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Summary 

Objectives: 

In clinical medicine, the accuracy achieved by classification rules is often not sufficient to 

justify their use in daily practice. In order to improve classifiers it has become popular to 

combine single classification rules into a classification ensemble. Two popular boosting 

methods will be compared with classical statistical approaches. 

Methods: 

Using data from a clinical study on the diagnosis of breast tumors and by simulation we will 

compare AdaBoost with gradient boosting ensembles of regression trees. We will also 

consider a tree approach and logistic regression as traditional competitors. In logistic 

regression we allow to select non-linear effects by the fractional polynomial approach. 

Performance of the classifiers will be assessed by estimated misclassification rates and the 

Brier score. 

Results: 

We will show that boosting of simple base classifiers gives classification rules with improved 

predictive ability. However, the performance of boosting classifiers was not generally 

superior to the performance of logistic regression. In contrast to the computer intensive 

methods the latter are based on classifiers which are much easier to interpret and to use. 

Conclusions: 

In medical applications, the logistic regression model remains a method of choice or, at least, 

a serious competitor of more sophisticated techniques. Refinement of boosting methods by 

using optimized number of boosting steps may lead to further improvement. 

 

Keywords: 

Classification, simulation study, boosting, generalized additive models, diagnosis of breast 

tumors.
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1 Introduction 

Classification or class prediction is an ubiquitous task in clinical medicine. Some recent 

examples include the prediction of the presence of metastases in cancer patients [1] the 

differentiation between malignant, benign and normal tissue in women undergoing digital 

mammography [2], the identification of patients with a history of stroke [3], the prediction of 

prolonged hospital stay in an intensive care unit [4], or the detection of glaucoma [5], among 

others. Often, however, classification accuracy or predictive ability of the derived 

classification or prediction rules is not sufficiently large to justify their use in daily practice 

[1]. In that situation one could either look for additional, more informative factors that could 

be included into the classification rule or to employ more sophisticated techniques that go 

beyond a classical statistical regression or tree-based approach. These may range from 

artificial neural networks [6], Bayesian network models [7] machine learning approaches or 

flexible regression models. In this paper, we concentrate on two popular boosting approaches 

that combine single, simple classification rules into a classification ensemble in order to 

improve the predictive ability. For these boosting approaches it is believed that they provide 

an “impressive improvement in performance that seems to be associated with boosting’s 

resistance to overfitting” [8]. Therefore, we compare them with standard logistic regression 

and some extensions and a tree-based classification rule as traditional competitors. We 

investigate the various approaches by means of a large-scaled simulation study and data from 

a study on the differentiation of benign and malignant breast tumors [9].  

In the sequel, we consider the following supervised classification problem, where one is given 

a set of observations of a pair of random variables * +Y,X , often called input and output 

variable. Whereas X is usually a vector of both binary and continuous random variables, the 

range of Y is considered finite and the values correspond to distinct classes. Using this set of 

observations * +ii y,x , * n,,i 41? + , termed a training set, the aim is to find a classification 

rule c  that for a new realization * +y,x  maps the input variable x to an output class 

* +xcŷ ? , such that yŷ ? . In this paper we limit the class structure to a binary random 

variable Y  taking values 0 or 1  and denote by * +xp  the conditional probability of 

belonging to class 1 given the input vector x , * +xX|YP ?? 1 . Since in most cases the 

classes can not be perfectly separated, i.e. * + * +10 ,xp Œ  for all x , we are interested in 

estimates * +xp̂  of the conditional class probability, as well as the classification ŷ  itself.´ 
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During the last decade the availability of computing resources has led to the development of 

new methods better able to deal with increasing sample sizes and input dimensionality. Some 

of these classification methods are based on the idea of combining single classification rules 

into a classification ensemble to improve the predictive performance. Following [10] these so 

called ensemble methods can be roughly divided in three families: Boosting [11], Bagging 

[12] and Randomization (e.g. random forests [13]). For a review on ensemble methods see 

[14]. 

