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Abstract We present a set of inequalities based on mean values of quantum mechanical observables
nonlinear entanglement witnesses for bipartite quantum systems. These inequalities give rise to
sufficient and necessary conditions for separability of all bipartite pure states and even some mixed
states. In terms of these mean values of quantum mechanical observables a measurable lower bound
of the convex-roof extension of the negativity is derived.
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Entanglement is not only the characteristic trait of quantum mechanics, but also a vital re-

source for many aspects of quantum information processing such as quantum computation, quan-

tum metrology, and quantum communication[1]. One of the fundamental problems in quantum

entanglement theory is to determine which states are entangled and which are not, either theoreti-

cally or experimentally. The entanglement witness [2, 3] is the most useful approach to character-

ize quantum entanglement experimentally. In recent years there have been considerable efforts in

constructing and analyzing the structure of entanglement witness (see [4, 5, 6, 7, 8] and the refer-

ences therein). Generally the Bell inequalities [9, 10, 11, 12, 13, 14] can be recast as entanglement

witnesses. Better entanglement witnesses can be also constructed from more effective Bell-type

inequalities.

On the other side, to quantify quantum entanglement is also a significant problem in quantum

information theory. A number of entanglement measures such as the entanglement of formation

and distillation [15, 16, 17], negativity [18] and relative entropy [17, 19] have been proposed for

bipartite systems [16] [19]-[24]. The negativity was derived from the positive partial transposition

(PPT) [25]. It bounds two relevant quantities characterizing the entanglement of mixed states: the

channel capacity and the distillable entanglement. The convex-roof extension of the negativity

∗Tel.: +86-0532-86983375; E-mail address: liming@upc.edu.cn.

1



2

(CREN) [26] gives a better characterization of entanglement, which is nonzero for PPT entangled

quantum states.

In this paper, similar to the non-linear entanglement witnesses and Bell-type inequalities, we

present a set of inequalities based on mean values of quantum mechanical observables, which can

serve as necessary and sufficient conditions for the separability of bipartite pure quantum states and

the isotropic states. These inequalities are also closely related to the measure of quantum entan-

glement. According to the violation of these inequalities, we derive an experimentally measurable

lower bound for the convex-roof extension of the negativity.

We first give a brief review of the 3-setting nonlinear entanglement witnesses enforced by the

indeterminacy relation of complementary local observables for two-qubit systems [7]. For a two-

level system there are three mutually complementary observables Ai = a⃗i ·σ⃗, where a⃗i, i = 1, 2, 3, are

three normalized vectors that are orthogonal to each other, σ⃗ = (σx, σy, σz) are the Pauli matrices.

µA = −iA1A2A3 is the so called orientation of Ais. µA takes values±1. Similarly, one can define three

mutually complementary observables Bi = b⃗i ·σ⃗ (i = 1; 2; 3) with the corresponding orientations µB.

It has been shown that [7]: (i) A 2-qubit state ρ is separable if and only if the following inequality

holds for all sets of observables {Ai, Bi}i=1;2;3 with the same orientation:√
⟨A1B1 + A2B2⟩2ρ + ⟨A3 + B3⟩2ρ − ⟨A3B3⟩ρ ≤ 1; (1)

(ii) For a given entangled state the maximal violation of the above inequality is 1 − 4λmin, with

λmin being the minimal eigenvalue of the partially transposed density matrix. The maximal possible

violation for all states is 3, which is attainable by the maximal entangled states.

For qubit-qutrit systems, a similar inequality has been presented in [8], which detects quantum

entanglement also necessarily and sufficiently. However the approaches in [7] and [8] can not be

directly generalized to higher dimensional systems, since it is based on the PPT criterion that is

both necessary and sufficient only for separability of two-qubit and qubit-qutrit states. For general

higher dimensional M × N bipartite quantum systems a new approach has been employed in [14].

