+k2ui = 0 inD, Dc or R

2. Existence and uniqueness of the solution
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to the scattering problem (1)-(2) has been shown to hold in {u : ∆u ∈ L2
loc(D

c)}∩H1
loc(D

c) [34, 35]

for boundary data ∂ui

∂n
∈ H− 1

2 (Γ).
We denote by Gk the outgoing free-space Green’s function

Gk(z) =
i

4
H

(1)
0 (k|z|) , (3)

and by R1,R2 two regularizing operators to be defined later. By construction, any function U of
the form

U(z) =

∫

Γ
Gk(z − y)[R1φ](y)ds(y) + iη

∫

Γ

∂Gk(z − y)

∂n(y)
[R2φ](y)ds(y) , z /∈ Γ , (4)

for some suitable density φ, satisfies the Helmholtz equation in R
2 \ Γ as well as the radiation

condition (2). Were we to seek us in this form we would see, by taking its Neumann trace and
using the standard jump conditions [20], that φ must satisfy the boundary integral equation

[Aφ](x) = −∂u
i(x)

∂n(x)
a.e. on Γ , (5)

[Aφ](x)
.
=
[(

(−I/2 +K ′
k) ◦ R1 + iηNk ◦ R2

)

φ
]

(x) , (6)

where K
′

k denotes the Neumann trace of the acoustic single-layer operator,

(K
′

kφ)(x) = PV

∫

Γ

∂Gk(x − y)

∂n(x)
φ(y)ds(y), x on Γ , (7)

andNk denotes the Neumann trace of the double-layer potential on Γ, whose kernel can be expressed
as [19]

∂2Gk(x − y)

∂n(x)∂n(y)
= −∂

2Gk(x − y)

∂t(x)∂t(y)
+ k2Gk(x − y)n(x) · n(y) . (8)

Here and elsewhere ∂/∂t denotes the tangential derivative on Γ, where t = (−n2, n1) for n =
(n1, n2). We note that the classical CFIE [13] amounts to taking Ri = I, i = 1, 2 in equations (5).
We remark that all integral equations in Section 2 hold a.e. on Γ, yet we will omit mentioning this
for each occurence.

Alternatively, assuming that the incident field satisfies ui ∈ C∞(D̄) and ∆ui + k2ui = 0 in D,
and taking into account the regularity of the radiative solution us to the Helmholtz equation (1),
i.e. us ∈ H1

loc(D
c) and ∆us ∈ L2

loc(D
c), the application of Green’s formulas [20, 22, 34] yields

us(z) =

∫

Γ

(

∂Gk(z − y)

∂n(y)
us(y) −Gk(z − y)

∂us(y)

∂n(y)

)

ds(y) , (9)

0 =

∫

Γ

(

∂Gk(z − y)

∂n(y)
ui(y) −Gk(z − y)

∂ui(y)

∂n(y)

)

ds(y) , (10)

for z ∈ R
2 \D. Combining (9) and (10), and recalling the boundary condition in (1), we obtain

us(z) =

∫

Γ

∂Gk(z − y)

∂n(y)
u(y)ds(y) , (11)
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where u = u|Γ = us + ui is the Dirichlet trace of the total field u on Γ. Taking the Dirichlet
and Neumann traces of (11), together with the standard jump-relations [19, 20, 34], we obtain the
boundary integral equations

u(x)

2
− (Kk u)(x) = ui(x) and − (Nk u)(x) =

∂ui(x)

∂n(x)
on Γ , (12)

where Kk denotes double-layer potential on Γ defined as a Cauchy Principal Value integral:

(Kkφ)(x) = PV

∫

Γ

∂Gk(x − y)

∂n(y)
φ(y)ds(y) on Γ . (13)

Taking a cue from the derivation of the formulations (5), we combine regularized versions of the
equations in (12), resulting in

[A′u](x) = [R1u
i](x) + iη

[

R2
∂ui

∂n

]

(x) on Γ , (14)

[A′u](x)
.
= [(R1 ◦ (I/2 −Kk) − iηR2 ◦Nk)u] (x) . (15)

We are primarily interested in the DCFIE-R (14) in the present work, but for certain choices of
regularizing operators R1,R2 the unique solvability of both types of integral equations is linked
via duality arguments, which is why we have chosen the suggestive notation A′—A and −A′ are
adjoint operators with respect to the (real) L2-inner-product.

2.1 The unique solvability of ICFIE-R and DCFIE-R

The unique solvability of the integral equations (5) for suitable choices of the operators Ri is settled

via Fredholm alternative type of arguments [8, 13] typically in the functional space H− 1

2 (Γ), at least
in the case of smooth boundaries Γ. A key ingredient in the proof of the Fredholm property of
the integral operators in equations (5) is the compactness of the double layer operators K

′

k. Such
an argument is not available in the case of Lipschitz curves Γ, yet by relying on the techniques
developed in a series of papers [17, 25, 40] we will prove the Fredholm property of the aforementioned
operators in suitable functional spaces for certain choices of the operators Ri. We note that in the
case of Dirichlet boundary conditions for the Helmholtz equation, the Fredholm property of the
CFIE operators, and hence the unique solvability and well-posedness of CFIE equations, was proved
to hold in Hs− 1

2 (Γ), |s| ≤ 1
2 using the same techniques mentioned above [15, 35]. Indeed, in the

case of Dirichlet boundary conditions, a combined field representation of the type (4) with R1 = I
and R2 = (S0)

2 was employed in [35], whereas the classical Ri = I was used in [15].
The classical results about the regularity properties of K

′

0 [17, 25, 40] and compactness argu-
ments yield that K

′

k is a bounded operator on L2(Γ) [35]. More generally, it can be shown [20, 24]

that K
′

k : H− 1

2
+s(Γ) → H− 1

2
+s(Γ) is a continuous operator for |s| ≤ 1

2 . Furthermore, using equa-
tion (8), the operator Nk can be expressed in terms of a Cauchy Principal Value integral [20]. In
particular, for a density φ ∈ H1(Γ) (in fact it suffices that φ ∈ L2

1(Γ) = {ψ ∈ L2(Γ) : ∂ψ/∂t ∈
L2(Γ)}—a space introduced in [40]), the operator Nk can be expressed in terms of a Hilbert trans-
form

(Nkφ)(x) = k2

∫

Γ
Gk(x − y)(n(x) · n(y))φ(y)ds(y) + PV

∫

Γ

∂Gk(x − y)

∂t(x)

∂φ(y)

∂t(y)
ds(y) , (16)
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as thus it can be seen to be a bounded operator from H1(Γ) (or L2
1(Γ)) into L2(Γ). More generally,

Nk : H
1

2
+s(Γ) → H− 1

2
+s(Γ) is a continuous operator for |s| ≤ 1

2 [20, 25].
We will show that for certain choices of the regularizing operator Ri, i = 1, 2, equations (5) are

uniquely solvable in L2(Γ) (actually the invertibility property holds in all of the spaces Hs− 1

2 (Γ)
for |s| ≤ 1

2). We note that for most applications of interest the incident fields are such that ui is

smooth in a neighborhood of Γ and thus ∂ui

∂n
∈ L2(Γ). The regularizing operators Ri that we use

are defined as

(Rφ)(x) = (Sd
0φ)(x) =

∫

Γ
G0

(

x − y

d

)

φ(y)ds(y), x on Γ (17)

where G0(z) = − 1
2π log |z| is the free-space Green’s function for the Laplace’s equation and d is

such that diam(D) < d (note that it would actually suffice to take d > Cap(Γ), where Cap(Γ) is
the capacitance of Γ [34]). The operators Sd

0 can be written in terms of single-layer operators S0

corresponding to the Laplace’s equation

(Sd
0φ)(x) = (S0φ)(x) +

log d

2π

∫

Γ
φ(y)ds(y). (18)

Using the results in [20, 25] it can be shown that Sd
0 : H− 1

2
+s(Γ) → H

1

2
+s(Γ) is a continuous

operator for |s| ≤ 1
2 . Using the regularizing operators R defined above, the following result holds

true:

Theorem 2.1 For following choices of regularizing operators and real, non-zero coupling parame-
ters η, the operator A is invertible on L2(Γ):

1) R1 = I, R2 = (Sd
0)2;

2) R1 = R2 = Sd
0 ;

3) R1 = I, R2 = Sd
0 , 0 < |η| < C < 1, where C = C(Γ).