The idea of boosting methods e.g. AdaBoost [15] is to iteratively apply a classifier, in the 

following called base classifier, to re-weighted versions of the original training set to 

construct a series of base classification rules. After every iteration all previously obtained 

base classification rules are then combined to an ensemble e.g. using a majority vote on the 

class membership. The base classification rules in this ensemble need not be good predictors 

by themselves; Important is the combination strategy used. Further theoretical work [16,17] 

has shown that boosting methods belong to the family of generalized additive models [18]. 

The additive terms and their coefficients correspond to the single classification rules and their 

weights respectively. This has led to the development of a whole family of boosting methods, 

often referred to as gradient boosting methods [19]. In this paper we illustrate the merits of 

and differences between two boosting algorithms: AdaBoost [15] (ada) and gradient boosting 

[19] (gbm) and compare their results with logistic regression, with and without considering 

non-linear functions, and with a tree approach. 

Often, interpretability is an important aim of an classifier, at least in medicine [20]. Rules 

derived from a diagnostic study should make sense and for general usefulness they have to be 

transportable to other settings, otherwise they will be ‘quickly forgotten’, as discussed for 

prognostic models in Wyatt & Altman [21]. Therefore simpler classification rules may be 

preferable even if the performance criteria are slightly worse [4]. This issue is also expressed 

by Terrin et al. [22], who compare the external validity of predictive models derived with 

logistic regression, classification trees and neural networks.  

The paper is organized as follows: The first section introduces the classifiers studied and 

different criteria for measuring prediction performance, i.e. error rate and Brier score. The 

second section shows results of the classifiers applied to real data. The problem posed was to 

construct a diagnostic rule that discriminates between benign and malignant breast tumor. We 

found striking discrepancies in the results depending on the performance criteria used as well 

as differences between the tested combinations of boosting algorithm and other classifiers. In 
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a simulation study we will compare their performance to the logistic regression (logreg) 

model and to classification trees (tree). In the logistic model we will also consider the 

fractional polynomial (mfp) approach [23], which extends logreg by determining possible 

non-linear effects of continuous covariates in a systematic and controlled way. The basic 

simulation design considers six variables with influence on the outcome. In two extensions we 

add interactions and non-linear effects, respectively; variable selection will not be considered. 

Finally, we discuss the results of the example data and of the simulations and give some 

general conclusions. 

2 Methods 

2.1 Classifiers 

All of the classifiers studied belong to the family of generalized additive models [18]. A 

generalized additive model for the conditional class probabilities * +xp  can be written as  

 * + * + ,xhgxp
J

j
jj Õ

Ö
Ô

Ä
Å
Ã? Â

?1
d  (1) 

where the  and jh * J,,j 41 +d  are real-valued functions of the input variables and their 

corresponding regression coefficients, respectively. The link function g is chosen to map onto 

[0,1], e.g. by taking the inverse of the logit function * +* + * +
* +xp

xp
logxpg

/
?/

1
1 . The 

functions jh  are usually chosen as functions of only a small subset of the input variables and 

are often all members of the same parametric family, each characterized by a parameter vector 

ji . The coefficients jd  as well as the functions  or rather the parameter vectors jh ji  of 

the model are then estimated from the training set. 

A possible classification rule is to calculate the estimated probability * +xp̂  for a given 

observation with input vector x and compare it with an appropriately chosen classification 

threshold t . The observation is assigned to class 1 if * + txp̂ ‡ . 

1.1.1. Logistic Regression 

Logistic regression models probably constitute the approach used most often in medical 

statistics. A logistic regression model uses the inverse logit transformation as the link function 

and often assumes linear projections for each of the input variables, i.e. * + jj x=xh  for 
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* k,,j 41? +, where the subscript denotes projection to the j-th component and k is the 

dimension of the input vector x. 

Here we always fit linear logistic regression models (logreg) by maximum likelihood 

estimation. We do not apply variable selection strategies. 

1.1.2. Multivar iate Fractional Polynomials 

The assumption of log-linearity in linear logistic regression models can be relaxed. One way 

is to take non-linear transformations of a single input variable jx  as functions jh . Fractional 

polynomials [23] limit the transformations to a fixed set of polynomials with fractional 

powers of low degree and the logarithmic transformation. Here we use multivariate fractional 

polynomials [24] (mfp). All variables are included. The variable transformations are 

determined according to the RA2 algorithm described in [25], with 2 as the maximal degree 

of the fractional polynomials and 0.05 as the significance level for the selection of the 

function. 

