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Summary

Objectives:

In clinical medicine, the accuracy achieved by classification rules is often not sufficient to
justify their use in daily practice. In order tmprove classifiers ihas become popular to
combine single classification rules intocéassification ensemble. Two popular boosting
methods will be compared with classical statistical approaches.

Methods:

Using data from a clinical study on the diagnasgi®reast tumors anoly simulation we will
compare AdaBoost with gradient boosting ensembles of regression trees. We will also
consider a tree approach and logistic regression as traditional competitors. In logistic
regression we allow to select non-linedfeets by the fractional polynomial approach.
Performance of the classifiers will be asss by estimated misclassification rates and the
Brier score.

Results:

We will show that boosting of simple basesddiers gives classificain rules with improved
predictive ability. However, the performa of boosting classifiers was not generally
superior to the performance tdgistic regression. In conshto the computer intensive
methods the latter are based on classifierstwéiie much easier to interpret and to use.
Conclusions:

In medical applications, the logistic regressmadel remains a method oloice or, at least,

a serious competitor of more sophisticatedhniques. Refinement of boosting methods by

using optimized number of boosting steps may lead to further improvement.
Keywords:

Classification, simulation study, boosting, geneeai additive models, diagnosis of breast

tumors.
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1 Introduction

Classification or class prediction is an ubiqusg task in clinical medicine. Some recent
examples include the prediction of the mmse of metastases in cancer patietisthe
differentiation between malignant, benign amakmal tissue in women undergoing digital
mammographyd], the identification of patients with a history of strol the prediction of
prolonged hospital stay i&n intensive care unitl], or the detection of glaucom&]] among

others. Often, however, classification accuracy predictive ability of the derived
classification or prediction rules is not suffidignlarge to justify thei use in daily practice

[1]. In that situation one couléither look for additional, mormformative factors that could

be included into the classifitan rule or to employ moreoghisticated techniques that go
beyond a classical statistical regression ee-nased approach. These may range from
artificial neural networksd], Bayesian network model§][ machine learning approaches or
flexible regression models. In this papee concentrate on two populboosting approaches

that combine single, simple classification mulmto a classification ensemble in order to
improve the predictive ability. For these boostagproaches it is belied that they provide

an “impressive improvement in performance that seems to be associated with boosting’s
resistance to overfitting”g]. Therefore, we compare them with standard logistic regression
and some extensions and a tree-based classification rule as traditional competitors. We
investigate the various approaches by mearsslafge-scaled simulation study and data from

a study on the differentiation of bgni and malignant breast tumo®j. [

In the sequel, we considertfollowing supervised classifitan problem, where one is given
a set of observations of a pair of random varia (X .Y ), often called input and output
variable. Whereas X is usualéyvector of both binary andntinuous random variables, the
range of Y is considered finite and the valaesrespond to distinct class. Using this set of
observations(xi,yi), (i=1.. ,”), termed a training set, the aim is to find a classification
rule € that for a new realizatioi(x, ) maps the input variabl X to an output class

y = C(X), such that” = 7. In this paper we limit the cia structure to a binary random
variable Y taking valuesO or 1 and denote by? (x) the conditional probability of
belonging to class 1 given the input vecX, P (Y =1| X = x)_ Since in most cases the
classes can not be pectly separated, i.e? (x)e(0.1) for all X , We are interested in

estimate:? (x) of the conditional class probaibjl, as well as the classificatic” itself.”
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During the last decade the availability of cartipg resources has led to the development of
new methods better able to death increasing sample sizes and input dimensionality. Some
of these classification methods are based ernidba of combining singlclassification rules
into a classification ensemble to imprabe predictive performance. Following{ these so
called ensemble methods can be roughly divided in three families: Boostindfagging

[12] and Randomization (e.g. random foresit8]). For a review on ensemble methods see
[14].