Let ρ ∈ HAB be any pure quantum states in vector space HAB = HA ⊗ HB with dimensions

dimHA = M and dimHB = N respectively. Assume LA
α and LB

β be the generators of special

orthogonal groups S O(M) and S O(N) respectively. The M(M − 1)/2 generators LA
α are given by

{| j⟩⟨k| − |k⟩⟨ j|}, 1 ≤ j < k ≤ M, where |i⟩, i = 1, ..., M, is the usual canonical basis ofHA, a column

vector with the ith row 1 and the rest zeros. LB
β can be similarly defined. The matrix operators LA

α

(resp. LB
β ) have M − 2 (resp. N − 2) rows and M − 2 (resp. N − 2) columns that are identically

zero. We define the operators Aαi (resp. Bβj ) from Lα (resp. Lβ) by replacing the four entries in the

positions of the two nonzero rows and two nonzero columns of Lα (resp. Lβ) with the corresponding

four entries of the matrix a⃗i · σ⃗ (resp. b⃗ j · σ⃗), and keeping the other entries of Aαi (resp. Bβj ) zero.

By using LA
α and LB

β the pure state ρ can be projected to “two-qubit” ones [14]:

ραβ =
LA
α ⊗ LB

βρ(LA
α)† ⊗ (LB

β )†

Tr{LA
α ⊗ LB

βρ(LA
α)† ⊗ (LB

β )†}
, (2)
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where α = 1, 2, · · · , M(M−1)
2 ; β = 1, 2, · · · , N(N−1)

2 . As the matrix LA
α ⊗ LB

β has MN − 4 rows and

MN − 4 columns that are identically zero, one can directly verify that there are at most 4 × 4 = 16

nonzero elements in each matrix ραβ. For every pure state ραβ the corresponding Bell operators are

defined by

Bαβ = Ãα1 ⊗ B̃β1 + Ãα1 ⊗ B̃β2 + Ãα2 ⊗ B̃β1 − Ãα2 ⊗ B̃β2, (3)

where Ãαi = LA
αAαi (LA

α)† and B̃βj = LB
β Bβj (L

B
β )† are Hermitian operators. It has been shown that any

bipartite pure quantum state is entangled if and only if at least one of the following inequalities is

violated [14],

|⟨Bαβ⟩| ≤ 2. (4)

Inequalities (4) work only for general high dimensional bipartite pure states. Combining the

approaches in [7] and [14], we now define the mean value of nonlinear operators B′αβ,

⟨B′αβ⟩ =
√
⟨Ãα1 B̃β1 + Ãα2 B̃β2⟩2ρ + ⟨Ã

α
3 + B̃β3⟩2ρ − ⟨Ã

α
3 B̃β3⟩ρ, (5)

for high dimensional bipartite mixed states.

Theorem 1: Any bipartite quantum state ρ ∈ HAB is entangled if any one of the following

inequalities,
1

Tr(Lα ⊗ Lβ ρTA Lα ⊗ Lβ)
|⟨B′αβ⟩| ≤ 1, (6)

is violated, where α = 1, 2, · · · , M(M−1)
2 , β = 1, 2, · · · , N(N−1)

2 .

Proof: Assume that ρ is separable (not entangled) quantum state. Since the separability of a

state does not change under the local operation LA
α0
⊗ LB

β0
, one has that for any α and β, ραβ =

LA
α⊗LB

β ρ(LA
α)†⊗(LB

β )†

Tr{LA
α⊗LB

β ρ(LA
α)†⊗(LB

β )†} , which can be treated as a two qubits state, must be also separable. According to

the analysis in [7], a 2-qubit state ρ is separable if and only if (1) holds, which contradicts with the

condition (6). Thus we have that if any one of the inequalities (6) is violated, ρ must be an entangled

quantum state. �

It is obvious that the inequalities (6) must not be weaker than the Bell inequalities given in [14]

for detecting entanglement of mixed quantum states, since (6) supplies a sufficient and necessary

condition for separability of two qubits (mixed) quantum states, while violating the CHSH inequal-

ity is just a sufficient condition for two-qubit entanglement. Actually, (6) is strictly stronger, as seen

from the following examples.