1.1.3. Classification and Regression Trees 

Classification and Regression trees [26] (tree) partition the space spanned by the input 

variables into J disjoint regions * +J,,j,R j 41?  and assign to each region a class label or 

regression value, respectively. For classification trees conditional class probabilities 

* +jjj Rx|yP:p Œ?? 1  can be estimated by taking the ratio of class 1 training set 

observations in R divided by the total humber of training set observations in R. The 

classification rule of a tree can be written as a generalized additive model: 

 * + * +,1
1
Â
?

Œ?
J

j
jj Rxpxp  (2) 

where * +jRxŒ1  is the indicator function taking the value one of  and zero 

otherwise. 

jRxŒ

The regions jR  are obtained by a series of univariate, binary splits into regions with lower 

impurity, where impurity refers to class separation within a region. We choose the Gini-index 

as the impurity measure and stop splitting if it would lead to regions either containing less 

than five training set observations or to a decrease in overall impurity of less than 1%. We do 

not prune the trees. 

 5 Post-print, published in Methods of Information in Medicine, 2010 



1.1.4. Boosting 

In this study we contrast AdaBoost ensembles of classification trees with gradient boosting 

ensembles of regression trees. In AdaBoost ensembles the functions jh  are the iteratively 

constructed base classification rules and the regression coefficients jd  are a function of the 

weighted error rates of the jh . The link function is the inverse of the logit function. We used 

the AdaBoost.M1 algorithm as given in [15]. In gradient boosting ensembles the jh  are 

regression functions and are iteratively fitted against the residuals of the previous ensemble 

using the inverse of the logit as link function. We therefore choose the corresponding log-

likelihood as loss function. The base classifiers, resp. regression functions of the boosting 

ensembles are either classification/regression stumps consisting of a single binary split or 

small classification/regression trees with a maximum of three consecutive splits, further 

referred to as ada.stump and ada.tree and accordingly gbm.stump and gbm.tree. 

The number of trees, resp. boosting iterations is limited to 400. We used an early stopping 

rule, halting the iterations if the error (misclassification error or logscore resp.) on the training 

set doesn't change significantly over 20 iterations. For gradient boosting we also applied a 

global shrinkage factor of 10. . Pre-simulation investigations showed that the use of early 

stopping and shrinkage leads to performance close to the optimum achievable in 400 

iterations. This was also confirmed in a post-hoc analysis of the results. For all designs the 

difference in performance using the stopped and the optimal number of iterations for the 

boosting ensemble was around or below the sample standard deviation of the reported mean 

performance. Only for gbm.stump and only in Designs B and C the optimal number of 

iterations was 400, i.e. performance was increasing up to the maximum number of iterations. 

2.2 Performance cr iter ia for  compar ison 

Misclassification rate or error rate is probably the performance criterion used most often to 

compare different classification methods and various methods have been proposed for error 

rate estimation [27,28,29]. Restriction to error rate as the only measure of prediction accuracy 

is sufficient, if the class membership is determined by the input variables i.e. the conditional 

probabilities for class membership only take values 1 or 0. 

To evaluate the estimates for the conditional class probabilities we use the Brier or quadratic 

score, which is defined as: * +* +Â /
?

n

i
ii yp̂y

n 1

21
, where * +xp̂  denotes the estimated 

probability for belonging to class 1 given the input variables x  and the summation is over all 
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test set observations. It can be easily shown [28] that for two different estimates 1p̂  and 2p̂  

their difference in precision [29] as measured by 

 equals their difference in expected Brier 

score. Note that by using the Brier score differences in precision can be estimated without 

knowledge of the true probabilities 

* + * +* +] _ * + * +*] 2
2

2
1 xp̂xpExp̂xpE xx /// + _

* +xp . In addition to giving an estimate of the 

performance of every single classification method, as could be obtained by using other 

criteria, e.g. log-likelihood, a plot of Brier scores also enables a direct comparison of the 

precision of the estimated conditional probabilities, for a comprehensive discussion see [30]. 

