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Abstract. We study an interacting system of chemotactic species in
two-space dimension. First, we show that there is a parameter region
which ensures simultaneous blowup also for non-radially symmetric
solutions. If the existence time of the solution is finite, there is a
formation of collapse (possibly degenerate) for each component, total
mass quantization, and formation of subcollapses. For radially sym-
metric solutions we can rigorously prove that the collapse concentrates
mass on one component if the total masses of the other components
are relatively small. Several related results are also shown.

1 Introduction

The Smoluchowski-Poisson equation or drift-diffusion models are systems of
elliptic-parabolic equations describing the motion of particle densities in non-
equilibrium statistical mechanics. They have been used in semiconductor
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physics, high-molecular chemistry, and astrophysics (see [33] and the refer-
ences therein). They arise also in biology, modeling aggregation and self-
organization of the cellular slime mold Dictyostelium discoideum (Dd) due
to chemotaxis [18, 23, 6]. This model in biology has a crucial negative drift.

The first rigorous proof that chemotaxis can serve as the main mechanism
for the onset of self-organization of Dd was given in [16]. Namely, for the crit-
ical space dimension two, depending on the L1-norm of the initial values and
on the strength of the chemotactic sensitivity, this model exhibits solutions
blowing up in finite time or existing global-in-time. Later studies have clar-
ified the blowup threshold [20, 21, 1, 11, 27], formation of collapses [12, 26],
mass quantization [12, 32, 29], and type II blowup rates [12, 25, 22]. On the
other hand, [13] gave a family of blowup solutions with precise asymptotics
for the full parabolic-parabolic system.

Along this line of thoughts, recently a two-component system for chemo-
taxis has been studied in [9], to approach the question if cell sorting of Dd in
the mound-stage can be mainly due to differential chemotaxis, i.e., the chemo-
tactically weaker cell type sorts out to the bottom of the mound, whereas
the chemotactically stronger cell type sorts out of the top, c.f. [34]. Of
course this question has finally to be addressed in a spatially three dimen-
sional model. But as a first mathematical test-problem to this question, in
[9] it was analyzed if there exists a set of chemotactic sensitivities in the
parabolic-elliptic chemotaxis system n the radially symmetric setting, such
that the solution for one cell type shows finite time blowup, while the solu-
tion for the other cell type still exists at that instant in time, i.e., the first
cell type starts to self-organize, while the other cell type does not yet. In the
radially symmetric setting this is not possible. It was rigorously proven in
[9] that if the solution for one cell type shows blowup in finite time, then the
other cell type does so too, and at the same time, no matter how weak its
chemotactic sensitivity is. Also sufficient conditions for blowup in finite time
for this multi-component system were given. Finally, a formal computation
in [9] showed that the blowup mechanism for the two cell types can be dif-
ferent, even up to the situation that one species can exhibit blowup without
mass aggregation. Explicit formal asymptotics for the blowup profile for spe-
cial cases were given to confirm this property using rescaled mass functions,
that is, only one component can form a singularity of delta functions at the
blowup time.

The considered system is a special form of the multi-component chemo-
taxis system introduced in [35], where conditions for the existence of global
solutions for such systems were derived. Then its stationary state is studied
by [15]. Further analysis on the critical mass for blowup for a two-species
model for chemotaxis in R2 have been more recently done [14, 7, 8]). The
authors identified a curve in the plane of masses such that outside of this
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curve there is blow-up of solutions and inside of it the solutions are global in
time, if the initial masses satisfy a threshold condition.

This model may also describe a competitive feature of chemotaxis ob-
served in cancer cell biology, especially, in tumor microenvironment at the
stage of in-travasation. More precisely, there is an interaction between cancer
cells and tumor associated macrophages through chemical substances which
causes their localized cell deformations called invadopodia and podosomes,
respectively (see [36, 17]). At the tissue level, this phenomenon may be de-
scribed by a competitive chemotactic feature between two species of cells to
chemical substance secreted by themselves. Under this agreement it will be
interesting from both the mathematical and biological points of view, if actu-
ally only one component of the solution can form δ-functions at the blowup
time.

The aim of this paper is to approach such a property of the solution,
especially also in the non-radial symmetric situation. We restrict our analysis
to the case of two space-dimension which is the critical dimension of the model
in such a biological setting. Relatives of this 2-dimensional model also arise
as a kinetic mean field equation of point vortices. See [5] and [4] for single
and multi-comonent cases, respectively, and also [31] for a higher-dimensional
multi-component case.

Given a bounded domain Ω ⊂ R2 with smooth boundary ∂Ω, this model
takes the part of Smoluchowski equations:

∂tu1 = d1∆u1 − χ1∇ · u1∇v
∂tu2 = d2∆u2 − χ2∇ · u2∇v in Ω× (0, T ), (1)

using the chemical gradient term ∇v, with the boundary condition

d1
∂u1
∂ν

− χ1u1
∂v

∂ν
= d2

∂u2
∂ν

− χ2u2
∂v

∂ν
= 0 on ∂Ω× (0, T ) (2)

and the initial condition

u1|t=0 = u10(x) ≥ 0, u2|t=0 = u20(x) ≥ 0 in Ω, (3)

where d1, d2, χ1, and χ2 are positive constants and ν is the unit normal
vector. The initial value (u10, u20) satisfies

1

|Ω|

∫
Ω

u10 + u20 dx = 1, (4)

and then (1), (2), and (3) are coupled with the Poisson equation

−∆v = u1 + u2 − 1,
∂v

∂ν

∣∣∣∣
∂Ω

= 0,

∫
Ω

v dx = 0. (5)
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We put the last condition of (5) to normalize an additive constant of v.
This normalization is not essential because only the gradient ∇v of v is used
in the Smoluchowski equations (1), while condition (4) is necessary for the
solvability of (5) at t = 0. Since

d

dt

∫
Ω

u1dx =
d

dt

∫
Ω

u2dx = 0 (6)

arises for (1) with (2), this compatibility condition for the solvability of (5),
that is,

1

|Ω|

∫
Ω

u1 + u2 dx = 1,

is kept for all t > 0. System (1), (2), (3) and (5) with (4) is thus a generali-
zation of the parabolic-elliptic system of chemotaxis given in [16] for two
chemotactic cell types (u1, u2). Here we do not adopt the normalization
d1 = 1 to make the statements below simpler, particularly for more than
two-components systems.

We assume that u10, u20 ̸≡ 0 are in C2(Ω) and satisfy

d1
∂u10
∂ν

− χ1u10
∂v0
∂ν

= d2
∂u20
∂ν

− χ2u20
∂v0
∂ν

= 0 on ∂Ω

for v0 = v0(x) defined by

−∆v0 = u10 + u20 − 1,
∂v0
∂ν

∣∣∣∣
∂Ω

= 0,

∫
Ω

v0 dx = 0.

This assumption guarantees the unique existence of a local-in-time classical
solution satisfying

ui(·, t) > 0 on Ω, 0 < t < T, i = 1, 2 (7)

with T = Tmax ∈ (0,+∞] standing for the maximum existence time [9]. Since

this T is estimated from below by
∑2

i=1 ∥ui0∥∞, it holds that

T < +∞ ⇒ lim
t↑T

2∑
i=1

∥ui(·, t)∥∞ = +∞ (8)

by a standard argument on the continuation of the solution in time (see, for
example, [29]).

The solution (u1, u2, v) to (1), (2), (3), and (5) with (4) satisfies

−∆v = u− 1

|Ω|

∫
Ω

u dx,
∂v

∂ν

∣∣∣∣
∂Ω

= 0,

∫
Ω

v dx = 0, u = u1 + u2. (9)
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Here, the system composed of (1), (2), (3), and (9) may be called inter-
acting system of Smoluchowski-Poisson equations, and henceforth is denoted
by (ISP ) in short. Similarly, we have a local-in-time well-posedness with the
properties (7) and (8) for this system. In particular, u10, u20 > 0 may be
assumed on Ω by the strong maximum principle. Then, there is A > 0 such
that Au10 ≥ u20.

If d1 = d2 = d and χ1 = χ2 = χ, we obtain

wt = d∆w − χ∇ · w∇v in Ω× (0, T )

∂w

∂ν
= 0 on ∂Ω× (0, T )

w|t=0 = Au10 − u20 ≥ 0 in Ω

for w = Au1 − u2, which implies

Au1 ≥ u2 on Ω× [0, T ). (10)

If T < +∞ and

lim inf
t↑T

∥u1(·, t)∥∞ < +∞,

there is tk ↑ T such that

lim sup
k→∞

∥u1(·, tk)∥∞ < +∞,

and therefore,

lim sup
k→∞

∥u2(·, tk)∥∞ < +∞

by (10). Then it follows that

lim inf
t↑T

{∥u1(·, t)∥∞ + ∥u2(·, t)∥∞} < +∞,

a contradiction to (8). Hence we have

lim
t↑T

∥u1(·, t)∥∞ = +∞,

and similarly,

lim
t↑T

∥u2(·, t)∥∞ = +∞.

The simultaneous blowup

T < +∞ ⇒ lim
t↑T

∥u1(·, t)∥∞ = lim
t↑T

∥u2(·, t)∥∞ = +∞ (11)
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is thus valid in any dimensions if d1 = d2 and χ1 = χ2. In two-space dimen-
sions with ui = ui(|x|, t), however, a similar property holds for any pairs of
(di, χi), i = 1, 2. More precisely, it holds that

T < +∞ ⇒ lim sup
t↑T

∥u1(·, t)∥∞ = lim sup
t↑T

∥u2(·, t)∥∞ = +∞, (12)

which is not the case of the related drift-diffusion model given in [19] (see
[9, 10] for the proof). Our first result shows that there is a parameter region
where (11) holds even for non-radially symmetric solutions.