Example 1 We consider a 3 × 3 dimensional state introduced in [27] by Bennett et al. Set

|ξ0⟩ = 1√
2
|0⟩(|0⟩ − |1⟩), |ξ1⟩ = 1√

2
(|0⟩ − |1⟩)|2⟩, |ξ2⟩ = 1√

2
|2⟩(|1⟩ − |2⟩), |ξ3⟩ = 1√

2
(|1⟩ − |2⟩)|0⟩,

|ξ4⟩ = 1
3 (|0⟩ + |1⟩ + |2⟩)(|0⟩ + |1⟩ + |2⟩). Let

ρ =
1
4

(I9 −
4∑

i=0

|ξi⟩⟨ξi|).



4

This state is entangled according to the realignment criterion [28]. We consider the mixture of ρ

and the maximal entangled singlet P+ = |ψ+⟩⟨ψ+|, where |ψ+⟩ = 1√
3

∑2
i=0 |ii⟩:

ρp = (1 − p)ρ + pP+. (7)

By straightforward computation, the bell inequalities (4) detect entanglement for 0.57602 ≤ p ≤ 1,

while (6) detect entanglement for 0.18221 ≤ p ≤ 1.

Example 2 Consider the state

ρp(a) = (1 − p)ρ(a) + pP+, (8)

where

ρ(a) =
1

8a + 1



a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

√
1−a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√

1−a2

2 0 1+a
2



,

is the weakly inseparable state given in [29], 0 < a < 1.

Take a = 0.236, which is the case that ρ(a) violates the realignment criterion [28] maximally.

From Fig.1 we see that the bell inequalities (4) detect entanglement for 0.26 ≤ p ≤ 1, while (6)

detect entanglement for the whole region of 0 < p ≤ 1.

0.2 0.4 0.6 0.8 1
p

-0.5

0.5

1

1.5

2

DHpL

Figure 1: The differences D(p) between the right and the left sides of the inequalities (6) (solid line)

and the Bell inequalities (4) (doted line).
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Example 3 Isotropic states [30] with dimensions M = N = d can be written as the mixtures of

the maximally mixed state and the maximally entangled state |ψ+⟩ = 1√
d

∑d−1
i=0 |ii⟩,

ρ =
1 − x

d2 Id ⊗ Id + x|ψ+⟩⟨ψ+|. (9)

The inequalities (6) can detect the entanglement for x ≤ 1
d+1 which agrees with the result in [30].

Thus (6) serves as a sufficient and necessary condition of separability for isotropic states.

The inequalities (6) not only can be used to detect entanglement, but also have some direct

relations with the negativity. The negativity of a bipartite quantum states ρwith dimensions d(HA) =

M and d(HB) = N (M ≤ N) is defined by [31]

N(ρ) =
||ρTA || − 1

M − 1
, (10)

where ρTA is the partial transpose of ρ and ||R|| = Tr
√

RR† stands for the trace norm of matrix R.

The negativity is defined based on the positive partial transpose criterion (PPT) [25] which can not

detect the PPT bound entanglement. Thus it is not sufficient for the negativity to be a good measure

of entanglement. Lee et al in [26] introduced the convex-roof extension of the negativity (CREN)

Nm(ρ). For pure bipartite quantum states |ψ⟩, Nm(|ψ⟩) is exactly the negativity N(|ψ⟩) defined in

(10). For a mixed bipartite quantum state ρ the CREN is defined by

Nm(ρ) = min
∑

k

pkNm(|ψk⟩), (11)

where the minimum is taken over all the ensemble decompositions of ρ =
∑

k pk|ψk⟩⟨ψk|.
The CREN can detect the PPT bound entanglement, since it is zero if and only if the corre-

sponding quantum state is separable. Lee et al also show that Nm(ρ) does not increase under local

quantum operations and classical communication. However, generally it is very difficult to calculate

CREN analytically. Here we present an experimentally measurable tight lower bound of CREN for

arbitrary bipartite quantum states, in terms of the violation of the inequalities (6).

