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We discuss a schematic model of mode-coupling theory for force-driven active nonlinear microrhe-
ology, where a single probe particle is pulled by a constant external force through a dense host
medium. The model exhibits both a glass transition for the host, and a force-induced delocal-
ization transition, where an initially localized probe inside the glassy host attains a nonvanishing
steady-state velocity by locally melting the glass. Asymptotic expressions for the transient density
correlation functions of the schematic model are derived, valid close to the transition points. There
appear several nontrivial time scales relevant for the decay laws of the correlators. For the nonlin-
ear friction coefficient of the probe, the asymptotic expressions cause various regimes of power-law
variation with the external force, and two-parameter scaling laws.

PACS numbers: 82.70.-y 64.70.pv 83.10.-y

I. INTRODUCTION

Microrheology is a modern technique that allows to
probe complex fluids on mesoscopic length scales. One
inserts a probe particle, typically µm-sized, into a host
liquid of constituents that are roughly of the same size
(such as colloidal dispersions or biophysical fluids). Mon-
itoring the motion of the probe, one can infer local visco-
elastic response functions of the host liquid. A partic-
ularly compelling extension of the technique is called
active microrheology: here, the probe is subjected to a
controlled external drive. This is most conveniently ap-
plied by using laser tweezers or magnetically susceptible
probe particles, or even by tailoring colloidal probes such
that they undergo self-driven motion due to chemical pro-
cesses [1–3]. Active microrheology has become a major
tool in biophysics and for colloidal model systems [4–7].

Here we focus on force-driven active microrheology,
where a constant external force F ex is applied to the
probe particle. A natural quantity to observe then is the
resulting probe velocity v, and specifically its ensemble-
averaged stationary value, 〈v〉t→∞. The influence of the
host liquid is characterized by a friction coefficient,

ζ〈v〉t→∞ = F ex . (1)

For typical soft-matter systems, thermal fluctuations give
rise to forces in the range of pN; it is hence easy to drive
the system into the nonlinear nonequilibrium regime us-
ing active microrheology. In Eq. (1), the friction coeffi-
cient ζ(Fex) then becomes a function of the applied force.
This makes analysis of the experiment vastly more diffi-
cult, since one needs to employ a theory of the nonlinear
probe–bath interactions. If that is available, the tech-
nique can, however, be rewarding, as it gives access to
much more information about the complex host liquid
than a linear-response setup would. Also, compared to
other nonlinear-response techniques, such as macroscopic

rheology, one gains access to the microscopic mechanisms
relevant for the dynamics [8].

Recently, a microscopic theory for the force-driven ac-
tive nonlinear microrheology has been proposed [9], us-
ing a combination of the integration-through transients
(ITT) scheme together with approximations inspired by
the mode-coupling theory for the glass transition (MCT).
ITT expresses the nonlinear friction coefficient ζ(Fex) via
a relation of (generalized) Green-Kubo type, through a
transient force autocorrelation function. This is a cor-
relation function taken with the equilibrium ensemble,
but the full nonequilibrium dynamics. Governed by the
idea that in a dense system, structural relaxation via
density fluctuations is the dominant slow dynamical pro-
cess, MCT provides an approximate closure for this cor-
relation function in terms of (again, transient) density
correlators. These are calculated by a set of nonlinear
integro-differential equations. As a result, the nontrivial
relaxation pattern predicted for the density correlators
directly gives rise to nonlinearities in the friction coeffi-
cient.

So far, the full MCT-ITT equations for active mi-
crorheology have proven not amenable to extended nu-
merical treatment. The strategy used in Ref. [9] there-
fore was to implement an ad-hoc simplified model that
reduces the complexity down to a single fluctuation mode
in the hope of retaining all nontrivial mathematical fea-
tures of the original set of equations. Introducing a few
adjustable parameters to this so-called schematic model,
a successful quantitative analysis of available computer-
simulation and experimental data provides an ex poste-
riori justification for doing so. The original schematic
model proved too restrictive in certain aspects. Recently,
an improved version of the model has been presented [10],
which allows convincing fits of the data in all accessible
regimes by taking into account some aspects of the force-
induced spatial anisotropy in the dynamics.

The data show a strong nonlinearity in ζ(Fex): in a
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relatively narrow range of forces, close to the glass tran-
sition the friction coefficient drops by orders of mag-
nitude, separating a near-equilibrium low-force regime
from a high-force regime. The schematic MCT models
interpret the resulting strong drop as a precursor to a
probe-delocalization transition: inside a glassy host, the
probe particle is held in a nearest-neighbor cage (formally
ζ → ∞ at low forces, for the ideal-glass case) that can
sustain a finite amount of external force. Once the ap-
plied force exceeds a critical threshold F c

ex, the probe’s
nearest-neighbor cage is forced open so that a finite mean
velocity results (and ζ drops to a finite value). The
threshold force is thus interpreted as a measure of the
cage strength. Since cages are formed in a highly collec-
tive process involving the host particles and their local
structure, active nonlinear microrheology is in principle
a unique tool to probe the local rigidity of that struc-
ture. In fact, F c

ex = O(50kBT/σ) has been measured [9],
greatly exceeding the typical force scale of thermal fluc-
tuations, kBT/σ (here, σ is a typical host-particle size).

In order to understand the asymptotic behavior of
ζ(Fex) close to the critical force within ITT-MCT, the
asymptotic behavior of the correlation functions close to
this delocalization transition has to be understood. In
essence, a two-parameter scaling prescription is sought
for, since one is dealing with both the distance to the
glass transition, and the distance to the delocalization
transition, as small parameters.

In this paper, we present an asymptotic treatment of
the schematic ITT-MCT equations for force-driven ac-
tive nonlinear rheology. We discuss the set of equations
that has been solved numerically in Ref. [10], where the
model was shown to describe both computer simulation
and experiment quantitatively. The calculation proceeds
by considering the double limit of approaching the glass
transition and the delocalization transition, which yields
two small parameters and various asymptotic results de-
pending on their ratio and sign. The techniques we use
are similar to those that have been used earlier to de-
rive different two-parameter scaling laws within MCT,
e.g., for the extended mode-coupling theory including a
schematic hopping term [11], or for the ITT-MCT equa-
tions describing the macrorheology for a given constant
shear rate [12].

Our analysis, however, has aspects that differ from the
above-mentioned cases. Due to the nonequilibrium na-
ture of the problem, the time-evolution operator is non-
Hermitian, and gives rise to complex-valued correlation
functions. Usually, in the regime of structural relaxation,
one can safely assume the correlation functions appearing
in the theory to be real-valued and completely monotone;
this holds rigorously for overdamped short-time dynam-
ics as applicable to colloidal suspensions in equilibrium
[13, 14]. These properties are used in the asymptotic
expansion, for example to ensure that the singularities
to be discussed belong to a certain class of bifurcations
[15]. Even in the macro-rheology of colloidal suspensions,
where external flow is represented by a non-Hermitian

generalized Smoluchowski operator, taking into account
the mechanism of shear advection separately allows one
to return to real-valued correlation functions and to a
scheme of asymptotic expansions that closely mirrors the
one followed in equilibrium [16–18].

In the equations for active microrheology, some as-
sumptions entering the standard discussion of MCT are
no longer valid. Consequently, the mathematical classifi-
cation of the transition between localized and delocalized
probe particles (in the idealized glass) is still open. We
restrict ourselves here to a certain schematic model that
is inspired by, but not necessarily mathematically equiv-
alent to, the microscopic equations presented in Ref. [9].
Since the model has been successfully used in data anal-
ysis, the restriction appears plausible.

The paper is organized as follows: in Sec. II, we sum-
marize the equations defining the model. The long-
time limits of the correlation functions, characterizing
the glassy and localized states, are discussed in Sec. III.
Sections IV and V are devoted to deriving asymptotic ex-
pressions for times large compared to the single-particle
relaxation time, valid on intermediate- respectively long-
time windows that open upon approaching the transition
points. These are the analogues to the common MCT
scaling laws referred to as β- and α-scaling. In Sec. VI
we transfer these results to a two-parameter scaling law
for the friction coefficient, after which Sec. VII concludes.

II. SCHEMATIC MODE-COUPLING THEORY

We summarize the main equations defining the
schematic MCT model for active nonlinear microrheol-
ogy. Following a generic integration-through-transients
(ITT) scheme and the notion that the slow dynamics in
the vicinity of the (colloidal) glass transition is domi-
nated by density fluctuations [19], the central quantities
of the model are the transient density correlation func-
tions. While in the liquid state, these eventually decay
to zero, in the glass they attain a finite positive long-time
limit called the glass form factor or nonergodicity param-
eter f . Even in the liquid, the correlation functions stay
close to its value fc at the transition over an increasingly
large time window as one approaches the transition. The
quantity f and its tagged-particle counterpart fs will
play a central role in the discussion to follow.

In the specific model we choose, there is one correla-
tor φ(t) mimicking the dynamics of the host liquid and
determining the glass form factor f = limt→∞ φ(t). Fur-
thermore, this dynamics is taken as identical to the equi-
librium one. Clearly, in the thermodynamic limit and
assuming that the probe–host interactions remain suffi-
ciently short-ranged, the host-liquid dynamics is in the
ensemble average unperturbed by the external force that
is applied to the probe particle only. The macroscopic
state of the host (liquid or glassy) will then be deter-
mined by the equilibrium coupling coefficients only. The
equation of motion for the host-liquid correlator takes
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the form

∂tφ(t) + Γ

{
φ(t) +

∫ t

0

m(t− t′)∂t′φ(t′) dt′
}

= 0 . (2a)

Equations of this type can be derived from microscopic
starting points using a Mori-Zwanzig projection operator
scheme [15], where the slow relaxation is modeled by a
memory kernelm(t) determined by the fluctuating forces.
The coefficient Γ is a relaxation rate of the short-time
dynamics, and will be set to unity in the calculations
below (thus defining the unit of time). The central idea of
MCT is to approximate the memory kernel by a bilinear
form of the correlators themselves, expressing the notion
that a slow decay of density fluctuations leads to and
hinges upon slow decorrelation of fluctuating forces. In
our discussion we adopt the so-called F12 model,

m(t) = v1φ(t) + v2φ(t)2 , (2b)

with positive parameters (v1, v2). With this choice, the
full range of asymptotic behavior expected from the mi-
croscopic MCT close to ordinary liquid–glass transitions
is reproduced [15]. The use of one single mode to describe
the host dynamics embodies our assumption that the sys-
tem remains homogeneous and isotropic in the ensemble
average.