Henceforth, we put

ξi = di/χi, ∥ui0∥1 = λi, i = 1, 2, (13)

indicating inverse motilities and initial masses of the species.

Theorem 1 If
λi < 4πξi, i = 1, 2 (14)

then (11) holds.

Here, condition (14) is consistent with the assumption T < +∞. In fact,
if (

2∑
i=1

λi

)2

< 4π
2∑

i=1

ξiλi, λi < 4πξi, i = 1, 2

then it always hold that T = +∞, while T < +∞ can occur in case(
2∑

i=1

λi

)2

> 4π
2∑

i=1

ξiλi (15)

(see Theorems 9 and 10 and the description on the relation between known
results, particlularly [35], in §2). Then the parameter region defined by (14)
and (15) in λ1λ2 plane in λi > 0, i = 1, 2, is not empty.

Since property (8) means

T < +∞ ⇒ lim
t↑T

∥u(·, t)∥∞ = +∞, (16)

recalling u =
∑2

i=1 ui in (9), the blowup set of (u1, u2) defined by

S = {x0 ∈ Ω | ∃(xk, tk) → (x0, T ), u(xk, tk) → +∞} (17)

is not empty. In the case of the Smoluchowski-Poisson system for a single
unknown species, the formation of collapses occurs with a quantized mass
[32, 33, 29]. Our second result shows that this property arises also in (ISP )
for each component, with possibly degenerate collapses. Here, we say that the
collapse mi(x0)δx0(dx), i = 1, 2, in (18) below is degenerate if mi(x0) = 0.
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Theorem 2 If T < +∞, the blowup set S defined by (17) is finite. It holds
that

ui(x, t)dx ⇀
∑
x0∈S

mi(x0)δx0(dx) + fi(x)dx, i = 1, 2 (18)

in M(Ω) = C(Ω)′ as t ↑ T = Tmax < +∞, where mi(x0) ≥ 0, i = 1, 2, are
constants satisfying (m1(x0),m2(x0)) ̸= (0, 0), and 0 < fi = fi(x) ∈ L1(Ω),
i = 1, 2, are smooth functions in Ω \ S.

Equality (19) in the following theorem may be called a total mass quan-
tization because it is an identity involving all the collapse masses mi(x0),
i = 1, 2.

Theorem 3 It holds that(
2∑

i=1

mi(x0)

)2

= m∗(x0)
2∑

i=1

ξimi(x0) (19)

for any x0 ∈ S, where

m∗(x0) =

{
8π, x0 ∈ Ω
4π, x0 ∈ ∂Ω.

(20)

We can write (1) as

∂tu1 = d1∆u1 − χ1∇u1 · ∇v + χ1u1(u− λ

|Ω|
)

∂tu2 = d2∆u2 − χ2∇u2 · ∇v + χ2u2(u− λ

|Ω|
),

using u = u1 + u2 and λ = λ1 + λ2, where

λi =
1

|Ω|

∫
Ω

ui0 dx, i = 1, 2.

Thus the ODE part of (ISP ) may be defined by

du1
dt

= χ1u1(u1 + u2 − a)

du2
dt

= χ2u2(u1 + u2 − a)

u =

2∑
i=1

ui (21)
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with a = λ
|Ω| , where ui0 = ui(0), i = 1, 2, are positive constants. Although

the solution (u1, u2) to (21) is constant: ui(t) = ui0, i = 1, 2 if

a =
2∑

i=1

ui0

we may have a blowup of the solution to (21). In this connection, we mention
that there is actually a blowup of the solution to (ISP ) (see Theorems 10
and 11).

In (21) it holds that

d

dt
(χ−1

1 log u1 − χ−2
2 log u2) = 0,

and hence u2 = cuγ1 with γ = χ2/χ1 and c = u20/u
γ
10. Therefore, the blowup

of the solution (u1(t), u2(t)) to (21) is simultaneous for ui(t), i = 1, 2, if it
actually occurs. Assuming γ ≤ 1 without loss of generality, we obtain

du1
dt

∼ χ1u
2
1,

which implies u1(t) ∼ χ1(T − t)−1 as t ↑ T = Tmax < +∞. The type (I)
blowup rate of (ISP ) thus may be defined by

∥u(·, t)∥∞ ∼ (T − t)−1, u = u1 + u2.

The next theorem concerning the formation of subcollapses implies that
any blowup rate of (ISP ) is not of this type. To state the result, let

(u1, u2, v) = (u1(x, t), u2(x, t), v(x, t))

be a solution to (ISP ) satisfying T = Tmax < +∞, take x0 ∈ S, and let

zi(y, s) = (T − t)ui(x, t), w(y, s) = v(x, t)

y = (x− x0)/(T − t)1/2, s = − log(T − t) (22)

i = 1, 2, be its backward self-similar transformation. Henceforth, we assume
the 0-extensions of zi(y, s), i = 1, 2, where they are not defined. Furthermore,
R2 ∪ {∞} denotes the one-point compactification of R2, and C0(R

2) stands
for the set of continuous functions on R2∪{∞} taking the value 0 at ∞, and
M0(R

2) = C0(R
2)′.

Theorem 4 We have

zi(y, s+ s′)dy ⇀ mi(x0)δ0(dy), i = 1, 2 (23)
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in C∗(−∞,+∞;M0(R
2)) as s′ ↑ +∞. In particular, it holds that

lim
t↑T

(T − t)∥u(·, t)∥L∞(Ω∩B(x0,b(T−t)1/2) = +∞ (24)

for any b > 0.

Now we approach the property of the collapse mass separation. The first
observation is the following theorem. Here we note that the blowup set S
coincides with the origin for radially symmetric solutions satisfying T < +∞.

Theorem 5 Let Ω be a disc with center at the origin, ui = ui(|x|, t), i = 1, 2,
and T < +∞. Then mi = mi(0) must satisfy

mi ≤ 8πξi, i = 1, 2 (25)

besides (19) with x0 = 0.

Here we give several remarks. First, inequality (25) arises in the context
of a global-in-time continuation of the solution associated with a Trudinger-
Moser or logarithmic HLS inequality (see §2). Next, (25) is a consequence of
(19) if

1/2 ≤ ξi/ξj ≤ 2, i, j = 1, 2. (26)

More precisely, if (26) is the case, the curve (a parabola if ξ1 ̸= ξ2 and a line
in the other case) defined by(

2∑
i=1

mi

)2

= m∗

2∑
i=1

ξimi, m∗ = m∗(x0), (27)

in the m1m2-plane in {(m1,m2) | mi > 0, i = 1, 2} does not cross the lines
mi = ξim∗, i = 1, 2. Finally, in the other case of ξi/ξj > 2 or ξi/ξj < 1/2
for i ̸= j, one of (m1,m2) = (8πξ1, 0) and (m1,m2) = (0, 8πξ2) is an isolated
point of (27) in the m1m2-plane with {(m1,m2) | mi ≥ 0, i = 1, 2} and (25).

Under such observations we can expect that the above isolated endpoint
of (m1,m2), which we call mass separation, may be actually the case, and
is stable under non-radially symmetric perturbations. In this context we
recall that simultaneous blowup (12) is always the case for radially sym-
metric solutions, regardless of the parameter region indicated by (14). If
both simultaneous blowup and mass separation arise, say, mi(x0) = 0 in
(18), then it will hold that fi ̸∈ L∞(Ω ∩ B(x0, R)) for 0 < R ≪ 1, where
B(x0, R) = {x | |x− x0| < R}.

The following theorem shows that the mass separation of radially sym-
metric solutions, which was formally given in [9], actually occurs if the total
mass of one component is relatively small compared with that of the other.
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Theorem 6 Under the assumption of Theorem 5, let

ξi/ξj > 2

for some i ̸= j. Then mi = 0 and hence mj = 8πξj holds, provided that

∥ui0∥1 < 8π(ξi − 2ξj).

We note that a sufficient condition for T < +∞ in the above theorem is given
in [9], that is (see Theorem 11 in §5),

∥uj0∥1 > 8πξj , ∥|x|2uj0∥1 ≪ 1.

Theorem 10 in §3 is also available.
Theorem 1 is proven by the variational structure of (ISP ) and the loga-

rithmic HLS inequality derived in [30]. Theorem 2 is obtained by an argument
of [26], using an ε-regularity and a monotonicity formula. Then we have the

formation of collapses of û(x, t)dx as t ↑ T , where û =
∑2

i=1 χ
−1
i ui. A careful

analysis then assures this property component-wisely and also

m(x0) ≡
2∑

i=1

mi(x0) > 0. (28)

To prove Theorem 3, first we apply an argument developed for the single
component case [32, 33, 29]. We use the backward self-similar transformation,
weak scaling limit, scaling back, and translation limit, to obtain a full-orbit
defined on the whole (or the half) space domain. Here establishing a parabolic
envelope is essential. Then, an existence criterion of such orbits follows from
the method of local second moments and scaling, which guarantees an esti-
mate of the total collapse mass from above, that is,(

2∑
i=1

mi(x0)

)2

≤ m∗(x0)
2∑

i=1

ξimi(x0). (29)

We use a new argument to derive the reverse inequality(
2∑

i=1

mi(x0)

)2

≥ m∗(x0)

2∑
i=1

ξimi(x0). (30)

Namely, we show the boundedness of the total second moment of the rescaled
solution and use the scaling limit equation. We have, at the same time, the
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formation of subcollapses indicated by Theorem 4. We note that a weaker
estimate of the total collapse mass from below is obtained similarly to the
single component case, that is, either (30) or

mi(x0) ≥ ξim∗(x0), i = 1, 2 (31)

by the logarithmic HLS inequality. Inequality (30), however, is eventually
selected for (19) to be established.