The idea of boosting methods e.g. AdaBod$ |s to iteratively apply a classifier, in the
following called base classifieto re-weighted versions ofhe original training set to
construct a series of base classification sulefter every iteratiorall previously obtained
base classification rules areethcombined to an ensemlday. using a majority vote on the
class membership. The base sifisation rules in this ensergbneed not be good predictors
by themselves; Important is the combination strategy used. Further theoreticall&drk [
has shown that boosting methods belong to the family of generalized additive nid@ilels [
The additive terms and their coefficients copasl to the single classification rules and their
weights respectively. This has led to the depment of a whole family of boosting methods,
often referred to as gdient boosting method49]. In this paper we illustrate the merits of
and differences between two boosting algorithms: AdaBd&gt(§da) and gradient boosting
[19] (gbm) and compare their results with ldgisregression, with and without considering

non-linear functions, andithh a tree approach.

Often, interpretability is an important aiof an classifier, at least in medicin20]. Rules
derived from a diagnostic study should make searsl for general usefulness they have to be
transportable to other settings, otherwise thy be ‘quickly forgotten’, as discussed for
prognostic models in Wyatt & Altmar2]]. Therefore simpler clasfication rules may be
preferable even if the performancriteria are slightly worsd][ This issue is also expressed
by Terrin et al. 22, who compare the external validitf predictive modis derived with

logistic regression, classificati trees and neural networks.

The paper is organized as follows: The firstt®n introduces the classifiers studied and
different criteria for measuringrediction performance, i.errer rate and Brier score. The
second section shows resuitisthe classifiers applied toakdata. The problem posed was to
construct a diagnostic rule thdiscriminates between benigncamalignant breast tumor. We
found striking discrepancies inghesults depending on the penfiance criteria used as well

as differences between the tested combinawdrimosting algorithm andther classifiers. In

3 Post-print, published in Methods of Information in Medicine, 2010



a simulation study we will compare their performance to the logistic regression (logreg)
model and to classification tregqtree). In the logistic motleve will also consider the
fractional polynomial (mfp) approaci23], which extends logredpy determining possible
non-linear effects of continuousovariates in a systematand controlled way. The basic
simulation design considers six variables wittuignce on the outcome. In two extensions we
add interactions and non-linear effects, respectivelyalke selection will not be considered.
Finally, we discuss the results of the examgd¢a and of the simulations and give some

general conclusions.
2 Methods

2.1 Classifiers

All of the classifiers studied belong to the family of generalized additive moti@ls A

generalized additive model for the conditional class probabi » (*) can be written as
J
p (x):g Zlﬂjhj (x) ) (1)
]:

where thehj and ﬂj(l,...,J) are real-valued functions dfie input variables and their
corresponding regression coeffidignrespectively. The link functignis chosen to map onto

[0,1], e.g. by taking the invee of the logit functiong_1 (p (x))zlogle()). The
—pl(x

functions” ; are usually chosen as functions of oalgmall subset of the input variables and

are often all members of the same paramé&ndly, each characterizda/ a parameter vector

7j- The coefficients,b’j as well as the functionlzzj or rather the parameter vectors of

the model are then estimated from the training set.

A possible classification rule is tcalculate the estimated probabilig&(x) for a given

observation with input vectc* and compare it with an appropriately chosen classification

threshold? . The observation is assigned to class p (x)>¢.

1.1.1. Logistic Regression
Logistic regression models probably constitute the approach used most often in medical

statistics. A logistic regression model uses the inverse logit transformation as the link function

and often assumes linear projections &ach of the input variables, i.hj(x)=xj for
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(=1, ,k), where the subscript denotes projection to the j-th component anthe
dimension of the input vectar
Here we always fit linearobistic regressin models I(ogr eg) by maximum likelihood

estimation. We do not apply valile selection strategies.

1.1.2. Multivariate Fractional Polynomials
The assumption of log-linearity in linear logéstegression models can be relaxed. One way

is to take non-linearansformations of aingle input variablix; as functions/; . Fractional

polynomials R3] limit the transformations to a fixeset of polynomials with fractional
powers of low degree and the logarithmic sfanmation. Here we use multivariate fractional
polynomials R4] (nf p). All variables are included. Ehvariable transformations are
determined according to the RA2 algorithm describe®%&j with 2 as the maximal degree
of the fractional polynomials and 0.05 as tkignificance level forthe selection of the

function.