We refer to the ICFIE formulations (5) coming from these choices as ICFIE-R(0,2), ICFIE-R(1,1)
and ICFIE-R(0,1), respectively.

Proof. We will first establish that A is Fredholm for the choices (1)–(3) above. To this end,
we use Calderón’s identity [14, 20, 22]

N0 ◦ S0 = −I
4

+ (K
′

0)
2 (19)

and equation (18) together with the fact that [30]

∫

Γ

∫

Γ

∂2G0(x − y)

∂n(x)∂n(y)
φ(y)ds(y)ds(x) = 0 (20)

to express Nk ◦ Sd
0 as

Nk ◦ Sd
0 = (Nk −N0) ◦ Sd

0 − I

4
+ (K

′

0)
2 . (21)

In order to prove the Fredholmness of A we will use the following two facts:

• K
′

k −K
′

0, S
d
0 and (Nk −N0) ◦ Sd

0 are compact operators in L2(Γ) [22, 35];
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• I/2 ±K
′

0 are Fredholm operators of index 0 on L2(Γ) [40].

In case 1) we have

A = (K
′

0 − I/2) + (K
′

k −K
′

0) + iη[(Nk −N0) ◦ Sd
0 ] ◦ Sd

0 − iη(I/2 +K
′

0) ◦ (I/2 −K
′

0) ◦ Sd
0 (22)

which can be seen to be a compact perturbation of the Fredholm operator K
′

0 − I/2 on L2(Γ).
Thus, A is Fredholm in L2(Γ). In case 2) we have

A = (K
′

0 − I/2) ◦ Sd
0 + (K

′

k −K
′

0) ◦ Sd
0 + iη[(Nk −N0) ◦ Sd

0 ] − iη(I/2 +K
′

0) ◦ (I/2 −K
′

0). (23)

The first three operators in the right hand side of equation (23) are compact operators in L2(Γ),
while the latter operator is a composition of Fredholm operators and thus Fredholm. Again, A is
Fredholm on L2(Γ). Finally, in case 3), we have

A = (K
′

k −K
′

0) + iη[(Nk −N0) ◦ Sd
0 ] − (1 + iη/2)

(

I +
iη

1 + iη/2
K

′

0

)

◦ (I/2 −K
′

0). (24)

The first two operators in the right-hand side of equation (24) are compact on L2(Γ). On the
other hand, the operator I/2 −K

′

0 is Fredholm cf. (b) above, while for |η| < ||K ′

0||−1
2 the operator

I + iη
1+iη/2K

′

0 is invertible on L2(Γ). Thus, since the latter operators commute, their composition

is Fredholm and consequently A is yet again Fredholm for option 3). We note that ||K ′

0||2 depends
on the curve Γ alone, and bounds on its size were provided in [17].

We will now show that the null-space of A is trivial for the choices Ri as presented in cases
1)–3). Indeed, for a density φ in the null-space of A we define U+ for z ∈ Dc and U− for z ∈ D via
equation (4). Since U+ is a radiative Helmholtz solution in Dc satisfying ∂U+/∂n = Aφ = 0 on Γ,
we must have U+ = 0 in Dc, and hence on Γ. The jump relations for the Dirichlet and Neumann
traces of U+ and U−, together with the fact that ∂U+/∂n = U+ = 0 on Γ, combine to give us

−U− = iη R2φ and
∂U−

∂n
= R1φ on Γ .

Using Green’s identities we obtain

iη

∫

Γ
(R1φ)R2φds =

∫

Γ
Ū−∂U

−

∂n
ds =

∫

D
(|∇U−|2 − k2|U−|2)dx. (25)

Note that the choices 1) and 2) amount to iη||Sd
0φ||22 ∈ R, and thus Sd

0φ = 0. In case 3), the kernel
of the operator Sd

0 is positive owing to the fact that |x−y| < d on Γ×Γ, and hence the operator Sd
0

is coercive [20, 34, 36] —
∫

Γ(Sd
0φ)φ̄ds ≥ 0 for all φ in H− 1

2 (Γ) ⊃ L2(Γ), with equality if and only
if φ = 0. Clearly, since η ∈ R and η 6= 0, equation (25) implies that

∫

Γ(Sd
0φ)φ̄ds = 0 for all the

choices 1)–3), and therefore φ = 0. Consequently, A is injective and thus the integral equations (5)
are uniquely solvable on L2(Γ). �

Remark 2.2 Similar arguments as in the proof of Theorem 2.1 yield that the operators in the left-
hand side of (5) are invertible in Hs− 1

2 (Γ) for all |s| ≤ 1
2 . Indeed, the proof relies on the fact that

A is Fredholm of index 0 as an operator from Hs− 1

2 (Γ) to itself for |s| ≤ 1
2 . The latter statement

is a consequence of compactness arguments similar to those used in the proof of Theorem 2.1 and
the fact that I/2 ±K

′

0 is Fredholm of index zero in Hs− 1

2 (Γ) for |s| ≤ 1
2 [15, 40]. The injectivity
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of the operator A in Hs− 1

2 (Γ) for |s| ≤ 1
2 can be shown using classical arguments. Indeed, since

L2(Γ) is dense in H−1(Γ) and the operators A are Fredholm of index 0 in the spaces Hs− 1

2 (Γ) for
all |s| ≤ 1

2 , a standard argument about Fredholm operators [38] gives that the null-space of A, as an
operator on H−1(Γ), is actually included in L2(Γ). Since the argument in Theorem 2.1 shows that
the null-space of A is trivial in L2(Γ), it follows that the operator A is injective and thus invertible

on H−1(Γ), and by interpolation is invertible in all of the spaces Hs− 1

2 (Γ) for |s| ≤ 1
2 .

Remark 2.3 The results of Theorem 2.1 remain valid if the operators Sd
0 are replaced by SiK , K >

0, that is single layer operators corresponding to purely imaginary wavenumbers in the definition of
the operators Rj , j = 1, 2 in cases (1)–(3). Indeed, using Calderon’s identities (21) for SiK and the

coercivity of SiK in H− 1

2 (Γ), the result follows along the same lines as in the proof of Theorem 2.1.