The proof of Theorem 5 is based on the fact that the interaction between
two-components is neglected in the collapse mass estimate from above for
radially symmetric solutions. Then Theorem 6 arises with the total mass
conservation of each component of the solution.

This paper is composed of five sections and two appendices. In §2 we
take preliminaries and prove Theorem 1. We show Theorem 2 in §3 and
then Theorems 3 and 4 in §4. Theorems 5 and 6 are proven in §5. In
the first appendix, we show that either (30) or (31) holds by the previous
argument used in [26]. The second appendix is devoted to some criteria for
mass separation and simultaneous blowup.

Concluding this section, we note that the proof of the above theorems are
valid even for the multi-components case, that is, a system of Smoluchowski
equations

∂tui = di∆ui − χi∇ · ui∇v in Ω× (0, T )

di
∂ui
∂ν

− χiui
∂v

∂ν
= 0 on ∂Ω× (0, T )

ui|t=0 = ui0(x) ≥ 0 in Ω, (32)

i = 1, 2, · · · , N , coupled with the Poisson equation:

−∆v = u− 1

|Ω|

∫
Ω

u dx,
∂v

∂ν

∣∣∣∣
∂Ω

= 0,

∫
Ω

v dx = 0, u =
N∑
i=1

ui.

Here, Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, di, χi, i =
1, 2, · · · , N , are positive constants, and ν is the unit normal vector.

Thus we have the local-in-time existence of the solution and blowup cri-
terion (16). Next the simultaneous blowup

T < +∞ ⇒ lim
t↑T

∥ui(·, t)∥∞ = +∞, i = 1, 2, · · · , N

occurs in the parameter region(∑
i∈J

λi

)2

< 4π
∑
i∈J

ξiλi, ∀J ⊂ {1, 2, · · · , N}, ♯J = N − 1.
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We have finiteness of the blowup set S defined by (17) and the formation of
collapses:

ui(x, t)dx ⇀
∑
x0∈S

mi(x0)δx0(dx) + fi(x)dx, i = 1, 2, · · · , N (33)

in M(Ω) as t ↑ T , where mi(x0) ≥ 0, i = 1, 2, · · · , N , are constants satisfying

m(x0) ≡
N∑
i=1

mi(x0) > 0

and 0 ≤ fi ∈ L1(Ω), i = 1, 2, · · · , N , are smooth functions in Ω \ S.
Letting ξi = di/χi, i = 1, 2, · · · , N , it holds that(

N∑
i=1

mi(x0)

)2

= m∗(x0)

N∑
i=1

ξimi(x0) (34)

and
zi(y, s+ s′)dy ⇀ mi(x0)δ0(dy), i = 1, 2, · · · , N (35)

in C∗(−∞,+∞;M0(R
2)) as s′ ↑ +∞ for any x0 ∈ S, where zi = zi(y, s),

i = 1, 2, · · · , N , are self-similar transformations of ui = ui(x, t) defined by
(22), which implies

lim
t↑T

(T − t)∥u(·, t)∥L∞(Ω∩B(x0,b(T−t)1/2)) = +∞, u =
N∑
i=1

ui (36)

for any b > 0. If ui = ui(|x|, t), i = 1, 2, · · · , N , we have(∑
i∈K

mi(0)

)2

≤ 8π
∑
i∈K

ξimi(0)

for any K ⊂ {1, 2, · · · , N}, K ̸= ∅, besides (34), x0 = 0.
The solution exists global-in-time, provided that(∑

i∈K

λi

)2

< 4π
∑
i∈K

ξiλi, ∀K ⊂ {1, 2, · · · , N}, K ̸= ∅,

where λi = ∥ui0∥1, i = 1, 2, · · · , N , while its blowup occurs if(
N∑
i=1

λi(x0)

)2

> m∗(x0)
N∑
i=1

ξiλi(x0)

∥|x− x0|2ui0∥L1(Ω∩B(x0,2R)) ≪ 1, ∀i = 1, 2, · · · , N (37)
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for some x0 ∈ Ω, where λi(x0) = ∥ui0∥L1(Ω∩B(x0,R)).
In the case of ui = ui(|x|, t), i = 1, 2, · · · , N , we obtain the following.

First, the other blowup criterion than (37) arises, that is,(∑
i∈K

λi(0)

)2

> 8π
∑
i∈K

ξiλi(0)

∥|x− x0|2ui0∥L1(Ω∩B(x0,2R) ≪ 1, ∀i ∈ K

for some K ⊂ {1, 2, · · · , N}, K ̸= ∅ implies T < +∞. Next, we obtain always
the simultaneous blowup

lim
t↑T

∥ui(·, t)∥∞ = +∞, ∀i = 1, 2, · · · , N.

A collapse mass mk = mk(0), k = 1, 2, · · · , N , on the other hand, vanishes if
ξi > 2ξk for any i ̸= k and

∥uk0∥1 < 8πmin
i ̸=k

(ξi − 2ξk).

Consequently, we have mass separation, for example,

mN = 8πξN , mi = 0, ∀i = 1, 2, · · · , N − 1,

provided that

ξi > 2ξj , ∀j = 1, 2, · · · , N − 1, ∀i = j + 1, · · · , N,

and furthermore,

∥uj0∥1 < 8π min
i=j+1,··· ,N

(ξi − 2ξj), ∀j = 1, 2, · · · , N − 1.

2 Preliminaries and Proof of Theorem 1

We begin with a description of the variational structure of (ISP ). Let v =
(−∆)−1u stand for (9). First, the total mass conservation follows from (1)
and (2) in each component of the solution:

∥ui(·, t)∥1 = ∥ui0∥1 ≡ λi, i = 1, 2. (38)

Next, we obtain

∂tu1 = ∇ · u1∇(d1 log u1 − χ1v) in Ω× (0, T )

u1
∂

∂ν
(d1 log u1 − χ1v) = 0 on ∂Ω× (0, T ) (39)
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by (7), which implies

d

dt

∫
Ω

d1u1(log u1 − 1)dx− χ1⟨v, u1t⟩ = −
∫
Ω

u1|∇(d1 log u1 − χ1v)|2dx,

where ⟨·, ·⟩ denotes the L2-inner product. Similarly, it holds that

d

dt

∫
Ω

d2u2(log u2 − 1)dx− χ2⟨v, u2t⟩ = −
∫
Ω

u2|∇(d2 log u2 − χ2v)|2dx,

and hence

d

dt

{∫
Ω

2∑
i=1

ξiui(log ui − 1)dx− 1

2
⟨(−∆)−1u, u⟩

}

= −
∫
Ω

2∑
i=1

χ−1
i ui|∇(di log ui − χiv)|2 dx

by ξi = di/χi and

⟨v, ut⟩ =
1

2

d

dt
⟨(−∆)−1u, u⟩.

We thus obtain the following lemma using free energy (40) derived in [35].

Lemma 1 Total mass is conserved for each component of the solution, in-
dicated by (38), and also the decrease of the free energy:

d

dt
Fξ1,ξ2(u1, u2) ≤ 0

in (ISP ), where

Fξ1,ξ2(u1, u2) =
2∑

i=1

∫
Ω

ξiui(log ui − 1)dx− 1

2
⟨(−∆)−1u, u⟩ (40)

for u = u1 + u2 (recall (13)).

Here we prescribe a parameter region of (ξ1, ξ2) which ensures the loga-
rithmic HLS (or dual Trudinger-Moser) inequality

inf{Fξ1,ξ2(u1, u2) | ui ≥ 0, ∥ui∥1 = λi, i = 1, 2} > −∞. (41)

First, the condition(
2∑

i=1

λi

)2

≤ 8π

2∑
i=1

ξiλi, λi ≤ 8πξi, i = 1, 2 (42)
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implies

inf{F̂ξ1,ξ2(u1, u2) | ui ≥ 0, ∥ui∥1 = λi, i = 1, 2} > −∞, (43)

where

F̂ξ1,ξ2(u1, u2) =

2∑
i=1

∫
Ω

ξiui(log ui − 1)dx

−1

2

∫∫
Ω×Ω

1

2π
log

1

|x− x′|
u⊗ u dxdx′

for u = u1 + u2 and (u ⊗ u)(x, x′) = u(x)u(x′). This property is proven in
[30], by using the logarithmic Hardy-Littlewood-Sobolev inequality

2

∫∫
Ω×Ω

F (x) log
1

|x− x′|
G(x′) dxdx′

≤
∫
Ω

(1− α)F logF + αG logG dx+ Cα, 0 < α < 1,

valid to

F,G ≥ 0,

∫
Ω

F dx =

∫
Ω

G dx = 1,

and an inequality derived from linear programming.
Second, we deal with (ISPD), which denotes the system of equations

combining (1) and (2) with

−∆v = u, v|∂Ω = 0, u = u1 + u2. (44)

In fact, for this system we also have conservation of total mass (38) and a
decreasing free energy

d

dt
F̃ξ1,ξ2(u1, u2) ≤ 0, (45)

where

F̃ξ1,ξ2(u1, u2) =

2∑
i=1

∫
Ω

ξiui(log ui − 1)dx− 1

2

∫∫
Ω×Ω

G̃(x, x′)u⊗ u dxdx′

with u = u1 + u2. Here, G̃ = G̃(x, x′) is the Green’s function to (44) which
satisfies

G̃(x, x′) ≤ 1

2π
log

1

|x− x′|
+ C (46)

with a constant C = C(Ω). Hence it follows that

inf{F̃ξ1,ξ2(u1, u2) | ui ≥ 0, ∥ui∥1 = λi, i = 1, 2} > −∞
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under the assumption of (42). If a slightly stronger condition holds for the
total masses of the initial value, that is(

2∑
i=1

λi

)2

< 8π
2∑

i=1

ξiλi, λi < 8πξi, i = 1, 2 (47)

for λi = ∥ui0∥1, i = 1, 2, then we have that

2∑
i=1

∫
Ω

ξiui(log ui − 1) dx ≤ C (48)

by (38) and (45), where (u1, u2) = (u1(·, t), u2(·, t)) is the solution to prob-
lem (ISPD), and C > 0 is a constant independent of t ∈ [0, T ). (See the
argument for the proof of Theorem 12.)