1.1.3. Classification and Regression Trees
Classification andRegression tree2§] (t r ee) partition the spacspanned by the input

variables into J disjoint regionRj,(j = l,...,J) and assign to eachgien a class label or
regression value, respectiyel For classification trees oaditional class probabilities

D .':Pj(y:1| xeRJ-) can be estimated by taking thmatio of class 1 training set

observations inR divided by the total humber of training set observationskinThe

classification rule of a tree can be written as a generalized additive model:

p(x)= pjl(xeRj), ()

M-

1

J

where 1(xeRj) is the indicator functin taking the value one okeRj and zero

otherwise.

The regionsR; are obtained by a series of univaridimary splits into regions with lower

impurity, where impurity refers to class sepamtwithin a region. We choose the Gini-index
as the impurity measure and stop splitting mvduld lead to regiongither containing less
than five training set observationsto a decrease in overallpurity of less than 1%. We do

not prune the trees.
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1.1.4. Boosting
In this study we contrast AdaBoost ensemlgeslassification treesvith gradient boosting

ensembles of regression trees.AdaBoost ensembles the functic/; are the iteratively
constructed base classification milend the regression coefficiel5; are a function of the
weighted error rates of tt4; . The link function is the inveesof the logit function. We used
the AdaBoost.M1 algorithm as given ia%. In gradient boosting ensembles t/; are

regression functions and are itvaly fitted against the residlsaof the previous ensemble
using the inverse of the ldgas link function. We thereferchoose the corresponding log-
likelihood as loss function. The base class#fiaesp. regressiontictions of the boosting
ensembles are either classification/regression stumps consisting of a single binary split or
small classification/regression trees with axmaum of three consecutive splits, further
referred to asda. st unp andada. t r ee and accordinghgbm st unp andgbm tree.
The number of trees, resp. boosting iteratisnkmited to 400. We used an early stopping
rule, halting the iterations if the error (miscldissition error or logscoreesp.) on the training
set doesn't change significantbver 20 iterations. For gramht boosting we also applied a
global shrinkage factor c01. Pre-simulation investigationshowed that the use of early
stopping and shrinkage leads to performactmse to the optimum achievable in 400
iterations. This was also confirmed in a post-hoalysis of the results. For all designs the
difference in performance using the stopped @he optimal numbeof iterations for the
boosting ensemble was around or below the sample standard dewfati@reported mean
performance. Only fogbm st unp and only in Designs B and C the optimal number of

iterations was 400, i.e. performance was ingirgaup to the maximum number of iterations.
2.2 Performance criteria for comparison

Misclassification rate or error rate is probalie performance critenoused most often to
compare different classification methods andows methods have been proposed for error
rate estimationZ7,28,29. Restriction to error rate aselonly measure of prediction accuracy
Is sufficient, if the class membership is detmed by the input variables i.e. the conditional
probabilities for class membership only take values 1 or O.

To evaluate the estimates for the conditionaslarobabilities we use the Brier or quadratic

L . 1z . 2 . _
score, which is defined as:- Z(yi —p(yi)) , Where p(x) denotes the estimated
n =1

probability for belonging to class 1 given the input variableand the summation is over all
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test set observations. It can be easily shd@hthat for two different estimatep, and p

their difference in precision 20 as measured by
E, [(P(x)—ﬁl(x))z]—Ex [(p(x)—[oz(x))z] equals their difference in expected Brier

score. Note that by using the Brier score ddfees in precision can be estimated without
knowledge of the true probabilitie 7 (x). In addition to givig an estimate of the
performance of every single classificatiomethod, as could be obtained by using other
criteria, e.g. log-likelihood, a pladf Brier scores also enable direct comparison of the
precision of the estimated conditional proiiibs, for a comprehensive discussion s&€.|
We also computed the log-likelihood, as welltlas area under the ROC curve. They lead to

similar results 31].