The following result concerns the unique solvability of equations (14) in a wide range of Sobolev
spaces. Indeed, for the same choice of the regularizing operators Ri, i = 1, 2 as in Theorem 2.1 the
following result, holds true:

Theorem 2.4 For the following choices of regularizing operators and real, non-zero coupling pa-
rameters η, the operator A′ is invertible on Hs+ 1

2 (Γ) for |s| ≤ 1
2 :

1. R1 = I, R2 = (Sd
0)2;

2. R1 = R2 = Sd
0 ;

3. R1 = I, R2 = Sd
0 , 0 < |η| < C < 1, where C = C(Γ, s).

We refer to the DCFIE formulations (14) coming from these choices as DCFIE-R(0,2), DCFIE-
R(1,1) and DCFIE-R(0,1), respectively.

Proof. The result follows from Theorem 2.1 and Remark 2.2 via a duality argument. Indeed,
for the choices of Ri in cases (1)–(3), A and A′ are, up to sign, dual/adjoint operators in the sense

of the natural duality between the spaces Hs− 1

2 (Γ) and the spaces H−s+ 1

2 (Γ) for |s| ≤ 1
2 . �

The following result is a consequence of Theorem 2.4

Corollary 2.5 Suppose that the Dirichlet and Neumann traces on Γ of the given incident field ui

satisfy: ∂ui

∂n
∈ Hs− 1

2 (Γ) and ui ∈ Hs+ 1

2 (Γ) for some |s| ≤ 1
2 . Then the equation (14) has a unique

solution u in Hs+ 1

2 (Γ) for the same choice of the regularizing operators Ri as in Theorem 2.4.

Furthermore, (A′)−1 is a continuous operator on Hs+ 1

2 (Γ).

Proof. From the regularity theory of the solutions of the Neumann problem (1) it follows that

the Dirichlet trace u ∈ Hs+ 1

2 (Γ) and that u satisfies equation (14) as a consequence of Green’s
identities. �

Remark 2.6 Using regularizing operators Ri = SiK , K > 0 instead of Sd
0 in the definition of

formulations (14), we will call the ensuing integral equations DCFIE-RC. Based on the results in
Remark 2.3, the results in Theorem 2.4 hold for the formulations DCFIE-RC(0,1), DCFIE-RC(1,1),
and DCFIE-RC(0,2).
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2.2 Remarks on the regularity of the solutions of ICFIE-R and DCFIE-R

We note that the solution of (14) (DCFIE-R) is the total field on the boundary, u = ui + us, for
any of the choices of regularizing operators given in Theorem 2.4. If we assume that the Neumann
data ∂ui

∂n
is in Hε− 1

2 (Γ), then the scattered field us, which is the solution to (1), has the following
classical regularity property us ∈ {u : ∆u ∈ L2

loc(D
c), u ∈ H1

loc(D
c)} [34]. Using the Gagliardo

trace results in [20] we get that the Dirichlet trace of the total field u = us + ui on Γ belongs to

Hε+ 1

2 (Γ)—such functions are at least bounded. We can make much stronger statements about the
regularity of u on Γ for common classes of incident fields ui:

• Plane-wave: ui(z) = eikz·d, where d is a constant unit vector;

• Point-source: ui(z) = H
(1)
0 (k|z − z0|), where z0 ∈ Dc.

Such incident fields satisfy Helmholtz equation within D and are smooth in a neighborhood of
Γ. In particular, if Γ is piecewise smooth, then ∂ui

∂n
is smooth, except for jump-discontinuities at

the corners of Γ. Using results of Wigley [41, Theorem 3.3], we describe the leading asymptotic
behavior of u in neighborhoods of the corners, which is the same as the leading asymptotic behavior
of us.

Theorem 2.7 Suppose that D has m separated corners at the points xj, and that the measure of
the angle at xj (measured in Dc) is βjπ > 0. Let rj = dist(x, xj). Then there is a constant κj such

that u(x)− u(xj) = ±κjr
1/βj

j +O(rj) as x→ xj along Γ. The sign on κj is determined by the side
of xj from which x approaches.

The situation is not as favorable for the solution φ of (5) (ICFIE-R), where it is often the
case that φ is unbounded near the corners, as will be argued below. Expressed as the combined
potential (4), the Dirichlet and Neumann traces of the solution us of (1) satisfy

us = [Sk ◦ R1 + iη(I/2 +Kk) ◦ R2]φ on Γ , (26)

∂us

∂n
=
[

(−I/2 +K ′
k) ◦ R1 + iηNk ◦ R2

]

φ = −∂u
i

∂n
on Γ . (27)

Defining a function vi in D by the same combined potential, we find that its Dirichlet and Neumann
traces are

vi = [Sk ◦ R1 + iη(−I/2 +Kk) ◦ R2]φ = us − iηR2φ on Γ , (28)

∂vi

∂n
=
[

(I/2 +K ′
k) ◦ R1 + iηNk ◦ R2

]

φ = R1φ− ∂ui

∂n
on Γ . (29)

Assuming that R2 = R1, we have that R1φ = ∂vi

∂n
+ ∂ui

∂n
, where vi satisfies the Helmholtz equation

in D together with the impedance boundary condition vi + iη ∂vi

∂n
= us − iη ∂ui

∂n
. The same sort of

argumentation using [41, Theorem 3.3], albeit more involved (cf. [9]), can be used to show that

the leading asymptotic behavior of ∂vi

∂n
, and hence of R1φ, is ∂vi(x)

∂n
∼ R1φ ∼ r

σj

j near xj , where
σj = min{1/βj , 1/(2 − βj)} − 1 < 0. In other words, R1φ is generally unbounded near corners.
If R1 = R2 = I (no regularizing), or R1 = R2 = Sd

0 (ICFIE-R(1,1)), this implies that φ is
generally unbounded near the corners. This sort of singular behavior for problems with corners is
well-documented, see for example [6, 9, 21, 23, 26, 27, 33, 41, 42].
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3 Nyström discretization

We succinctly present a high-order Nyström method for the discretization of the integral equa-
tions (14), with A′ recast according to formula (33). Without loss of generality, we will assume
that D has a single corner at x0 whose aperture measured inside D is γ0, and that Γ\{x0} is C2 and
piecewise analytic. Assuming that the incident fields ui are regular enough in a neighborhood of the
curve Γ so that ∂ui

∂n
∈ H− 1

2
+ǫ(Γ) for ǫ > 0, then the results of Theorem 2.5 apply, and we can con-

sider the integral equation (14) whose solution u ∈ H
1

2
+ǫ(Γ). In this case, it follows from Sobolev

embedding results that the Dirichlet trace u on Γ of the total field is actually Hölder continuous.
This will enable us to express A′ in terms of integral operators that involve integrable quantities
only. Indeed, following [19], we can employ the operator K̃0 defined for continuous functions ψ as

(K̃0ψ)(x) =

∫

Γ

∂G0(x − y)

∂n(y)
[ψ(y) − ψ(x0)]ds(y) (30)

so that we can write the first part of equation (12) for all points x on Γ:

1

2
[u(x) + u(x0)] − (Kk −K0)(u)(x) − (K̃0u)(x) = ui(x), x ∈ Γ. (31)

Furthermore, using equation (31) together with the Calderón’s identities

Sd
0 ◦Nk = Sd

0 ◦ (Nk −N0) −
I

4
+ (K0)

2 (32)

we can express the operator A′ in the formulation DCFIE-R(0,1) in the following manner

(A′u)(x) =
1

2
[u(x) + u(x0)] − ([(Kk −K0) + K̃0]u)(x)