Now the following theorem is obtained, similarly to the case of a single
component [1, 11, 21], using an iterative scheme, Gagliardo-Nirenberg’s in-
equality, and an inequality due to [2], that is, (22) (see also Lemma 4.1 of
[32]).

Theorem 7 ([35]) If (47) is the case, it holds that

T = +∞, lim sup
t↑T

2∑
i=1

∥ui(·, t)∥∞ < +∞ (49)

for (ISPD).

Inequalities (45) and (46) imply

F̂ξ1,ξ2(u1, u2) ≤ C, t ∈ [0, T ).

Here we write

1

4π

∫∫
Ω×Ω

u⊗ u log |x− x′| dxdx′

=
1

4π

2∑
i,j=1

bibj

∫∫
Ω×Ω

ρi ⊗ ρj log |x− x′| dxdx′

using bi > 0, i = 1, 2, where ρi = ui/bi. Then we examine the criterion due
to [30] (the main theorem), concerning the boundedness of

Ψ(ρ1, ρ2) =
2∑

i=1

∫
Ω

ρi log ρi dx+
2∑

i,j=1

aij

∫∫
Ω×Ω

ρi ⊗ ρj log |x− x′| dxdx′
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defined for ρi ≥ 0 with ∥ρi∥1 =Mi, i = 1, 2, where

Mi =
λi
bi
, aij =

1

4π
bibj .

In fact, since aii = b2i /(4π) > 0 this property is controlled by

ΛJ (⊕Mi) = 2
∑
i∈J

Mi −
∑
i,j∈J

aijMiMj = 2
∑
i∈J

λi
bi

− 1

4π

(∑
i∈J

λi

)2

.

Thus the above Ψ is bounded below if and only if

ΛJ (⊕Mi) ≥ 0, ∀J ⊂ {1, · · · , N}, J ̸= ∅, N = 2,

that is, (
2∑

i=1

λi

)2

≤ 8π
2∑

i=1

λi
bi
, λi ≤

8π

bi
, i = 1, 2. (50)

Using ∫
Ω

ρi log ρi dx =
1

bi

∫
Ω

ui log ui dx− λi
bi

log bi,

we obtain the following lemma.

Lemma 2 Under the assumption (50) we have

2∑
i=1

∫
Ω

(ξi −
1

bi
)ui log ui dx ≤ C, t ∈ [0, T )

for (ISPD).

In case λ1 < 8πξ1, we can find bi > 0, i = 1, 2, in (50) by taking

0 < b1 −
1

ξ1
≪ 1, 0 < b2 ≪ 1.

Then it follows that

δ

∫
Ω

u1 log u1 dx ≤
∫
Ω

u2 log u2 dx+ δ−1

with 0 < δ ≪ 1. The reverse inequality is similarly obtained if λ2 < 8πξ2,
while the inequality in (49) holds if and only if

sup
t∈[0,T )

2∑
i=1

∥(ui log ui)(·, t)∥1 ≤ C

with C > 0 independent of t (see, for example, [32]). We thus end up the
following theorem by (16).
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Theorem 8 If
λi < 8πξi, i = 1, 2, (51)

then we have (11) for (ISPD).

Here we note again that the case T < +∞ can arise in the parameter region
(51) with (

2∑
i=1

λi

)2

> 8π
2∑

i=1

ξiλi

(see Theorem 10).
To handle the original system (ISP ), we use the fact that the Green’s

function G = G(x, x′) of the Poisson equation

−∆v = u− 1

|Ω|

∫
Ω

u dx,
∂v

∂ν

∣∣∣∣
∂Ω

= 0,

∫
Ω

v dx = 0

satisfies

G(x, x′) ≤ 1

π
log

1

|x− x′|
+ C ′ (52)

with a constant C ′ = C ′(Ω) determined by Ω. In fact, each x0 ∈ ∂Ω admits

a smooth conformal mapping X = X(x) : Ω ∩B(x0, 2R) → R
2

+, 0 < R ≪ 1,
whereR2

+ stands for the upper half-plane and 0 < R≪ 1. Then the following
relation arises

G(x, x′) =
1

2π
log

1

|X(x)−X(x′)|
+

1

2π
log

1

|X(x)−X(x′)∗|
+K(x, x′) (53)

with

K = K(x, x′) ∈ C1+θ,θ(Ω ∩B(x0, R)× Ω ∩B(x0, R))

∩ Cθ,1+θ(Ω ∩B(x0, R)× Ω ∩B(x0, R)) (54)

for 0 < θ < 1, where X∗ = (X1,−X2) for X = (X1, X2) (see [32]). The case
x0 ∈ Ω is easier, and it holds that

G(x, x′) =
1

2π
log

1

|x− x′|
+K(x, x′) (55)

with

K = K(x, x′) ∈ C1+θ,θ(B(x0, R)×B(x0, R))

∩ Cθ,1+θ(B(x0, R)×B(x0, R)). (56)

By a standard covering argument, these relations imply (52). Then we obtain
the following lemma.
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Lemma 3 For the free energy Fξ1,ξ2(u1, u2) defined by (40), if(
2∑

i=1

λi

)2

≤ 4π
2∑

i=1

ξiλi, λi ≤ 4πξi, i = 1, 2

it holds that

inf{Fξ1,ξ2(u1, u2) | ui ≥ 0, ∥ui∥1 = λi, i = 1, 2} > −∞. (57)

This lemma implies the following theorem and also Theorem 1 similarly to
Theorems 7 and 8 derived from (46), respectively.

Theorem 9 We have (49) in (ISP ) if(
2∑

i=1

λi

)2

< 4π

2∑
i=1

ξiλi, λi < 4πξi, i = 1, 2. (58)

We proceed to a weak form of (ISP ) derived from the symmetry of the
Green’s function, G(x, x′) = G(x′, x). Thus we take φ = φ(x) satisfying

φ ∈ C2(Ω),
∂φ

∂ν

∣∣∣∣
∂Ω

= 0, (59)

to confirm

d

dt

∫
Ω

u1φ dx− d1

∫
Ω

u1∆φ dx = χ1

∫
Ω

u1∇v · ∇φ dx

d

dt

∫
Ω

u2φ dx− d2

∫
Ω

u2∆φ dx = χ2

∫
Ω

u2∇v · ∇φ dx,

and hence

d

dt

∫
Ω

[
2∑

i=1

χ−1
i ui

]
φ dx−

∫
Ω

[
2∑

i=1

ξiui

]
∆φ dx

=

∫
Ω

u∇v · ∇φ dx =
1

2

∫∫
Ω×Ω

ρφu⊗ u dxdx′ (60)

with
ρφ(x, x

′) = ∇φ(x) · ∇xG(x, x
′) +∇φ(x′) · ∇x′G(x, x′).
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The weak form (60) can be used to derive a blowup criterion. The ar-
gument is similar to that of [27], using (53) (see also [32]). First, we take a
nice cut-off function introduced by [26] (see also [32]), which is denoted by
φ = φx0,R(x) for x0 ∈ Ω and R > 0. It is a C∞-function with support radius

R > 0, equal to 1 on Ω ∩B(x0, R/2), and satisfies 0 ≤ φ ≤ 1, (59), and

|∇φ| ≤ O(R−1)φ2/3, |∇2φ| ≤ O(R−2)φ5/6 (61)

as R ↓ 0. Here, we note the property

lim
R↓0

1

R2

∫
Ω

|x− x0||∇φ|+ |x− x0|2|∇2φ| dx = 0. (62)

In fact, if x0 ∈ Ω the above φ = φx0,R is a scaling of a fixed function with
respect to R, and therefore, (62) is easy to see. If x0 ∈ ∂Ω is the case, just

the above-described conformal mapping X : Ω ∩B(x0, 2R) → R
2

+ is involved
other than the scaling, in constructing φ = φx0,R (see [32]). Then, relation
(62) is proven similarly.

Given x0 ∈ Ω, we take φ = |x − x0|2φx0,R(x) for R > 0. Let B =
B(λ1, λ2) ≫ 1 be a constant determined by λi, i = 1, 2, and let

û(x, t) =
2∑

i=1

χ−1
i ui(x, t)

IR(t) =

∫
Ω

|x− x0|2û(x, t)φx0,R(x) dx

M i
R(t) =

∫
Ω

ui(x, t)φx0,R(x) dx, i = 1, 2

JR(t) = 4

2∑
i=1

ξiM
i
R(t)−

1

2π

(
2∑

i=1

M i
R(t)

)2

+ 8BR−1I4R(t)
1/2.