Spatial isotropy clearly breaks down for the motion of
the probe particle. Therefore, in the schematic model of
Ref. [10], two tagged-particle correlation functions φsα(t)
were introduced, labeled by α ∈ {‖,⊥} to indicate the
separate role played by fluctuations in direction of, and
perpendicular to, the applied force. The equations of
motion then read

∂tφ
s
α(t) + ωα

{
φsα(t) +

∫ t

0

ms
α(t− t′)∂t′φsα(t′) dt′

}
= 0 .

(3a)
Here, the initial relaxation rates are ω⊥ = Γs and ω‖ =
Γs(1−iκ‖Fex), which fixes the unit of energy as kBT = 1.
We furthermore set Γs = 1 for simplicity, suitable for a
probe that is almost identical to the host particles. κ‖
adjusts the scale of forces entering the schematic model.
The slow dynamics of the probe arises as a consequence
of slow dynamics in the host liquid, and is modeled by
memory kernels containing a linear coupling to φ(t),

ms
‖(t) =

(
vs1φ

s∗
‖ (t) + vs2φ

s
⊥(t)

)
φ(t)/(1− iκ‖Fex) , (3b)

ms
⊥(t) =

(
vs1φ

s
⊥(t) + vs2 Reφs‖(t)

)
φ(t)/(1 + (κ⊥Fex)2) .

(3c)

The specific choice of terms entering Eqs. (3) is rooted
in symmetry considerations based on the full microscopic
MCT model [9, 10]. Specifically, for Fex = 0, the model
reduces to a well-studied schematic model of tagged-
particle motion close to the glass transition, the Sjögren
model [20]. In this case φs‖(t) ≡ φs⊥(t), both are real-

valued, and only a single coupling strength vs = vs1 + vs2

is relevant. Assuming that the probe motion retains rota-
tional symmetry around the axis set by Fex in the ensem-
ble average, it is seen that φs⊥(t) remains a real-valued
function. On the other hand, a nonvanishing net dis-
placement of the probe along the direction of the force
is expected, which results in the modulation of the cor-
responding Fourier-transformed density-fluctuation cor-
relations with a complex phase. Hence, φs‖(t) will be

complex-valued. Furthermore, Eqs. (3) obey the ex-
pected symmetries under reversal of the applied force,
Fex 7→ −Fex. The parameters κ‖ and κ⊥ characterize the
forces relevant for inducing the decay of fluctuations in
the two directions. They are introduced to achieve quan-
titative fits of simulation and experimental data [10]. We
fix κ⊥ = 1/2 and κ‖ = 1 for the numerical calculations
presented below.

We are thus left with a three-correlator model where
four parameters enter that are relevant for an under-
standing of the qualitative long-time behavior: two of
them, (v1, v2) model the approach to the glass transition
in the host liquid. In the parameter space of the F12

model, a line of ideal glass transitions (v1,c, v2,c) exists,
and it is useful to characterize the distance to any cho-
sen point on this line by a single distance parameter ε.
For the discussion below, let us fix v2,c = 2 implying

v1,c = 2(
√

2−1) [15], and set (v1, v2) = (v1,c, v2,c)(1+ε).
As usual, ε < 0 signals liquid states, while ε > 0 holds
for glassy states. We will denote quantities calculated at
glass-transition points of the host-liquid model by sub-
scripts c.

The other two parameters, (vs1, v
s
2), represent the cou-

pling of the probe to the host liquid; they will, among
other things, also reflect a non-trivial size ratio between
probe and host particles. We employ the simplification
that was used in Ref. [10] and set vs1/v

s
2 = 2 for numerical

calculations. Note that setting vs2 = 0 in Eqs. (3) reduces
the model to the one originally proposed in Ref. [9], not
taking into account the role of probe-density fluctuations
perpendicular to the force direction.

While the transient correlation functions can in prin-
ciple be measured and have been evaluated in computer
simulation [9, 10], an experimentally more easily acces-
sible quantity is the friction coefficient ζ. A straightfor-
ward adaption of the microscopic expression, used in [10],
is ζ = 1 + ∆ζ with

∆ζ = µ

∫ ∞
0

φ(t)φs⊥(t) dt

+ (1− µ)

∫ ∞
0

φ(t) Reφs‖(t) dt . (4)

This uses that in our choice of units, the solvent friction
experienced by the free particle is unity, ζ = 1. In the mi-
croscopic theory, ∆ζ is given as an angular average over a
force-autocorrelation function; approximating the latter
in terms of density-pair modes, one gets a Fourier-space
integral over anisotropic coupling coefficients. In writing
Eq. (4), we assume that this integral is qualitatively dom-
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FIG. 1. Schematic-model correlation functions φs‖(t) and
φs⊥(t) for host-liquid parameters close to and at the glass
transition, ε = −10−2 (solid lines) and ε = 0 (dashed), for
probe-coupling coefficients vs = 30, κ⊥ = 0.5, and κ‖ = 1.
For φs‖(t), both real and imaginary part are shown in sep-
arate panels. Curves in the order of decreasing relaxation
time correspond to Fex = 0, 1, F c

ex − 0.1, F c
ex, 12, and 80,

where F c
ex = 6.5735. In the panels showing the real parts, the

host-liquid correlation functions φ(t) are added for the liquid
(dash-dotted lines) and glassy (dotted) state.

inated by contributions from the two modes considered
in the schematic model, and that in particular the quali-
tative features of the correlators α =‖ and α =⊥ are not
restricted to zero-measure portions of wave-vector space.
The parameter µ allows to reweight these contributions,
which does not qualitatively change the features close to
the delocalization transition. Following Ref. [10] we set
µ = 1/2 in our calculations.

Figure 1 displays exemplary correlation functions of
the schematic model both in the liquid state (solid lines)
and at the liquid–glass transition point (dashed). Nu-
merical solutions of Eqs. (2) to (3) are obtained by inte-
grating in the time domain, using a repeated doubling of
the integration step to allow covering a large number of
decades in time. The algorithm is a straightforward gen-
eralization of the one used in previous MCT calculations

[21].
Considering first Fex = 0, the correlation functions

are all real, and Fig. 1 demonstrates the two-step decay
typical for glassy structural relaxation: at times much
larger than those associated with single-particle motion,
t� 1/Γ, a window of structural relaxation opens. Corre-
lators first decay towards a finite plateau, identifying by
φsα(t ≈ tσ) ≈ fsα the so-called β-relaxation regime. The
time scale tσ diverges approaching the glass transition.
In the glass, and right at the glass transition (ε = 0), the
correlation functions never decay from their plateau. In
the liquid, a final decay to zero sets in on time scales large
compared to those of the β relaxation, t� tσ. This iden-
tifies the α-relaxation window t/t′σ = O(1) and a second
time scale t′σ that diverges faster than tσ upon approach-
ing the glass transition. The equilibrium tagged-particle
correlators inherit these properties from the host-liquid
correlator φ(t), shown in Fig. 1 as dash-dotted (liquid)
and dotted (glass) lines. Linear response is the regime for
small Fex where the φsα(t) are still close to their Fex = 0
limiting cases, as in this case, ζ defined through Eq. (4)
remains force-independent.

Increasing Fex in the schematic model leads to a de-
crease of the plateau in the φsα(t), and to a decrease of
their α-relaxation time. It can be argued [9] that this cor-
responds to the fact that the localized probability den-
sity for the location of the probe particle continuously
broadens when increasing Fex. For large enough external
forces, the plateau vanishes completely, corresponding to
delocalized probe motion. This allows to define a critical
or threshold force F c

ex. For glassy states, this indicates
the force needed to locally melt the glass surrounding the
probe. In the liquid, the nearest-neighbor cages giving
rise to glassy dynamics still persist over a time scale t′σ,
and around F c

ex these are broken faster and more effec-
tively by the applied force than by thermal fluctuations.
For the parameters used in Fig. 1, the following analysis
confirms F c

ex ≈ 6.5735.
At still larger forces, the correlator φs‖(t) in Fig. 1

shows oscillatory behavior. This can be connected to
a finite average probe motion in the delocalized state,
as we will investigate in more detail below. For φs⊥(t),
no such oscillations are seen, as on average the probe
will not move perpendicular to the direction of the ap-
plied force. The oscillations are a clear signature of
the non-equilibrium nature of the dynamics, since for
colloidal dynamics, the negative semidefiniteness of the
time-evolution operator rules them out in equilibrium
[13, 14, 22].