Theorem 2: For any bipartite quantum states ρ ∈ HAB,

Nm(ρ) ≥ 1
M − 1

∑
αβ

|Cαβ| (
X(ραβ)

2
+ 1) − (M − 1), (12)

where Cαβ = Tr(Lα⊗Lβ ρTA Lα⊗Lβ), X(ραβ) = min{0, d(ραβ)}, and d(ραβ) = 1
Tr(Lα⊗Lβ ρTA Lα⊗Lβ) |⟨B

′
αβ⟩|−

1 stands for the difference of the left and right side of the inequalities (6).

Proof: Let |ψ⟩ = ∑i
√
µi|ii⟩ be a bipartite pure state in Schmidt form. One has

Nm(|ψ⟩) = 2
M − 1

∑
i< j

√
µiµ j. (13)

Note that
∑

i µi = 1. By calculating the trace norm of Lα ⊗ Lβ(|ψ⟩⟨ψ|)TA Lα ⊗ Lβ for each α and β, we

derive that ∑
αβ

||C |ψ⟩αβ (|ψ⟩αβ⟨ψ|)TA || = (M − 1)2 + 2
∑
i< j

√
µiµ j, (14)
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where |ψ⟩αβ = Lα⊗Lβ |ψ⟩√
C |ψ⟩αβ

and C |ψ⟩αβ = Tr{Lα ⊗ Lβ|ψ⟩⟨ψ|Lα ⊗ Lβ}.

Let ρ =
∑

k pkρk =
∑

k pk|ψk⟩⟨ψk| be the optimal decomposition which fulfills thatNm(ρ) attains

its minimum. In terms of (13) and (14) we get

Nm(ρ) =
∑

k

pkN(ρk)

=
1

M − 1

∑
k

pk

∑
αβ

||Ck
αβ (ρk

αβ)
TA || − (M − 1)

≥ 1
M − 1

∑
αβ

||
∑

k

pk Ck
αβ (ρk

αβ)
TA || − (M − 1)

=
1

M − 1

∑
αβ

||
∑

k

pk Lα ⊗ Lβρ
TA
k Lα ⊗ Lβ|| − (M − 1)

=
1

M − 1

∑
αβ

||Lα ⊗ LβρTA Lα ⊗ Lβ|| − (M − 1)

=
1

M − 1

∑
αβ

|Cαβ| ||ρTA
αβ || − (M − 1)

=
1

M − 1

∑
αβ

|Cαβ|(
X(ραβ)

2
+ 1) − (M − 1),

where we have used that ||ρTA
αβ || has at most one negative eigenvalue (see [32]) in deriving the last

equation. �

Remark: For the isotropic states (9) our lower bound (12) shows that Nm(ρ) ≥ 4x−1
3 , which

matches with the formula derived in [26]. Thus in this case the lower bound is exact for CREN.

Moreover, our lower bound is experimentally measurable, in the sense that Cαβ = Tr(Lα⊗Lβ ρTA Lα⊗
Lβ) = Tr(Lα ⊗ Lβ ρLα ⊗ Lβ) is the mean value of the Hermitian operator LαL†α ⊗ LβL†β, and X(ραβ) =

min{0, d(ραβ)} is determined by the mean value of the operator B′αβ. On the other hand, according

to the proof of the theorem the lower bound (12) for pure bipartite quantum states is also exact.

Thus based on the continuity of the CREN, for weakly mixed quantum state ρ with Tr{ρ2} ≈ 1, (12)

supplies a good estimation of the CREN.

In conclusion, we have derived a set of inequalities that can detect better entanglement of quan-

tum mixed states. These inequalities serve as sufficient and necessary conditions for separability

for all bipartite pure states and the isotropic states. Nevertheless, generally bound entangled states

can not be detected by these inequalities. We also find that these inequalities have close relations

with the convex-roof extension of the negativity. A measurable lower bound for the convex-roof

extension of the negativity has been obtained.
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