Then, we can derive

dIR
dt

(t) ≤ JR(0) + a(R−1t1/2) +BR−1IR(t)
1/2

for a(s) = B(s2 + s), which implies T = Tmax < +∞ in case JR(0) < 0 and
IR(0) ≪ 1. Given x0 ∈ ∂Ω, on the other hand, we take φ = |X(x)|2φx0,R(x).
Then we can argue similarly, and in particular, obtain the following theorem.

Theorem 10 We have T < +∞ in (ISP ) if(
2∑

i=1

λi(x0)

)2

> m∗(x0)

2∑
i=1

ξiλi(x0) (63)
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and ∫
Ω∩B(x0,2R)

|x− x0|2ui0(x) dx≪ 1, i = 1, 2,

where x0 ∈ Ω and λi(x0) = ∥ui0∥L1(Ω∩B(x0,R)), i = 1, 2.

3 Proof of Theorem 2

In this section, we show the finiteness of the blowup set S and the formation
of collapses indicated by (18).

The first observation is that inequality (58) holds for 0 < λ1, λ2 ≪ 1, and
therefore, 0 < λ1, λ2 ≪ 1 implies (49). This property was observed in [16]
for the case of a single component. Then, an ε-regularity is proven by the
method of localization [26], that is, taking the above φ = φx0,R to localize
the global-in-time existence result of [16].

This method is applicable to (ISP ), and we obtain the following lemma.
Henceforth, (u1, u2) = (u1(·, t), u2(·, t)) denotes the solution to (ISP ) with
T < +∞.

Lemma 4 There is ε0 > 0 such that

lim sup
t↑T

2∑
i=1

χ−1
i ∥ui(·, t)∥L1(Ω∩B(x0,R)) < ε0 (64)

implies

lim sup
t↑T

2∑
i=1

∥ui(·, t)∥L∞(Ω∩B(x0,R/4)) < +∞, (65)

where x0 ∈ Ω and 0 < R ≤ 1.

For the proof, first, we derive

lim sup
t↑T

2∑
i=1

∫
Ω∩B(x0,R/2)

ui log ui dx < +∞ (66)

from (64) with 0 < ε0 ≪ 1. Then, (65) is obtained by an iteration scheme.
In this process of localization, the cut-off function φ = φx0,R, x0 ∈ Ω, R > 0,
satisfying (59) and (61) is used.

The weak form (60) implies an estimate, which may be called the mono-
tonicity formula. More precisely, we have ρφ ∈ L∞(Ω × Ω) in this formula
(see Lemma 5.2 of [32]), and hence∣∣∣∣∣ ddt

2∑
i=1

∫
Ω

χ−1
i uiφ dx

∣∣∣∣∣ ≤
[

2∑
i=1

ξiλi

]
∥∆φ∥∞ +

1

2
∥ρφ∥∞

(
2∑

i=1

λi

)2

.
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The following lemma is thus obtained.

Lemma 5 There is C > 0 such that∣∣∣∣ ddt
∫
Ω

ûφ dx

∣∣∣∣ ≤ C∥∇φ∥C1(Ω)

for any φ = φ(x) satisfying (59), where û = χ−1
1 u1 + χ−1

2 u2.

A direct consequence of Lemma 5 is the existence of an extension of
µ(dx, t) = û(x, t)dx, 0 ≤ t < T , as

µ(dx, t) ∈ C∗([0, T ];M(Ω)).

We have, in particular,

µ({x0}, T ) = lim
R↓0

lim sup
t↑T

∥û(·, t)∥L1(Ω∩B(x0,R))

= lim
R↓0

lim inf
t↑T

∥û(·, t)∥L1(Ω∩B(x0,R))

for each x0 ∈ Ω. Lemma 4, on the other hand, implies

x0 ∈ S ⇒ lim
R↓0

lim sup
t↑T

∥û(·, t)∥L1(Ω∩B(x0,R)) ≥ ε0,

recalling (17), and hence

µ({x0}, T ) ≥ ε0, ∀x0 ∈ S.

Since µ(Ω, T ) = λ, we obtain the finiteness of S. Thus the following lemma
arises similarly to the case of a single component [26], that is, the formation of
collapses of û(x, t)dx derived from Lemmas 4 and 5 and the parabolic-elliptic
regularity.

Lemma 6 If T < +∞ in (ISP ), it holds that ♯S < +∞ and

û(x, t)dx ⇀
∑
x0∈S

m̂(x0)δx0(dx) + f̂(x)dx (67)

in M(Ω) as t ↑ T , where m̂(x0) ≥ ε0 is a constant and 0 ≤ f̂ = f̂(x) ∈ L1(Ω)
is a smooth function in Ω \ S.

We are ready to prove Theorem 2. First, we take φ satisfying (59) and
∇φ = 0 near S. For such φ = φ(x), it holds that

d

dt

∫
Ω

uiφ dx =

∫
Ω

ui∆φ+ ui∇v · ∇φ dx
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and hence ∣∣∣∣ ddt
∫
Ω

uiφ dx

∣∣∣∣ ≤ C ′
φ, i = 1, 2

with a constant C ′
φ, because (u1, u2, v) = (u1(x, t), u2(x, t), v(x, t)) is smooth

in (Ω× [0, T ]) \ (S × {T}) from the elliptic-parabolic regularity. Since ♯S <
+∞, the set of such φ = φ(x) is dense in C(Ω). Therefore, like û(x, t)dx, the
measures ui(x, t)dx, i = 1, 2, are extended as

µi(dx, t) ∈ C∗([0, T ],M(Ω)), i = 1, 2,

using (38).

Since µ̂(dx, t) =
∑2

i=1 χ
−1
i µi(dx, t), the singular parts of µi(dx, T ), i =

1, 2, are composed of finite sums of delta functions supported on S. We shall
write

µi(dx, T ) =
∑
x0∈S

mi(x0)δx0(dx) + fi(x)dx, i = 1, 2

with mi(x0) ≥ 0 and 0 ≤ fi = fi(x) ∈ L1(Ω), i = 1, 2. Then, it holds that

m̂(x0) =
2∑

i=1

χ−1
i mi(x0) ≥ ε0,

and hence (m1(x0),m2(x0)) ̸= (0, 0).
Finally, (u1, u2, v) = (u1(x, t), u2(x, t), v(x, t)) satisfies

∂tui = di∆ui − χi∇ · ui∇v in (Ω× [0, T ]) \ (S × {T}), i = 1, 2.

Since (7) holds, therefore, the functions ui(x, t) ≥ 0, i = 1, 2, cannot attain 0
in (Ω\S)×{T} from the maximum principle. Hence it holds that ui(x, T ) =
fi(x) > 0, i = 1, 2, in Ω \ S.

4 Proof of Theorems 3 and 4

Theorem 3 is composed of two inequalities, (29) and (30). First, inequality
(29) is regarded as a localization of the blowup criterion, Theorem 10. For
the proof we use the method of scaling limit developed in the case of a single
component [32, 33, 29]. Henceforth, φ = φx0,R denotes the cut-off function
mentioned in the previous section satisfying (59) and (61).

Hence we take the backward self-similar transformations (22), to obtain

∂sz1 = d1∆z1 − χ1∇ · z1∇(w +
|y|2

4
)

∂sz2 = d2∆z2 − χ2∇ · z2∇(w +
|y|2

4
) in

∪
s>− log T Ωs × {s}

∂z1
∂ν

=
∂z2
∂ν

=
∂w

∂ν
= 0 on

∪
s>− log T ∂Ωs × {s} (68)
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and

−∆w = z − 1

|Ωs|

∫
Ωs

z dy,
∂w

∂ν

∣∣∣∣
∂Ωs

= 0,

∫
Ωs

w dy = 0, (69)

where z = z1+z2 and Ωs = (T − t)1/2(Ω−{x0}). As s ↑ +∞, the domain Ωs

expands to the whole or the half-spaces denoted by L, according to x0 ∈ Ω
or x0 ∈ ∂Ω, respectively. Then, similarly to the prescaled case, any sk ↑ +∞
admits {s′k} ⊂ {sk} and ζ̂(dy, s) such that

ẑ(y, s+ s′k)dy ⇀ ζ̂(dy, s) in C∗(−∞,+∞ : M0(R
2)), (70)

where ẑ = χ−1
1 z1 + χ−1

2 z2. Here, we recall that the 0-extensions of z(y, s)
are taken where it is not defined. Hence this ζ = ζ(dy, s) has a support
contained on L. We recall also that M0(R

2) = C0(R2)′, where C0(R2)
denotes the set of continuous functions on R2 = R2 ∪ {∞} vanishing at ∞.

In fact, first, we have

∥zi(·, s)∥1 = λi, i = 1, 2. (71)

Next, the Green’s function to (69) is given by

Gs(y, y
′) = G(e−s/2y + x0, e

−s/2y′ + x0)

where (53) is applicable. In the case of x0 ∈ Ω, we thus use∣∣∣∣ dds
∫
R2

ẑΦ dy

∣∣∣∣ ≤ CΦ (72)

valid for Φ = Φ(y) ∈ C2
0 (L). In the other case of x0 ∈ ∂Ω, we take

the conformal mapping X : Ω ∩B(x0, R) → R2
+ described in §2 and put

Y (y, s) = es/2X(e−s/2y + x0). Let C2
0 (R

2

+) be the set of C2-functions on L
with compact supports. Given

ζ = ζ(Y ) ∈ C2
0 (R

2

+),
∂ζ

∂νY

∣∣∣∣
∂R2

+

= 0,

we take Φs = ζ ◦ Y (·, s), to obtain∣∣∣∣ dds
∫
Ωs

ẑΦs dy

∣∣∣∣ ≤ CΦ (73)

(see [32]). Then inequality (71) with (72) and (73) for x0 ∈ Ω and x0 ∈ ∂Ω,
respectively, implies the desired convergence (70).
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We have also the component-wise convergence of zi(y, s)dy, i = 1, 2. In
fact, taking subsequences of {s′k} denoted by the same symbol, we have

zi(dy, s+ s′k)⇀ ζi(dy, s) in L∞
∗ (−∞,+∞;M0(R

2)), i = 1, 2 (74)

with the limit measures ζi(dy, s), i = 1, 2, of which supports are contained in
L, where

L∞
∗ (−∞,+∞;M0(R

2)) = L1(−∞,+∞;C0(R
2))′.