Figure 2 presents curves for the real part of the probe-
particle correlation function corresponding to fluctua-
tions in the direction of the force, Reφs‖(t), in a double-

logarithmic plot. Compared to Fig. 1, a state even closer
to the glass transition has been taken, in order to bring
out more clearly the different time scales and the as-
sociated relaxation laws for the correlators. To explain
these is the aim of the discussion pursued in this paper.
An interesting feature brought out by the analysis pre-
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FIG. 2. Real part of the probe-particle correlation func-
tions Reφs‖(t) for the schematic model for force-driven mi-
crorheology, for a distance to the host-liquid glass transition
ε = ±10−6, and forces Fex = F c

ex(1 + δ) with F c
ex ≈ 6.587

and δ = −1, −0.01, and 10−5, from top to bottom. Model
parameters are vs = 30, κ⊥ = 0.5, and κ‖ = 1 (others as men-
tioned in the text). Solid (dashed) lines show the results for
the liquid (glass). Dash-dotted (dotted) lines show the cor-
responding host-liquid correlator φ(t) for the liquid (glass).
Symbols mark the time scales tσ and t′σ for the host correla-
tor (diamonds, cf. Eq. (14)), tδ (squares), t1/2 (circles), and
t′σ,δ (triangles) for the probe correlator (Eqs. (29), (30), and
(32)).

sented below is the fact that all the probe-particle cor-
relation functions are, asymptotically close to the glass-
and the delocalization transition, proportional to each
other. Hence, a discussion of the time scales seen in
Reφs‖(t) suffices. They are marked in Fig. 2 by vari-

ous symbols, and we will come back to their discussion
below.

The behavior of the correlation functions shown in
Figs. 1 and 2 gives rise to a strongly nonlinear signa-
ture in the friction coefficient. Figure 3 shows the fric-
tion increment ∆ζ calculated by Eq. (4) as a function
of external force Fex for several values of ε; other pa-
rameters were chosen as in Fig. 1. Qualitatively, the re-
sulting ζ(Fex) agree with those discussed in Refs. [9, 10]
in conjunction with experimental and simulation data.
For Fex → 0, a linear-response regime is recovered where
ζ depends only weakly on Fex. ζ(Fex → 0) increases
strongly with decreasing |ε| from the liquid side. This is
the manifestation of the glass transition, where the equi-
librium mobility of the tracer particle vanishes, as long
as the coupling between probe and host liquid is suffi-
ciently strong. The possibility of a decoupling of tracer
motion from the host even in equilibrium (realized, e.g.,
by tracers of sufficiently small size in binary mixtures of
hard spheres [23]) will not be discussed in this paper.

As Fex is increased, deviations from linear response
set in quadratically with the force, ∆ζ ≈ ∆ζ(Fex → 0)−
aF 2

ex, with a prefactor a depending on ε. A steep descent
of ∆ζ is then seen in Fig. 3 around the threshold force,
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FIG. 3. Excess friction ∆ζ experienced by a probe particle, as
a function of the applied force Fex, calculated in the schematic
MCT model according to Eq. (4). Curves from bottom to
top correspond to distances to the host-liquid glass transition
ε = −1, −0.1, −10−3, −10−5 (liquid; solid lines), 0 (solid),
10−3, 0.1, and 1 (glass; dashed lines). Other parameters are
chosen as in Fig. 1.

Fex ≈ F c
ex. In the glass, the point Fex = F c

ex marks the
divergence of ∆ζ as one approaches the critical force from
above, Fex → F c

ex + 0. At forces much larger than F c
ex,

a second plateau is observed in ∆ζ. Intuitive reasoning
might suggest ζ(Fex → ∞) → 1 (the solvent friction in
our units), hence ∆ζ = 0 in this window. This is not seen
in experiment or simulation. It was argued in Ref. [10]
that within ITT-MCT, the fact that ∆ζ > 0 for Fex →∞
can be understood by accounting for contributions to ∆ζ
stemming from α =⊥, i.e., fluctuations in the direction
perpendicular to the force. Note that no reference to
a suspending liquid is made in this argument, although
hydrodynamic interactions mediated through the solvent
are expected to greatly influence the friction coefficient
for large forces in real colloidal suspensions. The ratio of
the large-force plateau to the linear-response value has
been determined in a low-density expansion by Brady
and coworkers [24, 25] to be ∆ζ(Fex → ∞)/∆ζ(Fex →
0) = 2; this is confirmed by simulations of dilute host
liquids. In the schematic model, the parameter µ serves
to reproduce this ratio when one assumes the coupling
coefficients (v1, v2) and (vs1, v

s
2) to approach zero at low

densities: dropping all memory kernels from Eqs. (2) and
(3), the correlation functions become φ(t) = φ⊥(t) =
exp(−t) and Reφ‖(t) = exp(−t) cos(Fext). In Eq. (4) this

yields ∆ζ0 = (4 + µF 2
ex)/(8 + 2F 2

ex), which interpolates
between ∆ζ0(Fex → 0) = 1/2 and ∆ζ0(Fex →∞) = µ/2.
In Fig. 3 this is not seen, since we kept vs = 30 fixed.
While fits to data and the microscopic theory suggest to
change vs as a function of density [10], for a discussion
of the features close to the glass transition density we
assume vs ≈ vs(ε = 0) for simplicity.

We now focus on the analytic discussion of the above
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observed crossovers. For this purpose, let us employ a
more compact notation of Eq. (3). We introduce a vector
of probe correlation functions, φs(t), with components

(φs1(t), φs2(t), φs3(t))> := (Reφs‖(t), Imφs‖(t), φ
s
⊥(t))>, and

initial conditions φs
0

= (1, 0, 1)>. We will refer to the

components of this vector with Latin indices j ∈ {1, 2, 3}
(recall that Greek indices, α ∈ {‖,⊥}, label the direc-
tions). Let us further introduce a matrix characterizing
the short-time motion,

ω :=

 1 κ‖Fex 0
−κ‖Fex 1 0

0 0 1

 , (5a)

and a matrix constructing the memory kernel vector,

Ms :=

ξ‖ ξ‖
ξ⊥

−1 vs1 κ‖Fexv
s
1 vs2

κ‖Fexv
s
1 −vs1 κ‖Fexv

s
2

vs2 0 vs1


(5b)

with 1/ξα = 1 + (καFex)2. The complex-number mul-
tiplication appearing in the convolution integral is then
represented in our matrix notation by a bilinear (but non-

symmetric) mapping Csj [x, y] := x> · Ms>C
j
· y, with

C
1

=
(

1
−1

0

)
, C

2
=
(

1
1

0

)
, C

3
=
(

0
0

1

)
.

It will occasionally be useful to introduce the sym-
metrized version of this mapping, Ds[x, y] = Cs[x, y] +

Cs[y, x]. Applying the Laplace transform, φ̂(z) =

i
∫∞

0
eiztφ(t)dt, the equations of motion Eqs. (2a) and

(3a) are rewritten as

zφ̂(z)− (1 + zφ̂(z))(iz + zm̂(z)) = 0 (6a)

for the bath correlator, and

− izω−1
(
zφ̂

s
(z) + φs

0

)
+ zφ̂

s
(z)

− zCs
[
φ̂φs(z), zφ̂

s
(z) + φs

0

]
= 0 (6b)

for the probe correlator.

III. LONG-TIME BEHAVIOR

We assume the long-time limits of all correlation func-
tions of the schematic model to exist. In view of standard
features of structural relaxation dynamics close to a glass
transition, this is not unreasonable. Then, the Abelian
theorem [26],

f := lim
t→∞

φ(t) = − lim
z→+i0

zφ̂(z) , (7a)

fs := lim
t→∞

φs(t) = − lim
z→+i0

zφ̂
s
(z) , (7b)

leads from Eqs. (6) to

f/(1− f) = v1f + v2f
2 (8)

for the bath correlator and

0 = As · fs − fCs[fs, fs] , (9)

for the probe correlators. Here we have defined

As · fs := fCs[fs, φs
0
]− fs . (10a)

Explicit evaluation leads to

As =

 ξ‖v
s
1f − 1 ξ‖κ‖Fexv

s
1f ξ‖v

s
2f

ξ‖κ‖Fexv
s
1f −ξ‖vs1f − 1 ξ‖κ‖Fexv

s
2f

ξ⊥v
s
2f 0 ξ⊥v

s
1f − 1

 . (10b)

Equation (8) describes the well-known bifurcation sce-
nario of the glass transition within MCT [15]: it is an
implicit nonlinear equation for the nonergodicity param-
eter f . Possibly many different solutions of this equation
exist for general models, with zero being an obvious one.
It can be proven [13] that within equilibrium MCT, f
is always determined by the largest positive real solu-
tion. Since for v1,2 → 0, only f = 0 survives, and for
v1,2 → ∞, f > 0 holds, the MCT solutions changes at
some bifurcation point. These points define a hypersur-
face (v1,c, v2,c) through v1,c = 2

√
v2,c − v2,c (restricting

to 1 < v2,c ≤ 4). The bifurcation is identified as the ideal
glass transition. Generically, in Eq. (8), a jump in f oc-
curs; this is called a type B transition in the literature.
In other words, fc > 0 holds for the critical nonergodicity
parameter evaluated right at the transition. Mathemat-
ically, one deals for generic mode-coupling models with
bifurcations of the class A` [13] according to the Arnol’d
classification [27]; in the present case we are only con-
cerned with the nondegenerate A2 bifurcations displayed
by the F12 model. The bifurcation points are identified
by recognizing that, as two branches of solutions of the
implicit equation for f coalesce, the equation is no longer
invertible (and the implicit-function theorem violated).

Equation (9) describes localization respectively delo-
calization of probe particles: if f = 0, also fs = 0, i.e.
in a liquid, all probe particles are delocalized (and able
to undergo long-range motion, as required for a liquid).
If f > 0, sufficiently large (vs1, v

s
2) will for Fex = 0 lead

to fsα > 0, so that a probe is localized in the glass if it
couples strongly enough. As noted above, we will not
discuss the weak-coupling limit where the probe remains
delocalized in the glass even for Fex = 0.