+
iη

4
[u(x) − u(x0)] − iη([Sd

0 ◦ (Nk −N0) + (K̃0)
2]u)(x)

+
iη

2
[K̃0u](x0). (33)

We make a couple of remarks about equation (33): first, the equation holds for all points x on Γ
and not almost everywhere, and second, owing to the Hölder continuity of u, the operators Kk−K0,
K̃0, and Nk −N0 are defined as a convergent integrals. Though we do not do so explicitly here, it
is clear how to express A′ in the above fashion for DCFIE-R(0,2) and DCFIE-R(1,1) as well. We
also give the decomposition of A′ for the “complex version” DCFIE-RC(0,1)

(A′u)(x) =
1

2
[u(x) + u(x0)] − ([(Kk −K0) + K̃0]u)(x) +

iη

4
u(x0) ((KiK −K0)1)(x)

+
iη

4
[u(x) − u(x0)] +

iη

2
([(KiK −K0) + K̃0]u)(x0)

− iη([SiK ◦ (Nk −NiK) + ((KiK −K0) + K̃0)
2]u)(x) , (34)

with similar decompositions for the formulations DCFIE-RC(1,1) and DCFIE-R(0,2). The remarks
concerning equation (33) are in place for equation (34).

Our approach uses both a high-order treatment of the singularities of the integrable kernels of
the integral operators in (33) along the lines of [29], as well as a resolution of the singular nature
of the higher-order derivatives of total field u on the curve Γ in the neighborhood of the corner
x0 via the graded meshes introduced in [28]. Many of the formulas and derivations presented here
can be found in, or constructed from, those references, but we collect them here for the sake of
completeness.
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3.1 Parameterization of the Operators

Assuming that the boundary curve Γ \ {x0} is piecewise analytic and given by the 2π periodic
parametrization x(t) = (x1(t), x2(t)) so that |x′(t)| ≥ s0 > 0 and x(0) = x(2π) = x0, we start by
expressing in parametric form the kernels of the integral operators in (33). Following the notation
given above, we define r = r(t, τ) = x(t) − x(τ) and r = r(t, τ) = |r(t, τ)|. For an arbitrary
Hölder continuous density φ(x), x ∈ Γ, we define ψ(t) = φ(x(t)). We consider only the case
of non-zero wave numbers, k 6= 0, and will look at parametric forms of each of the key integral
operators appearing in A′ for CFIE-R(0,1). Similar expressions appear for the other real or complex
regularizing pairs (R1,R2), but we will not give them here for sake of brevity.

In parametric form, [Sd
0(φ)](x(t)) can be expressed as

[Sd
0(φ)](x(t)) =

∫ 2π

0

(

log d

2π
− log r2

4π

)

|x′(τ)|ψ(τ) dτ =

∫ 2π

0
M0(t, τ)ψ(τ) dτ (35)

=

∫ 2π

0

(

M01(t, τ) log r2 +M02(t, τ)
)

ψ(τ) dτ . (36)

It is clear that M01(t, t) = − |x′(t)|
4π and M02(t, t) = |x′(t)| log d

2π . Similarly, we have

[K̃0(φ)](x(t)) =

∫ 2π

0

r · ν(τ)
2π r2

(ψ(τ) − ψ(0)) dτ =

∫ 2π

0
H0(t, τ) (ψ(τ) − ψ(0)) dτ . (37)

Here and below, ν(τ) = n(x(τ))|x′(τ)| = (−x′2(τ), x′1(τ)). Though it may not be immediately

apparent, H0 is smooth on (0, 2π) × (0, 2π), with H0(t, t) = x′′(t)·ν(t)
4π|x′(t)|2

for t 6= 0, 2π [28]. However,

H0(t, τ) ∼ 1/r as t → 0 and τ → 2π, or as t → 2π and τ → 0, which is why we integrate against
ψ(τ)−ψ(0), because it vanishes to some (fractional) power at τ = 0, 2π, so the product is uniformly
integrable for each t.

Let F (z) = i
4H

(1)
0 (k z) + log z

2π . We have [1]

F (z) =

(

i

4
− γ + log(k/2)

2π

)

J0(kz) +
1

2π

∞
∑

m=1

(−1)mhm

(m!)2

(

kz

2

)2m

+
1 − J0(kz)

4π
log(z2) , (38)

where hm =
∑m

j=1 j
−1 is the mth harmonic number, and γ ≈ 0.5772156649 is the Euler-Mascheroni

constant. For the difference of double-layer operators, we have

[(Kk −K0)φ](x(t)) =

∫ 2π

0
−F ′(r)

r · ν(τ)
r

ψ(τ) dτ =

∫ 2π

0
H(t, τ)ψ(τ)dτ . (39)

We decompose H(t, τ) as H(t, τ) = H1(t, τ) log r2 +H2(t, τ), where

H1(t, τ) = k J1(kr)
r · ν(τ)
4π r2

, H2(t, τ) = H(t, τ) −H1(t, τ) log r2 . (40)

Here, we have H1(t, t) = H2(t, t) = 0.
Finally, we parametrize [(Nk −N0)φ](x(t)) using (8) as

[(Nk −N0)φ](x(t)) =
1

|x′(t)|

∫ 2π

0
L(t, τ)ψ(τ)dτ +

1

|x′(t)|

∫ 2π

0
M(t, τ)ψ(τ)dτ . (41)
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The kernel M is given by M(t, τ) = k2ν(t) · ν(τ)F (r) = M1(t, τ) log r2 +M2(t, τ), where

M1(t, τ) =
k2ν(t) · ν(τ)

4π
(1 − J0(kr)) , M2(t, τ) = M(t, τ) −M1(t, τ) log r2 . (42)

The diagonal terms are M1(t, t) = 0 and M2(t, t) = k2

2

(

i
2 − γ+log(k/2)

π

)

|x′(t)|2. The kernel L is

given by

L(t, τ) = (F ′(r) − F ′′(r))
r · x′(t)

r

r · x′(τ)
r

− F ′(r)
x′(t) · x′(τ)

r
. (43)

As before, we decompose L as L(t, τ) = L1(t, τ) log r2 + L2(t, τ), where

L1(t, τ) =
k

4π

(

J1(k r) − kJ0(k r) +
J1(k r)

r

)

r · x′(t)
r

r · x′(τ)
r

− kJ1(k r)

4πr
x′(t) · x′(τ) , (44)

and L2(t, τ) = L(t, τ)−L1(t, τ) log r2. The diagonal terms are L1(t, t) = − k2

4π |x′(t)|2 and L2(t, t) =
k2

2

(

i
2 − γ+log(k/2)+1/2

π

)

|x′(t)|2.
Letting ψ(t) = u(x(t)) and g(t) be the parametrization of the right-hand side in (14), we express

the integral equation (14) for CFIE-R(0,1) parametrically as

g(t) =

(

1

2
+
iη

4

)

ψ(t) +

(

1

2
− iη

4

)

ψ(0) −
∫ 2π

0
H(t, τ)ψ(τ) dτ (45)

−
∫ 2π

0
H0(t, τ)(ψ(τ) − ψ(0)) dτ − iη

2

∫ 2π

0
H0(0, τ)(ψ(τ) − ψ(0)) dτ (46)

− iη

∫ 2π

0

M0(t, τ)

|x′(τ)|

(
∫ 2π

0
(L(τ, z) +M(τ, z))ψ(z) dz

)

dτ (47)