This convergence guarantees

ζ(dy, s) =
2∑

i=1

ζi(dy, s)

ζ̂(dy, s) =
2∑

i=1

χ−1
i ζi(dy, s)

ζ̃(dy, s) =
2∑

i=1

ξiζi(dy, s)

ζi(L, s) ≤ mi(x0), i = 1, 2 (75)

for a.e. s, recalling (18).
The estimate∣∣∣∣ ddt

∫
Ω

φx0,R · û(x, t) dx
∣∣∣∣ ≤ C7R

−2, 0 < R ≤ 1,

on the other hand, is derived from Lemma 5 concerning the prescaled solu-
tion, which ensures the parabolic envelope similarly to the case of a single
component [32]. More precisely, it holds that

|⟨φx0,R, û(x, t)dx⟩ − ⟨φx0,R, µ̂(dx, T )⟩| ≤ C7(T − t)R−2

for 0 ≤ t < T . Here, putting R = b(T − t)1/2, we make t ↑ T and then
b ↑ +∞. It follows that

ζ̂(L, s) =
2∑

i=1

χ−1
i mi(x0), (76)

and hence
ζi(L, s) = mi(x0), i = 1, 2 (77)

for a.e. s by (75) and (76).
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In case L = R2
+, we use even extensions of ζi(dy, s), i = 1, 2. Henceforth,

we handle with such ζi(dy, s), i = 1, 2, denoted by the same symbols, defined
on L = R2 and put

ζ(dy, s) =
2∑

i=1

ζi(dy, s)

ζ̂(dy, s) =
2∑

i=1

χ−1
i ζi(dy, s)

ζ̃(dy, s) =
2∑

i=1

ξiζi(dy, s).

Then it holds that

ζi(R
2, s) = m∗

i (x0) ≡
{
m(x0), x0 ∈ Ω
2m(x0), x0 ∈ ∂Ω.

These measures make up a weak solution to

∂sẑ = ∆z̃ −∇ · z∇(Γ ∗ z + |y|2

4
) in R2 × (−∞,+∞)

Γ(y) =
1

2π
log

1

|y|
, (78)

where z =
∑2

i=1 zi and z̃ =
∑2

i=1 ξizi. This property is formulated as follows,
using

X = C0(R2 ×R2)⊕ [(C0(R2)⊕R)⊗R]⊕ [R⊗ (C0(R2)⊕R)].

First, let E be the closed linear hull of

E0 = {ρφ + ψ | φ ∈ C2
0 (R

2), ψ ∈ X} ⊂ L∞(R2 ×R2),

where C0(R2×R2) is the set of continuous functions on R2×R2 vanishing on

R2×{∞}
∪
{∞}×R2. Then, the mapping s ∈ (−∞,+∞) 7→ ⟨φ, ζ̂(·, s)⟩ ∈ R

is locally absolutely continuous for any φ ∈ Y. There are, furthermore,

0 ≤ K = K(·, ·, s) ∈ E ′, ∥K(·, ·, s)∥E′ ≤

(
2∑

i=1

χ−1
i λi

)2

a.e. s

and

0 ≤ ζ ∈ L∞
∗ (−∞,+∞;M0(R

2)), ζ(R2, s) ≤
2∑

i=1

λi

0 ≤ ζ̃ ∈ L∞
∗ (−∞,+∞;M0(R

2)), ζ̃(R2, s) ≤
2∑

i=1

ξiλi
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satisfying

K(·, ·, s)|X = ζ(dy, s)⊗ ζ(dy′, s)

d

ds
⟨φ, ζ̂(dy, s)⟩ = ⟨∆φ, ζ̃(dy, s)⟩+ ⟨1

2
y · ∇φ, ζ(dy, s)⟩

+
1

2
⟨ρ0φ,K(·, ·, s)⟩ (79)

for a.e. s, where

ρ0φ = ρφ(y, y
′) = ∇Γ(y − y′) · (∇φ(y)−∇φ(y′)).

Now, we take the scaling back transformation used in [33]:

ζi(dy, s) = e−sAi(dy
′, s′), i = 1, 2

s′ = e−s/2y, s′ = −e−s/2.

Then, we obtain a weak solution to

∂sÂ = ∆Ã−∇ ·A∇Γ ∗A in R2 × (−∞, 0),

where

A =

2∑
i=1

Ai, Â =

2∑
i=1

χ−1
i Ai, Ã =

2∑
i=1

ξiAi.

Then it holds that

Ai(R
2, s′) = ζi(R

2, s) = m∗
i (x0).

Next, we take the translation limits as in [29]. Thus any sk ↑ +∞ admits
{s′k} ⊂ {sk} such that

Â(dy, s− s′k)⇀ B̂(dy, s) ≥ 0 in C∗(−∞,+∞;M(R2))

Ai(dy, s− s′k)⇀ Bi(dy, s) ≥ 0 in L∞
∗ (−∞,+∞;M(R2)), i = 1, 2

with the limit measures Bi(dy, s), i = 1, 2, and

B̂(dy, s) =
2∑

i=1

χ−1
i Bi(dy, s),

where M(R2) = [C0(R2)⊕R]′. Since the space M(R2) envelopes the total
masses of Ai(dy, s), i = 1, 2, it holds that

Bi(R
2, s) = m∗

i (x0), i = 1, 2.
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These measures form a weak solution to

∂sB̂ = ∆B̃ −∇ ·B∇Γ ∗B in R2 × (−∞,+∞), (80)

where B = B1 + B2 and B̃ = ξ1B1 + ξ2B2. Then, we argue similarly to
the case of a single component [19] (see also [32]), using a smooth function
c = c(s), s ≥ 0, satisfying 0 ≤ c′(s) ≤ 1, −1 ≤ c(s) ≤ 0, and

c(s) =

{
s− 1, 0 ≤ s ≤ 1/4
0, s ≥ 4.

We have C, δ > 0 such that if

σ∗ ≡ 1

2π

(
2∑

i=1

m∗
i (x0)

)2

− 4

2∑
i=1

ξim
∗
i (x0) > 0,

it holds that

d

ds
⟨c(|y|2) + 1, B̂(dy, s)⟩ ≤ C⟨c(|y|2) + 1, B̂(dy, s)⟩ − δσ∗

for a.e. s. Therefore, if

⟨c(|y|2) + 1, B̂(dy, 0)⟩ < η ≡ δσ∗
C

is the case, we obtain

⟨c(|y|2) + 1, B̂(dy, s)⟩ < 0, s≫ 1,

a contradiction. Hence it holds that

⟨c(|y|2) + 1, B̂(dy, 0)⟩ ≥ η. (81)

Equation (80), on the other hand, is invariant under the scaling transfor-
mation

Bµ
i (y, s) = µ2Bi(µy, µ

2s), i = 1, 2,

where µ > 0 is a constant. Since C, δ > 0 are absolute constants and σ∗
is invariant under this transformation, inequality (81) applied for Bµ

i (dy, s),
i = 1, 2, takes the form

⟨c(|y|2) + 1, B̂µ(dy, 0)⟩ = ⟨c(µ−2|y|2) + 1, B̂(dy, 0) ≥ η, (82)

where

B̂µ(dy, s) =

2∑
i=1

χ−1
i Bµ

i (dy, s).
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However, since 0 ≤ c(µ−2|y|2) + 1 ≤ 1 and

lim
µ↑+∞

c(µ−2|y|2) + 1 = 0, ∀y ∈ R2

we obtain η ≤ 0 by the dominated convergence theorem, a contradiction.
Hence it holds that σ∗ ≤ 0, that is, (29).

For the proof of (30), we use the total second moment of the scaled so-
lution. First, similarly to the scalar case [25, 22] (see also [33]), Lemma
5 applied to φ = |x − x0|2φx0,R implies the convergence and the uniform

boundedness of the global second moment of ζ̂(dy, s):

0 ≤ ⟨|y|2, ζ̂(dy, s)⟩ = I(s) ≤ C (83)

with a constant C > 0. If x0 ∈ ∂Ω, we modify the above φ = |x− x0|2φx0,R,
using a conformal mapping as in the proof of Theorem 10. Then, we obtain

dI

ds
≥ min

i=1,2
χi · I − σ(x0), a.e. s ∈ (−∞,+∞)

by (79), where

σ(x0) ≡
4

m∗(x0)

(
2∑

i=1

mi(x0)

)2

− 4
2∑

i=1

ξimi(x0).

Then it follows that
I(s) ≤ max

i=1,2
χ−1
i · σ(x0)

from (83). Then, since I(s) ≥ 0, we obtain (30).

Now we turn to the proof of Theorem 4. In fact, having proven Theorem
3, we obtain σ(x0) = 0, and hence I ≡ 0 which implies

ζ̂(dy, s) = ζ̂(R2, s)δ0(dy), ∀s ∈ R.