For non-zero Fex, a further bifurcation point will de-
scribe probe delocalization in the glass through external
force. It can be found by demanding that the implicit-
function theorem is violated for Eq. (9), detAs = 0, lead-
ing to a biquadratic equation,

0 = κ2
⊥κ

2
‖(F

c
ex)4−(vs1f − 1)

(
κ2
⊥ (vs1f + 1) + κ2

‖

)
(F c

ex)2

+ (vs1f + 1)
(

(vs1f − 1)
2 − (vs2f)2

)
. (11)
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FIG. 4. State diagram for the probe particle in the schematic
model. Upper panel: critical force F c

ex as a function of dis-
tance to the host-liquid glass transition ε, for fixed vs as in
Fig. 1. Lower panel: critical force as a function of probe-
to-host coupling strength vsf . Solid lines mark the bound-
ary between localized and delocalized probe states; a vertical
dotted line in the upper panel indicates the host-liquid glass
transition. Dashed lines are F c

ex obtained for the model with-
out taking into account the anisotropy of the probe-particle
fluctuations, vs2 = 0.

Solving Eq. (11) to obtain F c
ex as a function of vsf ,

we obtain a decomposition of the parameter space for
our schematic model. The result for exemplary parame-
ters is shown in Fig. 4. The lower panel shows F c

ex as a
function of vsf directly. Typically, vsf will change im-
plicitly as the glass form factor f changes with changing
ε; this variation is shown in the upper panel of the fig-
ure for the parameters chosen as above. In Fig. 4, also
the result after setting vs2 = 0 (as implicit in the model
of Ref. [9]) is shown for comparison (dashed lines). For
this aspect of the discussion, both models are very sim-
ilar. For vsf < 1, no real solution of Eq. (11) exists,
and the probe particle is always delocalized. This is triv-
ially the case in the liquid, where f = 0. In the glass,
f > 0 holds, and by assumption we restrict ourselves
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Fex/(v
sf )
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-0.6
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s

0.0 0.5 1.0 1.5 2.0

-6

-4

-2

0

2

f
1

s

f
3

s

f
2

s

FIG. 5. Solutions of the implicit set of equations Eq. (9),
fs1 = Re fs‖ (solid lines), fs2 = Im fs‖ (dash-dotted), and
fs3 = fs⊥ (dashed), as a function of the reduced applied force,
Fex/(v

sf). Parameters are vs = 30, f = 1 − 1/
√

2 corre-
sponding to the glass-transition point of the F12 model at
vc2 = 2. The solutions identified as the long-time limits of the
schematic model, Eq. (3), are shown as thick lines. The inset
shows the full set of solution branches, including one for fs3
that is cut off in the full figure for clarity.

to the case where the probe particle also becomes local-
ized without any external force, so that the jump from
zero to fc is big enough to render vsfc > 1 at the glass
transition. As exemplified in the upper panel of Fig. 4,
this leads to a nonvanishing critical force F c

ex > 0 for the
delocalization of the probe at the glass transition, iden-
tifying the regime Fex < F c

ex as the one where the probe
remains localized inside the glass even under the action
of an external force. Beyond that, f increases with ε,
asymptotically as f − fc ∼

√
ε. Thus also F c

ex increases
in the glass. A full analysis of Eq. (11) shows that a
further line of solutions is present inside this localized
regime. Based on the following discussion of fs, we do
not assign physical significance to this.

Solving Eq. (9) numerically, we obtain a set of solu-
tions to this implicit equation. These are shown in Fig. 5,
where we have highlighted those in bold that we will use
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in the following as the physical ones. For Fex < F c
ex they

are the continuation of the known solution fsα(Fex = 0).
In particular, fs2 → 0 as Fex → 0 since the imaginary part
of the correlation function has to vanish in equilibrium,
and fs1 = fs3 for Fex = 0. The physical branch crosses
zero at F c

ex, and for larger Fex, no solution emerges for
which both real parts, fs1 and fs3 , are non-negative real,
except fsα ≡ 0. We hence are dealing with a continu-
ous probe-delocalization transition: the probe-correlator
nonergodicity parameters fs do not exhibit a jump at
F c

ex. Note that the choice of solution branches is non-
trivial: in standard equilibrium MCT, it can be proven
that the solution that is the largest nonnegative for all
components has to be chosen [13]. The proof relies on
mathematical properties of Eq. (8) and its proper gener-
alizations, that are not ensured in general in Eq. (9). The
number of solution branches to Eq. (9) may depend on
the parameters, and in particular the choice of the vs1 and
vs2. Fig. 5 shows a case that is typical for the description
of microrheology data.

It can be seen that at Fex = F c
ex, the largest real eigen-

value of the matrix As crosses zero, and that this eigen-
value is always non-degenerate for the restriction to the
parameters introduced above. Thus the critical force is
determined by a bifurcation in Eq. (9) with a single criti-
cal direction (co-dimension dc = 1). It is in this sense
similar to the known continuous delocalization transi-
tions discussed within tagged-particle models of MCT
[15]. These are quite different from the standard MCT
bifurcation, as we are not dealing with the coalescence
of two solution branches, but with the crossing of one
particular solution with the fsj = 0 branch. F c

ex is well-
defined since setting any of the fsj = 0 in Eq. (9) also
demands that the other fsi 6=j = 0.

For the later discussion we define reduced distances to
the critical points of the model, ε and δ. We set

V = (v1, v2)> = V c + ε · bc , (12a)

W = (vs1, v
s
2, Fex)> = W c + δ · bs,c . (12b)

The vectors bc and bs,c can in prinicple be chosen arbi-
trarily. In particular, the weak-coupling limit of small vs

is contained in the following derivation. For the sake of
simplicity, we will choose for all explicit calculations, in
agreement with above,

bc = (v1,c, v2,c)
> , bs,c = (0, 0, F c

ex)> . (12c)

With this choice, δ becomes a reduced force, such that
δ < 0 corresponds to Fex < F c

ex, i.e., the localized regime,
and δ > 0 to the delocalized regime. Recall that sub-
scripts c refer to quantities evaluated at ε = 0; we reserve
superscripts c for quantities evaluated at δ = 0.

IV. THE BETA-SCALING LAW

A. Scaling Functions

Having identified the long-time limits of the correla-
tion functions in the glassy-host, localized-probe regime,
we now turn to a discussion of the dynamical correla-
tion functions φ(t) and φsα(t). We anticipate that upon
approaching a critical point, ε → 0 for small δ, the cor-
relators will stay close to an intermediate plateau given
by f over a time window that increases as the distance

parameters approach zero. Thus, φ(t)− f̃ and φs(t)− f̃
s

can be identified as small parameters on a dynamical time
scale that will be determined below. Here, f̃ is a param-
eter introduced in Ref. [28], approximating f for ε ≥ 0
and continuing the latter smoothly to ε < 0 such that
limε→±0 f̃ = fc. For the F12 model, where we only con-

sider A2 bifurcations, f̃ is given by the unique positive
solution of v1 + 2v2f̃ − 1/(1− f̃)2 = 0 that obeys f̃ = fc
at the critical point. We define f̃

s
and a corresponding

matrix Ã
s

by Eqs. (9) and (10) with f replaced by f̃ .
For the host correlator φ given by Eqs. (2), the asymp-

totic analysis has been worked out in detail. Splitting
φ(t) = f̃ + G(t), there holds an expansion in terms of
the small parameter σ: G(t) = cσhgσ(t) + O(c2σ) with

cσ =
√
|σ| = O(

√
|ε|). The leading order correction to

the plateau is called β-correlator gσ(t). There appears a
critical amplitude h, connected to the critical eigenvector
arising in the bifurcation analysis of Eq. (8) – in the one-
correlator schematic model, this is just a prefactor, set to
h = (1 − fc) by convention. The function g(t) describes
relaxation to and from the plateau (visible e.g. in Fig. 1)
as asymptotic power laws,

gσ(t) ∝ (t/t0)−a for t0 � t� tσ, (13a)

gσ(t) ∝ −(t/tσ)b for tσ � t� t′σ, (13b)

where the latter, called the von Schweidler law, only oc-
curs inside the liquid, ε < 0. Here, diverging time scales
have been identified,

tσ = t0/|σ|1/(2a) , t′σ = t0/|σ|1/(2a)+1/(2b) , (14)

where σ is a distance parameter obeying σ ∼ ε as ε →
0. For the schematic model and our definition of ε, one
gets σ = εf c(1 + f c)(1 − f c) ≈ 0.38ε. The microscopic
time scale t0 is fixed by the short-time motion of the
correlation function. The power-law exponents a, b > 0
are solutions of

Γ(1− a)2

Γ(1− 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
= λ , (15)

with the exponent parameter λ given by λ = 1/
√
v2 on

the bifurcation manifold [15].
Introducing a rescaled time, t̂ = t/tσ, the β correlator

is found to obey the β-scaling equation written with the
scaled Laplace frequency ẑ = ztσ as

∓1 + λẑĝ2
±(ẑ) + (ẑĝ±(ẑ))2 = 0 , (16)
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where g±(t̂) are the scaling solutions for σ ≷ 0 that de-
pend only on the sign of σ. They obey g±(t̂) ∼ t̂−a for
t̂ → 0, and g−(t̂) ∼ −Bt̂b for t̂ → ∞. The asymptotic
form of the relaxation to and from the plateau thus is
given by a scaling law with only λ as a non-universal pa-
rameter. The positive constant B = O(1) depends on λ
and has been tabulated [29]. For ε > 0, g+(t̂) approaches
a constant as t̂→∞, giving the correction to the critical
plateau value.