In the example we give resubstitution estimaites,using the training data twice to develop
the rule and to asses it's performance, and/or estimates using 10-fold crossvalidation for both
criteria. In the simulations we give the meatues obtained by 50 repetitions for both criteria

as well as upper bounds on the sample standard deviations.
2.3 Algorithms

All computations were performed usingetlstatistical programming language R (version
1.9.1) B2. Specifically we chosegl n{) for implementation of logistic regression,
fracpol y(version 1.1.0), aprevious version of the now availabfep package 33,

for multivariate fractional polynomials,part (version 3.1-19)34] for classification and
regression treesgbm (version 1.2) [39 for gradient boosting. At the time the
simulations were performed, there was Repackage for the original AdaBoost .MB|
algorithm. We implemented the AdaBoost.M1 algorithm in R usipgrt to construct

single classification trees. The followiegntrol parameter settings were used:

rpart.control: minsplit=10,minbucket=5,cp=.01,xval=0,maxsurrogate = 0, usesurrogate=0
AdaBoost, rpart.control: same as abovthwadditional maxdeptk 3 (or 1 resp.)

gbm: interaction.depth=3 (or 1s) ,n.minobsinnode=>5,shrinkage=.1

3 Example: Breast Tumor Diagnosis

We used the classifiers desmd above to construct a diagtosule that differentiates
between benign and malignant breast tumdle data set contains measurements of 133
cancer patients, and 325 woman with benigmdxs, the prevalence is thus 29%. Class
labelling is 1 for malignant and O for benitgmmors. The input varidés are the age of the
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patient, the number of tumor anites (ipsi- and contralateradnd the maximum, average and
sum of all peak systolic flow velocitiesptained by Doppler sonography. Some of these
variables are strongly correlatethe class membership (malign and benign) was determined
afterwards and indepeent of the earlier measurementshistologic and cytologic diagnosis.

A complete description and detailed asd8 of the data set is given if][ Here we only
include variables that could be calculated inpatients to avoid missing values. An analysis
including all variables and excluding 72 patientthwnissing values for some variables gives

similar results 31].
3.1 Results

All methods were first applied tihve whole data set without Set aside a separate test data
set. Figure 1 shows boxplots of the estimatedditional class probdhies for a malignant
tumor, separately for patients with benign #dp malignant (1) tumors. As can be seen most
classifiers achieve a good or even perfect isgjoam of the two classefor a wide range of
possible classification thresholds.

Since it is well-known that resubstitution estte® systematically overestimate the true
performance 36], especially for flexible classification method27], we used 10-fold
crossvalidation, which has been shownptovide more reliable estimate37]. The Brier

score was estimated by crosaidation as 0.06 to 0.07 forladeven methods pointing to
similar predictive performance in this data. This is in sharp contrast to the impression that one
would get from figure 1 that is reflected in afusmaller values of the resubstitution estimates

of the Brier score ranging from 0.001 to 0.05.

Results indicate an overoptimistic performanca ik only small for logreg and mfp, severe
for tree and extreme for the boosting approaches. Thus this example shows that boosting
approaches may not generally lead to impdopeediction performance and may also be

prone to overfitting, dteast to some extent.
4 Simulation study

In order to investigate and illustrate the differehbetween the classifiers used to construct a
diagnostic rule, we performedsanulation study to obtain mogeneral results. We chose the
design of the study such that highlights the different chartaristics of the classifiers
studied, e.g. trees are better suited to detgetactions and mfp ais to model non-linear
effects of continuous covariateldence it can and should begaeded as being deliberately

biased.
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4.1 Design

Because all of the methods belong to theiljamof generalized additive models we use a
logistic additive model for the simulationusies. This allows a direct comparison of
simulation results with conjectures followingetiretical analysis. Table 1 gives the three
simulation designs used in this study.

The first design is a simple log-linear mbdecorporating six random variables: Three
normal distributed continuous vahles and three Bernoulli diditited binary variables. See

Table 1 for a detailed description. The coeéfits were chosen such that the univariately

p

explained fraction of variation oflog1 was approximately 0.3, 0.15, 0.05 for

Xy X respectively. To study for varying separabiliBg] of the classes we multiplied

by a factor A lin that was lowered stepwise from 1 % Note that the variation of

pP

: : 2 . :
logl is proportional tcﬂ“lin and therefore the separabilitf the classes scales with

ﬂ'lin , in the following referred to as a scaling factor. The intercept A 0 Was varied to
obtain equally sized classes.

In the second design, we include six additlalaadom variables: Again three Bernoulli and
three normal distributed variegs with different means and variances. These variables are
then multiplied to form three interaction terms and the corresponding coefficients were

chosen such that each interaction term lpgsaximately equal variance. The scaling factors

A lin and ﬂ’prod were chosen as to balance theuefice of linear and interaction terms.