Then it holds that supp ζi(dy, s) ⊂ {0}, and hence

ζi(dy, s) = mi(x0)δ0(dy), a.e. s, i = 1, 2. (84)

The convergence (74) is thus refined as

zi(dy, s+ s′k)⇀ ζi(dy, s) in C∗(−∞,+∞;M0(R
2))

similarly to the prescaled case. Furthermore, the limit measures are pre-
scribed as in (84), and hence we obtain (23) in C∗(−∞,+∞;M0(R

2)) as
s′ ↑ +∞. The latter part of Theorem 4, relation (24), is obvious from this
convergence and (28).
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5 Proof of Theorems 5 and 6

Let Ω = B(0, 1) and ui = ui(|x|, t), i = 1, 2, in (ISP ). In this case, the
blowup criterion (63) of Theorem 10 is reduced to a component-wise condi-
tion [9]. First, we confirm this property, using a method of symmetrization
introduced by [24].

In fact, the Poisson equation (9) is reduced to

−rvr(r, t) =
∫ r

0

s

(
u(s, t)− λ

|Ω|

)
ds ≥

∫ r

0

s

(
u1(s, t)−

λ

|Ω|

)
ds,

recalling λ = λ1 + λ2 and λi = ∥ui0∥1, i = 1, 2. Then, we obtain

d

dt

∫
|x|<ℓ

|x|2u1(x, t) dx =

∫
|x|<ℓ

|x|2∇ · (d1∇u1 − χ1u1∇v) dx

=

∫
|x|=ℓ

|x|2(d1u1r − χ1u1vr) ds−
∫
|x|<ℓ

2x · (d1∇u1 − χ1u1∇v) dx

=

∫
|x|=ℓ

ℓ2(d1u1r − χ1u1vr)− 2d1(x · ν)u1 ds+ 4d1

∫
|x|<ℓ

u dx

+4πχ1

∫ ℓ

0

r2u1vr dr

for 0 < ℓ ≤ 1 and r = |x| with∫
|x|=ℓ

(d1u1r − χ1u1rvr) ds =

∫
|x|<ℓ

∇ · (d1∇u1 − χ1∇v) dx

=
d

dt

∫
|x|<ℓ

u1 dx

and ∫ ℓ

0

r2u1vr dr ≤ −
∫ ℓ

0

ru1(r, t)dr ·
∫ r

0

s

(
u1(s, t)−

λ

|Ω|

)
ds

= −1

2

{∫ ℓ

0

ru1(r, t) dr

}2

+
λ

2|Ω|

∫ ℓ

0

r3u1(r, t) dr.

Thus, it follows that

d

dt

∫
|x|<ℓ

|x|2ui(x, t) dx ≤ ℓ2
d

dt

∫
|x|<ℓ

ui(x, t) dx+ 4di

∫
|x|<ℓ

ui(x, t) dx

− χi

2π

{∫
|x|<ℓ

ui(x, t) dx

}2

+
χiλ

|Ω|

∫
|x|<ℓ

|x|2ui(x, t) dx (85)
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for i = 1.
This inequality is also valid to i = 2, and thus we obtain the following

theorem. Here, differently from Theorem 10, the blowup criterion is taken
only for one component.

Theorem 11 ([9]) Given a radially symmetric solution, let λi = ∥ui0∥1 and
ξi = di/χi. If λi > 8πξi and ∥|x|2ui0∥1 ≪ 1, then ui = ui(|x|, t) cannot exist
global-in-time, where i = 1, 2.

To prove Theorem 5, we derive[∫
|x|<ℓ

|x|2ui(x, t) dx

]t=t2

t=t1

≤

[
ℓ2
∫
|x|<ℓ

ui(x, t) dx

]t=t2

t=t1

+

∫ t2

t1

[
4di

∫
|x|<ℓ

ui(x, t) dx− χi

2π
(

∫
|x|<ℓ

ui(x, t) dx)
2

+
χiλ

|Ω|

∫
|x|<ℓ

|x|2ui(x, t) dx

]
dt

from (85), where 0 ≤ t1 < t2 < T . Using the backward self-similar transfor-
mations (22) with x0 = 0, this inequality means[

e−s

∫
|y|<ℓe−s/2

|y|2zi(y, s) dy

]s=s2

s=s1

≤

[
ℓ2
∫
|y|<ℓe−s/2

zi(y, s) dy

]s=s2

s=s1

+

∫ s2

s1

e−s

[
4di

∫
|y|<ℓe−s/2

zi(y, s) dy −
χi

2π
(

∫
|y|<ℓe−s/2

zi(y, s) dy)
2

+
χiλ

|Ω|
e−s

∫
|y|<ℓe−s/2

|y|2zi(y, s) dy

]
ds

for − log T ≤ s1 < s2 < +∞. Here, we put ℓ = be−s′ , s1 = s′, and s2 = s′+1,
to make s′ ↑ +∞. Then, convergence (23) implies

0 ≤ 4dimi −
χi

2π
m2

i , i = 1, 2,

where mi = mi(x0), x0 = 0. Since S is finite, it holds that S = {0}, and
hence we obtain (25).

We may assume i = 1 to prove Theorem 6, that is, ξ1/ξ2 > 2 and ∥u10∥1 <
8π(ξ1 − 2ξ2). By ξ1/ξ2 > 2, as we have noticed, (m1,m2) = (0, 8πξ2) is the
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only point on the curve (
2∑

i=1

mi

)2

= 8π
2∑

i=1

ξimi

satisfying
0 ≤ mi ≤ 8πξi, i = 1, 2, m1 < 8π(ξ1 − 2ξ2).

Using (38), on the other hand, we have

m1 ≤ λ1 < 8π(ξ1 − 2ξ2),

and hence it holds that

(m1,m2) = (0, 8πξ2).

The proof of Theorem 6 is complete.

A A total collapse mass estimate from below

Here we confirm that the localization of Theorem 9 concerning the existence
of a global-in-time solution implies either (30) or (31). This argument is used
for the single component case [32, 33, 29], which, however, does not provide a
sharp inequality in the multi-component case. Inequality (30) is thus always
selected. We note, however, that (31) is also true for radially symmetric
solutions, which has not been known for the other case. If it is valid, then
Theorem 6 holds even for non-radially symmetric solutions.

First observation is the following lemma.

Lemma 7 Given x0 ∈ S, let φ = φx0,R, 0 < R ≪ 1, and let ũi = uiφ,
i = 1, 2. Then, it holds that

lim sup
t↑T

Fξ1,ξ2(ũ1(·, t), ũ2(·, t)) < +∞. (86)

Proof: From (39) it follows that∫
Ω

u1t(d1 log u1 − χ1v)φ dx

= −
∫
Ω

u1∇(d1 log u1 − χ1v) · ∇[(d1 log u1 − χ1v)φ]dx

= −
∫
Ω

u1|∇(d1 log u1 − χ1v)|2φ

−u1(d1 log u1 − χ1v)∇(d1 log u1 − χ1v) · ∇φ dx

≤ −
∫
Ω

u1(d1 log u1 − χ1v)∇(d1 log u1 − χ1v) · ∇φ dx. (87)
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We have S∩B(x0, 2R) = {x0} for 0 < R≪ 1, and then the right-hand side is
estimated from above by a constant independent of t, using parabolic-elliptic
regularity of (u1, u2, v).

Henceforth, Ci, i = 1, 2, · · · , 6, denote positive constants independent of
t and R. First, the left-hand side of (87) is equal to∫

Ω

u1t(d1 log u1 − χ1v)φ dx =

∫
Ω

ũ1t(d1 log ũ1 − d1 logφ− χ1v) dx

=

∫
Ω

ũ1t(d1 log ũ1 − χ1v) dx− d

dt

∫
Ω

d1u1(φ logφ) dx,

which implies

d

dt

∫
Ω

d1ũ1(log ũ1 − 1) dx− χ1⟨v, ũ1t⟩ ≤ C1 +
d

dt

∫
Ω

d1u1(φ logφ) dx.

Similarly, it holds that

d

dt

∫
Ω

d2ũ2(log ũ2 − 1) dx− χ2⟨v, ũ2t⟩ ≤ C2 +
d

dt

∫
Ω

d2u2(φ logφ) dx

and hence

d

dt

∫
Ω

2∑
i=1

ξiũi(log ũi − 1) dx− ⟨v, ũt⟩ ≤ C3 +
d

dt

∫
Ω

[
2∑

i=1

ξiui

]
φ logφ dx.

Here, the parabolic-elliptic regularity ensures

⟨v, ũt⟩ = ⟨φv, φut⟩+ ⟨(1− φ)v, φut⟩ = ⟨φv, φut⟩+O(1)

and also

−∆(φv) = φu+ h,
∂(φv)

∂ν

∣∣∣∣
∂Ω

= 0

for h = h(x, t) satisfying

∥h∥L∞(Ω×(0,T )) + ∥ht∥L∞(Ω×(0,T )) ≤ C4.

Therefore, from the elliptic regularity it follows that

φv = (−∆)−1(φu) + g

with g = g(x, t) such that

∥g∥L∞(Ω×(0,T )) + ∥gt∥L∞(Ω×(0,T )) ≤ C5. (88)
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Hence we obtain

⟨ũt, v⟩ = ⟨ũt, φv⟩+O(1) = ⟨ũt, (−∆)−1ũ+ g(·, t)⟩+O(1)

=
1

2

d

dt
⟨ũ, (−∆)−1ũ⟩+ d

dt
⟨ũ, g⟩ − ⟨ũ, gt⟩+O(1)

=
1

2

d

dt
⟨ũ, (−∆)−1ũ⟩+ d

dt
⟨ũ, g⟩+O(1)

by (38) and (88). We thus end up with

d

dt
Fξ1,ξ2(ũ1(·, t), ũ2(·, t)) ≤ C6 +

d

dt

∫
Ω

[
2∑

i=1

ξiui(·, t)

]
φ logφ+ ugφ dx,

and then (86) follows from (38) and (88).