In the same spirit we now write

φs(t) = f̃
s

+ cσg
s
σ
(t̂) +O(c2σ) . (17)

To arrive at an equation for gs
σ

that is asymptotically
valid for σ ∼ ε → 0, we follow the standard procedure
laid out in Ref. [15]: introducing ẑ = ztσ, we collect in
Eq. (6b) the leading terms in cσ, making use of Eq. (9).
We arrive at

0 =
{
Ã
s · ẑĝs

σ
(ẑ)− f̃Ds[f̃

s
, ẑĝs

σ
(ẑ)]

+ẑĝσ(ẑ)Cs[f̃
s
, φs

0
− f̃

s
]
}

+ cσ

{
Cs[ẑĝσgsσ(ẑ), φs

0
− f̃

s
] + ẑĝσ(ẑ)Cs[f̃

s
, ẑĝs

σ
(ẑ)]

+ f̃Cs[ẑĝs
σ
(ẑ), ẑĝs

σ
(ẑ)]
}

+O(c2σ, (cσtσ)−1) (18)

Note that since the exponent a < 1/2 [15], the dropped
terms (cσtσ)−1 ∼ |σ|1/(2a)−1/2 are indeed of higher order.

The leading order for ε → 0 in Eq. (18) results in a
linear equation system,

Ls
c
· gs±

(
t̂
)

= g±
(
t̂
)
lsc , (19)

where the linear mapping Ls
c

is defined through Ls
c

=

As
c
− fcDsc[f

s

c
, ·] and the inhomogeneity reads lsc =

−Cs[fs
c
, φs

0
− fs

c
] . For state points far enough from the

critical force, Eq. (19) determines gs±(t̂) by the host liq-

uid g±(t̂). This expresses that in such cases, the asymp-
totic dynamics of the tracer is governed by that of the
host liquid, i.e.,

gs±(t̂) = hscg±(t̂) , δ 6= 0, (20a)

with an amplitude given by

hsc = −Ls
c

−1Cs[fs
c
, φs

0
− fs

c
] . (20b)

In Fig. 6, we show exemplary results for the corre-
lators φs(t) close to the glass transition, in a double-
logarithmic plot of |φs(t)− fs| to exhibit the asymptotic
power laws. Two states corresponding to small |ε| were
chosen that exhibit a large window of validity for the
asymptotic Eq. (18). As dash-dotted and dotted lines,
the corresponding φ(t) are shown for ε < 0 and ε > 0,
respectively. They follow the asymptotic critical power
law, φ(t)−f c ∼ h(t/t0)−a over several decades in time; a
numerical estimate yields t0 ≈ 0.146 for the parameters
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FIG. 6. Correlation functions φs(t) close to the glass transi-
tion point, for various external forces, plotted as the leading-
order deviation from the plateau value, |Gs(t)| = |φs(t)− fs|
for ε→ 0, as a function of t/tσ. Parameters as in Fig. 3; solid
lines correspond to liquid states, ε = −2.5 × 10−10, dashed
lines to glassy states, ε = 2.5 × 10−10. Various forces Fex

are shown with δ = (Fex − F c
ex)/F c

ex = 10−n, n = 0, 1, 2, 3,
4, and 5 as labeled. (For the glass, only n = 0 and n = 1
are shown.) Dash-dotted and dotted lines indicate the corre-
sponding host β-correlator |G(t)|, for the liquid respectively
the glass, in the panels showing the real parts. For the imag-
inary part, dotted lines indicate the critical law of the host
correlator, G(t) ∼ h(t/t0)−a, and hsc,j/λ ≈ 3.985/λ times this
critical law.

chosen here. The ε < 0 curve also exhibits von Schwei-
dler’s law, φ(t̂) − f c ∼ −Bt̂b at large rescaled times
t̂ = t/tσ. With the distance parameter chosen here, we
get σ = 6.7×10−11 and consequently tσ = 8.07×1014; the
parameter B is tabulated [29] and estimated as B = 0.68.

For forces far from the critical threshold, e.g., δ = −1,
Eq. (20) is valid. This is demonstrated by the n = 0
curves in Fig. 6 that correspond to the force-free case:
the probe-particle correlation functions closely follow-
ing the host-liquid curves over all time, up to a fixed
amplitude. Evaluation of Eq. (20) in this case yields
hsc ≈ (0.39, 0, 0.39)>, which is easily verified in the figure.
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In this sense, the tagged-particle dynamics is governed
by the dynamics of the host liquid. This well known fact
is the basis for various approximations relating single-
particle motion and collective dynamics close to the glass
transition. For n = 1, we get hsc ≈ (3.99, 2.83, 2.54)>,
and this is also verified by Fig. 6.

Approaching F c
ex, shown by curves with δ = −10−n

closer to zero (larger n) in Fig. 6, the coupling found for
δ = 0 breaks down. Most obviously, in the regime of the
von Schweidler law, t̂� 1, the curves for n 6= 0 decay to
zero more rapidly than the host correlator, indicated by
a plateau in Fig. 6 (dashed lines). This regime will be
discussed later.

More subtly, for t̂ � 1, the probe correlators for
Fex 6= 0 still appear proportional to the host liquid
correlator, but with a different prefactor than the one
given in Eq. (20). For n = 5, Eq. (20) yields hsc ≈
(4.16, 3.98, 2.05), not compatible with the asymptotes
seen in Fig. 6. We address this now, discussing the limit
δ → 0 of Eq. (18).

At the critical force, δ = 0, we have detAs,c = 0 and
concomitantly limδ→0 f

s

c
= fs,c

c
= 0, as discussed above.

In that case, also detLs,c
c

= 0, rendering Eq. (19) singular

and Eq. (20) invalid. In leading order in δ, gs
σ
(t) must be

in the kernel of detAs,c. In our model, this matrix is only
simply degenerate, and we denote by hs,c a corresponding
null-eigenvector. Keeping the ansatz that gs

σ
(t) depends

linearly on gσ(t), we modify Eq. (20a),

gs
σ
(t̂) = hs,cgσ(t̂) +O(cσ, δ) , δ → 0. (21)

Differentiating Eq. (9) with respect to δ at δ = 0, again

using that f̃
s,c

= 0, we find Ã
s,c

(d/dδ)f̃
s,c

= 0 and hence

(d/dδ)f̃
s,c

= ηhs,c with some constant η. Here and in
the following, expressions like d/dδ fs,c are to be read as
limδ→0 d/dδ f

s.
Accounting for the next-to-leading order terms in

Eq. (18) and using f̃s,cj = 0, we get from taking the
derivative with respect to δ

0 = (ẑĝσ(ẑ)) δ×

×

{
dÃ

s,c

dδ
hs,c − ηf̃Ds,c[hs,c, hs,c] + ηCs,c[hs,c, φs

0
]

}
+ cσ

{
Cs,c[hs,c, φs

0
]ẑĝ2

σ(ẑ) + f̃Cs,c[hs,c, hs,c](ẑĝσ(ẑ))2
}

+O
(
c2σ, (cσtσ)−1, δ2, cσδ

)
(22)

In the following, we will suppress the indication of omit-
ted higher-order terms as far as they are already denoted

here. The term containing (d/dδ)Ã
s,c

can be eliminated
in favor of Cs,c by looking at the Taylor expansion of
Eq. (9), which yields

0 = Ã
s,c · 1

2

d2f̃
s,c

dδ2
+ η

dÃ
s,c

dδ
· hs,c

− f̃η2Cs,c[hs,c, hs,c] . (23)
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FIG. 7. Normalized ratio of probe-correlation functions to
that of the host liquid, Xj(t) = [φsj(t)−f̃sj ]/[φ(t)−f̃ ]/(us,cj Aδ),

cf. Eq. (25), as a function of t̂ = t/tσ. Parameters are chosen
as in Fig. 6; only liquid curves, ε = −2.5× 10−10 are shown,
for δ = −10−n with n = 0, 1, 2, 3, 4, and 5 (indicated by the
labels). The dotted line indicates Aε/Aδ = λ =

√
2. Squares

in the upper panel indicate the time scale tδ.

Multiplying with the left null-eigenvector ĥ
s,c

of Ã
s,c

, the
first term vanishes, and inserting into Eq. (22) provides

0 = (ẑĝ(ẑ)) ηδ
{
ĥ
s,c
Cs,c[hs,c, φs

0
]− f̃ ĥ

s,c
Cs,c[hs,c, hs,c]

}
+ cσ

{
ĥ
s,c
Cs,c[hs,c, φs

0
]ẑĝ2

σ(ẑ)

+f̃ ĥ
s,c
Cs,c[hs,c, hs,c](ẑĝσ(ẑ))2

}
(24)

Let us discuss the relevant limits of Eq. (24). We as-
sume that Cs,c[hs,c, hs,c] 6= 0, which is generically the
case. Note that in writing Eq. (21), the normalization of
the eigenvector hs,c is left undetermined. In the limit
ε → 0, this normalization is now fixed by requiring
the first bracket in Eq. (24) to vanish. If we introduce
through hs,c = Au the normalized eigenvector u and the
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amplitude A = ‖hs,c‖, we obtain

Aδ =
ĥ
s,c
· Cs,cc [u, φs

0
]

fcĥ
s,c
· Cs,c[u, u]

(25)

where the subscript recalls that this result is valid for
taking the limit δ → 0 after ε → 0. The amplitude
Aδ does not depend on the actual path along which the
hypersurface of delocalization transitions is crossed.