− iη

∫ 2π

0
H0(t, τ)

(
∫ 2π

0
(H0(τ, z) −H0(0, z))(ψ(z) − ψ(0)) dz

)

dτ . (48)

More specifically, g is given by

g(t) = ui(x(t)) + iη

∫ 2π

0
M0(t, τ)

∂ui

∂ν
(x(τ)) dτ . (49)

3.2 The Quadrature Rules

As we saw above, each of our integral kernels has the generic formK(t, τ) = K1(t, τ) log r2+K2(t, τ),
where Kj is smooth on (0, 2π)×(0, 2π); and our densities, µ(t) = ψ(t)−ψ(0) or µ(t) = ψ(t), can be
thought of as generic Hölder functions, whose Hölder-exponent is determined by the angle at the
corner, as indicated in Section 2. For a fixed t, then, we have two types of integrals for which we must
develop high-order quadratures: those which are smooth in (0, 2π) but have singular derivatives
at the endpoints, and those which additionally have a logarithmic singularity at t. To handle
both integrals we will use a combination of a graded-mesh quadrature introduced by Kress [28],
which is affected by a suitable change-of-variables, and a quadrature due to Martensen [18, 32]
which incorporates certain types of periodic, logarithmic singularities into its quadrature weights.
Both quadratures have been analyzed in the cited references, and were designed to yield high-order
quadrature rules in precisely the contexts in which we will use them, so here we merely describe
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these quadratures in enough detail to be able to implement our method without need for outside
reference.

We begin with the change-of-variables t = w(s) where

w(s) = 2π
[v(s)]p

[v(s)]p + [v(2π − s)]p
, 0 ≤ s ≤ 2π (50)

v(s) =

(

1

p
− 1

2

)(

π − s

π

)3

+
1

p

s− π

π
+

1

2

where p ≥ 2. The function w is a smooth, increasing, bijection on [0, 2π], with w(k)(0) = w(k)(2π) =
0 for 1 ≤ k ≤ p− 1. Using this change-of-variables, we further decompose K as

K(t, τ) = K(w(s), w(σ)) = K1(w(s), w(σ)) log

(

4 sin2 s− σ

2

)

+ K̃2(s, σ) . (51)

We have

K̃2(s, σ) = K(w(s), w(σ)) −K1(w(s), w(σ)) log

(

4 sin2 s− σ

2

)

(52)

= K1(w(s), w(σ)) log

(

r2(w(s), w(σ))

4 sin2 s−σ
2

)

+K2(w(s), w(σ)) , (53)

with diagonal term K̃2(s, s) = 2K1(t, t) log(w′(s)|x′(t)|)+K2(t, t). With this further decomposition,
we see that we need quadratures for integrals of the forms

∫ 2π
0 f(σ) dσ and

∫ 2π
0 f(σ) log

(

4 sin2 s−σ
2

)

dσ,
where f is smooth in (0, 2π) and 2π-periodic in its values and a few of its derivatives. The quadra-
tures are of the forms:

∫ 2π

0
f(σ) dσ ≈ π

n

2n−1
∑

j=0

f(sj) and

∫ 2π

0
f(σ) log

(

4 sin2 s− σ

2

)

dσ ≈
2n−1
∑

j=0

R
(n)
j (s)f(sj) (54)

for 0 ≤ s ≤ 2π, where sj = jπ/n and the weights Rj(s) are given by

Rj(s) = −2π

n

n−1
∑

m=1

1

m
cosm(s− sj) −

π

n2
cosn(s− sj). (55)

We note that Rj(si) = R|i−j|, where

Rk = −2π

n

n−1
∑

m=1

1

m
cos

mkπ

n
− (−1)kπ

n2
.

We are now ready to express the quadrature for
∫ 2π
0 K(t, τ)µ(τ) dτ at points t = ti = w(si), namely:

∫ 2π

0
K(ti, τ)µ(τ) dτ ≈

2n−1
∑

j=1

(K1(ti, tj)Wij +K2(ti, tj)wj)µ(tj) , (56)

where the weights are given by

Wij =

(

R|i−j| +
π

n
log

(

r2(ti, tj)

4 sin2 si−sj

2

))

w′(sj) and wj =
π

n
w′(sj) . (57)

We note that the sum in (56) begins at j = 1 instead of j = 0 because Wi0 = w0 = 0. As suggested
above, we have Wii = (R0 + 2π

n log(w′(si)|x′(ti)|))w′(si) for i > 0.
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3.3 The Nyström Linear System

The Nyström discretization of (45)-(49) is

Gm =

(

1

2
+
iη

4

)

u(n)
m +

(

1

2
− iη

4

)

u
(n)
0 −

2n−1
∑

j=1

(H1(tm, tj)Wmj +H2(tm, tj)wj)u
(n)
j (58)

−
2n−1
∑

j=1

(

H0(tm, tj) −
iη

2
H0(0, tj)

)

wj(u
(n)
j − u

(n)
0 ) (59)

− iη
2n−1
∑

j=1

(

M01(tm, tj)

|x′(tj)|
Wmj +

M02(tm, tj)

|x′(tj)|
wj

) 2n−1
∑

k=1

(L1(tj , tk)Wjk + L2(tj , tk)wk)u
(n)
k (60)

− iη

2n−1
∑

j=1

(

M01(tm, tj)

|x′(tj)|
Wmj +

M02(tm, tj)

|x′(tj)|
wj

) 2n−1
∑

k=1

(M1(tj , tk)Wjk +M2(tj , tk)wk)u
(n)
k (61)

− iη
2n−1
∑

j=1

H0(tm, tj)wj

(

2n−1
∑

k=1

(H0(tj , tk) −H0(0, tk))wk(u
(n)
k − u

(n)
0 ) .

)

(62)

Here we have u
(n)
m ≈ u(x(tm)), and load vector G given by

Gm = ui(x(tm)) + iη
2n−1
∑

j=0

(M01(tm, tj)Wmj +M02(tm, tj)wj)
∂ui

∂ν
(x(tj)). (63)

Discretizations of the integral equation formulations DCFIE-R(0,2) and DCFIE-R(1,1) can be
obtained in a similar manner. The discretization of DCFIE-RC formulations, on the other hand,
involves modifications of the quadrature rules presented above to the case of boundary layers
corresponding to purely imaginary wave numbers. For instance, following [8], the single layer
potentials related to wave numbers iK are expressed as

(SiKφ)(x(t)) =

∫ 2π

0
M̂(t, τ)|x′(τ)|φ(x(τ))dτ (64)

we use the following splitting of the kernel M̂(t, τ) = i
4H

(1)
0 (iKr):

M̂(t, τ) = e−Kr4

{

M̂1(t, τ) ln

(

4 sin2 t− τ

2

)

+ M̂2(t, τ)

}

+ (1 − e−Kr4

)M̂(t, τ) (65)

with M̂1(t, τ) = − 1
4πJ0(iKr); each of the terms in the splitting above is amenable to the same

quadrature rules as the ones developed for the kernels with real wave numbers. This splitting
procedure allows to treat the operators KiK and NiK in a similar manner.