We also computed the log-likelihood, as well as the area under the ROC curve. They lead to 

similar results [31]. 

In the example we give resubstitution estimates, i.e. using the training data twice to develop 

the rule and to asses it's performance, and/or estimates using 10-fold crossvalidation for both 

criteria. In the simulations we give the mean values obtained by 50 repetitions for both criteria 

as well as upper bounds on the sample standard deviations. 

2.3 Algor ithms 

All computations were performed using the statistical programming language R (version 

1.9.1) [32]. Specifically we chose glm() for implementation of logistic regression, 

fracpoly(version 1.1.0), a previous version of the now available mfp package [33], 

for multivariate fractional polynomials, rpart (version 3.1-19) [34] for classification and 

regression trees, gbm (version 1.2) [35] for gradient boosting. At the time the 

simulations were performed, there was no R-package for the original AdaBoost .M1[15] 

algorithm.  We implemented the AdaBoost.M1 algorithm in R using rpart to construct 

single classification trees. The following control parameter settings were used: 

rpart.control: minsplit=10,minbucket=5,cp=.01,xval=0,maxsurrogate = 0, usesurrogate=0 

AdaBoost, rpart.control: same as above with additional maxdepth = 3 (or 1 resp.) 

gbm: interaction.depth=3 (or 1 resp.) ,n.minobsinnode=5,shrinkage=.1 

3 Example: Breast Tumor Diagnosis 

We used the classifiers described above to construct a diagnostic rule that differentiates 

between benign and malignant breast tumors. The data set contains measurements of 133 

cancer patients, and 325 woman with benign tumors, the prevalence is thus 29%. Class 

labelling is 1 for malignant and 0 for benign tumors. The input variables are the age of the 
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patient, the number of tumor arteries (ipsi- and contralateral) and the maximum, average and 

sum of all peak systolic flow velocities, obtained by Doppler sonography. Some of these 

variables are strongly correlated. The class membership (malign and benign) was determined 

afterwards and independent of the earlier measurements by histologic and cytologic diagnosis. 

A complete description and detailed analysis of the data set is given in [9]. Here we only 

include variables that could be calculated in all patients to avoid missing values. An analysis 

including all variables and excluding 72 patients with missing values for some variables gives 

similar results [31]. 

3.1 Results 

All methods were first applied to the whole data set without setting aside a separate test data 

set. Figure 1 shows boxplots of the estimated conditional class probabilities for a malignant 

tumor, separately for patients with benign (0) and malignant (1) tumors. As can be seen most 

classifiers achieve a good or even perfect separation of the two classes for a wide range of 

possible classification thresholds. 

Since it is well-known that resubstitution estimates systematically overestimate the true 

performance [36], especially for flexible classification methods [27], we used 10-fold 

crossvalidation, which has been shown to provide more reliable estimates [37]. The Brier 

score was estimated by cross-validation as 0.06 to 0.07 for all seven methods pointing to 

similar predictive performance in this data. This is in sharp contrast to the impression that one 

would get from figure 1 that is reflected in much smaller values of the resubstitution estimates 

of the Brier score ranging from 0.001 to 0.05. 

Results indicate an overoptimistic performance that is only small for logreg and mfp, severe 

for tree and extreme for the boosting approaches. Thus this example shows that boosting 

approaches may not generally lead to improved prediction performance and may also be 

prone to overfitting, at least to some extent. 

4 Simulation study 

In order to investigate and illustrate the differences between the classifiers used to construct a 

diagnostic rule, we performed a simulation study to obtain more general results. We chose the 

design of the study such that it highlights the different characteristics of the classifiers 

studied, e.g. trees are better suited to detect interactions and mfp aims to model non-linear 

effects of continuous covariates. Hence it can and should be regarded as being deliberately 

biased. 
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4.1 Design 

Because all of the methods belong to the family of generalized additive models we use a 

logistic additive model for the simulation studies. This allows a direct comparison of 

simulation results with conjectures following theoretical analysis. Table 1 gives the three 

simulation designs used in this study. 