Taking δ → 0 first, we require the second bracket in
Eq. (24) to vanish. Letting ε → 0 after that, we can
further make use of Eq. (16) to arrive at

Aε =
ĥ
s,c
· Cs,cc [u, φs

0
]

λfcĥ
s,c
· Cs,c[u, u]

=
Aδ
λ
. (26)

Equations (25) and (26) together with Eq. (21) imply
that one recovers both the critical power law, gs±(t̂) ∼
t̂−a, and the von Schweidler law, gs−(t̂) ∼ −t̂b, in the dou-

ble limit ε → 0 and δ → 0. The ratio of the correlation
functions, however, depends on the order in which this
double limit is taken. To exemplify this, define the ratio
Xs
j (t) = (φsj(t)− f̃sj )/([φ(t)− f̃ ]Aδuj). Results for typical

parameters are shown in Fig. 7. According to Eqs. (25)
and (26), the ratio approaches unity for t̂→∞ at not too
small δ. This is demonstrated by the n = 0 curve in the
figure. Lowering δ → 0, one notices a second plateau in
Xs
j (t) = 1/λ that becomes more pronounced for smaller
|δ|. For Fig. 7, the result is only valid for t < tσ. The
ranges of validity of the various scaling predictions will
be discussed below.

Another scaling result emerges if instead of Eq. (21)
we consider the case that gσ(t̂) is of higher order and can
be set to zero in Eq. (18). We will identify a time scale
where this is admissible below. Requiring the leading
order in Eq. (18) to vanish again leads to the requirement

ĝs
σ
∝ hs,c, the null-eigenvector of Ã

s,c
. The expansion

Eq. (22) reduces to

0 = δ

{
dÃ

s,c

dδ
· ẑĝs

σ
(ẑ)− f̃Ds,c

[
df̃

s,c

dδ
, ẑĝs

σ
(ẑ)

]}
+ cσ f̃Cs,c[ẑĝsσ(ẑ), ẑĝs

σ
(ẑ)] +O

(
c2σ, (cσtσ)−1, δ2, cσδ

)
(27)

The limit ε→ 0 is not meaningful in this equation, since
the first bracket then only admits the trivial solution.
Letting, however, δ → 0, we gain Cs,c[ẑĝs

σ
(ẑ), ẑĝs

σ
(ẑ)] =

0, which is consistent if we set

gs
σ
(t̂) = Ct̂−1/2hs,c . (28)

The constant C has to be determined by matching the
various asymptotic expansions.

B. Time Scales

The different results derived above present the asymp-
totic behavior of the probe-particle correlation functions
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FIG. 8. Correlation functions φs(t)−fs multiplied by
√
t, for

ε = 10−6, and other parameters as in Fig. 6. Reduced forces
are δ = −10−n with n = 0, . . . 6. The dash-dotted line shows
the corresponding host-liquid correlator.

in various limits. These correspond to different time
scales for which the results hold, which we discuss now.
Recall the Laplace transform of a power law g(t) = t−x

yields zĝ(z) = −Γ(1−x)(−iz)x. For short rescaled times,
t̂ → 0, the host-liquid β correlator assumes the form
gσ(t̂) ∼ t̂−a. In Eq. (24), we then identify a time scale
t̂δ that separates the two scaling limits discussed in con-
nection with Eqs. (25) and (26): for t̂ � t̂δ, the second
curly bracket in Eq. (24) dominates, and we recover the
δ → 0 regime. For t̂ � t̂δ, the first curly bracket domi-
nates, corresponding to the ε→ 0 regime. Balancing the
power-law exponents, we get t̂δ = O(1)|σ/δ2|1/(2a), or

tδ = O(t0)|δ|−1/a . (29)

Considering the case where tδ � tσ, we have to dis-
tinguish the two signs of ε. In the glass, ε > 0, gσ at-
tains a long time limit of O(

√
σ) so that we may consider

Eq. (27) to be valid on a time scale t̂1/2 = O(1)|σ/δ2|, or

t1/2 = O(t0)|σ|1−1/(2a)|δ|−2 . (30)
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For times t � t1/2, the trivial solution of Eq. (27) is
obtained. Hence the probe β correlators Gs(t) show a
nonalgebraic decay to zero for times t ∼ t1/2. Matching
this solution, Eq. (28), to the asymptote obtained above,
we find that the constant C obeys C = C ′ · |σ|1/2−1/(4a),
where C ′ is independent of σ and δ. This yields the
scaling law

Gs(t) ∝ |σ|−1/(4a)|δ|(t/t1/2)−1/2 ,

tσ � t� t1/2 . (31)

We verify this scaling law in Fig. 8: for ε > 0 much larger
than considered in Fig. 6, Gs(t)

√
t is seen to approach a

constant at times long compared to the ultimately expo-
nential relaxation [13] of G(t).

In the liquid, ε < 0, we can balance terms of O(δ)
with those of O(cσ) inserting the von Schweidler law for
the host-liquid β correlator, gσ(t̂) ∼ −O(1)t̂−b, provided
that t̂ � 1. As a result, this asymptotic power law can
be seen in the probe correlator on a time scale

t′σ,δ = O(t0)|δ|1/b|σ|−1/(2a)−1/(2b) . (32)

Taken together, Eqs. (14), (29), (30), and (32) define
five time scales determining the asymptotic behavior of
the β correlation functions for the probe pulled by an
external force. Two of them are inherited from the glass-
transition dynamics of the host liquid; tσ determines the
time scale for the relaxation around the plateau, while
t′σ sets the time scale for the final decay in the liquid.
These time scales are marked as diamonds in Fig. 2; we
have seen that it suffices to study the correlator Reφs‖(t)

in the asymptotic regime, since the other φsj(t) are con-
nected via the critical amplitudes hs,c to the same time-
dependent laws.

The time scale tδ (squares in Fig. 2) separates the
regime that is dominated by the proximity to the glass
transition (σ → 0) from the one dominated by the prox-
imity to the delocalization transition (δ → 0). The curve
for δ = −0.01 exemplifies the case where tδ � tσ so
that the dynamics for t � tδ is dominated by the host-
liquid glass transition. In this case, the probe-particle β
correlator is proportional to the host-liquid one, with an
amplitude that changes by a factor 1/λ at t ≈ tδ. For
t� tδ, Eq. (26) holds for this amplitude, while at t� tδ
it drops to the value determined by Eq. (25). This ex-
plains the behavior of the correlator ratio X(t) shown in
Fig. 7. There, squares mark tδ; for the particular cases
shown, tδ < tσ holds, so that the ratio for t > tσ is
given by Eq. (25), viz. Xj(t) = 1, as long as the probe
correlators do not decay to zero.

At times t � tσ � tδ, the probe-particle corre-
lator exhibits force-induced decay that couples to the
von Schweidler law of the host liquid: this is exemplified
for δ = −0.01 in Fig. 2 for t ≈ t′σ,δ (marked by a trian-

gle). There holds t′σ,δ ∝ |δ|1/b, so that approaching the
delocalization threshold, δ → 0, this force-induced decay
is accelerated according to a non-trivial power law.

The curve for δ = 10−5 in Fig. 2 on the other hand
exhibits the case tδ � tσ, and the dynamics for t � tδ
is dominated by the probe-delocalization limit. In this
case, the time scale t1/2 becomes relevant (marked by
a circle in the figure), and the probe correlator decays
according to a power law.

Both tδ and t1/2 diverge as the force threshold is ap-
proached, δ → 0, while the host-liquid time scales tσ and
t′σ, as well as the time scale for which the probe motion
couples to the host’s von Schweidler law, t′σ,δ, diverge for
ε→ 0, i.e., upon approaching the glass transition. From
the power laws, one infers the relevant scaling combina-
tion: for |σ/δ2| � 1, the dynamics is determined by the
force-induced delocalization, while for |σ/δ2| � 1, the
glass-transition dynamics describes the relaxation.

V. THE α-SCALING LAW

In the liquid, the decay of the host correlation function
from the plateau towards zero can be discussed on the
time scale t′σ by another scaling law, known as the α-
scaling law. There, a master function can be derived for
the limit σ → 0 in the form [15]

φ(t) � F (t/t′σ) . (33)

The function F is independent of σ. As a result, the
final relaxation of the correlators displays a superposition
principle, allowing the long-time part of the correlators
to be scaled to a master curve by scaling time with t′σ.
We derive a similar law for the probe correlators φs(t).

More formally, we introduce σ-independent scaling cor-
relators F and F s by

F (t̄) := lim
ε→0−

φ(t) , F sδ(t̃) := lim
ε→0−

φs(t) , (34)

with reduced times t̄ = t/t′σ and t̃ = t/t′σ,δ. From

Eqs. (6), we obtain after taking the scaling limit ε → 0
with t′σ, t

′
σ,δ →∞:

F̂ (z̄) = F̂c[F ](z̄) · (1 + z̄F̂ (z̄)) , (35a)

F̂
s

δ(z̃) = Csc
[
F̂F sδ(z̃), z̃F̂

s

δ(z̃) + φs
0

]
. (35b)

Here, F [F ] denotes the memory kernel of the host-liquid
model, evaluated with the scaling correlator. The initial
conditions for Eqs. (35) are obtained by matching them
to the long-time limit of the β-correlation regime in the
liquid, i.e. the von Schweidler law. Hence, F (0) = fc, and
limt̄→0(F (t̄) − fc)t̄−b = −B. This leads to the standard
α-scaling regime discussed in detail earlier [15]. Likewise,
we identify F sδ(0) = fs

c
and limt̃→0(F sδ(t̃) − fs

c
)t̃−b =

−Bs where Bs is trivially related to B via the critical
amplitudes. As the plateau value fs

c
vanishes linearly

with δ upon approaching the delocalization transition,
it is reasonable to introduce the probe-particle α-scaling
correlator

F s(t̃) := lim
δ→0−

F sδ(t̃)/|δ| , (36a)
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to which corresponds the α-scaling law

lim
δ→0−

lim
ε→0

φs(t)/|δ| = F s(t/t′σ,δ) . (36b)

It remains to be shown that F s(t̃) indeed is indepen-
dent on σ and δ. To see this, expand Eq. (35b),

0 = As,c
c
· z̃F̂

s
(z̃)

+ |δ|
{
−
dAs,c

c

dδ
· z̃F̂

s
(z̃) + fcCs,cc

[
z̃F̂

s
(z̃), z̃F̂

s
(z̃)
]

−BsCs,cc
[
z̃ ̂̃tbF s(z̃), φs

0

]}
+As,c

c
· O(δ) . (37)

This suggests the ansatz F s(t̃) = F s(t̃)hs,cc + O(δ), and

multiplying Eq. (37) with the left-null-eigenvector ĥ
s,c

c

yields an equation that is independent on δ:

0 = −z̃F̂ s(z̃)ĥ
s,c

c ·
dAs,c

c

dδ
· hs,cc

+ fc(z̃F̂
s(z̃))2ĥ

s,c

c · C
s,c
c [hs,cc , hs,cc ]

−Bsz̃ ̂̃tbF s(z̃)ĥs,cc · Cs,cc [hs,cc , φs
0
] . (38)

Consequently, F s is invariant under rescaling of both
variables δ and ε. It depends, however, on the direction
of the path crossing the delocalization transition with
respect to the transition hypersurface.