4 Numerical Results

We present in this section a variety of numerical results that demonstrate the properties of the
regularized combined field integral equations (14) constructed in the previous sections. Solutions
of the linear systems (58)-(63) are obtained by means of the fully complex version of the iterative
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Figure 1: Teardrop (left) and boomerang (right), α = 1/2.

solver GMRES [39]. The first set of results presented concern the various DCFIE-R formulations
that use the regularizing operators of the form Sd

0 , and the second set of the results concern the
DCFIE-RC(0,1) formulation that uses the regularizing operators of the form SiK with K > 0.
Of the three possible formulations (14) stemming from the use of the regularizing operators Sd

0 ,
DCFIE-R(0,1) entails (i) the smallest computational time as it involves only two compositions of
operators, and (ii) the smallest condition numbers. For the formulation DCFIE-R(0,1) we used
coupling parameters η = 1/k for the results in Tables 1, 4, 5, 6, and η = 8/k for the results
in Table 2. Although the statement of Theorem 2.5 requires that a “sufficiently small” coupling
parameter η should be used in DCFIE-R(0,1), we have found in practice that a fairly wide range of
coupling parameters, including the aforementioned choice, leads to integral operators whose discrete
approximations have spectra bounded away from 0 (see Figure 2 for an illustration of the effect of
the coupling parameter η on the conditioning numbers of the various formulations). Furthermore,
we have found that these choices of the coupling parameter yield good behavior of the iterative
solvers. We also used the same coupling parameter η = 1/k for the other formulations DCFIE-
R(1,1) and DCFIE-R(0,2). Most of the results contained in the tables presented in this section were
obtained by prescribing a GMRES residual tolerance equal to 10−8; otherwise, we used a GMRES
residual tolerance equal to 10−12.

We will show results for two geometries, having convex and concave corners: the teardrop
domain, with boundary parametrized by x(t) = (2 sin t

2 ,−β sin t); and the boomerang domain,
with boundary parametrized by x(t) = (−2

3 sin 3t
2 ,−β sin t). Here β = tan απ

2 , and απ is the acute
aperture of the corner (see Figure 1). For these configurations the diameter of the corresponding
domains D is equal to 2, and we chose d = 4 in the definition of the regularizing operators Sd

0 . For
every scattering experiment we present:

• the maximum error incurrent in the total field u on Γ defined as

E1 = max
0≤j≤2n−1

|u(n)
j − uref

qj | (66)

where the reference solution uref corresponds to a very refined discretization corresponding
to 2qn discretization points, and

• the maximum error amongst several directions x̂ = x

|x| in the far-field pattern us
∞(x̂),

E2 = max|us,calc
∞ (x̂) − us,ref

∞ (x̂)| (67)
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where the maximum is taken over a uniform discretization of the unit circle |x̂| = 1 comprised
of 256 points. The (exact) far-field pattern is defined by the relation

us(x) =
eik|x|
√

|x|

(

us
∞(x̂) + O

(

1

|x|

))

, |x| → ∞ . (68)

Once the solution u(n) of the linear system (58)-(63) is produced, the far-field can be obtained
immediately from equation (11)

us,calc
∞ (x̂) =

e−
iπ
4

n
√

8

√
kπ

2n−1
∑

j=1

x̂ · ν(tj)e−ikx̂·x(tj)u
(n)
j w′(sj) . (69)

The maximum far-field error is evaluated through comparison of the numerical solutions us,calc
∞ with

reference solutions us,ref
∞ —solutions obtained from very fine discretizations in the case of plane wave

incidences, and exact solutions in the case of point-source incidences.
For plane wave incidences, the reference solutions arising from very fine discretizations were

produced through an LU solution of the linear system (58)-(63) obtained from the discretization
of the formulation DCFIE-R(0,1). We also present in Table 2 the far-field errors between the
reference solutions obtained using very refined discretizations of formulations DCFIE-R(0,1) and
the ones obtained from the same discretizations with formulations DCFIE-R(1,1) and DCFIE-
R(0,2). Besides errors in the total field u on the boundary of the scatterer and the far field errors,
the tables display the number of iterations required by the GMRES solver to a relative residual
of 10−8; or of 10−12, if denoted by ∗. We used discretizations corresponding to 8 and 16 points
per wavelength, for frequencies in the medium to high-frequency range, i.e. k = 2i, i = 3, . . . , 8
corresponding to acoustic scattering problems of sizes ranging from 2.5λ to 81.6λ. In the range
k = 2i, i = 3, . . . , 8 the reference solutions were obtained using 24 points per wavelength. In the
low frequency regime, i.e k = 1, 4 the reference solutions were obtained using n = 128, that is 256
unknowns, in equations (58)-(63). For the case of plane-wave incidence we assumed an incident
field in the form of a plane wave propagating along the x axis, i.e. its direction of propagation is
d = (1, 0). In all of the numerical examples we used p = 8 in the change of variables (50) for the
teardrop geometry and p = 4 for the boomerang geometry. The reason for using different values of
p is that the solutions u of (14) can be shown to be in the Hölder space C0, 2

3 (Γ) for the boomerang
geometry and C1(Γ) for the case of the boomerang, and thus a higher exponent is needed in the
change of variables (50) to resolve the stronger singularity of u in the first case.

We start by presenting numerical results for plane-wave incidence Tables 1-4 for the domains
with interior/exterior apertures of π/2. As it can be seen, our solutions converge to high order
throughout a wide range of frequencies. Furthermore, the reference solutions exhibit very high
accuracy regardless of the formulation used. We note that similar numbers of GMRES iterations
are required if the same formulation (14) were used for smooth curves [8].

The computational times entailed by a matrix-vector product for each of the three formulations
DCFIE-R are close to each other, owing to the fact that the evaluation of the operator Sd

0 is
fairly inexpensive relative to all of the other acoustic integral operators involved in the DCFIE-
R formulations. Nevertheless, the formulation DCFIE-R(0,1) is slightly less expensive than the
other two formulations since it involves only two operator compositions. We illustrate in Table 3
the computational times required to build the matrix according to equations (58)-(63) and its
analogues in each of the three DCFIE-R formulations (the computational times are about the
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Table 1: Plane wave incidence, geometries with interior/exterior apertures of π/2
k Unknowns Teardrop α = 1/2 Boomerang α = 1/2

Iter. E1 E2 Iter. E1 E2

1 32 12 7.6 × 10−6 6.2 × 10−7 13 9.7 × 10−4 2.3 × 10−4

1 64 11 5.1 × 10−8 2.6 × 10−10 15 6.1 × 10−7 4.8 × 10−8

1 128 10 4.2 × 10−10 7.5 × 10−12 13 2.3 × 10−8 1.4 × 10−10

4 32 13 8.4 × 10−3 4.2 × 10−3 16 3.0 × 10−1 1.8 × 10−1

4 64 13 3.1 × 10−6 4.9 × 10−8 17 3.3 × 10−5 1.3 × 10−7

4 128 13 1.5 × 10−8 5.7 × 10−10 15 3.4 × 10−7 8.6 × 10−10

8 64 17 2.7 × 10−3 9.7 × 10−4 21 4.9 × 10−3 1.5 × 10−3

8 128 17 6.9 × 10−9 3.9 × 10−10 19 2.1 × 10−6 2.1 × 10−9

16 128 27 7.0 × 10−4 2.4 × 10−4 29 2.8 × 10−3 1.6 × 10−3

16 256 25 5.3 × 10−9 5.3 × 10−10 26 2.4 × 10−7 1.3 × 10−8

32 256 40 5.3 × 10−4 2.7 × 10−4 42 9.8 × 10−4 4.5 × 10−4

32 512 40 1.9 × 10−8 3.5 × 10−9 41 4.2 × 10−8 4.0 × 10−9

Table 2: Comparisons reference solutions, geometries with interior/exterior apertures of π/2
k Unknowns Teardrop α = 1/2 Boomerang α = 1/2