The first design is a simple log-linear model incorporating six random variables: Three 

normal distributed continuous variables and three Bernoulli distributed binary variables. See 

Table 1 for a detailed description. The coefficients were chosen such that the univariately 

explained fraction of variation of 
p

p
log

/1
 was approximately 0.3, 0.15, 0.05 for 

6
X,,

1
X ‰  respectively. To study for varying separability [29] of the classes we multiplied 

by a factor linn  that was lowered stepwise from 1 to 8

1
. Note that the variation of 

p

p
log

/1
 is proportional to 

2
linn  and therefore the separability of the classes scales with 

linn , in the following referred to as a scaling factor. The intercept term 0n  was varied to 

obtain equally sized classes.  

In the second design, we include six additional random variables: Again three Bernoulli and 

three normal distributed variables with different means and variances. These variables are 

then multiplied to form three interaction terms and the corresponding coefficients were 

chosen such that each interaction term has approximately equal variance. The scaling factors 

linn  and prodn  were chosen as to balance the influence of linear and interaction terms. 

For n?linそ  the sum of linear and the sum of interaction terms contribute almost equally to the 

variation of 
p

p
log

/1
. 

Since we suspect that in more realistic scenarios not all variables have a linear effect, in 

Design-C we include non-linear transformations of three additional random variables. Two of 

the variables are normal distributed, the other is drawn from a 
2e distribution. The 

transformations chosen are a quadratic and a cubic polynomial for the two normal distributed 

variables as well as the logarithmic transformation for the 
2e  distributed variable. Again all 

non-linear terms have approximately equal variance and the contribution of their sum is 
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balanced, s.t. the sum of linear terms and the sum of non-linear terms contribute almost 

equally to the variation of 
p

p
log

/1
.  

Table 2 gives the values used for the pairs  and * +22
prodlin

, nn  and * +22
translin

, nn  

respectively.  These determine the relative influence of the linear terms and the non-linear or 

interaction terms. By varying these scaling factors we can thus study the performance of the 

classifiers over a wide range of scenarios. Starting with situations in which only linear terms 

influence the class membership, up to situations in which the class membership is largely 

determined by non-linear transformations of the variables or bivariate interactions. In Table 2 

and further on we choose to display the squares of the scaling factors, since the variation of 

p

p
log

/1
 is proportional to the squares of the scaling factors. In the following we only give 

values for  and omit denoting the values of  and  for ease of notation; they 

can be looked up in Table 2. Note that for all pairs  and 

2
lin

n 2
prod

n 2
transn

),( 22
prodlin nn * +22

translin ,nn  resp. 

the variation of 
p

p
log

/1
 and therefore the class separability is almost the same. 

For all simulations and choice of parameters we constructed 50 training sets of size 1000 each 

and a test data set consisting of 10.000 observations of the variables. In [31] we also 

investigated the influence of the training set size. Resulting differences in separability of class 

membership between the 50 training sets are small compared to the differences in 

performance between the classifiers.  

The true class membership of every observation given its input variables is chosen randomly 

with probability according to the specific model given for 
p

p
log

/1
. 

4.2 Results 

1.1.5. Design-A 

Figure 2 displays the mean performance in terms of error rate and Brier score of the boosting 

and tree classifiers, plotted as a function of the squared scaling factor . Also given is the 

performance obtained using the true conditional class probabilities, i.e. Bayes classification. 

Here and in all other results reported, the sample standard deviations (SDs) of the means of 

both performance criteria are comparably small. They will not be plotted for the sake of 

2
lin

n
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visibility, but upper bounds will be given in the captions, with a separate value for 

classification trees, which show a more variable performance than all other methods studied. 

For all values of  boosting ensembles of decision stumps show better performance than 

tree ensembles. Whereas the boosting ensembles do not seem to differ in error rates, the Brier 

score shows big differences between AdaBoost and gradient boosting, regardless of tree size. 

The latter have smaller values of the Brier score. Note that in models with low scaling factor, 

i.e. low class separability the performance of the ensembles can be worse than that of single 

trees. 