Theorem 12 We have either (30) or (31) for any x0 ∈ S.

Proof: If these inequalities are not fulfilled, there is σi > 1, i = 1, 2, such
that (

2∑
i=1

mi

)2

≤ m∗(x0)
2∑

i=1

ξimi

for any 0 < mi < σimi(x0), i = 1, 2, where ξi = di/χi. Then (18) guarantees
the existence of θi > 1, i = 1, 2, such that ∥θiũi(·, t)∥1 < σimi(x0) for
0 < T − t≪ 1 and 0 < R≪ 1.

If x0 ∈ ∂Ω, we have m∗(x0) = 4π. Then Lemma 3 is applicable. We have
that

lim inf
t↑T

Fξ1,ξ2(θ1ũ1(·, t), θ2ũ2(·, t)) > −∞. (89)

Combining (89) with (86), we obtain

lim sup
t↑T

2∑
i=1

∫
Ω

ũi(log ũi − 1) dx < +∞

by θi > 1, i = 1, 2. This inequality implies (66), and hence x0 ̸∈ S, a
contradiction.

In the case of x0 ∈ Ω, we use Lemma 8 below in stead of Lemma 3.
Actually this lemma is a direct consequence of equality (55) with (54) and
inequality (43) valid to (λ1, λ2) in the parameter region (42). Then, either
(30) or (31) is obtained with m∗(x0) = 8π.

Lemma 8 If λi, i = 1, 2, are in the parameter region (42), then it holds that

inf{Fξ1,ξ2(u1, u2) | ui ≥ 0, ∥ui∥1 = λi, supp ui ⊂ Ω, i = 1, 2} > −∞.
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B Criteria for mass separation and simultaneous blowup

First, mass separation is the case of radially symmetric solution if and only
if the aggregation to the component forming a collapse is slower than that of
the other. It is proven by the same identity used for the proof of Theorem 5.

Theorem 13 Let Ω be a disc with center at the origin, ui = ui(|x|, t), i =
1, 2, and T < +∞. Then, there is k ∈ {1, 2} such that mi(0) = 0 for i ̸= k
(and hence mk(0) = 8πξk by (19)) if and only if

lim
t↑T

∫∫
|x|<|x′|<b(T−t)1/2

uk(|x|, t)ui(|x′|, t)dxdx′ = 0 (90)

for any b > 0.

Proof: We have only to use a refined form of (85),

d

dt

∫
|x|<ℓ

|x|2ui(x, t) dx = ℓ2
d

dt

∫
|x|<ℓ

ui(x, t) dx+ 4di

∫
|x|<ℓ

ui(x, t) dx

− χi

2π

{∫
|x|<ℓ

ui(x, t) dx

}2

− 4πξ

∫ ℓ

0

rui(r, t)dr ·
∫ r

0

suj(s, t)ds

+
χiλ

|Ω|

∫
|x|<ℓ

|x|2ui(x, t) dx

and apply the same argument to the proof of Theorem 11.

The final theorem shows that the simultaneous blowup holds even for
non-radially symmetric solutions if one can prescribe the rate of convergence
in (18).

To state the result, let

µj(dx, T ) =
∑
x0∈S

mj(x0)δx0(dx) + fj(x)dx, j = 1, 2

µ(dx, T ) =
2∑

i=1

µi(dx, T ).

It is proven by the total mass quantization, (19), combined with a linear
analysis to each component ui(x, t), i = 1, 2.

Theorem 14 If (25) and

lim inf
r↓0

inf
B(x0,r)

fi > 0 (91)



36 Elio Eduardo Espejo, Angela Stevens, and Takashi Suzuki

in (18), and if

∥u(·, t)dx− µ(dx, T )∥M(Ω) = o((T − t)β) (92)

as t ↑ T with β > 1, it holds that

lim sup
t↑T

∥ui(·, t)∥L∞(Ω∩B(x0,R)) = +∞ (93)

where x0 ∈ S, R > 0, and i = 1, 2.

Proof: The L1-estimate to the Poisson part (9) implies

lim sup
t↑T

∥v(·, t)∥W 1,q(Ω) < +∞, 1 ≤ q < 2 (94)

by ∥u(·, t)∥1 = λ (see [3]). We recall that this elliptic estimate is derived
from the duality argument, using the boundedness of (−∆)−1 :W−1,q′(Ω) =
W 1,q

0 (Ω)′ → L∞(Ω), 1
q + 1

q′ = 1, that is,

∥(−∆)−1f∥∞ ≤ Cq′∥f∥W−1,q′ ,

which is derived from Stampacchia’s truncation method. Since we use the
triple W 1,q

0 (Ω) ↪→ L2(Ω) ∼= L2(Ω)′ ↪→W−1,q′(Ω), the space W 1,q
0 (Ω) is dense

in W−1,q′(Ω). We use the Sobolev imbedding W 1,q
0 (Ω) ↪→ Lp(Ω) and the

Lp-elliptic regularity with p > 2, which implies the boundedness of (−∆)−1 :
Lp(Ω) → C(Ω). Since Lp(Ω) is dense in W−1,q′(Ω) by the above reason,
we obtain (−∆)−1 : W−1,q′ → C(Ω), which implies the boundedness of
(−∆)−1 :W 1,q

0 (Ω) → M(Ω), 1 < q < 2. Hence (92) implies

∥v(·, t)− vT ∥W 1,q(Ω) = o((T − t)β) (95)

for any 1 ≤ q < 2, where

vT (x) =
∑
x0∈S

m(x0)G(x, x0) +

∫
Ω

G(x, x′)f(x′)dx′

with m(x0) =
∑2

i=1mi(x0) and f(x) =
∑2

i=1 fi(x).
Given φ = φx0,R with x0 ∈ S, 0 < R≪ 1, it holds that

∇v(·, t)φ = ∇
[
γ log

1

|x− x0|
+ g

]
φ+ o((T − t)β)

in Lq(Ω), 1 < q < 2, as t ↑ T , where g = g(x) is a smooth function indepen-
dent of 0 < R≪ 1 and

γ =

{
m(x0)/2π, x0 ∈ Ω
m(x0)/π, x0 ∈ ∂Ω.
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We assume the existence of R0 > 0 satisfying

lim sup
t↑T

∥u1(·, t)∥L∞(Ω∩B(x0,R0)) < +∞. (96)

Here we use

d

dt

∫
Ω

|x− x0|2φ · u1(x, t)dx

=

∫
Ω

[d1∆(|x− x0|2φ) + χ1∇v · ∇(|x− x0|2φ)]u1(x, t) dx

=

∫
Ω

[(4d1 + 2χ1(x− x0) · ∇v)φ+ 4d1(x− x0) · ∇φ

+d1|x− x0|2∆φ+ χ1|x− x0|2∇v · ∇φ]u1(x, t) dx.

First, we have ∥∇φ∥∞ = O(R−1), and therefore,

sup
t∈[0,T )

∫
Ω

|x− x0|2[∇v · ∇φ]u1(x, t) dx = O(R3)

as R ↓ 0. Next, we obtain

sup
t∈[0,T )

∫
Ω

[4(x− x0) · ∇φ+ |x− x0|2∆φ]u1(x, t) dx = o(R2)

by (62). It also holds that

∥[4d1 + 2χ1(x− x0) · ∇v]φ
−(4d1 − 2χ1γ)φ+ [2(x− x0) · ∇g]φ∥q ≤ c̃(t)

for 1 < q < 2 with c̃(t) = o((T − t)β).
Here, we have ∫

Ω

|(x− x0) · ∇g|φ dx = O(R3),

while (19) with (m1(x0),m2(x0)) ̸= (0, 0) implies

m(x0) ≡
2∑

i=1

mi(x0) ≥ min{ξ1m∗(x0), ξ2m∗(x0)}

by (25) and in particular, γ > 2ξ1. From the assumption (96), therefore, we
have 0 < A(R) = o(R2), δ1 > 0, and 0 < c(t) = o((T − t)β) such that

d

dt

∫
Ω

|x− x0|2φx0,R · u1(x, t)dx

≤ −δ1
∫
Ω

φ · u1(x, t)dx+A(R) + c(t)R2/q′

≤ −δ1
∫
Ω

φ · f1(x)dx+ o((T − t)β) +A(R) + c(t)R2/q′
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by (92) with j = 1.
From (91) with i = 1, we have δ2 > 0 such that∫

Ω

φ · f1(x)dx ≥ δ2R
2

for 0 < R≪ 1. We thus end up with

d

dt

∫
Ω

|x− x0|2φx0,R · u1(x, t)dx ≤ −δR2 + o((T − t)β) + c(t)R2/q′ ,

where δ > 0 is a constant. So we obtain∫
Ω

|x− x0|2φ · f1(x)dx ≤ −δ(T − t)R2 + C9R
4

+o((T − t)1+β) +R2/q′
∫ T

t

c(t′)dt′. (97)

We set R = b(T − t)1/2 with 0 < b < C9/δ. Then

R2/q′
∫ T

t

c(t′)dt′ = o((T − t)1/q
′+1+β) = o((T − t)2),

holds for 0 < q′ − 2 ≪ 1 by β > 0. Since β > 1, however, the right-hand side
of (97) is negative for 0 < T − t ≪ 1, which is impossible. Hence (91) with
j = 1 implies

lim sup
t↑T

∥u1(·, t)∥L∞(Ω∩B(x0,R)) = +∞.

The proof for the other case, j = 2, is similar.
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