DCFIE-R(0,2) E2 DCFIE-R(1,1)E2 DCFIE-R(0,2)E2 DCFIE-R(1,1)E2

1 256 1.9 × 10−15 3.3 × 10−14 9.7 × 10−14 8.5 × 10−14

4 256 3.4 × 10−15 3.9 × 10−15 4.2 × 10−13 5.3 × 10−13

8 256 6.3 × 10−15 5.6 × 10−15 4.9 × 10−13 7.8 × 10−13

16 512 1.5 × 10−14 2.3 × 10−14 3.5 × 10−14 3.7 × 10−14

32 1024 7.8 × 10−14 5.6 × 10−14 1.0 × 10−13 9.9 × 10−14
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Table 3: Computational times needed by the various formulations
Unknowns Times

DCFIE-R(0,1) DCFIE-R(0,2) DCFIE-R(1,1)

64 1.13 sec 1.15 sec 1.16 sec
128 3.72 sec 3.74 sec 3.74 sec
256 14.75 sec 14.79 sec 14.82 sec

Table 4: Plane wave incidence, higher frequencies, geometries with interior/exterior apertures of
π/2

k Unknowns Teardrop α = 1/2 Boomerang α = 1/2
Iter. E1 E2 Iter. E1 E2

64 512 48 2.0 × 10−4 1.1 × 10−4 54 3.6 × 10−4 1.4 × 10−4

64 1024 48 7.2 × 10−9 1.3 × 10−9 54 1.4 × 10−7 3.0 × 10−8

128 1024 80 8.9 × 10−5 2.0 × 10−5 94 4.8 × 10−5 3.1 × 10−5

128 2048 80 2.7 × 10−7 6.5 × 10−9 94 2.1 × 10−7 1.8 × 10−8

256 2048 136 2.1 × 10−5 1.1 × 10−5 167 2.3 × 10−5 5.8 × 10−6

256 4096 136 2.1 × 10−7 2.3 × 10−9 167 2.1 × 10−7 3.0 × 10−9

same for each of the geometries under consideration). The computational times resulted from a
MATLAB implementation of our solver on a MacPro machine with 2 × 3GHz Quad-core Intel
Xeon. The computational times reported are only 1.2 times more expensive than those required
for the corresponding solvers for smooth geometries [8].

The formulation DCFIE-R gives rise to smaller condition numbers upon discretizations, as
illustrated in Figure 2. We present in Figure 2 the condition numbers of the three DCFIE-R as
functions of the coupling parameter η for five wave numbers k = 1, 4, 8, 16, 32 using 128 unknowns
in each case, for the domains considered above with α = 1/2. Specifically, for each wave number
and geometry we considered 32 coupling parameters η = i/(8k), i = 1, 2 . . . , 32 as this range of
values of η was found to lead to lower condition numbers. The second conclusion that can be
drawn from the results in Figure 2 is that the DCFIE-R(0,1) formulation is well-conditioned in
that given range of coupling parameters η.

The next set of results in Table 5 illustrates the high-order convergence of our algorithm using
the formulation DCFIE-R(0,1) for singular geometries with more acute interior/exterior corners,
i.e. α = 1/6 in the definition of the teardrop and boomerang domains.

In order to further confirm the high-order accuracy of our solvers, we present in the next set
of numerical experiments Tables 6-7 results obtained in cases when radiative point-source incident
fields with sources inside the obstacle were used as incident fields. Specifically, we assumed the
point-source to be located inside the scatterers close to the corner at (0.1, 0). In these cases,
the solution of the exterior Neumann problem is the point-source itself which allows for a direct
evaluation of the far-field errors. For such incident fields, the left-hand side of equation (10) needs
be replaced by ui and thus equations DCFIE-R(0,1) (14) should be modified so that the coefficient
of the double layer operator Kk is 1 rather than −1. Again, the high-order convergence of our
algorithm is demonstrated by the results in Table 6-7.

In the next set of the results we present the number of iterations and condition numbers that
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Figure 2: Plots of the decimal logarithms of the condition numbers of the discretizions of the
formulations DCFIE-R(0,1) (top), DCFIE-R(1,1) (middle), and DCFIE-R(0,2) (bottom) as func-
tions of the wave number k and the coupling parameter η for the teardrop (left) and boomerang
(right) geometries with α = 1/2. The results shown correspond to problems with 128 un-
knowns, and wave numbers k = 1, 4, 8, 16, 32 and 32 coupling parameters for each formulation:
η = j/(8k), j = 1, 2 . . . , 32.

19



Table 5: Plane wave incidence, geometries with interior/exterior apertures of π/6
k Unknowns Teardrop Boomerang

Iter. E1 E2 Iter. E1 E2

1 32 15 4.2 × 10−3 2.8 × 10−4 19 5.2 × 10−1 2.3 × 10−3

1 64 15 1.5 × 10−4 3.4 × 10−6 22 6.8 × 10−3 1.2 × 10−4

1 128 14 1.5 × 10−6 6.0 × 10−9 23 4.1 × 10−5 2.3 × 10−7

1 256 11 2.7 × 10−8 3.2 × 10−11 24 2.2 × 10−6 2.7 × 10−9

4 32 17 1.4 × 10−2 2.6 × 10−3 19 1.1 × 100 3.4 × 10−2

4 64 17 4.8 × 10−4 2.6 × 10−5 25 2.3 × 10−2 2.6 × 10−4

4 128 16 4.4 × 10−6 4.5 × 10−8 27 4.1 × 10−5 6.4 × 10−7

4 256 13 1.7 × 10−8 4.2 × 10−11 29 1.5 × 10−6 2.2 × 10−9

8 64 21 1.1 × 10−3 2.4 × 10−4 28 7.0 × 10−2 7.7 × 10−4

8 128 20 9.3 × 10−6 3.0 × 10−7 30 3.4 × 10−5 6.3 × 10−7

8 256 18 2.7 × 10−8 9.4 × 10−11 32 1.5 × 10−6 3.0 × 10−9

16 128 27 9.6 × 10−5 2.2 × 10−5 34 4.3 × 10−4 3.3 × 10−5

16 256 24 5.0 × 10−8 7.0 × 10−10 36 1.9 × 10−6 2.6 × 10−8

32 256 38 1.4 × 10−5 3.2 × 10−7 49 8.1 × 10−5 7.6 × 10−6

32 512 35 1.6 × 10−7 2.6 × 10−9 51 1.9 × 10−7 4.5 × 10−9

Table 6: Point source incidence geometries with interior/exterior apertures of π/2
k Unknowns Teardrop Boomerang