2
lin

n

Since the simulation model is log-linear, logistic regression produces estimated probabilities 

indistinguishable from the true conditional class probabilities. Because the multivariate 

fractional polynomials algorithm always selected the variables as linear terms the estimated 

models are exactly the same as those of logistic regression. We did not include these methods 

with the best performance in the figure for the sake of clarity. When looking at the error rates 

(not shown) we obtained very similar results. 

1.1.6. Design-B 

The second series of simulations investigates the differences between the approaches in the 

presence of interactions. Table 3 shows the mean performance, in terms of the Brier score of 

all the classifiers investigated, when the linear terms explain 0.75 of the variation of 

p

p
log

/1
. For both criteria, error rate and Brier score, the classifier developed with logreg 

(identical to mfp) comes closest to the Bayes Classifier using the true conditional class 

probabilities. Results of the ensemble classifiers are a bit worse, performance of the tree 

classifier is much worse. 

Figure 3 shows a plot of the mean performance of the classifiers investigated as a function of 

the squared scaling factor . 2
lin

n

Since decision stumps - consisting of a single univariate split - are in principle unable to 

incorporate multivariate interactions, the performance of stump ensembles decreases as the 

contribution of the bivariate interaction terms resp.  increases and the contribution of 

the univariate linear terms resp.  decreases. Clearly the performance of logistic 

regression also worsens with decreasing . Single classification trees can easily model 

2
prodn

2
lin

n

2
lin

n
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interactions, the performance increase at the borders of the plot is probably due to the 

concentration of explained variation of 
p

p
log

/1
 on a small number of variables, which 

means that a small number of 'strong' predictors dominate the model. 

1.1.7. Design-C 
The last simulation study compares the classifiers if some variables have non-linear effects. 

The mean performance of all the classifiers investigated, is very similar to that observed in 

Design B in the corresponding situation. 

Increasing the influence of the non-linear terms does not affect performance of both kinds of 

stump ensembles, as can be seen in Figure 4. This also holds true for tree ensembles, which 

are not shown for the sake of clarity. 

On the other hand the performance of the logistic regression decreases with increasing 

influence of non-linear terms. However the multivariate fractional polynomials did choose the 

true variable transformations in almost all repetitions leading to good performance. 

1.1.8. Differences between boosting ensembles 

To emphasize the differences between AdaBoost and Gradient Boosting we investigated the 

estimated conditional class probabilities in the simplest situation of Design-A with scaling 

factor  in more detail. The upper part of Figure 5 plots the quantiles of the estimated 

conditional probabilities against the true conditional probabilities for every repetition. The 

ada.tree estimates of the probabilities are far from the decision threshold at .5, more often than 

given by the true probabilities. This means that the estimates are ``overconfident''. On the 

other hand the gbm.tree estimates show a distribution comparable to that of the true class 

probabilities. This behavior can also be seen in a plot of all pairs 

12 ?linn

* + n,,ixp̂xp 4111 )(,)( ?  for a 

single simulation run given in the lower part of Figure 5. Whereas the estimates of gbm.tree 

are scattered evenly around the diagonal, the ada.tree estimates are mainly close to 0 or 1. 

However, since both boosting ensembles misclassify a comparable number of observations - 

i.e. the number of points in the lower right and upper left corner of the lower part of Figure 5  

- this does not lead to big differences in error rate. 

5 Discussion 

The real world problem of constructing a diagnostic rule to differentiate between malignant 

and benign breast tumors showed that simple classifiers can be improved by combining them 

into an ensemble using boosting methods. One has to be careful though in measuring the 
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performance of such boosting ensembles. In our case an ensemble of classification trees 

combined using gradient boosting showed perfect classification performance on the training 

set. When evaluated using cross validation, however, the performance dropped to levels 

comparable to those of common classifiers such as logistic regression. This is due to the 

underestimation of the true error of flexible classifiers if using resubstitution estimates [27]. 

Based on cross validation estimates the small advantage in performance of the boosting 

methods are outweighed by the difficulty in interpretation and general use of ensemble 

methods. In the original analysis [9] Sauerbrei et al. used variable selection methods and 

investigated for possible non-linear effects of continuous variables. A simple classifier using 

age, ipsi- and contro-lateral arteries and a threshold of 0.29 for the probability had an apparent 

error rate of 0.063. Using a bootstrap approach the estimated overoptimism was even 

smaller(about 0.004) than the estimated overoptimism from logreg and mfp in this study. 