For 4;;,=A the sum of linear and the sum of interatierms contribute almost equally to the

variation of log P

1-p

Since we suspect that in more realistic sdesanot all variables & a linear effect, in

Design-C we include non-lineamatisformations of three additial random variables. Two of

the variables are normal distributed, the other is drawn froix * distribution. The
transformations chosen areyaadratic and a cubic polynomial for the two normal distributed

variables as well as the logarithmic transformation for x ?sdistributed variable. Again all

non-linear terms have approximately equal atace and the contribution of their sum is
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balanced, s.t. the sum of linear terms anel $hhm of non-linear terms contribute almost

equally to the variation OﬁogL.

1-p

i : 2 2 2
Table 2 gives the values used for the pairs (ih(,z}n , A pmd) and (/1 in o A tmns)

respectively. These determine the relative influence of the linear terms and the non-linear or
interaction terms. By varying these scaliagtbrs we can thus study the performance of the
classifiers over a wide range of scenarioarttg with situations in which only linear terms
influence the class membership, up to situeian which the class membership is largely
determined by non-linear transfortimams of the variables or biviate interactions. In Table 2

and further on we choose to displie squares of the scalingctors, since the variation of

p

log1 is proportional to the squar®f the scaling factors. In the following we only give

2 - : 2 2 P
values for4 ;. and omit denoting the values ﬂ)fpm 4 and f,,s for ease of notation; they

lin 1 lin’”" trans

can be looked up in Table 2. Note that for all pii}ﬁs2 A ]ijd) and (/12 22 ) resp.

p
1-p

the variation oflog and therefore the class separability is almost the same.

For all simulations and choice of parameterscaestructed 50 training sets of size 1000 each
and a test data set consisting of 10.@X¥ervations of the variables. 181 we also
investigated the influence ofdhraining set size. Resulting diffees in separability of class
membership between the 50 training sete amall compared to the differences in

performance between the classifiers.
The true class membership of every observagioen its input variables is chosen randomly

with probability according to the specific model given lf@gli.
4

4.2 Results

1.1.5. Design-A
Figure 2 displays the mean performance in seofnerror rate and Brier score of the boosting

and tree classifiers, plotted asumdtion of the squadescaling factort 12m . Also given is the

performance obtained using the true conditiartass probabilities, i.e. Bayes classification.
Here and in all other results reported, the damspandard deviations (SDs) of the means of
both performance criteria are comparably smbBlley will not be plotted for the sake of
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visibility, but upper bounds will be given ithe captions, with aseparate value for

classification trees, which show a more varigi#eformance than all other methods studied.

For all values of1 12m boosting ensembles of decision stumps show better performance than

tree ensembles. Whereas the boosting ensembles deeratto differ in error rates, the Brier
score shows big differences between AdaBobndtgradient boosting, regiess of tree size.
The latter have smaller values of the Brier schi@e that in modelwith low scaling factor,

l.e. low class separability the performanceh® ensembles can be worse than that of single

trees.

Since the simulation model is log-linear, logistic regression produces estimated probabilities
indistinguishable from the ue conditional class probabilise Because the multivariate
fractional polynomials algorithm always selected variables as linear terms the estimated
models are exactly the sametlsse of logistic regression. W& not include these methods

with the best performance in the figure for fade of clarity. When looking at the error rates

(not shown) we obtainegkry similar results.

1.1.6. Design-B
The second series of simulatiomvestigateghe differences betweehe approaches in the
presence of interactions. Tal8eshows the mean performancetenms of the Brier score of

all the classifiers investigated, when theekr terms explain 0.75 of the variation of

P
1-p

log . For both criteria, error rate and Bregore, the classifier developed withgr eg

(identical tonf p) comes closest to the Bayes Classifusing the trueconditional class
probabilities. Results of the ensemble classsfiare a bit worse, performance of the tree

classifier is much worse.

Figure 3 shows a plot of the mean performancehefclassifiers investigated as a function of
2

the squared scaling factdr;, .