Iter. E2 Iter. E2

1 32 16 6.9 × 10−3 12 4.4 × 10−5

1 64 14 5.3 × 10−5 13 2.3 × 10−8

1 128 14 2.4 × 10−9 12 1.1 × 10−10

1 256 19∗ 3.3 × 10−15 16∗ 8.9 × 10−15

4 32 18 4.0 × 10−3 14 1.9 × 10−4

4 64 18 3.0 × 10−5 14 3.1 × 10−7

4 128 18 1.3 × 10−9 15 2.1 × 10−10

4 256 24∗ 2.0 × 10−14 19∗ 4.3 × 10−14

8 64 24 4.0 × 10−5 19 1.6 × 10−4

8 128 22 1.9 × 10−9 19 1.0 × 10−10

16 128 32 2.4 × 10−5 27 2.0 × 10−4

16 256 30 9.6 × 10−11 26 1.3 × 10−9

32 256 46 5.7 × 10−5 43 3.5 × 10−5

32 512 46 6.3 × 10−10 43 9.8 × 10−11
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Table 7: Point source incidence geometries with interior/exterior apertures of π/6
k Unknowns Teardrop Boomerang

Iter. E2 Iter. E2

1 32 21 5.0 × 10−2 17 4.9 × 10−3

1 64 31 9.6 × 10−3 19 1.4 × 10−4

1 128 37 2.7 × 10−4 19 1.2 × 10−7

1 256 36 3.4 × 10−7 19 2.2 × 10−10

1 512 44∗ 2.2 × 10−13 27∗ 1.2 × 10−14

4 32 22 2.1 × 10−2 17 3.2 × 10−3

4 64 34 4.8 × 10−3 18 1.0 × 10−4

4 128 41 1.3 × 10−4 18 7.9 × 10−8

4 256 42 1.7 × 10−7 18 1.9 × 10−10

4 512 50∗ 1.1 × 10−13 27∗ 3.8 × 10−15

8 64 34 2.8 × 10−3 20 2.0 × 10−4

8 128 44 8.1 × 10−5 20 1.1 × 10−7

8 256 44 1.1 × 10−7 20 9.7 × 10−11

16 128 58 7.5 × 10−5 26 1.3 × 10−6

16 256 58 5.0 × 10−8 25 8.5 × 10−11

16 512 58 3.6 × 10−10 34∗ 1.6 × 10−14

32 256 77 3.5 × 10−8 37 1.5 × 10−7

32 512 62 3.4 × 10−10 37 5.8 × 10−10

result from the implementation of DCFIE-RC(0,1) that uses Sik/2 for regularizing operators. As
can be seen from the results in Table 8, these formulations result in significantly smaller numbers
of iterations—especially for higher frequencies when the gains in numbers of iterations are of order
three—to the same GMRES residuals that their DCFIE-R(0,1) counterparts that use Sd

0 as regu-
larizing operators. Furthermore, the accuracy levels achieved by the DCFIE-RC(0,1) formulation
using Sik/2 are comparable to those corresponding to the same formulations but using Sd

0 . Given
that a matrix-vector products in the former formulation is about 1.6 more expensive that its coun-
terpart in the latter formulation, computational gains of about a factor of two can be garnered from
the use of Sik/2 in the DCFIE-RC(0,1) formulations for higher frequencies when iterative solvers
are used. The larger computational times required by a matrix-vector product corresponding to
the DCFIE-RC(0,1) formulation is related to the larger computational times required by the evalu-
ation of the layer potentials NiK , SiK , and KiK in equation (34) with respect to their counterparts
N0, S0, and K0 in equation (33).

In order to illustrate further the superior conditioning properties of the DCFIE-RC(0,1) formu-
lations, we present in Figure 3 the decimal logarithms of the condition numbers resulting from the
implementation of this formulation for the boomerang geometries for the same wave numbers as in
Figure 2 and coupling parameters η = i/16, i = 1, 2 . . . , 32. Consistent with the results in Table 8,
the DCFIE-RC(0,1) formulations give rise to smaller condition numbers than those entailed by the
formulation DCFIE-R(0,1). For the convex teardrop geometries, the condition numbers vary very
slowly as functions of the wave numbers for coupling parameters η in the range from 1 to 2: for
the case α = 1/2 the decimal logarithms of the condition numbers are about 0.94 whereas those
for the case α = 1/6 are around 1.5.
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Table 8: Number of iterations using DCFIE-RC(0,1) with Sik/2, η = 1, plane wave incidence,
GMRES residual 10−8.

k Unknowns Teardrop Iter. Boomerang Iter.
α = 1/2. α = 1/6 α = 1/2 α = 1/6

1 64 10 12 13 22
4 64 14 14 15 24
8 64 16 15 19 25
16 128 17 16 22 31
32 256 20 22 24 41
64 512 21 22 26 47
128 1024 25 26 27 53
256 2048 29 26 32 54

Figure 3: Plots of the decimal logarithms of the condition numbers of the discretizions of the
formulations DCFIE-RC(0,1) using the regularizing operators Sik/2 as functions of the wave number
k and the coupling parameter η for the boomerang geometries with α = 1/2 (left) and α = 1/6
(right). The results shown correspond to problems having 128 unknowns, and wave numbers
k = 1, 4, 8, 16, 32 and 32 coupling parameters for each formulation: η = j/16, j = 1, 2 . . . , 32.
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Figure 4: Plots of the decimal logarithms of the condition numbers of the discretizions of the
formulations DCFIE-RC(0,1) using the regularizing operators Sik/2 and η = 1 as functions of the
wave number k for the boomerang geometries. We chose 320 wave numbers k = 0.1, 0.2, . . . , 32
and 128 unknown for each case, p = 4 in the change of variables formula (50) for each boomerang
geometry. The curve on the bottom corresponds to the case α = 1/2 and the curve on the top
corresponds to the case α = 1/6.

Finally, we conclude with an example in Figure 4 that shows the condition numbers of the formu-
lations DCFIE-RC(0,1) as functions of the wave numbers of the incidence radiation. We computed
these condition numbers for 320 frequencies in the range k = 0.1, 0.2, . . . , 32 using discretizations
involving 128 unknowns, the regularizing operators Sik/2, and coupling parameters η = 1. We plot
the conditions numbers for the boomerang geometries: the case α = 1/2 is illustrated in the curve
on the bottom, and the case α = 1/6 by the curve on top. For the case of teardrop geometries, the
condition numbers vary slowly with the wave number, the values of the decimal logarithms of the
condition numbers are about 0.94 for the case α = 1/2 and around 1.5 for the case α = 1/6.

In summary, we have found that for low and medium frequencies (i.e. acoustic problems where
the size of the scatterer is smaller than 10λ) the formulation DCFIE-R(0,1) with coupling parameter
η = 1/k leads to rapidly converging solutions. For high frequencies (i.e. acoustic problems where
the size of the scatterer is larger than 10λ) the formulation DCFIE-RC(0,1) with regularizing
operator Sik/2 and coupling parameter η = 1 possesses excellent spectral properties. Consequently,
we advocate the use of these formulations for solutions of sound-hard scattering problems in two-
dimensional domains with corners.

5 Conclusions

We presented a class of Direct Regularized Combined Field Integral Equations formulations for
the solution of scattering equations with Neumann boundary conditions for domains with corners.
These integral equation formulations are well conditioned on account of the choice of the regular-
izing operators and the high-order approximations of the singular solutions that we used. Highly
accurate results for a variety of configurations can be obtained from the use of this formulation
throughout a wide range of the acoustic frequency spectrum. Thus, these features make our Di-
rect Regularized Combined Field Integral Equations a viable method of solution to the sound-hard
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scattering problems for domains with corners.
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