The comparison of the different classifiers and especially the comparison between the two 

different boosting algorithms studied depends strongly on the performance criterion used. If 

judged only by the error rate the simulations in this study do not show big differences 

between AdaBoost and gradient boosting. However, error rate is not a strictly proper measure 

of precision [29], i.e. the error rate is not uniquely minimized by the true conditional class 

probabilities. The use of a simulation study enabled us to assess the performance of the 

classifiers in estimating the true conditional class probabilities. Looking at the precision of the 

classifiers by comparing their Brier scores, gradient boosting clearly outperforms AdaBoost in 

all of the simulation studies investigated. A more detailed analysis of the linear case revealed 

that AdaBoost tends to produce over-confident estimates of the conditional probabilities. 

In our implementation of AdaBoost we used an early stopping rule, halting the iteration if the 

ensembles error on the training set doesn't change significantly over 20 iterations. Although 

the exact form of the early stopping rule doesn't seem very important, as long as early 

stopping is implemented [1, 10, 39], it could be that a more deliberate choice of stopping rule 

could counter this over-confidence.  

The performance of boosting ensembles depends on the difficulty of the problem under 

investigation. This was studied in Design-A by multiplying the logit-transform of the true 

conditional probabilities with a decreasing scaling factor ] _102 ,lin Œn  thereby lowering the 

true conditional probabilities towards the decision threshold at .5. We observed that the 

performance of boosting ensembles decreased more than that of the single classification tree. 

It is important to note that although one arrives at the same conclusion this definition of 
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difficulty differs from random permutation of the class labels as used in other simulation 

studies [8,17,10]. In all models of this study regions of the input space far from the decision 

hyperplane still tend to have true conditional class probabilities close to zero or one 

respectively, which is not the case for random permutation of class labels. 

In an additional study [31] we also investigated the inclusion of noise by providing not the 

true input variables but only correlated ones in the training sets and obtained comparable 

results.  

Although decision stumps consisting of only a single univariate split are not as good 

classifiers as larger decision trees, an ensemble of stumps can outperform an ensemble of 

trees. In the linear and non-linear univariate models studied in Design-A and Design-C 

stumps seem to be better suited as base classifier than fully grown trees, whereas in Design-B 

they are gradually outperformed by trees as more and more emphasis is put on bivariate 

interaction terms. This is in accord with theoretical work [38,17] suggesting that in an 

ensemble classification trees with a small amount of nodes might be sufficient, if the 

dimension of the input space is low or if the influence of multivariate terms is limited.  

Whereas here the classification trees used as single classifiers are fully grown, unpruned trees 

with a minimum observation number in every final node, the size of the trees used as base 

classifiers in boosting ensembles was in advance fixed to one resp. three subsequent splits. 

While fixing this number is a requirement of the R-implementation gbm() used in this study, 

other methods of limiting the size of trees, e.g. pruning have also been studied in the context 

of boosting [39].  

We investigated several ensemble approaches, but also compared their performance to 

standard statistical techniques. In the breast cancer example the severe overoptimism of the 

tree approach was obvious from the estimated cross-validated error rates. The overoptimism 

was even more pronounced for the ensemble methods, but relatively small for logistic 

regression. The good performance of the logistic regression was also confirmed in the 

simulation studies, even for design B with interactions included. In design C we also included 

non-linear effects of continuous predictors, a usual phenomenon in real data. Stronger non-

linear effects were detected by the MFP approach, which resulted in improved predictions. In 

contrast to classifiers based on ensemble methods trees are comprehensible for clinicians [4], 

see for example the tree derived for the breast tumor diagnosis data [9]. Models from logistic 

regression, with or without transformed predictors, derive a diagnostic index which can easily 

be transferred to a probability of disease. If the model is not too complex, e.g. by including 
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complicated terms, they are easy to interpret and to use in general classification problems. 