Since decision stumps - consisting of a singhévariate split - are in principle unable to

incorporate multivariate interactions, the performance of stump ensembles decreases as the

contribution of the bivariate interaction terms reﬁp?)md increases and the contribution of
the univariate linear terms respl 121n decreases. Clearly the performance of logistic

regression also worsens with decreasjhén. Single classificatiorirees can easily model
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interactions, the performancecnease at the borders of tipéot is probably due to the

pP
1-p
means that a small number of 'stropiggdictors dominate the model.

concentration of expined variation oflog on a small number of variables, which

1.1.7. Design-C
The last simulation study compares the classfif some variableBave non-linear effects.

The mean performance of all ttassifiers investigated, is very similar to that observed in

Design B in the corresponding situation.

Increasing the influence of the non-linear teogs not affect performae of both kinds of
stump ensembles, as can be seen in Figure 4. This also holds true for tree ensembles, which

are not shown for the sake of clarity.

On the other hand the performance of the dtigiregression decreases with increasing
influence of non-linear tens. However the multivariate fri@nal polynomias did choose the

true variable transformations in almaditrepetitions leading to good performance.

1.1.8. Differences between boosting ensembles
To emphasize the differences between AdaBaodt Gradient Boosting we investigated the

estimated conditional class probabilities in Bwplest situation of Design-A with scaling

factor A . 1 in more detail. The upper part of Figus plots the quantiles of the estimated
lin

conditional probabilities against the true cdimtial probabilities forevery repetition. The
ada.tree estimates of the probabilities are fanfthe decision threshold at .5, more often than
given by the true probabilitie§.his means that the estimatae ~overconfident”. On the
other hand the gbm.tree estimates show a disimibbicomparable to that of the true class

probabilities. This behavior can alke seen in a pt of all pairs(p(xl) , 13("1))1':1..., , fora

single simulation run given in the lower partFagure 5. Whereas the estimates of gbm.tree
are scattered evenly around thagtinal, the ada.tree estimates arainly close to O or 1.
However, since both boosting ensembles misdlasscomparable number of observations -
l.e. the number of points in thewer right and upper left cornef the lower part of Figure 5

- this does not lead to big differences in error rate.
5 Discussion

The real world problem of constructing a diagto rule to differentiate between malignant
and benign breast tumors showed that simfassifiers can be improved by combining them

into an ensemble using boosting methods. @a® to be careful though in measuring the
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performance of such boosting sembles. In our case an emdde of classification trees
combined using gradient boosting showed gurtlassification performance on the training
set. When evaluated using cross validatibowever, the performance dropped to levels
comparable to those of common classifiers sashogistic regression. This is due to the
underestimation of the true errof flexible classifiers ifusing resubstitution estimate?7].
Based on cross validation estimates the llsadvantage in performance of the boosting
methods are outweighed by the difficulty in interpretation and general use of ensemble
methods. In the original analysi9] [Sauerbrei et al. used vahble selection methods and
investigated for possible non-lineaffects of continuous varialdeA simple classifier using
age, ipsi- and contro-lateral arteries andraghold of 0.29 for the probability had an apparent
error rate of 0.063. Using a bootstrap applodhe estimated overoptimism was even

smaller(about 0.004) than the estimated oviamapm from logreg and mfp in this study.

The comparison of the different classifiersdaespecially the comparison between the two
different boosting algorithmsgdied depends strongly on therfoemance criterion used. If
judged only by the error rate the simulatiansthis study do not show big differences
between AdaBoost and gradient boosting. Howesor rate is not a strictly proper measure

of precision 29, i.e. the error rate isot uniquely minimized by the true conditional class
probabilities. The use of a simulation studyaleled us to assessettperformance of the
classifiers in estimating the true conditionalssl@robabilities. Looking at the precision of the
classifiers by comparing thefirier scores, gradiefitoosting clearly ougrforms AdaBoost in

all of the simulation studies investigated. A more detailed analysis of the linear case revealed

that AdaBoost tends to prock over-confident estimates of the conditional probabilities.

In our implementation of AdaBooste used an early@bping rule, halting th iteration if the
ensembles error on the training set doesnh@dasignificantly ovef0 iterations. Although
the exact form of the early stopping ruleedn't seem very important, as long as early
stopping is implemented.| 10, 39, it could be that a more tleerate choice o$topping rule

could counter this over-confidence.