The scaling property of the probe correlators as a func-
tion of δ → 0− in the limit ε→ 0 is exhibited by Fig. 9.
Here, some very small ε < 0 has been chosen, and the
correlation functions of the probe particle are plotted as
φsα(t̃)/|δ| for various δ < 0. Reducing |δ|, the α-scaling
regime is entered, as seen for the n = 2 through n = 5
curves: as functions of rescaled time t̃ = t/t′σ,δ, all the

correlators agree with the scaling function F sα(t̃) at long
times. The latter shows an initial plateau, followed by
a relaxation on a time scale t̃ = O(1). Qualitatively,
this scaling is similar to the usual α-relaxation scaling
law one finds without external force upon varying ε→ 0.
There, however, the discontinuous nature of the MCT
transition predicts that asymptotically, the plateau seen
in the α correlator is constant, while for the delocaliza-
tion transition approached as δ → 0, the plateau scales
with the distance |δ| to the transition point. For n = 0
and n = 1, the distance |δ| to the delocalization transi-
tion is too large, and the scaling prediction of Eq. (36) no
longer holds, as it requires both δ → 0 and ε → 0. The
curve for n = 6 also shown in Fig. 9 corresponds to the
regime |δ2/σ| � 1, and no longer satisfies the require-
ment ε→ 0 in Eq. (36); it hence deviates again from the
scaling law.

VI. THE FRICTION COEFFICIENT

A. Above the Delocalization Threshold

We now focus on a discussion of the friction coefficient
∆ζ in the asymptotic regime. Let us start by considering
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FIG. 9. Test of the α-sclaing law for the probe-particle cor-
relation functions: the φs

α
(t)/|δ| are shown as functions of

rescaled time t̃ = t/t′σ,δ. Parameters are chosen as in Fig. 1,

with ε = −10−12. Reduced forces are given by δ = −10−n,
and n = 0, 1, 2, 3, 4, 5, and 6 as labeled.

δ > 0, i.e., a force exceeding the delocalization threshold,
so that even in the glass, ∆ζ <∞.

Figure 10 shows the friction coefficients from Fig. 3 in
a double-logarithmic representation as a function of the
distance to the delocalization threshold, δ > 0. At large
δ, the qualitative features discussed before in conjunction
with Fig. 3 are recovered: a plateau as δ → ∞, and an
intermediate decay for δ � 1 that we will identify with a
power law. For δ �

√
|σ|, this power law crosses over: for

liquid states, the curves approach a constant, since the
friction at the critical force (δ = 0) is finite there. For
glassy states, the friction diverges as δ → 0+, but with a
different power law than the one observed for δ �

√
|σ|.

Consider first the regime dominated by the δ → 0
limit: here, Eq. (28) describes the power-law decay of
Gs(t) ∼ t−1/2 for σ > 0, valid in a time window
tσ � t � t1/2. Inserting into Eq. (4), one obtains

∆ζ ≈
∫ t1/2
O(tσ) C

′ |σ|1/2−1/(4a) · (t0/t)1/2 · f which results
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FIG. 10. Friction coefficient increment ∆ζ = ζ(Fex) − ζ0 for
a probe particle pulled with external force Fex, as a func-
tion of the distance to the delocalization threshold, δ =
(Fex − F c

ex)/F c
ex, for δ > 0 and various distances to the glass

transition ε = ±10−k with k = 5, 6, 7, and 8 as labeled.
Dashed lines are in the glass (ε > 0), solid lines in the liquid
(ε < 0). The curve at the glass transition, ε = 0, is shown as
a dash-dotted line. Inset: curves for ε 6= 0, as a scaling plot,
∆ζ̂ = ∆ζ/|ε|1/2−1/(2a) versus δ̂ = δ/|ε|1/2.

in

∆ζ(δ) ∝ |σ|1−1/(2a) · δ−1 , σ > 0, |δ2/σ| � 1. (39a)

In the liquid state, the t−1/2 power law does not appear.
For δ ∼

√
|σ| we get the δ-independent result in the

liquid,

∆ζ(δ) ∝ |σ|1/2−1/(2a)
, σ < 0, |δ2/σ| � 1. (39b)

Equations (39) explain the qualitative behavior seen for
δ → 0 in Fig. 10.

For tδ � tσ, the probe β correlator Gs(t) for times
t0 � t � tσ follows the power law (t0/t)

a. Integration
of Eq. (4) leads to

∆ζ ∝ δ−(1−a)/a , |δ2/σ| � 1, (40)

where the proportionality constant is independent of σ.
This power law is seen in Fig. 10 in the intermediate-δ
regime, where δ �

√
|σ| but still small.

Having identified these power laws, a scaling predic-
tion is obtained for the friction coefficient, for forces

just above the threshold. Introducing δ̂ = δ/
√
|ε| and

∆ζ̂ = ∆ζ/|ε|1/2−1/(2a), we obtain two master curves, one
for ε > 0, and one for ε < 0. This is shown in the
inset of Fig. 10. The scaling curve for the glass shows

two power laws, ∆ζ̂ ∼ δ̂−1 for δ̂ � 1, and ∆ζ̂ ∼ δ̂1−1/a

for δ̂ � 1. For our model, a ≈ 1/3, so that the ex-

ponent governing the large-δ̂ decay in ∆ζ̂ is close to 2,
as seen by inspection of Fig. 10. One has to note that
the identification of these power laws in experiment or
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FIG. 11. Friction coefficient increment ∆ζ as a function of
the distance to the delocalization threshold δ, for δ < 0 (i.e.,
Fex < F c

ex) in the liquid. The distance to the glass transition
is chosen as ε = −10−k, with k = 4, 5, 6, 7, and 8 as labeled.
Inset: scaling plot ∆ζ̂ versus δ̂ for the same data and also
including k = 9 and k = 10.

simulation is hampered by the fact that one has to ap-
proach both ε → 0 and δ → 0. For finite distances to
the transition, preasymptotic corrections quickly become
dominant. Fits using the schematic model we discuss
here have to be performed with varying coupling coeffi-
cient vs [10]. Compared to the case displayed by Fig. 10,
this introduces a regular shift of the curves [21].

B. Below the Delocalization Threshold

We now discuss the case δ < 0. Here, the probe re-
mains localized within glassy states, so that for δ < 0
and σ > 0, ∆ζ = ∞ holds trivially. For σ < 0, the fi-
nal α relaxation will give the dominant contribution to
the friction coefficient, which is obtained by inserting the
α-scaling law into Eq. (4),

∆ζ ≈ (1− µ)

∫ ∞
0

F (t/t′σ)F sδ,1(t/t′σ,δ) dt

+ µ

∫ ∞
0

F (t/t′σ)F sδ,3(t/t′σ,δ) dt . (41)

This expression yields a factorization of ∆ζ of the form
∆ζ ∼ |σ|−1/(2a)−1/(2b)Z(δ) for σ → 0, where Z is uni-
versal. If t′σ,δ � tσ, i.e., |δ2/σ| � 1, and additionally

|δ| � 1, we further use that F sδ(t/t
′
σ,δ) is proportional to

|δ|. From the von Schweidler law we then arrive at

∆ζ ∝ |σ|−1/(2a)−1/(2b)|δ|1/b+1 ,
√
|σ| � |δ| � 1. (42)

Hence, the exponent of von Schweidler’s law is also
present in the behavior of ∆ζ, as can bee seen in Fig. 11,
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where ∆(ζ) is plotted as a function of 1/|δ| for forces be-
low the delocalizaton threshold, in the liquid. Note that
for Fex → 0, i.e., δ → −1, the von Schweidler regime is
cut off due to the microscopic relaxation of the correla-
tion functions, and ∆ζ(Fex = 0) −∆ζ ∼ F 2

ex is obtained
as mentioned further above. As the glass transition is ap-
proached, this window of initial linear response shrinks.

Again, Eq. (42) includes a scaling prediction: plotting

∆ζ̂ as a function of δ̂, where the rescaled variables are
defined above, the curves for all ε close to the glass tran-
sition can be scaled onto one master curve. This is shown
in the inset of Fig. 11. The von Schweidler law is seen for

δ̂ � 1, in the form ∆ζ̂ ∼ δ̂1/b+1. This exponent is close
to 2.6 for the model parameters chosen here, as one can
verify in the figure.