This is certainly an undoubtful advantage of them. Concerning performance assessment, 

measured by error rate and the Brier Score, they even outperformed the ensemble methods 

used here. Such a good performance of logistic regression was not always found in other 

studies [40]. However, investigations on classifiers usually prefer to consider error rates of 

benchmark data sets. We consider simulation studies, which allow to examine the methods 

over a wide range of scenarios, carefully chosen such that they might reflect typical situation 

encountered in applications, having the advantage that the underlying data-generating 

mechanism is known. For the comparison of classifiers, we used the Brier score as a more 

subtle performance measure that takes the predicted probabilities of each individual into 

account. In a similar way, likelihood-based criteria like the Kullback-Leibler information 

could be used as well [28,29]. A limitation of our investigations clearly is that we did not 

refine the boosting methods by using an optimized number of boosting steps which should 

lead to further improvement. Instead, our major aim was to compare two popular boosting 

approaches without further “fine-tuning” to traditional competitors. The results of our 

investigation underline that this “fine-tuning” may absolutely necessary for achieving a 

substantial gain in accuracy. 

6 Conclusions 

Application of boosting to combine simple base classifiers into ensembles can lead to 

classification rules with improved prediction ability. Theoretical analysis [41,42] lead to 

consistency results for boosting ensembles for a wide class of base classifiers. Comparisons of 

boosting to other ensemble methods [10,43] has shown that in the presence of noise random 

ensembles, e.g. random forests [13] give more favorite results. Also using more robust base 

classifiers [44] or a stochastic gradient descent [45] can improve the performance of boosting 

algorithms. 

However, in real analysis of medical data not only the lack of interpretation and applicability 

is an important disadvantage of using boosting classifiers. In our study of interacting variables 

the performance of logistic regression was at least comparable to the computer intensive 

approaches even if interaction terms contributed equally wrt. linear terms to the total 

variation,  a strong deviation from the linear model assumptions.  

This result supports the assessment of Hand concerning the illusion of progress from complex 

classifiers [46]. But there may be some room for improvement by further fine-tuning of the 

boosting approaches that has been beyond the scope of our investigations.
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Table 1: Simplified descr iption of the simulation design (means are subtracted and 

var iances scaled) 
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Table 2: Squares of the pairs of scaling factors used in Design-B and Design-C.  Note 

that whereas for  (1,0) only linear  terms enter  the model, for  Õ
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Table 3: Mean per formance (Br ier  score) of all classifiers for  for  design B. 

Also given is the per formance using the true conditional class probabilities. 

All SDS are below 0.011 for  tree and below 0.006 for  all other  methods 

7502 .lin ?n

 

 true logreg mfp tree ada.stumps ada.tree gbm.stumps gbm.trees

Design B 0.07 0.09 0.09 0.18 0.11 0.13 0.10 0.10 
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Figure 1: Boxplots of the estimated conditional class probabilities for  a malignant 

tumor  (class 1) obtained using the whole data set. The upper  and lower  

whiskers correspond to the 90% - and 10% -quantiles respectively. The 

hor izontal lines show possible classification thresholds at .5 and .29, the 

prevalence of malignant tumors. 
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Figure 2:  Design-A: Mean per formance of the boosting and tree classifiers as a function 

of the squared scaling factor  . Also given is the per formance obtained 

using the true conditional class probabilities. All SDs are below .013 for  tree 

and below .008 for  all other  methods. 
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Figure 3:  Design-B: Mean per formance of the boosting and tree classifiers as a function 

of the scaling factor . Also given is the per formance obtained using the 

true conditional class probabilities. All SDs are below .012 for  tree and below 

.006 for  all other  methods. 
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Figure 4: Design-C: Mean per formance of the boosting and tree classifiers as a function 

of the scaling factor  2
linn . Also given is the per formance obtained using the 

true conditional class probabilities. All SDs are below .013 for  tree and below 

.006 for  all other  methods. 
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Figure 5: Estimated vs. true conditional probabilities of test set observations in Design-

A with 2
linn . The upper  figure displays all 50 quantile-quantile-plots, the 

lower  a single plot of all pairs * + 100001 ,,iii xp̂,xp 4?)()( . 
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