The performance of boosting ensembles ddpeon the difficulty of the problem under

investigation. This was studied in Design-A tltiplying the logit-transform of the true

conditional probabilities witta decreasing scaling fact 4 lzm €[0,1] thereby lowering the

true conditional probalities towards the desion threshold at .5. Webserved that the
performance of boosting ensembles decreased thanethat of the single classification tree.

It is important to note that although one waes at the same conclusion this definition of
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difficulty differs from random permutation of éhclass labels as used in other simulation
studies 8,17,1Q. In all models of this study regions tife input space far from the decision
hyperplane still tend to have&ue conditional class probaitiés close to zero or one

respectively, which is not the case fandom permutation of class labels.

In an additional study3[l] we also investigated the incloa of noise by providing not the
true input variables but only oelated ones in the training sets and obtained comparable

results.

Although decision stumps consisting of ordy single univariate split are not as good
classifiers as larger decision trees, an ensembstumps can outperform an ensemble of
trees. In the linear and non-linear univariate models studied in Design-A and Design-C
stumps seem to be better suited as base fadagkian fully grown trees, whereas in Design-B
they are gradually outperformed by treesnasre and more emphasis put on bivariate
interaction terms. This is in accord with theoretical woBB,17 suggesting that in an
ensemble classification trees with a smalloant of nodes might be sufficient, if the

dimension of the input space is low or iétimfluence of multivariate terms is limited.

Whereas here the classification trees usesirage classifiers artilly grown, unpruned trees
with a minimum observation number in every fimade, the size of the trees used as base
classifiers in boosting ensembles was in advdixegl to one resp. tlke subsequent splits.
While fixing this number is a requirement of the R-implementagiom( ) used in this study,
other methods of limiting the size of trees, @ining have also been studied in the context
of boosting B9].

We investigated several ensemble approgcbes also compared their performance to
standard statistical techniques. In the breast cancer example the severe overoptimism of the
tree approach was obvious from the estimateds-validated error t@s. The overoptimism

was even more pronounced for the ensemble methods, but relatively small for logistic
regression. The good performance of the logiségression was also confirmed in the
simulation studies, even for desiBrwith interactions includedn design C we also included
non-linear effects of continuoysedictors, a usual phenomenon in real data. Stronger non-
linear effects were detected by the MFP apghoavhich resulted in improved predictions. In
contrast to classifiers based on ensembldéatkst trees are comprehensible for cliniciafjs [

see for example the tree derived fioe breast tumor diagnosis da®h Models from logistic
regression, with or without traformed predictors, derive a diagnostic index which can easily
be transferred to a probabilif disease. If ta model is not too complex, e.g. by including
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complicated terms, they are easy to interpret and to use in general classification problems.
This is certainly an undoubtful advantage tbem. Concerning performance assessment,
measured by error rate and the Brier Sctirey even outperformed the ensemble methods
used here. Such a good performance of logiggression was not always found in other
studies #0]. However, investigations on classifiersualy prefer to consider error rates of
benchmark data sets. We consider simulasitudies, which allow to examine the methods
over a wide range of scenari@grefully chosen such that theyight reflect typical situation
encountered in applications, having thdvantage that the underlying data-generating
mechanism is known. For the comparison of cfessi we used the Brier score as a more
subtle performance measure thakes the predicted probabéds of each individual into
account. In a similar way, likelitod-based criteria like thKullback-Leibler information
could be used as welP8,29. A limitation of our investigatns clearly is that we did not
refine the boosting methods by using aniroted number of boosting steps which should
lead to further improvement. Instead, onajor aim was to compare two popular boosting
approaches without further “fine-tuning” ttvaditional competitors. The results of our
investigation underline that this “fine-tunihgnay absolutely necessary for achieving a

substantial gain in accuracy.
6 Conclusions

Application of boosting to combine simple baskssifiers into ensembles can lead to
classification rules with improved prieton ability. Theoretical analysis4],49 lead to
consistency results for boosting ensembles for a wide class of base classifiers. Comparisons of
boosting to other ensemble methodl8,f#3 has shown that in the presence of noise random
ensembles, e.g. random foreslt8][give more favorite results. Also using more robust base
classifiers 44] or a stochastic gradient descef|[can improve the performance of boosting

algorithms.