C. Large-Force Plateau

We come briefly back to the case, where the probe par-
ticle is delocalized. For δ � O(1), the β-scaling regime
does not give the dominant contribution to ∆ζ any longer
and the short-time dynamics of the correlation functions
is more important. In this case it is sufficient to consider
the probe dynamics alone and that of the host liquid as
essentially arrested, i.e., vsjφ(t) ≈ vsj,eff as constants. The

friction coefficient for δ →∞, ∆ζ∞ = ∆ζ(Fex →∞) can
then be calculated as

∆ζ∞ ≈ φ0

∫ ∞
0

dt
{

(1− µ) Reφs‖(t) + µφs⊥(t)
}

= φ0

{
(1− µ) Im φ̂s1(z=0) + µ Im φ̂s3(z=0)

}
. (43)

From Eq. (6b), ψs = φ̂
s
(z = 0) fulfills a linear equation

system, ·ψs = iω−1φs
0

+ Cs[ψs, φs
0
]. This yields an alge-

braic approximation for ∆ζ∞. For the model discussed
here, we get

∆ζ∞ ∼ µfeff +O(1/F 2
ex) , (44)

where feff = O(1) is the approximately constant value of
the host-liquid correlator φ(t) for the time window over
which the probe-particle correlations decay. The incre-
ment of the friction coefficient as Fex →∞ hence is given
by the parameter µ that controls the admixture of “per-
pendicular” modes to the integral determining ∆ζ. This
fact has been exploited in Ref. [10] in order to quanti-
tatively describe the large-force amplitude of measured
data. Setting µ = 0 results in an expression for ∆ζ that
decays to zero as 1/F 2

ex at large forces. Setting further
vs2 = 0, one obtains the model used in Ref. [9], where
∆ζ∞ = feff(1 + vseff)/(1 − vseff

2 + F 2
ex). This expression

holds for vseff ≥ 1, ensuring positivity of the result.
The reason that the correlation function φs‖(t) does not

contribute to the friction-coefficient increment at large
forces, is its oscillatory decay. Fig. 12 shows exemplary
results for a very large force Fex: both φ(t), shown as dot-
ted lines, and φs⊥(t) decay roughly exponentially, with a
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FIG. 12. Correlations functions φs‖(t) and φs⊥(t) of the
schematic model, with parameters as in Fig. 1, but a large
external force, Fex = 402.7. Full lines show the numerical
solutions of the model, dashed lines the least-square fits using
an exponentially damped function φs‖(t) = e−νtei(Fex+ξ)t with
parameters ν = 22.6 and ξ = −2.1. The host-liquid correlator
φ(t) is shown as a dotted line in the top and bottom panels.

relaxation time that is much larger than the one relevant
for φs‖(t) in this regime. The latter becomes proportional

to a damped oscillation, φs‖(t) ≈ exp[−t + iκ‖Fext] in

the absence of any memory-kernel damping, cf. Eq. (3a).
Taking into account the remaining damping from the
memory kernel, we find that φs‖(t) for large Fex is nicely

fitted with exp[−νt] exp[i(κ‖Fex + ξ)t]. Such a fit is in-
cluded in Fig. 12, with parameters ν = 22.6 and ξ = −2.1
determined by a least-square error minimization; it is
virtually indistinguishable from the numerical result for
φs‖(t) in the figure.

The microscopic interpretation of these oscillations is
a steady motion of the probe, rs(t) = rs(0) + v t, leading
to φsq(t) = exp[iq · v t]. For q ‖ Fex, choosing a wave vec-

tor characterizing typical probe–host interaction length
scales, we recover ζ(Fex→∞) = q‖/κ‖. The schematic-
model parameter κ‖ therefore relates typical length scales
to the high-force friction coefficient. It is also clearly seen
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that for q ⊥ Fex, no oscillations remain in the correla-
tion function; this is correctly captured in the schematic
model.

VII. CONCLUSION

We have discussed a schematic mode-coupling model
for the nonlinear response of the friction coefficient in
force-driven active microrheology. Expressions describ-
ing the asymptotic behavior of the probe-particle den-
sity correlation function in the directions parallel and
perpendicular to the force within the schematic model
have been derived. From these, together with the known
asymptotic behavior of the equilibrium host-liquid corre-
lation function, we have inferred two-parameter scaling
laws that yield scaling forms for the probe-particle fric-
tion coefficient. The two small parameters are the dis-
tance to the glass transition of the host liquid, ε, and
the distance δ to the delocalization transition, where a
frozen-in probe becomes mobile in response to a force-
induced local melting of the host. There exists a scaling
limit based on the combination |ε/δ2|: if this parameter
is small, the external force is a small perturbation to the
glassy dynamics of the host liquid, while for |δ| �

√
|ε|,

the vicinity to the force-induced local melting of the glass
dominates the dynamics.

The asymptotic expressions for the correlation func-
tions lead to the identification of five relevant time scales:
two scales, tσ and t′σ, determine the power-law regimes
for the host-liquid correlator. These diverge upon ap-
proaching the glass transition, σ → 0, and are indepen-
dent of the external force characterized by δ. For the cou-
pling of the probe correlators to that of the host liquid,
a time scale tδ was identified that diverges as the critical
force is approached, δ → 0. It separates two regimes of
proportionality, Gs(t) ∝ G(t), but with different prefac-
tors. Considering the long-time decay of the probe corre-
lator, we identified two further time scales, t1/2 and t′σ,δ,
describing, respectively, the decay inside a glassy host
liquid and the coupling of the probe relaxation to the
host’s von Schweidler law. For the friction coefficient,
the various asymptotic regimes of the correlation func-
tion induce several power-law regimes around the critical
threshold force, F c

ex, marking the point where the exter-
nal force becomes more effective in breaking cages than
thermal fluctuations.

In the linear response regime, the well-known asymp-
totic result of equilibrium MCT is recovered, stating that
the structural relaxation of the probe is, up to a wave-
vector dependent amplitude, given by the relaxation of
the host, cf. Eq. (20). In a sense, this is the justification
of the discussion of microrheology response in terms of
generalized Stokes-Einstein relations, where one tries to
relate the diffusivity of the probe particle to the collective
dynamics of the surrounding host (expressed by its shear
viscosity). Within MCT, a relation of the form D ∼ 1/η
is the consequence of Eq. (20), with prefactors that are

typically of the size expected from the Stokes-Einstein re-
lation [30]. Note, however, that the true Stokes-Einstein
relation is of the form D ∼ kBT/η, where the factor
kBT identifies it as a relation connecting a macroscopic
transport coefficient to microscopic fluctuations. Indeed,
recent experiments indicate that the factor kBT is absent
in the empirical relation between D in η found in viscous
liquids [31], in agreement with Eq. (20).

Small external forces will preserve this coupling, but
as the critical force is approached, the range of validity
of Eq. (20) continuously shrinks. The initial deviation
from the linear reponse regime, by symmetry, has to be
quadratic, ∆ζ(Fex)−∆ζ(Fex =0) ∼ −F 2

ex. Approaching
F c

ex, however, the von Schweidler law governs the force
thinning behavior, i.e., a power law involving the expo-
nent b is seen in ∆ζ. This is, however, a small effect, not
immediately apparent from experimental data.

The delocalization transition is, within the present
schematic model, identified as a continuous transition,
i.e. the nonergodicity parameter of the probe-particle
density correlators vanishes continuously. In a micro-
scopic model, this would correspond to a continuous
broadening of the probability distribution function for
the probe position. This can be understood as a single-
particle localization length that diverges due to the ap-
plied force. However, in the schematic model, no such
interpretation is obvious, since the model does not carry
any information related to large length scales. It is also
expected that the exponents found in the asymptotic
analysis carried out here will be modified by taking into
account long-wavelength fluctuations [32].

Above the threshold force, tracer motion is always de-
localized. For this case, the friction coefficient increment
∆ζ follows two power laws: a trivial force thinning with
exponent −1 is predicted in the glass, valid for very small
|Fex−F c

ex|. This law is, closer to the glass transition, re-
placed by a power law involving the MCT critical expo-
nent, i.e., force thinning with exponent y = 1−1/a < −1.
Inserting typical values found for hard-sphere like sys-
tems within MCT, a ≈ 1/3, one gets for the force thin-
ning exponent y ≈ −2.

Considering still larger forces, Fex →∞, a feature seen
in experiment is a second plateau in ∆ζ > 0, indicating
that the friction experienced by the pulled particle is not
just the solvent friction. Although hydrodynamic inter-
actions (HI) in the colloidal suspension will play a major
role in this regime [33], the second plateau is not only due
to them, as it is also found in Brownian-dynamics simu-
lations [9] that do not include HI. Within the schematic
model, the additional contribution can be traced back
to the correlation function φs⊥(t) mimicking the density
correlators in the direction perpendicular to the force.

Although the schematic model we have discussed gives
a reasonable quantiative description of the friction co-
efficients, and a qualitative one for intermediate-length-
scale density correlation functions, the question remains
whether the force-driven delocalization of a probe par-
ticle in the glass is continuous in the sense mentioned
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above. Another possibility is that of a discontinuous
local yielding, where the plateau of the tagged-particle
correlation function fs does not decrease to zero as
Fex → F c

ex − 0, but to some nonzero constant (so that
a discontinuous jump in the nonergodicity parameter at
F c

ex results). These scenarios are not easily distinguished
following the behavior of the friction coefficient. Corre-
lation functions from computer simulation of Brownian
soft-sphere systems [9, 10] appear compatible with the
continuous scenario incorporated in the schematic model
discussed here. However, recent MD simulations of the
mean-squared displacement in active microrheology show
a plateau that does not change appreciably with varying
Fex [34], and thus may point to a discontinuous transi-
tion scenario. Note that even the connection between
schematic and “full” microscopic MCT remains unclear
at the moment. This connection hinges upon the assump-
tion that the two modes chosen for the probe correlator
in the schematic model are sufficient to represent the full
set of critical modes in the bifurcation transition of the

full model. In this respect, the microscopic model of
Ref. [9] is an extension of MCT that is qualitatively dif-
ferent from other extensions of the original MCT where
it could be shown that the latter’s bifurcation class Al
was not left.
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