However, in real analysis of medical data aoly the lack of interptation and applicability

is an important disadvantage of using boosting classifiers. In our sturthg@cting variables
the performance of logistic regression wadeast comparable to the computer intensive
approaches even if interaction terms contebdutqually wrt. linear terms to the total

variation, a strong deviation frothe linear model assumptions.

This result supports the assessment of Hamgerning the illusion gbrogress from complex
classifiers 46]. But there may be some room forgmvement by further fine-tuning of the

boosting approaches that has begrohd the scope of our investigations.
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Table 1:

Simplified description of the sidamion design (means are subtracted and

variances scaled)

Data Predictors Model
Design-| x; ~ N(0,3) p
A log =
1-p
X, ~N(0,21) | Ag+ Ay, [ X1+ Xp + X3+25X, +525Xc +6 Xg +2075]
X3~ N(0,1.25)
X, ~B(1,05)
X5~ B(1,0.8)
X6~ B(L,05)
Design-| Xq,..., Xg )2
B logl_p =
as in Design A | 40+ Ziin [- X1+ X, + X3+25X,+525Xc+6Xg+2075]
+ Aproq [0.95Y; Yp + 4.75Y3 Y, +9.5Y; Yo
v~ N(0,1)
Y, ~N(4,3)
Y3~ N(2,1)
Y, ~ B(1,0.25)
Ys ~ B(1,0.7)
Ye ~ B(L,0.9)
Design-| Xq,..., Xg
C log =
I-p
asinDesign A | })+ 4, [- X, + X, + X3+2.5X,+525Xs+6X4 +20.75]
Z;~N(0,2 I 2. 5 3
1~ N0, 2) +1Wn{gzl +glog(22)+0.423}
Z, ~ X2(1,0)
Z3~N(05,1)
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Table 2: Squares of the pairs of scaling éastused in Design-Bnd Design-C. Note
1 3
that whereas for (1,0) only rar terms enter the model, f( z:z) the
3
sum of all non-linear or interaction terms resp. expl 7 ©f the variation of

and thus dominates the model. 8lgppose that the reverse setting

lo
gl—p

3 1)) . . .
of ( 72 ] iS a more realistic scenario.

2 3 1 1

A lin 1 4 2 4

2 2 1 1 3
A prod resp. A trans 4 2 4
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Table 3: Mean performance (Brier score) of all classifiers}ttﬁn:O]Sfor design B.

Also given is the performance using the true conditional class probabilities.
All SDS are below 0.011 for tree aelow 0.006 for all other methods

true |logreg | mfp |tree |ada.stumps ada.tree gbm.stummdm.trees

Design B | 0.07 0.09 0.09 0.18 0.11 0.13 0.10 0.10
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Figure 1: Boxplots of the estimated conditional class probabilities for a malignant
tumor (class 1) obtained using the oldh data set. The upper and lower
whiskers correspond to the 90%- and 10%-quantiles respectively. The
horizontal lines show possible cladgsation thresholds at .5 and .29, the

prevalence of malignant tumors.
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Figure 2: Design-A: Mean performance of th@osting and tree claggirs as a function
of the squared scaling factot?,. Also given is the performance obtained

using the true conditional class prolidies. All SDs arebelow .013 for tree

and below .008 for all other methods.
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Figure 3: Design-B: Mean performance of thmosting and tree cla§grs as a function
of the scaling factot 2 . Also given is the performance obtained using the

true conditional class probabilitiesllSDs are below .012 for tree and below

.006 for all other methods.
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Figure 4: Design-C: Mean performance of ttom&ting and tree cladigrs as a function

2

of the scaling factord2 . Also given is the performance obtained using the

true conditional class probabilitiesllADs are below .013 for tree and below
.006 for all other methods.
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Figure 5: Estimated vs. true conditional probitibs of test set observations in Design-
A with A2 . The upper figure displays ail0 quantile-quantile-plots, the

lin *

lower a single plot of all pairép (x;). 7 (;)),_1 10000
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